|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from itertools import chain |
|
|
|
import nltk |
|
from nltk.internals import Counter |
|
from nltk.sem import drt, linearlogic |
|
from nltk.sem.logic import ( |
|
AbstractVariableExpression, |
|
Expression, |
|
LambdaExpression, |
|
Variable, |
|
VariableExpression, |
|
) |
|
from nltk.tag import BigramTagger, RegexpTagger, TrigramTagger, UnigramTagger |
|
|
|
SPEC_SEMTYPES = { |
|
"a": "ex_quant", |
|
"an": "ex_quant", |
|
"every": "univ_quant", |
|
"the": "def_art", |
|
"no": "no_quant", |
|
"default": "ex_quant", |
|
} |
|
|
|
OPTIONAL_RELATIONSHIPS = ["nmod", "vmod", "punct"] |
|
|
|
|
|
class GlueFormula: |
|
def __init__(self, meaning, glue, indices=None): |
|
if not indices: |
|
indices = set() |
|
|
|
if isinstance(meaning, str): |
|
self.meaning = Expression.fromstring(meaning) |
|
elif isinstance(meaning, Expression): |
|
self.meaning = meaning |
|
else: |
|
raise RuntimeError( |
|
"Meaning term neither string or expression: %s, %s" |
|
% (meaning, meaning.__class__) |
|
) |
|
|
|
if isinstance(glue, str): |
|
self.glue = linearlogic.LinearLogicParser().parse(glue) |
|
elif isinstance(glue, linearlogic.Expression): |
|
self.glue = glue |
|
else: |
|
raise RuntimeError( |
|
"Glue term neither string or expression: %s, %s" |
|
% (glue, glue.__class__) |
|
) |
|
|
|
self.indices = indices |
|
|
|
def applyto(self, arg): |
|
"""self = (\\x.(walk x), (subj -o f)) |
|
arg = (john , subj) |
|
returns ((walk john), f) |
|
""" |
|
if self.indices & arg.indices: |
|
raise linearlogic.LinearLogicApplicationException( |
|
f"'{self}' applied to '{arg}'. Indices are not disjoint." |
|
) |
|
else: |
|
return_indices = self.indices | arg.indices |
|
|
|
try: |
|
return_glue = linearlogic.ApplicationExpression( |
|
self.glue, arg.glue, arg.indices |
|
) |
|
except linearlogic.LinearLogicApplicationException as e: |
|
raise linearlogic.LinearLogicApplicationException( |
|
f"'{self.simplify()}' applied to '{arg.simplify()}'" |
|
) from e |
|
|
|
arg_meaning_abstracted = arg.meaning |
|
if return_indices: |
|
for dep in self.glue.simplify().antecedent.dependencies[ |
|
::-1 |
|
]: |
|
arg_meaning_abstracted = self.make_LambdaExpression( |
|
Variable("v%s" % dep), arg_meaning_abstracted |
|
) |
|
return_meaning = self.meaning.applyto(arg_meaning_abstracted) |
|
|
|
return self.__class__(return_meaning, return_glue, return_indices) |
|
|
|
def make_VariableExpression(self, name): |
|
return VariableExpression(name) |
|
|
|
def make_LambdaExpression(self, variable, term): |
|
return LambdaExpression(variable, term) |
|
|
|
def lambda_abstract(self, other): |
|
assert isinstance(other, GlueFormula) |
|
assert isinstance(other.meaning, AbstractVariableExpression) |
|
return self.__class__( |
|
self.make_LambdaExpression(other.meaning.variable, self.meaning), |
|
linearlogic.ImpExpression(other.glue, self.glue), |
|
) |
|
|
|
def compile(self, counter=None): |
|
"""From Iddo Lev's PhD Dissertation p108-109""" |
|
if not counter: |
|
