|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | CorpusReader for the Comparative Sentence Dataset. | 
					
						
						|  |  | 
					
						
						|  | - Comparative Sentence Dataset information - | 
					
						
						|  |  | 
					
						
						|  | Annotated by: Nitin Jindal and Bing Liu, 2006. | 
					
						
						|  | Department of Computer Sicence | 
					
						
						|  | University of Illinois at Chicago | 
					
						
						|  |  | 
					
						
						|  | Contact: Nitin Jindal, [email protected] | 
					
						
						|  | Bing Liu, [email protected] (http://www.cs.uic.edu/~liub) | 
					
						
						|  |  | 
					
						
						|  | Distributed with permission. | 
					
						
						|  |  | 
					
						
						|  | Related papers: | 
					
						
						|  |  | 
					
						
						|  | - Nitin Jindal and Bing Liu. "Identifying Comparative Sentences in Text Documents". | 
					
						
						|  | Proceedings of the ACM SIGIR International Conference on Information Retrieval | 
					
						
						|  | (SIGIR-06), 2006. | 
					
						
						|  |  | 
					
						
						|  | - Nitin Jindal and Bing Liu. "Mining Comprative Sentences and Relations". | 
					
						
						|  | Proceedings of Twenty First National Conference on Artificial Intelligence | 
					
						
						|  | (AAAI-2006), 2006. | 
					
						
						|  |  | 
					
						
						|  | - Murthy Ganapathibhotla and Bing Liu. "Mining Opinions in Comparative Sentences". | 
					
						
						|  | Proceedings of the 22nd International Conference on Computational Linguistics | 
					
						
						|  | (Coling-2008), Manchester, 18-22 August, 2008. | 
					
						
						|  | """ | 
					
						
						|  | import re | 
					
						
						|  |  | 
					
						
						|  | from nltk.corpus.reader.api import * | 
					
						
						|  | from nltk.tokenize import * | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | STARS = re.compile(r"^\*+$") | 
					
						
						|  | COMPARISON = re.compile(r"<cs-[1234]>") | 
					
						
						|  | CLOSE_COMPARISON = re.compile(r"</cs-[1234]>") | 
					
						
						|  | GRAD_COMPARISON = re.compile(r"<cs-[123]>") | 
					
						
						|  | NON_GRAD_COMPARISON = re.compile(r"<cs-4>") | 
					
						
						|  | ENTITIES_FEATS = re.compile(r"(\d)_((?:[\.\w\s/-](?!\d_))+)") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | KEYWORD = re.compile(r"\(([^\(]*)\)$") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Comparison: | 
					
						
						|  | """ | 
					
						
						|  | A Comparison represents a comparative sentence and its constituents. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | text=None, | 
					
						
						|  | comp_type=None, | 
					
						
						|  | entity_1=None, | 
					
						
						|  | entity_2=None, | 
					
						
						|  | feature=None, | 
					
						
						|  | keyword=None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | :param text: a string (optionally tokenized) containing a comparison. | 
					
						
						|  | :param comp_type: an integer defining the type of comparison expressed. | 
					
						
						|  | Values can be: 1 (Non-equal gradable), 2 (Equative), 3 (Superlative), | 
					
						
						|  | 4 (Non-gradable). | 
					
						
						|  | :param entity_1: the first entity considered in the comparison relation. | 
					
						
						|  | :param entity_2: the second entity considered in the comparison relation. | 
					
						
						|  | :param feature: the feature considered in the comparison relation. | 
					
						
						|  | :param keyword: the word or phrase which is used for that comparative relation. | 
					
						
						|  | """ | 
					
						
						|  | self.text = text | 
					
						
						|  | self.comp_type = comp_type | 
					
						
						|  | self.entity_1 = entity_1 | 
					
						
						|  | self.entity_2 = entity_2 | 
					
						
						|  | self.feature = feature | 
					
						
						|  | self.keyword = keyword | 
					
						
						|  |  | 
					
						
						|  | def __repr__(self): | 
					
						
						|  | return ( | 
					
						
						|  | 'Comparison(text="{}", comp_type={}, entity_1="{}", entity_2="{}", ' | 
					
						
						|  | 'feature="{}", keyword="{}")' | 
					
						
						|  | ).format( | 
					
						
						|  | self.text, | 
					
						
						|  | self.comp_type, | 
					
						
						|  | self.entity_1, | 
					
						
						|  | self.entity_2, | 
					
						
						|  | self.feature, | 
					
						
						|  | self.keyword, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ComparativeSentencesCorpusReader(CorpusReader): | 
					
						
						|  | """ | 
					
						
						|  | Reader for the Comparative Sentence Dataset by Jindal and Liu (2006). | 
					
						
						|  |  | 
					
						
						|  | >>> from nltk.corpus import comparative_sentences | 
					
						
						|  | >>> comparison = comparative_sentences.comparisons()[0] | 
					
						
						|  | >>> comparison.text | 
					
						
						|  | ['its', 'fast-forward', 'and', 'rewind', 'work', 'much', 'more', 'smoothly', | 
					
