|
from collections import defaultdict |
|
import os |
|
import json |
|
import csv |
|
|
|
import datasets |
|
|
|
_NAME="raddromur_asr" |
|
_VERSION="1.0.0" |
|
_AUDIO_EXTENSIONS=".flac" |
|
|
|
_DESCRIPTION = """ |
|
The Raddrómur Corpus is intended for the speech recognition field and it is made out of radio podcasts mostly taken from RÚV (ruv.is). Such podcasts were selected because they contained a text script that matches with certain fidelity what is said during the show. After automatic segmentation of the episodes, the transcriptions were inferred using the scripts along with a forced alignment technique. |
|
""" |
|
|
|
_CITATION = """ |
|
@misc{carlosmenaraddromur2022, |
|
title={Raddrómur Icelandic Speech 22.09}, |
|
author={Hernández Mena, Carlos Daniel and Hedström, Staffan and Þórhallsdóttir, Ragnheiður and Fong, Judy Y. and Gunnarsson, Þorsteinn Daði and Sigurðardóttir, Helga Svala and Þorsteinsdóttir, Helga Lára and Guðnason, Jón}, |
|
year={2022}, |
|
url={http://hdl.handle.net/20.500.12537/286}, |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "http://hdl.handle.net/20.500.12537/286" |
|
|
|
_LICENSE = "CC-BY-4.0, See https://creativecommons.org/licenses/by/4.0/" |
|
|
|
_BASE_DATA_DIR = "corpus/" |
|
_METADATA_TRAIN = os.path.join(_BASE_DATA_DIR,"files","metadata_train.tsv") |
|
|
|
_TARS_TRAIN = os.path.join(_BASE_DATA_DIR,"files","tars_train.paths") |
|
|
|
class RaddromurAsrConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Raddrómur Corpus""" |
|
|
|
def __init__(self, name, **kwargs): |
|
name=_NAME |
|
super().__init__(name=name, **kwargs) |
|
|
|
class RaddromurAsr(datasets.GeneratorBasedBuilder): |
|
"""Raddrómur Icelandic Speech 22.09""" |
|
|
|
VERSION = datasets.Version(_VERSION) |
|
BUILDER_CONFIGS = [ |
|
RaddromurAsrConfig( |
|
name=_NAME, |
|
version=datasets.Version(_VERSION), |
|
) |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"audio_id": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16000), |
|
"podcast_id": datasets.Value("string"), |
|
"segment_num": datasets.Value("int32"), |
|
"start_time": datasets.Value("string"), |
|
"duration": datasets.Value("float32"), |
|
"mafia_score": datasets.Value("float32"), |
|
"normalized_text": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
metadata_train=dl_manager.download_and_extract(_METADATA_TRAIN) |
|
|
|
tars_train=dl_manager.download_and_extract(_TARS_TRAIN) |
|
|
|
hash_tar_files=defaultdict(dict) |
|
with open(tars_train,'r') as f: |
|
hash_tar_files['train']=[path.replace('\n','') for path in f] |
|
|
|
hash_meta_paths={"train":metadata_train} |
|
audio_paths = dl_manager.download(hash_tar_files) |
|
|
|
splits=["train"] |
|
local_extracted_audio_paths = ( |
|
dl_manager.extract(audio_paths) if not dl_manager.is_streaming else |
|
{ |
|
split:[None] * len(audio_paths[split]) for split in splits |
|
} |
|
) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["train"]], |
|
"local_extracted_archives_paths": local_extracted_audio_paths["train"], |
|
"metadata_paths": hash_meta_paths["train"], |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths): |
|
|
|
features = ["podcast_id","segment_num","start_time","duration","mafia_score","normalized_text"] |
|
|
|
with open(metadata_paths) as f: |
|
metadata = {x["audio_id"]: x for x in csv.DictReader(f, delimiter="\t")} |
|
|
|
for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths): |
|
for audio_filename, audio_file in audio_archive: |
|
audio_id = audio_filename.split(os.sep)[-1].split(_AUDIO_EXTENSIONS)[0] |
|
path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename |
|
|
|
yield audio_id, { |
|
"audio_id": audio_id, |
|
**{feature: metadata[audio_id][feature] for feature in features}, |
|
"audio": {"path": path, "bytes": audio_file.read()}, |
|
} |
|
|