counter = Counter() |
|
(compiled_glue, new_forms) = self.glue.simplify().compile_pos( |
|
counter, self.__class__ |
|
) |
|
return new_forms + [ |
|
self.__class__(self.meaning, compiled_glue, {counter.get()}) |
|
] |
|
|
|
def simplify(self): |
|
return self.__class__( |
|
self.meaning.simplify(), self.glue.simplify(), self.indices |
|
) |
|
|
|
def __eq__(self, other): |
|
return ( |
|
self.__class__ == other.__class__ |
|
and self.meaning == other.meaning |
|
and self.glue == other.glue |
|
) |
|
|
|
def __ne__(self, other): |
|
return not self == other |
|
|
|
|
|
def __lt__(self, other): |
|
return str(self) < str(other) |
|
|
|
def __str__(self): |
|
assert isinstance(self.indices, set) |
|
accum = f"{self.meaning} : {self.glue}" |
|
if self.indices: |
|
accum += ( |
|
" : {" + ", ".join(str(index) for index in sorted(self.indices)) + "}" |
|
) |
|
return accum |
|
|
|
def __repr__(self): |
|
return "%s" % self |
|
|
|
|
|
class GlueDict(dict): |
|
def __init__(self, filename, encoding=None): |
|
self.filename = filename |
|
self.file_encoding = encoding |
|
self.read_file() |
|
|
|
def read_file(self, empty_first=True): |
|
if empty_first: |
|
self.clear() |
|
|
|
try: |
|
contents = nltk.data.load( |
|
self.filename, format="text", encoding=self.file_encoding |
|
) |
|
|
|
except LookupError as e: |
|
try: |
|
contents = nltk.data.load( |
|
"file:" + self.filename, format="text", encoding=self.file_encoding |
|
) |
|
except LookupError: |
|
raise e |
|
lines = contents.splitlines() |
|
|
|
for line in lines: |
|
|
|
line = line.strip() |
|
if not len(line): |
|
continue |
|
if line[0] == "#": |
|
continue |
|
|
|
parts = line.split( |
|
" : ", 2 |
|
) |
|
|
|
glue_formulas = [] |
|
paren_count = 0 |
|
tuple_start = 0 |
|
tuple_comma = 0 |
|
|
|
relationships = None |
|
|
|
if len(parts) > 1: |
|
for (i, c) in enumerate(parts[1]): |
|
if c == "(": |
|
if paren_count == 0: |
|
tuple_start = i + 1 |
|
paren_count += 1 |
|
elif c == ")": |
|
paren_count -= 1 |
|
if paren_count == 0: |
|
meaning_term = parts[1][ |
|
tuple_start:tuple_comma |
|
] |
|
glue_term = parts[1][tuple_comma + 1 : i] |
|
glue_formulas.append( |
|
[meaning_term, glue_term] |
|
) |
|
elif c == ",": |
|
if ( |
|
paren_count == 1 |
|
): |
|
tuple_comma = i |
|
elif c == "#": |
|
if ( |
|
paren_count != 0 |
|
): |
|
raise RuntimeError( |
|
"Formula syntax is incorrect for entry " + line |
|
) |
|
break |
|
|
|
if len(parts) > 2: |
|
rel_start = parts[2].index("[") + 1 |
|
rel_end = parts[2].index("]") |
|
if rel_start == rel_end: |
|
relationships = frozenset() |
|
else: |
|
relationships = frozenset( |
|
r.strip() for r in parts[2][rel_start:rel_end].split(",") |
|
) |
|
|
|
try: |
|
start_inheritance = parts[0].index("(") |
|
end_inheritance = parts[0].index(")") |
|
sem = parts[0][:start_inheritance].strip() |
|
supertype = parts[0][start_inheritance + 1 : end_inheritance] |
|
except: |
|
sem = parts[0].strip() |
|
supertype = None |
|
|
|
if sem not in self: |
|
self[sem] = {} |
|
|
|
if ( |
|
relationships is None |