						
						|  | 'and', 'consistently', 'than', 'those', 'of', 'other', 'models', 'i', "'ve", | 
					
						
						|  | 'had', '.'] | 
					
						
						|  | >>> comparison.entity_2 | 
					
						
						|  | 'models' | 
					
						
						|  | >>> (comparison.feature, comparison.keyword) | 
					
						
						|  | ('rewind', 'more') | 
					
						
						|  | >>> len(comparative_sentences.comparisons()) | 
					
						
						|  | 853 | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | CorpusView = StreamBackedCorpusView | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | root, | 
					
						
						|  | fileids, | 
					
						
						|  | word_tokenizer=WhitespaceTokenizer(), | 
					
						
						|  | sent_tokenizer=None, | 
					
						
						|  | encoding="utf8", | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | :param root: The root directory for this corpus. | 
					
						
						|  | :param fileids: a list or regexp specifying the fileids in this corpus. | 
					
						
						|  | :param word_tokenizer: tokenizer for breaking sentences or paragraphs | 
					
						
						|  | into words. Default: `WhitespaceTokenizer` | 
					
						
						|  | :param sent_tokenizer: tokenizer for breaking paragraphs into sentences. | 
					
						
						|  | :param encoding: the encoding that should be used to read the corpus. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | CorpusReader.__init__(self, root, fileids, encoding) | 
					
						
						|  | self._word_tokenizer = word_tokenizer | 
					
						
						|  | self._sent_tokenizer = sent_tokenizer | 
					
						
						|  | self._readme = "README.txt" | 
					
						
						|  |  | 
					
						
						|  | def comparisons(self, fileids=None): | 
					
						
						|  | """ | 
					
						
						|  | Return all comparisons in the corpus. | 
					
						
						|  |  | 
					
						
						|  | :param fileids: a list or regexp specifying the ids of the files whose | 
					
						
						|  | comparisons have to be returned. | 
					
						
						|  | :return: the given file(s) as a list of Comparison objects. | 
					
						
						|  | :rtype: list(Comparison) | 
					
						
						|  | """ | 
					
						
						|  | if fileids is None: | 
					
						
						|  | fileids = self._fileids | 
					
						
						|  | elif isinstance(fileids, str): | 
					
						
						|  | fileids = [fileids] | 
					
						
						|  | return concat( | 
					
						
						|  | [ | 
					
						
						|  | self.CorpusView(path, self._read_comparison_block, encoding=enc) | 
					
						
						|  | for (path, enc, fileid) in self.abspaths(fileids, True, True) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def keywords(self, fileids=None): | 
					
						
						|  | """ | 
					
						
						|  | Return a set of all keywords used in the corpus. | 
					
						
						|  |  | 
					
						
						|  | :param fileids: a list or regexp specifying the ids of the files whose | 
					
						
						|  | keywords have to be returned. | 
					
						
						|  | :return: the set of keywords and comparative phrases used in the corpus. | 
					
						
						|  | :rtype: set(str) | 
					
						
						|  | """ | 
					
						
						|  | all_keywords = concat( | 
					
						
						|  | [ | 
					
						
						|  | self.CorpusView(path, self._read_keyword_block, encoding=enc) | 
					
						
						|  | for (path, enc, fileid) in self.abspaths(fileids, True, True) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | keywords_set = {keyword.lower() for keyword in all_keywords if keyword} | 
					
						
						|  | return keywords_set | 
					
						
						|  |  | 
					
						
						|  | def keywords_readme(self): | 
					
						
						|  | """ | 
					
						
						|  | Return the list of words and constituents considered as clues of a | 
					
						
						|  | comparison (from listOfkeywords.txt). | 
					
						
						|  | """ | 
					
						
						|  | keywords = [] | 
					
						
						|  | with self.open("listOfkeywords.txt") as fp: | 
					
						
						|  | raw_text = fp.read() | 
					
						
						|  | for line in raw_text.split("\n"): | 
					
						
						|  | if not line or line.startswith("//"): | 
					
						
						|  | continue | 
					
						
						|  | keywords.append(line.strip()) | 
					
						
						|  | return keywords | 
					
						
						|  |  | 
					
						
						|  | def sents(self, fileids=None): | 
					
						
						|  | """ | 
					
						
						|  | Return all sentences in the corpus. | 
					
						
						|  |  | 
					
						
						|  | :param fileids: a list or regexp specifying the ids of the files whose | 
					
						
						|  | sentences have to be returned. | 
					
						
						|  | :return: all sentences of the corpus as lists of tokens (or as plain | 
					
						
						|  | strings, if no word tokenizer is specified). | 
					
						
						|  | :rtype: list(list(str)) or list(str) | 
					
						
						|  | """ | 
					
						
						|  | return concat( | 
					
						
						|  | [ | 
					
						
						|  | self.CorpusView(path, self._read_sent_block, encoding=enc) | 
					
						
						|  | for (path, enc, fileid) in self.abspaths(fileids, True, True) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def words(self, fileids=None): | 
					
