File size: 176,169 Bytes
eb67da4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=unidiomatic-typecheck
"""Defun decorator for defining graph-mode functions."""
import collections
import functools
import itertools
import pprint
import threading
import types as types_lib
import weakref
import numpy as np
import six
from six.moves import map
from tensorflow.core.framework import attr_value_pb2
from tensorflow.core.framework import function_pb2
from tensorflow.python import pywrap_tfe
from tensorflow.python.client import pywrap_tf_session
from tensorflow.python.eager import backprop
from tensorflow.python.eager import backprop_util
from tensorflow.python.eager import context
from tensorflow.python.eager import execute
from tensorflow.python.eager import forwardprop_util
from tensorflow.python.eager import function_trace_type
from tensorflow.python.eager import monitoring
from tensorflow.python.eager import tape
from tensorflow.python.eager.graph_only_ops import graph_placeholder
from tensorflow.python.framework import c_api_util
from tensorflow.python.framework import composite_tensor
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import device as pydev
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import error_interpolation
from tensorflow.python.framework import errors
from tensorflow.python.framework import func_graph as func_graph_module
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_spec
from tensorflow.python.framework import type_spec
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import default_gradient
from tensorflow.python.ops import functional_ops
from tensorflow.python.ops import gradients_util
from tensorflow.python.ops import handle_data_util
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.profiler import trace
from tensorflow.python.saved_model import save_context
from tensorflow.python.types import core
from tensorflow.python.util import _pywrap_utils
from tensorflow.python.util import compat
from tensorflow.python.util import function_utils
from tensorflow.python.util import lazy_loader
from tensorflow.python.util import memory
from tensorflow.python.util import nest
from tensorflow.python.util import object_identity
from tensorflow.python.util import tf_decorator
from tensorflow.python.util import tf_inspect
from tensorflow.python.util.tf_export import tf_export
# Loaded lazily due to a circular dependency (roughly
# tf.function->autograph->->dataset->tf.function).
# TODO(b/133251390): Use a regular import.
ag_ctx = lazy_loader.LazyLoader(
"ag_ctx", globals(),
"tensorflow.python.autograph.core.ag_ctx")
np_arrays = lazy_loader.LazyLoader(
"np_arrays", globals(),
"tensorflow.python.ops.numpy_ops.np_arrays")
FORWARD_FUNCTION_ATTRIBUTE_NAME = "forward_function_name"
BACKWARD_FUNCTION_ATTRIBUTE_NAME = "backward_function_name"
IMPLEMENTS_ATTRIBUTE_NAME = "_implements"
SHARED_RENDEZVOUS_ATTRIBUTE_NAME = "shared_rendezvous"
# A temporary flag. Turning this on will allow tf.function to aggressively avoid
# retracing ResourceVariable inputs. This feature will change tf.function's
# Variable tracing behavior, hence we want to limit the potential blockers that
# are not detected by Global TAP.
# TODO(jiaweix): remove this flag and related args (b/198782192)
ENCODE_VARIABLES_BY_RESOURCE_ID = True
# TODO(b/201533914): Remove this flag and related args
USE_FULL_TRACE_TYPE = False
_graph_building_time_counter = monitoring.Counter(
"/tensorflow/core/tf_function/graph_building_time_usecs",
"Time for tf.function to build a graph (us).")
CacheKey = collections.namedtuple("CacheKey", [
"input_signature",
"parent_graph",
"device_functions",
"colocation_stack",
"in_cross_replica_context",
"variable_policy",
"xla_context_id",
])
def _type_spec_for(x):
"""Returns a TypeSpec for `x`, or `None` if `x` doesn't have a TensorSpec."""
if isinstance(x, ops.Tensor):
return tensor_spec.TensorSpec.from_tensor(x)
elif isinstance(x, type_spec.TypeSpec):
return x
elif isinstance(x, composite_tensor.CompositeTensor):
return x._type_spec # pylint: disable=protected-access
else:
return None
def _is_type_subset(a, b):
"""Returns true if TypeSpec `b` is a subset of type `a` (or if a is None.)"""
if a is None:
return True
else:
return a.most_specific_compatible_type(b) == a
def _shape_relaxed_type_for_composite_tensor(x):
"""Returns a shape-relaxed TypeSpec for x (if composite) or x (if not)."""
if isinstance(x, composite_tensor.CompositeTensor):
# pylint: disable=protected-access
return x._type_spec._with_tensor_ranks_only()
else:
return x
def common_shape(x, y):
"""Find a `TensorShape` that is compatible with both `x` and `y`."""
if x is None != y is None:
raise RuntimeError(
"Cannot find a common shape when LHS shape is None but RHS shape "
f"is not (or vice versa): {x} vs. {y}.")
if x is None:
return None # The associated input was not a Tensor, no shape generated.
if not isinstance(x, tensor_shape.TensorShape):
raise TypeError(f"`x` must be a TensorShape, got type {type(x)}.")
if not isinstance(y, tensor_shape.TensorShape):
raise TypeError(f"`y` must be a TensorShape, got type {type(y)}.")
if x.rank != y.rank or x.rank is None:
return tensor_shape.TensorShape(None)
dims = []
for dim_x, dim_y in zip(x.dims, y.dims):
if (dim_x != dim_y
or tensor_shape.dimension_value(dim_x) is None
or tensor_shape.dimension_value(dim_y) is None):
dims.append(None)
else:
dims.append(tensor_shape.dimension_value(dim_x))
return tensor_shape.TensorShape(dims)
def is_same_structure(structure1,
structure2,
check_values=False):
"""Check two structures for equality, optionally of types and of values."""
try:
nest.assert_same_structure(structure1, structure2, expand_composites=True)
except (ValueError, TypeError):
return False
if check_values:
flattened1 = nest.flatten(structure1, expand_composites=True)
flattened2 = nest.flatten(structure2, expand_composites=True)
# First check the types to avoid AttributeErrors.
if any(type(f1) != type(f2) for f1, f2 in zip(flattened1, flattened2)):
return False
return flattened1 == flattened2
return True
def _parse_func_attrs(attributes):
"""Convert the keyword arguments into function_def attributes.