|
): |
|
|
|
if supertype: |
|
for rels in self[supertype]: |
|
if rels not in self[sem]: |
|
self[sem][rels] = [] |
|
glue = self[supertype][rels] |
|
self[sem][rels].extend(glue) |
|
self[sem][rels].extend( |
|
glue_formulas |
|
) |
|
else: |
|
if None not in self[sem]: |
|
self[sem][None] = [] |
|
self[sem][None].extend( |
|
glue_formulas |
|
) |
|
else: |
|
if relationships not in self[sem]: |
|
self[sem][relationships] = [] |
|
if supertype: |
|
self[sem][relationships].extend(self[supertype][relationships]) |
|
self[sem][relationships].extend( |
|
glue_formulas |
|
) |
|
|
|
def __str__(self): |
|
accum = "" |
|
for pos in self: |
|
str_pos = "%s" % pos |
|
for relset in self[pos]: |
|
i = 1 |
|
for gf in self[pos][relset]: |
|
if i == 1: |
|
accum += str_pos + ": " |
|
else: |
|
accum += " " * (len(str_pos) + 2) |
|
accum += "%s" % gf |
|
if relset and i == len(self[pos][relset]): |
|
accum += " : %s" % relset |
|
accum += "\n" |
|
i += 1 |
|
return accum |
|
|
|
def to_glueformula_list(self, depgraph, node=None, counter=None, verbose=False): |
|
if node is None: |
|
|
|
top = depgraph.nodes[0] |
|
depList = list(chain.from_iterable(top["deps"].values())) |
|
root = depgraph.nodes[depList[0]] |
|
|
|
return self.to_glueformula_list(depgraph, root, Counter(), verbose) |
|
|
|
glueformulas = self.lookup(node, depgraph, counter) |
|
for dep_idx in chain.from_iterable(node["deps"].values()): |
|
dep = depgraph.nodes[dep_idx] |
|
glueformulas.extend( |
|
self.to_glueformula_list(depgraph, dep, counter, verbose) |
|
) |
|
return glueformulas |
|
|
|
def lookup(self, node, depgraph, counter): |
|
semtype_names = self.get_semtypes(node) |
|
|
|
semtype = None |
|
for name in semtype_names: |
|
if name in self: |
|
semtype = self[name] |
|
break |
|
if semtype is None: |
|
|
|
return [] |
|
|
|
self.add_missing_dependencies(node, depgraph) |
|
|
|
lookup = self._lookup_semtype_option(semtype, node, depgraph) |
|
|
|
if not len(lookup): |
|
raise KeyError( |
|
"There is no GlueDict entry for sem type of '%s' " |
|
"with tag '%s', and rel '%s'" % (node["word"], node["tag"], node["rel"]) |
|
) |
|
|
|
return self.get_glueformulas_from_semtype_entry( |
|
lookup, node["word"], node, depgraph, counter |
|
) |
|
|
|
def add_missing_dependencies(self, node, depgraph): |
|
rel = node["rel"].lower() |
|
|
|
if rel == "main": |
|
headnode = depgraph.nodes[node["head"]] |
|
subj = self.lookup_unique("subj", headnode, depgraph) |
|
relation = subj["rel"] |
|
node["deps"].setdefault(relation, []) |
|
node["deps"][relation].append(subj["address"]) |
|
|
|
|
|
def _lookup_semtype_option(self, semtype, node, depgraph): |
|
relationships = frozenset( |
|
depgraph.nodes[dep]["rel"].lower() |
|
for dep in chain.from_iterable(node["deps"].values()) |
|
if depgraph.nodes[dep]["rel"].lower() not in OPTIONAL_RELATIONSHIPS |
|
) |
|
|
|
try: |
|
lookup = semtype[relationships] |
|
except KeyError: |
|
|
|
|
|
|
|
|
|
best_match = frozenset() |
|
for relset_option in set(semtype) - {None}: |
|
if ( |
|