						
						|  | """ | 
					
						
						|  | Return all words and punctuation symbols in the corpus. | 
					
						
						|  |  | 
					
						
						|  | :param fileids: a list or regexp specifying the ids of the files whose | 
					
						
						|  | words have to be returned. | 
					
						
						|  | :return: the given file(s) as a list of words and punctuation symbols. | 
					
						
						|  | :rtype: list(str) | 
					
						
						|  | """ | 
					
						
						|  | return concat( | 
					
						
						|  | [ | 
					
						
						|  | self.CorpusView(path, self._read_word_block, encoding=enc) | 
					
						
						|  | for (path, enc, fileid) in self.abspaths(fileids, True, True) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _read_comparison_block(self, stream): | 
					
						
						|  | while True: | 
					
						
						|  | line = stream.readline() | 
					
						
						|  | if not line: | 
					
						
						|  | return [] | 
					
						
						|  | comparison_tags = re.findall(COMPARISON, line) | 
					
						
						|  | if comparison_tags: | 
					
						
						|  | grad_comparisons = re.findall(GRAD_COMPARISON, line) | 
					
						
						|  | non_grad_comparisons = re.findall(NON_GRAD_COMPARISON, line) | 
					
						
						|  |  | 
					
						
						|  | comparison_text = stream.readline().strip() | 
					
						
						|  | if self._word_tokenizer: | 
					
						
						|  | comparison_text = self._word_tokenizer.tokenize(comparison_text) | 
					
						
						|  |  | 
					
						
						|  | stream.readline() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | comparison_bundle = [] | 
					
						
						|  | if grad_comparisons: | 
					
						
						|  |  | 
					
						
						|  | for comp in grad_comparisons: | 
					
						
						|  | comp_type = int(re.match(r"<cs-(\d)>", comp).group(1)) | 
					
						
						|  | comparison = Comparison( | 
					
						
						|  | text=comparison_text, comp_type=comp_type | 
					
						
						|  | ) | 
					
						
						|  | line = stream.readline() | 
					
						
						|  | entities_feats = ENTITIES_FEATS.findall(line) | 
					
						
						|  | if entities_feats: | 
					
						
						|  | for (code, entity_feat) in entities_feats: | 
					
						
						|  | if code == "1": | 
					
						
						|  | comparison.entity_1 = entity_feat.strip() | 
					
						
						|  | elif code == "2": | 
					
						
						|  | comparison.entity_2 = entity_feat.strip() | 
					
						
						|  | elif code == "3": | 
					
						
						|  | comparison.feature = entity_feat.strip() | 
					
						
						|  | keyword = KEYWORD.findall(line) | 
					
						
						|  | if keyword: | 
					
						
						|  | comparison.keyword = keyword[0] | 
					
						
						|  | comparison_bundle.append(comparison) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if non_grad_comparisons: | 
					
						
						|  | for comp in non_grad_comparisons: | 
					
						
						|  |  | 
					
						
						|  | comp_type = int(re.match(r"<cs-(\d)>", comp).group(1)) | 
					
						
						|  | comparison = Comparison( | 
					
						
						|  | text=comparison_text, comp_type=comp_type | 
					
						
						|  | ) | 
					
						
						|  | comparison_bundle.append(comparison) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return comparison_bundle | 
					
						
						|  |  | 
					
						
						|  | def _read_keyword_block(self, stream): | 
					
						
						|  | keywords = [] | 
					
						
						|  | for comparison in self._read_comparison_block(stream): | 
					
						
						|  | keywords.append(comparison.keyword) | 
					
						
						|  | return keywords | 
					
						
						|  |  | 
					
						
						|  | def _read_sent_block(self, stream): | 
					
						
						|  | while True: | 
					
						
						|  | line = stream.readline() | 
					
						
						|  | if re.match(STARS, line): | 
					
						
						|  | while True: | 
					
						
						|  | line = stream.readline() | 
					
						
						|  | if re.match(STARS, line): | 
					
						
						|  | break | 
					
						
						|  | continue | 
					
						
						|  | if ( | 
					
						
						|  | not re.findall(COMPARISON, line) | 
					
						
						|  | and not ENTITIES_FEATS.findall(line) | 
					
						
						|  | and not re.findall(CLOSE_COMPARISON, line) | 
					
						
						|  | ): | 
					
						
						|  | if self._sent_tokenizer: | 
					
						
						|  | return [ | 
					
						
						|  | self._word_tokenizer.tokenize(sent) | 
					
						
						|  | for sent in self._sent_tokenizer.tokenize(line) | 
					
						
						|  | ] | 
					
						
						|  | else: | 
					
						
						|  | return [self._word_tokenizer.tokenize(line)] | 
					
						
						|  |  | 
					
						
						|  | def _read_word_block(self, stream): | 
					
						
						|  | words = [] | 
					
						
						|  | for sent in self._read_sent_block(stream): | 
					
						
						|  | words.extend(sent) | 
					
						
						|  | return words | 
					
						
						|  |  |