Currently only support primitive types: bool, int, float and string.
Args:
attributes: the dictionary of attributes.
Returns:
A dict of attributes where the key is the name of attribute and the value
is the AttrValue proto.
Raises:
ValueError: If the kwargs contains unallowlisted name or unsupported value
types.
"""
attrs = {}
for key, value in attributes.items():
if isinstance(value, attr_value_pb2.AttrValue):
attrs[key] = value
# bool type check has to happen before int since bool is a subclass of int.
elif isinstance(value, bool):
attrs[key] = attr_value_pb2.AttrValue(b=value)
elif isinstance(value, int):
attrs[key] = attr_value_pb2.AttrValue(i=value)
elif isinstance(value, float):
attrs[key] = attr_value_pb2.AttrValue(f=value)
elif isinstance(value, (str, bytes, six.text_type)):
attrs[key] = attr_value_pb2.AttrValue(s=compat.as_bytes(value))
else:
raise ValueError(f"Attribute {key} must be bool, int, float, string, or "
f"AttrValue. Got {type(value)}.")
return attrs
class _InterpolateFunctionError(object):
"""Context Manager that interpolates the exception from 'top_level_func'."""
__slots__ = ["_func"]
def __init__(self, top_level_func):
self._func = top_level_func
def __enter__(self):
pass
def __exit__(self, typ, exc, tb):
if not exc or not isinstance(exc, errors.OpError):
return False
message = compat.as_text(exc.message)
_, tags = error_interpolation.parse_message(message)
g = None
func_stack = []
for t in tags:
if t.type == "function_node":
# TODO(mdan): Tests should cover this.
if t.name == compat.as_str(self._func.name):
g = self._func.graph
elif g:
next_func = g._get_function(t.name) # pylint: disable=protected-access
if next_func is not None and isinstance(next_func,
_EagerDefinedFunction):
g = next_func.graph
if g:
func_stack.append(g.name)
else:
func_stack.append("<unknown>")
if g:
message = error_interpolation.interpolate(message, g)
if len(func_stack) >= 2:
message += "\n\nFunction call stack:\n"
message += " -> ".join(func_stack)
message += "\n"
exc._message = message # pylint: disable=protected-access
return False
_function_callbacks = set()
def add_function_callback(function_callback):
"""Add a callback function for Function creation.
The callback function has the signature:
`def function_callback(function, name, graph, inputs, outputs):`
where:
- `function`: _EagerDefinedFunction being created before finalizing the graph.
Do not modify the function directly but instead modify the graph.
- `name`: name of the function.
- `graph`: Graph of the function.
- `inputs`: `tuple` of tensors used as inputs to the function.
- `outputs`: `tuple` of tensors used as outputs from the function.
The callback is at the top of the `_EagerDefinedFunction` construction, giving
callback an opportunity to make the last edits to the graph. Do not make
changes to `graph, inputs`, and `outputs` manually, but, instead, set the
`graph` as the default then define ops.
Repeated registration of the same callback function is idempotent.
After a callback is added, it can be removed with the
`remove_function_callback()` method.
Args:
function_callback: The callback to add.
"""
_function_callbacks.add(function_callback)
def remove_function_callback(function_callback):
"""Remove an already-added function callback.
See the doc string of `add_function_callback()` for more information.
Args:
function_callback: The callback to remove.
"""
_function_callbacks.remove(function_callback)
def clear_function_callbacks():
"""Clear all function callbacks, if any have been regisered."""
_function_callbacks.clear()
_FORWARD_PREFIX = "__forward_"
_BACKWARD_PREFIX = "__backward_"
_INFERENCE_PREFIX = "__inference_"
def _forward_name(n):
"""The name of a generated forward defun named n."""
return "%s%s_%s" % (_FORWARD_PREFIX, n, ops.uid())
def _backward_name(n):
"""The name of a generated backward defun named n."""
return "%s%s_%s" % (_BACKWARD_PREFIX, n, ops.uid())
def _inference_name(n):
"""The name of a forward-but-no-gradient defun named n."""
return "%s%s_%s" % (_INFERENCE_PREFIX, n, ops.uid())
def _enclosing_xla_context():
"""Returns the XLAControlFlowContext, which exists inside a tpu.rewrite()."""
graph = ops.get_default_graph()
while graph is not None:
# pylint: disable=protected-access
context_ = graph._get_control_flow_context()
# pylint: enable=protected-access
while context_ is not None:
if isinstance(context_, control_flow_ops.XLAControlFlowContext):
return context_
context_ = context_.outer_context
# This may be a FuncGraph due to defuns or v2 control flow. We need to
# find the original graph with the XLAControlFlowContext.
graph = getattr(graph, "outer_graph", None)
return None
class _EagerDefinedFunctionDeleter(object):
"""Unregister function from eager context."""
__slots__ = ["name"]
def __init__(self, name):
self.name = name
def __del__(self):
try:
context.remove_function(self.name)
except TypeError:
# Suppress some exceptions, mainly for the case when we're running on
# module deletion. Things that can go wrong include the context module
# already being unloaded, self._handle._handle_data no longer being
# valid, and so on. Printing warnings in these cases is silly
# (exceptions raised from __del__ are printed as warnings to stderr).
pass # 'NoneType' object is not callable when the handle has been
# partially unloaded.
except AttributeError:
pass # 'NoneType' object has no attribute 'eager_mode' when context has
# been unloaded. Will catch other module unloads as well.
class FunctionAlreadyGarbageCollectedError(Exception):
def __init__(self, function_name):
super(FunctionAlreadyGarbageCollectedError, self).__init__(
"{} has already been garbage collected and cannot be called.".format(
function_name))
# TODO(apassos) get rid of this by splitting framework.function._DefinedFunction
# so it doesn't have the definition-generating logic and is just a container for
# an already-defined function.
class _EagerDefinedFunction(object):
"""Callable with the interface of `framework.function._DefinedFunction`.