len(relset_option) > len(best_match) |
|
and relset_option < relationships |
|
): |
|
best_match = relset_option |
|
if not best_match: |
|
if None in semtype: |
|
best_match = None |
|
else: |
|
return None |
|
lookup = semtype[best_match] |
|
|
|
return lookup |
|
|
|
def get_semtypes(self, node): |
|
""" |
|
Based on the node, return a list of plausible semtypes in order of |
|
plausibility. |
|
""" |
|
rel = node["rel"].lower() |
|
word = node["word"].lower() |
|
|
|
if rel == "spec": |
|
if word in SPEC_SEMTYPES: |
|
return [SPEC_SEMTYPES[word]] |
|
else: |
|
return [SPEC_SEMTYPES["default"]] |
|
elif rel in ["nmod", "vmod"]: |
|
return [node["tag"], rel] |
|
else: |
|
return [node["tag"]] |
|
|
|
def get_glueformulas_from_semtype_entry( |
|
self, lookup, word, node, depgraph, counter |
|
): |
|
glueformulas = [] |
|
|
|
glueFormulaFactory = self.get_GlueFormula_factory() |
|
for meaning, glue in lookup: |
|
gf = glueFormulaFactory(self.get_meaning_formula(meaning, word), glue) |
|
if not len(glueformulas): |
|
gf.word = word |
|
else: |
|
gf.word = f"{word}{len(glueformulas) + 1}" |
|
|
|
gf.glue = self.initialize_labels(gf.glue, node, depgraph, counter.get()) |
|
|
|
glueformulas.append(gf) |
|
return glueformulas |
|
|
|
def get_meaning_formula(self, generic, word): |
|
""" |
|
:param generic: A meaning formula string containing the |
|
parameter "<word>" |
|
:param word: The actual word to be replace "<word>" |
|
""" |
|
word = word.replace(".", "") |
|
return generic.replace("<word>", word) |
|
|
|
def initialize_labels(self, expr, node, depgraph, unique_index): |
|
if isinstance(expr, linearlogic.AtomicExpression): |
|
name = self.find_label_name(expr.name.lower(), node, depgraph, unique_index) |
|
if name[0].isupper(): |
|
return linearlogic.VariableExpression(name) |
|
else: |
|
return linearlogic.ConstantExpression(name) |
|
else: |
|
return linearlogic.ImpExpression( |
|
self.initialize_labels(expr.antecedent, node, depgraph, unique_index), |
|
self.initialize_labels(expr.consequent, node, depgraph, unique_index), |
|
) |
|
|
|
def find_label_name(self, name, node, depgraph, unique_index): |
|
try: |
|
dot = name.index(".") |
|
|
|
before_dot = name[:dot] |
|
after_dot = name[dot + 1 :] |
|
if before_dot == "super": |
|
return self.find_label_name( |
|
after_dot, depgraph.nodes[node["head"]], depgraph, unique_index |
|
) |
|
else: |
|
return self.find_label_name( |
|
after_dot, |
|
self.lookup_unique(before_dot, node, depgraph), |
|
depgraph, |
|
unique_index, |
|
) |
|
except ValueError: |
|
lbl = self.get_label(node) |
|
if name == "f": |
|
return lbl |
|
elif name == "v": |
|
return "%sv" % lbl |
|
elif name == "r": |
|
return "%sr" % lbl |
|
elif name == "super": |
|
return self.get_label(depgraph.nodes[node["head"]]) |
|
elif name == "var": |
|
return f"{lbl.upper()}{unique_index}" |
|
elif name == "a": |
|
return self.get_label(self.lookup_unique("conja", node, depgraph)) |
|
elif name == "b": |
|
return self.get_label(self.lookup_unique("conjb", node, depgraph)) |
