Update README.md
Browse files
README.md
CHANGED
@@ -42,4 +42,66 @@ configs:
|
|
42 |
path: data/latin-*
|
43 |
- split: cyrillic
|
44 |
path: data/cyrillic-*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
path: data/latin-*
|
43 |
- split: cyrillic
|
44 |
path: data/cyrillic-*
|
45 |
+
license: apache-2.0
|
46 |
+
task_categories:
|
47 |
+
- token-classification
|
48 |
+
language:
|
49 |
+
- uz
|
50 |
+
tags:
|
51 |
+
- pos
|
52 |
+
- uz
|
53 |
+
pretty_name: uzbekpos
|
54 |
+
size_categories:
|
55 |
+
- n<1K
|
56 |
---
|
57 |
+
|
58 |
+
# Dataset Card for UzbekPos
|
59 |
+
|
60 |
+
### Dataset Summary
|
61 |
+
|
62 |
+
This dataset is an example of POS tagging in Uzbek. It contains 250 sample sentences collected from news outlets and fictional books respectively.
|
63 |
+
The dataset is presented in both Uzbek scripts i.e., Latin and Cyrillic. The annotation was done manually according to [UPOS tagset](https://universaldependencies.org/u/pos/).
|
64 |
+
|
65 |
+
## Dataset Structure
|
66 |
+
|
67 |
+
An example of 'latin' looks as follows.
|
68 |
+
```
|
69 |
+
{
|
70 |
+
'id': 0,
|
71 |
+
'tokens': "['Doimiy', 'g‘ala-g‘ovur', ',', 'to‘lib-toshgan', 'peshtaxtalar', ',', 'mahsulotlarning', 'o‘ziga', 'xos', 'qorishiq', 'isi', '…']",
|
72 |
+
'pos_tags': '[0, 7, 12, 15, 7, 12, 7, 10, 0, 0, 7, 12]'
|
73 |
+
}
|
74 |
+
```
|
75 |
+
|
76 |
+
### Data Splits
|
77 |
+
| name | |
|
78 |
+
|-----------------|--------:|
|
79 |
+
| latin | 500 |
|
80 |
+
| cyrillic | 500 |
|
81 |
+
|
82 |
+
### Data Fields
|
83 |
+
The data fields are the same among all splits:
|
84 |
+
- `id` (`string`): ID of the example.
|
85 |
+
- `tokens` (`list` of `string`): Tokens of the example text.
|
86 |
+
- `pos_tags` (`list` of class labels): POS tags of the tokens, with possible values:
|
87 |
+
- 0: `ADJ`
|
88 |
+
- 1: `ADP`
|
89 |
+
- 2: `ADV`
|
90 |
+
- 3: `AUX`
|
91 |
+
- 4: `CCONJ`
|
92 |
+
- 5: `DET`
|
93 |
+
- 6: `INTJ`
|
94 |
+
- 7: `NOUN`
|
95 |
+
- 8: `NUM`
|
96 |
+
- 9: `PART`
|
97 |
+
- 10: `PRON`
|
98 |
+
- 11: `PROPN`
|
99 |
+
- 12: `PUNCT`
|
100 |
+
- 13: `SCONJ`
|
101 |
+
- 14: `SYM`
|
102 |
+
- 15: `VERB`
|
103 |
+
- 16: `X`
|
104 |
+
|
105 |
+
### Source Data
|
106 |
+
* news articles
|
107 |
+
* fictional books
|