`_EagerDefinedFunction` encapsulates a function definition and its properties,
and it provides a method for calling the encapsulated function. Some Ops
take functions as attributes, which have type `func`; an instance of this
class may be provided as the value of these `func` attributes.
"""
def __init__(self, name, graph, inputs, outputs, attrs):
"""Initializes an eager defined function.
Args:
name: str, the name for the created function.
graph: Graph, the graph containing the operations in the function
inputs: the tensors in the graph to be used as inputs to the function
outputs: the tensors in the graph which will be outputs from the function
attrs: dict mapping names of attributes to their AttrValue values
"""
for function_callback in _function_callbacks:
function_callback(self, name, graph, tuple(inputs), tuple(outputs))
input_ops = set(arg.op for arg in inputs)
operations = [op for op in graph.get_operations() if op not in input_ops]
graph_output_names = graph._output_names # pylint: disable=protected-access
if (graph_output_names is not None and
all(ops.tensor_id(t) in graph_output_names for t in outputs)):
output_names = [
compat.as_bytes(graph_output_names[ops.tensor_id(t)]) for t in outputs
]
if len(set(output_names)) != len(output_names):
# There are duplicate names for some reason, probably an invalid
# signature. Revert to auto-naming.
output_names = []
else:
output_names = []
fn = pywrap_tf_session.TF_GraphToFunction_wrapper(
graph._c_graph, # pylint: disable=protected-access
compat.as_str(name),
False,
[o._c_op for o in operations], # pylint: disable=protected-access
[t._as_tf_output() for t in inputs], # pylint: disable=protected-access
[t._as_tf_output() for t in outputs], # pylint: disable=protected-access
output_names,
[o._c_op for o in graph.control_outputs], # pylint: disable=protected-access
[], # control_output_names
None,
compat.as_str(""))
for name, attr_value in attrs.items():
serialized = attr_value.SerializeToString()
# TODO(iga): this creates and deletes a new TF_Status for every attr.
# It might be worth creating a convenient way to re-use status.
pywrap_tf_session.TF_FunctionSetAttrValueProto(fn, compat.as_str(name),
serialized)
# TODO(apassos) avoid creating a FunctionDef (specially to grab the
# signature, but also in general it's nice not to depend on it.
with c_api_util.tf_buffer() as buffer_:
pywrap_tf_session.TF_FunctionToFunctionDef(fn, buffer_)
proto_data = pywrap_tf_session.TF_GetBuffer(buffer_)
function_def = function_pb2.FunctionDef()
function_def.ParseFromString(compat.as_bytes(proto_data))
self._name = compat.as_bytes(function_def.signature.name)
with ops.init_scope():
if context.executing_eagerly():
context.ensure_initialized()
context.add_function(fn)
self._function_deleter = _EagerDefinedFunctionDeleter(self.name)
self._registered_on_context = True
self.definition = function_def
self.signature = function_def.signature
self._num_outputs = len(self.signature.output_arg)
self._output_types = [o.type for o in self.signature.output_arg]
self._output_shapes = [o.shape for o in outputs]
self._control_captures = graph.control_captures
# Shallow copy outputs since ConcreteFunction may mutate it.
self._func_graph_outputs = list(outputs)
self.grad_func_name = None
self.python_grad_func = None
self._c_func = c_api_util.ScopedTFFunction(fn)
self._grad_func = None
self.graph = graph
self._stateful_ops = tuple(op for op in operations if op._is_stateful) # pylint: disable=protected-access
def add_to_graph(self, g=None):
"""Add the function to the current context or a graph, if supplied.
Args:
g: the graph to add the function to. If not supplied, the function will
be added to the current context.
"""
# pylint: disable=protected-access
if not g and context.executing_eagerly():
ctx = context.context()
if not ctx.has_function(self.name):
ctx.add_function_def(self.definition)
else:
if not g._is_function(self.name):
g._add_function(self)
for f in self.graph._functions.values():
if not g._is_function(f.name):
g._add_function(f)
# pylint: enable=protected-access
@property
def name(self):
return self._name
@property
def stateful_ops(self):
return self._stateful_ops
def call(self, ctx, args, cancellation_manager=None):
"""Calls this function with `args` as inputs.
`ConcreteFunction` execution respects device annotations only if the
function won't be compiled with xla.
Args:
ctx: a Context object
args: a list of arguments to supply this function with.
cancellation_manager: a `CancellationManager` object that can be used to
cancel function execution.
Returns:
The outputs of the function call.
Raises:
ValueError: if the number of arguments is incorrect.
FunctionAlreadyGarbageCollectedError: if the function is no longer
available to be called because it has been garbage collected.
"""
if len(args) != len(self.signature.input_arg):
raise ValueError(
f"Signature specifies {len(list(self.signature.input_arg))} "
f"arguments, got: {len(args)}.")
# If the `ScopedTFFunction` (accessed via `_c_func`) has already been
# cleaned up as a part of garbage collection, this `_EagerDefinedFunction`
# should also be garbage and is likely being called as part of a `__del__`
# elsewhere. In that case, there's nothing we can do, so we raise an
# exception for the caller to handle.
if self._c_func.has_been_garbage_collected:
raise FunctionAlreadyGarbageCollectedError(self.name)
function_call_options = ctx.function_call_options
if function_call_options.config_proto_serialized is None:
config = function_utils.get_disabled_rewriter_config()
else:
config = function_call_options.config_proto_serialized
executor_type = function_call_options.executor_type or ""
executing_eagerly = ctx.executing_eagerly()
attrs = ("executor_type", executor_type, "config_proto", config)
if executing_eagerly:
with _InterpolateFunctionError(self):
if cancellation_manager is None:
outputs = execute.execute(
str(self.signature.name),
num_outputs=self._num_outputs,
inputs=args,
attrs=attrs,
ctx=ctx)
else:
outputs = execute.execute_with_cancellation(
str(self.signature.name),
num_outputs=self._num_outputs,
inputs=args,
attrs=attrs,
ctx=ctx,
cancellation_manager=cancellation_manager)
# Replace empty list with None
outputs = outputs or None
else:
# TODO(akshayka): Either remove this if the FunctionLibraryRuntime
# creates `PartitionedCallOp` kernels by default, or remove the previous
# branch if a TPU kernel is registered for `PartitionedCall`.
with _InterpolateFunctionError(self):
with ops.control_dependencies(self._control_captures):
# The caller must use record_operation to record this operation in the
# eager case, so we enforce the same requirement for the non-eager
# case by explicitly pausing recording. We don't have a gradient
# registered for PartitionedCall, so recording this operation confuses
# forwardprop code (GradientTape manages to ignore it).
with tape.stop_recording():
outputs = functional_ops.partitioned_call(
args=args,
f=self,
tout=self._output_types,
executing_eagerly=executing_eagerly,
config=config,
executor_type=executor_type)
for i, func_graph_output in enumerate(self._func_graph_outputs):
handle_data_util.copy_handle_data(func_graph_output, outputs[i])
if executing_eagerly:
return outputs
else:
# TODO(b/128924522): This additional set_shape should not be
# necessary. ShapeRefiner likely needs to inspect handle_data. Remove this
# once that's done.
for i, shape in enumerate(self._output_shapes):
outputs[i].set_shape(shape)
return outputs
def _create_forward_backward_with_graph(attrs, forward_graph, backwards_graph):
"""Creates forward and backward functions from the function graphs."""
forward_function_name = _forward_name(forward_graph.name)
common_attributes = dict(attrs)
# NB: forward and backward function need to drop "_implements".
# attribute, because their signature contains all the intermediate tensors
# that they compute. Thus they don't have a stable signature which can
# be directly optimized downstream.
# See for more details:
# https://github.com/tensorflow/community/blob/master/rfcs/20190610-standardizing-composite_ops.md#appendix-future-support-for-optimizing-gradient-functions
common_attributes.pop(IMPLEMENTS_ATTRIBUTE_NAME, None)
backward_function_attr = _parse_func_attrs(
{FORWARD_FUNCTION_ATTRIBUTE_NAME: forward_function_name})
backward_function_attr.update(common_attributes)
backward_function = ConcreteFunction(
backwards_graph, attrs=backward_function_attr)
forward_function_attr = _parse_func_attrs({
BACKWARD_FUNCTION_ATTRIBUTE_NAME:
backward_function.name})
forward_function_attr.update(common_attributes)
forward_function = _EagerDefinedFunction(
forward_function_name, forward_graph, forward_graph.inputs,
forward_graph.outputs, forward_function_attr)
return forward_function, backward_function
class _DelayedRewriteGradientFunctions(object):
"""Caches forward/backward functions with a delayed forward rewrite."""
def __init__(self, func_graph, attrs, func_graph_deleter):
"""Construct an inference function and initialize caches."""
# A map from the number of forward function outputs with accepted gradients
# to forward and backward functions, used to cache non-tape backward
# function generation.
self._cached_function_pairs = {}
self._func_graph = func_graph
self._inference_function = _EagerDefinedFunction(
_inference_name(self._func_graph.name), self._func_graph,
self._func_graph.inputs, self._func_graph.outputs, attrs)
self._attrs = attrs
self._gradient_name = None
# Note that the FuncGraph is mutated later, so we need to inspect it now to
# figure out the user-specified outputs of the inference function.
self._num_inference_outputs = len(self._func_graph.outputs)
self._func_graph_deleter = func_graph_deleter
def forward_backward(self, num_doutputs=None):
"""A possibly-cached pair of forward and backward functions."""
if num_doutputs is None:
num_doutputs = self._num_inference_outputs
forward_backward = self._cached_function_pairs.get(num_doutputs)
if forward_backward is not None:
return forward_backward
forward, backward = self._construct_forward_backward(num_doutputs)
self._cached_function_pairs[num_doutputs] = (forward, backward)
return forward, backward
def _construct_forward_backward(self, num_doutputs):
"""Constructs a pair of forward and backward functions.
Args:
num_doutputs: The constructed backprop function will take output gradients
for the first `num_doutputs` outputs of the forward function. Defaults
to the number of outputs for the inference function, but when
higher-order gradients are computed this will increase to include side
outputs.
Returns:
A pair of (forward_function, backward_function):
forward_function: A re-generated inference function (an
_EagerDefinedFunction) to account for new side outputs, if any extra
were required when building the backward pass.
backward_function: A ConcreteFunction that Takes `num_doutputs`
arguments and returns gradients with respect to inputs of the forward
function.
"""
trainable_outputs = [
output for output in self._func_graph.outputs[:num_doutputs]
if backprop_util.IsTrainable(output)]
signature = []
for t in trainable_outputs:
signature.append(
tensor_spec.TensorSpec(*default_gradient.shape_and_dtype(t)))
def _backprop_function(*grad_ys):
with ops.device(None):
return gradients_util._GradientsHelper( # pylint: disable=protected-access
trainable_outputs,
self._func_graph.inputs,
grad_ys=grad_ys,
src_graph=self._func_graph)
with self._func_graph.as_default():
backwards_graph = func_graph_module.FuncGraph(
_backward_name(self._func_graph.name))
func_graph_module.func_graph_from_py_func(
name=backwards_graph.name,
python_func=_backprop_function,
args=[], kwargs={},
signature=signature,
func_graph=backwards_graph)
backwards_graph_captures = backwards_graph.external_captures
captures_from_forward = [
c for c in backwards_graph_captures if
not isinstance(c, ops.EagerTensor) and c.graph is self._func_graph]
existing_outputs = object_identity.ObjectIdentitySet(
self._func_graph.outputs)
for capture in captures_from_forward:
if capture not in existing_outputs:
existing_outputs.add(capture)
self._func_graph.outputs.append(capture)
forward_function, backward_function = _create_forward_backward_with_graph(
self._attrs, self._func_graph, backwards_graph)
return forward_function, backward_function
def _rewrite_forward_and_call_backward(self, op, *doutputs):
"""Add outputs to the forward call and feed them to the grad function."""