|
else: |
|
return self.get_label(self.lookup_unique(name, node, depgraph)) |
|
|
|
def get_label(self, node): |
|
""" |
|
Pick an alphabetic character as identifier for an entity in the model. |
|
|
|
:param value: where to index into the list of characters |
|
:type value: int |
|
""" |
|
value = node["address"] |
|
|
|
letter = [ |
|
"f", |
|
"g", |
|
"h", |
|
"i", |
|
"j", |
|
"k", |
|
"l", |
|
"m", |
|
"n", |
|
"o", |
|
"p", |
|
"q", |
|
"r", |
|
"s", |
|
"t", |
|
"u", |
|
"v", |
|
"w", |
|
"x", |
|
"y", |
|
"z", |
|
"a", |
|
"b", |
|
"c", |
|
"d", |
|
"e", |
|
][value - 1] |
|
num = int(value) // 26 |
|
if num > 0: |
|
return letter + str(num) |
|
else: |
|
return letter |
|
|
|
def lookup_unique(self, rel, node, depgraph): |
|
""" |
|
Lookup 'key'. There should be exactly one item in the associated relation. |
|
""" |
|
deps = [ |
|
depgraph.nodes[dep] |
|
for dep in chain.from_iterable(node["deps"].values()) |
|
if depgraph.nodes[dep]["rel"].lower() == rel.lower() |
|
] |
|
|
|
if len(deps) == 0: |
|
raise KeyError( |
|
"'{}' doesn't contain a feature '{}'".format(node["word"], rel) |
|
) |
|
elif len(deps) > 1: |
|
raise KeyError( |
|
"'{}' should only have one feature '{}'".format(node["word"], rel) |
|
) |
|
else: |
|
return deps[0] |
|
|
|
def get_GlueFormula_factory(self): |
|
return GlueFormula |
|
|
|
|
|
class Glue: |
|
def __init__( |
|
self, semtype_file=None, remove_duplicates=False, depparser=None, verbose=False |
|
): |
|
self.verbose = verbose |
|
self.remove_duplicates = remove_duplicates |
|
self.depparser = depparser |
|
|
|
from nltk import Prover9 |
|
|
|
self.prover = Prover9() |
|
|
|
if semtype_file: |
|
self.semtype_file = semtype_file |
|
else: |
|
self.semtype_file = os.path.join( |
|
"grammars", "sample_grammars", "glue.semtype" |
|
) |
|
|
|
def train_depparser(self, depgraphs=None): |
|
if depgraphs: |
|
self.depparser.train(depgraphs) |
|
else: |
|
self.depparser.train_from_file( |
|
nltk.data.find( |
|
os.path.join("grammars", "sample_grammars", "glue_train.conll") |
|
) |
|
) |
|
|
|
def parse_to_meaning(self, sentence): |
|
readings = [] |
|
for agenda in self.parse_to_compiled(sentence): |
|
readings.extend(self.get_readings(agenda)) |
|
return readings |
|
|
|
def get_readings(self, agenda): |
|
readings = [] |
|
agenda_length = len(agenda) |
|
atomics = dict() |
|
nonatomics = dict() |
|
while agenda: |
|
cur = agenda.pop() |
|
glue_simp = cur.glue.simplify() |
|
if isinstance( |
|
glue_simp, linearlogic.ImpExpression |
|
): |
|
for key in atomics: |
|
try: |
|
if isinstance(cur.glue, linearlogic.ApplicationExpression): |
|
bindings = cur.glue.bindings |
|
else: |
|
bindings = linearlogic.BindingDict() |
|
glue_simp.antecedent.unify(key, bindings) |
|
for atomic in atomics[key]: |
|
if not ( |
|
cur.indices & atomic.indices |
|
): |
|
try: |
|
agenda.append(cur.applyto(atomic)) |
|
except linearlogic.LinearLogicApplicationException: |
|
pass |
|
except linearlogic.UnificationException: |
|
pass |
|
try: |
|
nonatomics[glue_simp.antecedent].append(cur) |