forward_function, backwards_function = self.forward_backward(len(doutputs))
if not backwards_function.outputs:
return backwards_function.structured_outputs
forward_function.add_to_graph(op.graph)
# pylint: disable=protected-access
# Rewrite an inference call op to be a forward call op
op._set_func_attr("f", forward_function.name)
op._set_type_list_attr("Tout", forward_function._output_types)
op._add_outputs(
forward_function._output_types[len(op.outputs):],
forward_function._output_shapes[len(op.outputs):])
for i in range(len(op.outputs)):
func_graph_output = forward_function._func_graph_outputs[i]
handle_data_util.copy_handle_data(func_graph_output, op.outputs[i])
# pylint: enable=protected-access
capture_mapping = dict(
zip((ops.tensor_id(t) for t in self._func_graph.outputs), op.outputs))
remapped_captures = [
capture_mapping.get(ops.tensor_id(capture), capture)
for capture in backwards_function.captured_inputs
]
# Replace Nones with zeros since we're calling a graph function which
# expects numeric inputs.
cleaned_doutputs = []
for doutput, placeholder in zip(doutputs, self._func_graph.outputs):
if backprop_util.IsTrainable(placeholder):
if isinstance(doutput, ops.IndexedSlices):
# Gradient passed to a backward ConcreteFunction must be tf.Tensor,
# so we convert tf.IndexedSlices to tf.Tensor.
cleaned_doutputs.append(ops.convert_to_tensor(doutput))
elif doutput is not None:
cleaned_doutputs.append(doutput)
else:
cleaned_doutputs.append(default_gradient.zeros_like(placeholder))
# Compute the gradients using the side outputs
return backwards_function._call_flat( # pylint: disable=protected-access
cleaned_doutputs, remapped_captures)
def get_gradient_function(self):
"""Returns gradient function.
The gradient rewrites an inference call op to a forward call op, but does
not modify a pre-existing forward call op. It then computes the gradient
from the output's gradients and the side outputs of the forward op.
"""
return self._rewrite_forward_and_call_backward
def forward(self, inference_args=None, input_tangents=None):
"""A forward function with only user-specified outputs.
The call operation for the returned inference function can be rewritten into
a forward function. This only happens if the backward function (from the
`backward` method) ends up being used to compute gradients.
This approach avoids constructing unnecessary graphs, but it only works if
we are calling this function when not executing eagerly.
Args:
inference_args: A flat list of Tensors, arguments to the inference
function. Unused, but taken for compatibility with
_TapeGradientFunctions.
input_tangents: A flat list of Tensors, jvps associated with
`inference_args`. Unused; if required, tape functions must be used
instead.
Returns:
An _EagerDefinedFunction.
"""
del inference_args # unused
if input_tangents:
# This class does not support special-cased forwardprop. The arguments are
# here for compatibility with _TapeGradientFunctions.
raise errors.InternalError("unexpectedly got forwardprop information in "
"a class that does not support forwardprop.")
return self._inference_function
def _backward(self, outputs):
"""Fetch a backward function for `outputs` from the forward function."""
def _backward_function(*args):
call_op = outputs[0].op
return self._rewrite_forward_and_call_backward(call_op, *args)
return _backward_function, outputs
def record(self, flat_outputs, inference_args, input_tangents):
"""Record the function call operation.
_DelayedRewriteGradientFunctions supports only first-order backprop tape
gradients (and then only when graph building). It does not work with
higher-order tape gradients or forward autodiff, but does work with
higher-order symbolic gradients (tf.gradients).
Args:
flat_outputs: The result of running `forward`.
inference_args: A flat list of Tensors with inference inputs to the
operation.
input_tangents: A flat list of Tensors with input tangents consumed by the
operation.
"""
backward_function, to_record = self._backward(flat_outputs)
tape.record_operation(self._inference_function.signature.name,
to_record, inference_args + input_tangents,
backward_function)
# Contains information about a forward function wrapped to compute jvps.
_ForwardWrapper = collections.namedtuple(
"_ForwardWrapper", (
# The wrapper Graph.
"graph",
# A flat list of non-tangent Tensor outputs from the wrapped forward
# function.
"outputs",
# Indices for output tangents, same format as
# forwardprop_util.pack_tangents.
"output_indices",
# A flat list of tangents for `outputs`.
"output_tangents"))
class _TapeGradientFunctions(object):
"""Caches forward and backward functions compatible with eager gradients.
In contrast to the delayed-rewrite approach in
`_DelayedRewriteGradientFunctions` which only works with delayed execution,
the forward function generated by this class has a fixed set of outputs which
may be preserved by a tape in order to compute gradients later.
This class is abstract; its child classes differ in how many side outputs of
the forward function their backward function accepts gradients for, which
determines whether higher-order tape gradients are possible.
"""
def __init__(self, func_graph, attrs, func_graph_deleter,
forwardprop_input_indices, delayed_rewrite_functions,
need_gradients_for_jvps):
self._func_graph = func_graph
self._forward_graph = None
self._attrs = attrs
self._forward = None
self._backward = None
self._num_outputs = len(func_graph.outputs)
self._func_graph_deleter = func_graph_deleter
self._forwardprop_input_indices = forwardprop_input_indices
self._forwardprop_output_indices = None
self._num_forwardprop_outputs = 0
self._num_inference_outputs = len(func_graph.outputs)
self._num_trainable_inference_outputs = len(
[t for t in func_graph.outputs if backprop_util.IsTrainable(t)])
self._delayed_rewrite_functions = delayed_rewrite_functions
self._need_gradients_for_jvps = need_gradients_for_jvps
def _build_functions_for_outputs(
self, outputs, inference_args, input_tangents):
"""Forward+backward functions where the backward function sees `outputs`."""
# First figure out which of `outputs` are trainable. We'll accept gradients
# for each of these in the backward function.
handles_to_variables = self._func_graph.variable_captures
trainable_outputs = []
trainable_indices = []
for index, output in enumerate(outputs):
if backprop_util.IsTrainable(output):
# Swap in the Variable object for resource handles if we can so
# sparse gradients work.
output = handles_to_variables.get(id(output), output)
trainable_outputs.append(output)
trainable_indices.append(index)
backwards_graph = func_graph_module.FuncGraph(
_backward_name(self._func_graph.name))
with backwards_graph.as_default():
gradients_wrt_outputs = []
for output in trainable_outputs:
gradient_shape, gradient_dtype = default_gradient.shape_and_dtype(
output)
gradient_placeholder = graph_placeholder(gradient_dtype, gradient_shape)
handle_data_util.copy_handle_data(output, gradient_placeholder)
gradients_wrt_outputs.append(gradient_placeholder)
with ops.device(None):
gradients_wrt_inputs = gradients_util._GradientsHelper( # pylint: disable=protected-access
trainable_outputs,
self._func_graph.inputs,
grad_ys=gradients_wrt_outputs,
src_graph=self._func_graph)
if input_tangents:
# Convert IndexedSlices to dense tensors (as we do elsewhere for
# function gradients). Our C++ bindings don't know how to handle them
# currently.
gradients_wrt_inputs = nest.map_structure(
lambda x: ops.convert_to_tensor(x) if x is not None else None,
gradients_wrt_inputs)
captures_from_forward = [
c for c in backwards_graph.external_captures
if not isinstance(c, ops.EagerTensor) and c.graph is self._func_graph
]
existing_outputs = object_identity.ObjectIdentitySet(
self._func_graph.outputs)
for capture in captures_from_forward:
if capture not in existing_outputs:
existing_outputs.add(capture)
self._func_graph.outputs.append(capture)
# The ordering of `backwards_graph.inputs` is important: inputs of
# `backward_function` correspond to outputs (including
# side outputs) of `self._tape_forward_function`.
backwards_graph.inputs = (
gradients_wrt_outputs + backwards_graph.internal_captures)
backwards_graph.outputs.extend(
grad
for grad in nest.flatten(gradients_wrt_inputs, expand_composites=True)
if grad is not None)
backwards_graph.structured_outputs = gradients_wrt_inputs
forward_function, backward_function = _create_forward_backward_with_graph(
self._attrs, self._func_graph, backwards_graph)
if not input_tangents:
# There is no need to special-case forwardprop, so we can return the
# forward+backward pair we've created without further wrapping.
return (forward_function, self._func_graph, backward_function,
# No forwardprop outputs.
None, 0)
forward_wrapper = self._wrap_forward_function_with_jvps(
forward_function, backward_function, inference_args, input_tangents)
(wrapped_backwards_graph,
forward_wrapper) = self._wrap_backward_function_with_jvp_backprop(
backward_function, gradients_wrt_outputs, forward_wrapper)
# Now that we've added new captures, we need to make sure forward outputs
# are in the same order the backward function expects them to be in:
# [inference outputs] + [jvps] + [side outputs] + [captures].
forward_wrapper = self._shuffle_forward_outputs(forward_wrapper)
(wrapped_forward_function,
wrapped_backward_function) = _create_forward_backward_with_graph(
self._attrs, forward_wrapper.graph, wrapped_backwards_graph)
if (len(inference_args) + len(input_tangents)
!= len(forward_wrapper.graph.inputs)):
raise errors.InternalError(
f"The forward graph had {len(forward_wrapper.graph.inputs)} inputs, "
f"but we expected {len(inference_args) + len(input_tangents)} "
f"({len(inference_args)} inference inputs and "
f"{len(input_tangents)} input tangents).")
return (wrapped_forward_function, forward_wrapper.graph,
wrapped_backward_function, forward_wrapper.output_indices,
len(forward_wrapper.output_tangents))
def _wrap_forward_function_with_jvps(
self, forward_function, backward_function,
inference_args, input_tangents):
"""Adds inline JVP computation to a forward function."""
forward_wrapper_graph = func_graph_module.FuncGraph(
_forward_name(self._func_graph.name))
with forward_wrapper_graph.as_default():
# Tell forward accumulators to free up space for new JVP computations,
# since one may be in the process of computing a JVP (if that computation
# triggered this function building).
#
# We'll make symbolic versions of input JVPs, run the forward function
# under forward accumulators to get symbolic output JVPs, then set those
# as outputs of the new wrapped forward function.
with forwardprop_util.push_forwardprop_state():
forward_captures = {
ops.tensor_id(internal): external
for external, internal in self._func_graph.captures}
for input_index, real_input in enumerate(self._func_graph.inputs):
# This loop is more or less equivalent to running tf.identity on each
# of self._func_graph.inputs. However, doing that also captures jvps
# for resource handles, which confuses the jvp capturing code below
# (since primal inputs are interwoven with jvp inputs).
input_placeholder = array_ops.placeholder(
dtype=real_input.dtype,
shape=real_input.shape)
capture = forward_captures.get(ops.tensor_id(real_input))
if capture is not None:
forward_wrapper_graph.add_capture(capture, input_placeholder)
if capture.dtype == dtypes.resource:
handle_data_util.copy_handle_data(capture, input_placeholder)
else:
forward_wrapper_graph.inputs.append(input_placeholder)
for inp, arg in zip(forward_wrapper_graph.inputs, inference_args):
tape.record_operation(
"captured_value", [inp], [arg],
backward_function=lambda x: [x],
forward_function=lambda x: [x])
num_inference_inputs = len(inference_args)
for tape_indices in self._forwardprop_input_indices:
for input_index, jvp_index in tape_indices:
input_placeholder = forward_wrapper_graph.inputs[input_index]
if len(forward_wrapper_graph.inputs) != jvp_index:
raise errors.InternalError(
f"Expected {jvp_index} forward graph inputs, "
f"got {len(forward_wrapper_graph.inputs)}.")