|
except KeyError: |
|
nonatomics[glue_simp.antecedent] = [cur] |
|
|
|
else: |
|
for key in nonatomics: |
|
for nonatomic in nonatomics[key]: |
|
try: |
|
if isinstance( |
|
nonatomic.glue, linearlogic.ApplicationExpression |
|
): |
|
bindings = nonatomic.glue.bindings |
|
else: |
|
bindings = linearlogic.BindingDict() |
|
glue_simp.unify(key, bindings) |
|
if not ( |
|
cur.indices & nonatomic.indices |
|
): |
|
try: |
|
agenda.append(nonatomic.applyto(cur)) |
|
except linearlogic.LinearLogicApplicationException: |
|
pass |
|
except linearlogic.UnificationException: |
|
pass |
|
try: |
|
atomics[glue_simp].append(cur) |
|
except KeyError: |
|
atomics[glue_simp] = [cur] |
|
|
|
for entry in atomics: |
|
for gf in atomics[entry]: |
|
if len(gf.indices) == agenda_length: |
|
self._add_to_reading_list(gf, readings) |
|
for entry in nonatomics: |
|
for gf in nonatomics[entry]: |
|
if len(gf.indices) == agenda_length: |
|
self._add_to_reading_list(gf, readings) |
|
return readings |
|
|
|
def _add_to_reading_list(self, glueformula, reading_list): |
|
add_reading = True |
|
if self.remove_duplicates: |
|
for reading in reading_list: |
|
try: |
|
if reading.equiv(glueformula.meaning, self.prover): |
|
add_reading = False |
|
break |
|
except Exception as e: |
|
|
|
|
|
|
|
print("Error when checking logical equality of statements", e) |
|
|
|
if add_reading: |
|
reading_list.append(glueformula.meaning) |
|
|
|
def parse_to_compiled(self, sentence): |
|
gfls = [self.depgraph_to_glue(dg) for dg in self.dep_parse(sentence)] |
|
return [self.gfl_to_compiled(gfl) for gfl in gfls] |
|
|
|
def dep_parse(self, sentence): |
|
""" |
|
Return a dependency graph for the sentence. |
|
|
|
:param sentence: the sentence to be parsed |
|
:type sentence: list(str) |
|
:rtype: DependencyGraph |
|
""" |
|
|
|
|
|
if self.depparser is None: |
|
from nltk.parse import MaltParser |
|
|
|
self.depparser = MaltParser(tagger=self.get_pos_tagger()) |
|
if not self.depparser._trained: |
|
self.train_depparser() |
|
return self.depparser.parse(sentence, verbose=self.verbose) |
|
|
|
def depgraph_to_glue(self, depgraph): |
|
return self.get_glue_dict().to_glueformula_list(depgraph) |
|
|
|
def get_glue_dict(self): |
|
return GlueDict(self.semtype_file) |
|
|
|
def gfl_to_compiled(self, gfl): |
|
index_counter = Counter() |
|
return_list = [] |
|
for gf in gfl: |
|
return_list.extend(gf.compile(index_counter)) |
|
|
|
if self.verbose: |
|
print("Compiled Glue Premises:") |
|
for cgf in return_list: |
|
print(cgf) |
|
|
|
return return_list |
|
|
|
def get_pos_tagger(self): |
|
from nltk.corpus import brown |
|
|
|
regexp_tagger = RegexpTagger( |
|
[ |
|
|
|
|
|
|
|
(r"^-?[0-9]+(\.[0-9]+)?$", "CD"), |
|
(r"(The|the|A|a|An|an)$", "AT"), |
|
(r".*able$", "JJ"), |
|
(r".*ness$", "NN"), |
|
(r".*ly$", "RB"), |
|
(r".*s$", "NNS"), |
|
(r".*ing$", "VBG"), |
|
(r".*ed$", "VBD"), |
|
(r".*", "NN"), |
|
] |
|
) |
|
brown_train = brown.tagged_sents(categories="news") |
|
unigram_tagger = UnigramTagger(brown_train, backoff=regexp_tagger) |