gradient_shape, gradient_dtype = default_gradient.shape_and_dtype(
input_placeholder)
jvp_placeholder = graph_placeholder(gradient_dtype, gradient_shape)
external_jvp = input_tangents[jvp_index - num_inference_inputs]
forward_wrapper_graph.add_capture(external_jvp, jvp_placeholder)
tensor_shape.TensorShape(
external_jvp.shape).assert_is_compatible_with(
jvp_placeholder.shape)
tape.record_operation(
"captured_value",
[jvp_placeholder],
[external_jvp],
backward_function=lambda x: [x],
forward_function=lambda x: [x])
forward_inputs = forward_wrapper_graph.inputs[:num_inference_inputs]
gradient_function = (
self._delayed_rewrite_functions._rewrite_forward_and_call_backward) # pylint: disable=protected-access
with ops.get_default_graph()._override_gradient_function( # pylint: disable=protected-access
{"PartitionedCall": gradient_function,
"StatefulPartitionedCall": gradient_function}):
forward_outputs = forward_function.call(context.context(),
forward_inputs)
if isinstance(forward_outputs, ops.Operation):
# _wrapped_backward_function expects a list, but if the function has
# no outputs its call() returns an Operation. We need to undo that
# so we don't cause problems later.
forward_outputs = []
py_backward, _ = self._wrap_backward_function(
self._func_graph, backward_function, forward_outputs)
# We will never request backward tape gradients for this operation
# directly since we're wrapping the call; forwardprop will call the
# backward function (and nested forward accumulators may build
# higher-order gradients), but any watching GradientTapes should ignore
# it.
#
# TODO(allenl): It might be better to explicitly stop backward recording
# so we don't use the second-order tape cases unnecessarily.
tape.record_operation_forwardprop_only(
forward_function.signature.name,
forward_outputs, forward_inputs, py_backward, None)
output_indices, output_tangents = (
pywrap_tfe.TFE_Py_PackJVPs(forward_outputs))
output_tangents = [forward_wrapper_graph.capture(t)
for t in output_tangents]
return _ForwardWrapper(
graph=forward_wrapper_graph, outputs=forward_outputs,
output_indices=output_indices, output_tangents=output_tangents)
def _wrap_backward_function_with_jvp_backprop(
self, backward_function, gradients_wrt_outputs, forward_wrapper):
"""Wraps `backward_function` to include gradients for JVPs."""
wrapped_backwards_graph = func_graph_module.FuncGraph(
_backward_name(self._func_graph.name))
with wrapped_backwards_graph.as_default():
py_backward, recorded_outputs = self._wrap_backward_function(
self._func_graph, backward_function, forward_wrapper.outputs)
trainable_index = 0
forward_doutputs = []
doutput_args = []
for output in recorded_outputs:
if backprop_util.IsTrainable(output):
doutput = gradients_wrt_outputs[trainable_index]
doutput_placeholder = graph_placeholder(doutput.dtype, doutput.shape)
doutput_args.append(doutput_placeholder)
forward_doutputs.append(doutput_placeholder)
trainable_index += 1
else:
doutput_args.append(None)
dinputs = py_backward(*doutput_args)
existing_outputs = object_identity.ObjectIdentitySet(
forward_wrapper.outputs + forward_wrapper.output_tangents)
num_processed_output_tangents = 0
gradients_wrt_output_tangents = []
tangent_doutputs = []
output_tangents = forward_wrapper.output_tangents
output_indices = forward_wrapper.output_indices
if self._need_gradients_for_jvps:
# TODO(allenl): Consider using a throwaway graph to avoid extra gradient
# evaluations; gradients for jvps may have common subgraphs.
while num_processed_output_tangents != len(output_tangents):
for output in output_tangents[num_processed_output_tangents:]:
gradient_shape, gradient_dtype = default_gradient.shape_and_dtype(
output)
placeholder = graph_placeholder(gradient_dtype, gradient_shape)
gradients_wrt_output_tangents.append(placeholder)
tangent_doutputs.append(placeholder)
num_processed_output_tangents = len(output_tangents)
with ops.device(None):
gradients_wrt_inputs = gradients_util._GradientsHelper( # pylint: disable=protected-access
output_tangents,
forward_wrapper.graph.inputs,
grad_ys=gradients_wrt_output_tangents,
src_graph=forward_wrapper.graph)
dinputs = [
backprop.aggregate_indexed_slices_gradients((existing, new))
for existing, new in zip(dinputs, gradients_wrt_inputs)
if existing is not None or new is not None]
dinputs.extend(gradients_wrt_inputs[len(dinputs):])
captures_from_forward = [
c for c in wrapped_backwards_graph.external_captures
if (not isinstance(c, ops.EagerTensor)
and c.graph is forward_wrapper.graph)]
for capture in captures_from_forward:
if capture not in existing_outputs:
existing_outputs.add(capture)
forward_wrapper.outputs.append(capture)
output_indices, output_tangents = (
forwardprop_util.pack_tangents(forward_wrapper.outputs))
output_tangents = [forward_wrapper.graph.capture(t)
for t in output_tangents]
for t in output_tangents:
existing_outputs.add(t)
wrapped_backwards_graph.inputs = (
forward_doutputs[:self._num_trainable_inference_outputs]
+ tangent_doutputs
+ forward_doutputs[self._num_trainable_inference_outputs:]
+ wrapped_backwards_graph.internal_captures)
wrapped_backwards_graph.structured_outputs = dinputs
wrapped_backwards_graph.outputs = [t for t in dinputs if t is not None]
return (wrapped_backwards_graph,
forward_wrapper._replace(output_indices=output_indices,
output_tangents=output_tangents))
def _shuffle_forward_outputs(self, forward_wrapper):
"""Reorders function outputs so captures are last."""
def _index_map(original):
if original < self._num_inference_outputs:
return original
if original >= len(forward_wrapper.outputs):
return (original - len(forward_wrapper.outputs)
+ self._num_inference_outputs)
return original + len(forward_wrapper.output_tangents)
output_indices = nest.map_structure(
_index_map, forward_wrapper.output_indices)
forward_wrapper.graph.outputs = (
forward_wrapper.outputs[:self._num_inference_outputs]
+ forward_wrapper.output_tangents
+ forward_wrapper.outputs[self._num_inference_outputs:])
return forward_wrapper._replace(output_indices=output_indices)
def forward(self, inference_args, input_tangents):
"""Construct or fetch a forward function with side-outputs.