|
bigram_tagger = BigramTagger(brown_train, backoff=unigram_tagger) |
|
trigram_tagger = TrigramTagger(brown_train, backoff=bigram_tagger) |
|
|
|
|
|
main_tagger = RegexpTagger( |
|
[(r"(A|a|An|an)$", "ex_quant"), (r"(Every|every|All|all)$", "univ_quant")], |
|
backoff=trigram_tagger, |
|
) |
|
|
|
return main_tagger |
|
|
|
|
|
class DrtGlueFormula(GlueFormula): |
|
def __init__(self, meaning, glue, indices=None): |
|
if not indices: |
|
indices = set() |
|
|
|
if isinstance(meaning, str): |
|
self.meaning = drt.DrtExpression.fromstring(meaning) |
|
elif isinstance(meaning, drt.DrtExpression): |
|
self.meaning = meaning |
|
else: |
|
raise RuntimeError( |
|
"Meaning term neither string or expression: %s, %s" |
|
% (meaning, meaning.__class__) |
|
) |
|
|
|
if isinstance(glue, str): |
|
self.glue = linearlogic.LinearLogicParser().parse(glue) |
|
elif isinstance(glue, linearlogic.Expression): |
|
self.glue = glue |
|
else: |
|
raise RuntimeError( |
|
"Glue term neither string or expression: %s, %s" |
|
% (glue, glue.__class__) |
|
) |
|
|
|
self.indices = indices |
|
|
|
def make_VariableExpression(self, name): |
|
return drt.DrtVariableExpression(name) |
|
|
|
def make_LambdaExpression(self, variable, term): |
|
return drt.DrtLambdaExpression(variable, term) |
|
|
|
|
|
class DrtGlueDict(GlueDict): |
|
def get_GlueFormula_factory(self): |
|
return DrtGlueFormula |
|
|
|
|
|
class DrtGlue(Glue): |
|
def __init__( |
|
self, semtype_file=None, remove_duplicates=False, depparser=None, verbose=False |
|
): |
|
if not semtype_file: |
|
semtype_file = os.path.join( |
|
"grammars", "sample_grammars", "drt_glue.semtype" |
|
) |
|
Glue.__init__(self, semtype_file, remove_duplicates, depparser, verbose) |
|
|
|
def get_glue_dict(self): |
|
return DrtGlueDict(self.semtype_file) |
|
|
|
|
|
def demo(show_example=-1): |
|
from nltk.parse import MaltParser |
|
|
|
examples = [ |
|
"David sees Mary", |
|
"David eats a sandwich", |
|
"every man chases a dog", |
|
"every man believes a dog sleeps", |
|
"John gives David a sandwich", |
|
"John chases himself", |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("============== DEMO ==============") |
|
|
|
tagger = RegexpTagger( |
|
[ |
|
("^(David|Mary|John)$", "NNP"), |
|
( |
|
"^(sees|eats|chases|believes|gives|sleeps|chases|persuades|tries|seems|leaves)$", |
|
"VB", |
|
), |
|
("^(go|order|vanish|find|approach)$", "VB"), |
|
("^(a)$", "ex_quant"), |
|
("^(every)$", "univ_quant"), |
|
("^(sandwich|man|dog|pizza|unicorn|cat|senator)$", "NN"), |
|
("^(big|gray|former)$", "JJ"), |
|
("^(him|himself)$", "PRP"), |
|
] |
|
) |
|
|
|
depparser = MaltParser(tagger=tagger) |
|
glue = Glue(depparser=depparser, verbose=False) |
|
|
|
for (i, sentence) in enumerate(examples): |
|
if i == show_example or show_example == -1: |
|
print(f"[[[Example {i}]]] {sentence}") |
|
for reading in glue.parse_to_meaning(sentence.split()): |
|
print(reading.simplify()) |
|
print("") |
|
|
|
|
|
if __name__ == "__main__": |
|
demo() |
|
|