When graph building without a tape active, symbolic gradients rely on
regenerating the backward function for higher-order gradients (to account
for new side outputs of the rewritten forward function call). Thus there is
no fixed backward function for this case. However, when a tape is active
(eager or graph building), we generate fixed backward and forward functions
at forward function call time.
This difference between the tape and non-tape cases is to avoid building
unneeded backward functions while graph building (where we may or may not
eventually need gradients).
Args:
inference_args: A flat list of Tensors, arguments to the inference
function.
input_tangents: A flat list of Tensors, jvps associated with
`inference_args`.
Returns:
A forward _EagerDefinedFunction.
"""
if self._forward is None:
(self._forward, self._forward_graph, self._backward,
self._forwardprop_output_indices, self._num_forwardprop_outputs) = (
self._forward_and_backward_functions(inference_args, input_tangents))
return self._forward
def _wrap_backward_function(self, forward_graph, backward, outputs):
"""Create a backward function given `outputs` from the forward function."""
capture_mapping = dict(
zip((ops.tensor_id(t) for t in forward_graph.outputs), outputs))
captured_inputs = backward.captured_inputs
remapped_captures = [
capture_mapping.get(ops.tensor_id(capture), capture)
for capture in captured_inputs
]
if any(t.graph is forward_graph for t in remapped_captures
if not isinstance(t, ops.EagerTensor)):
incorrect_mapping = [t for t in remapped_captures
if (not isinstance(t, ops.EagerTensor) and
t.graph is not forward_graph)]
raise errors.InternalError("Failed to map all backward graph captures to "
"the forward graph. Incorrectly mapped: "
f"{incorrect_mapping}.")
# We may need to use zeros_like to get a zero for variant Tensors with
# unconnected gradients. We do that in advance so we don't have to hold on
# to the outputs themselves, which may not be needed otherwise.
variant_zeros_like = {}
backward_function_inputs = (len(backward.inputs) - len(captured_inputs))
recorded_outputs = []
trainable_recorded_outputs = 0
skip_positions = []
if self._num_forwardprop_outputs and not self._need_gradients_for_jvps:
relevant_outputs = (
outputs[:self._num_inference_outputs]
+ outputs[self._num_inference_outputs
+ self._num_forwardprop_outputs:])
else:
relevant_outputs = outputs
for output_index, output in enumerate(relevant_outputs):
if trainable_recorded_outputs < backward_function_inputs:
recorded_outputs.append(output)
if backprop_util.IsTrainable(output):
trainable_recorded_outputs += 1
else:
skip_positions.append(output_index)
if output.dtype == dtypes.variant:
variant_zeros_like[output_index] = default_gradient.zeros_like(output)
def _backward_function_wrapper(*args):
"""Process output gradients and call the backward function."""
if not backward.outputs:
return backward.structured_outputs
processed_args = []
input_index = 0
for output_index, arg in enumerate(args):
# Convert IndexedSlices to dense tensors. The IndexedSlices optimization
# is only really effective when doing tf.gather(variable) as the
# adjoint functions for most operations are unlikely to preserve the
# sparsity in IndexedSlices.
if isinstance(arg, ops.IndexedSlices):
arg = ops.convert_to_tensor(arg)
if output_index in skip_positions:
continue
if arg is None:
# We're calling a (non-polymorphic) ConcreteFunction, so we need to
# have a Tensor value for each Tensor we thought would be trainable
# based on its dtype, even if it ended up being unconnected.
input_placeholder = backward.inputs[
input_index]
if input_placeholder.dtype == dtypes.variant:
arg = variant_zeros_like[output_index]
else:
arg = array_ops.zeros(
*default_gradient.shape_and_dtype(input_placeholder))
processed_args.append(arg)
input_index += 1
if input_index >= backward_function_inputs:
break
return backward._call_flat( # pylint: disable=protected-access
processed_args, remapped_captures)
return _backward_function_wrapper, recorded_outputs
def record(self, flat_outputs, inference_args, input_tangents):
"""Record the function call operation.
For backprop, indicates the backward function to use and which new Tensors
must be watched. For forwardprop from eager, the function call itself will
have produced tangents which need to be recorded.
Args:
flat_outputs: The result of running `forward`.
inference_args: A flat list of Tensors with inference inputs to the
operation.
input_tangents: A flat list of Tensors with input tangents consumed by the
operation.
"""
backward_function, to_record = self._wrap_backward_function(
self._forward_graph, self._backward, flat_outputs)
if self._forwardprop_output_indices:
tape.record_operation_backprop_only(
self._forward.signature.name,
to_record, inference_args,
backward_function)
tape.record_operation_forwardprop_only(
self._forward.signature.name,
flat_outputs, inference_args + input_tangents,
backward_function,
self._forwardprop_output_indices)
else:
tape.record_operation(self._forward.signature.name,
to_record, inference_args + input_tangents,
backward_function)
class _FirstOrderTapeGradientFunctions(_TapeGradientFunctions):
"""Caches tape-friendly functions for first-order gradients."""
def __init__(self, func_graph, attrs, func_graph_deleter,
forwardprop_input_indices, delayed_rewrite_functions,
need_gradients_for_jvps):
super(_FirstOrderTapeGradientFunctions, self).__init__(
func_graph, attrs, func_graph_deleter, forwardprop_input_indices,
delayed_rewrite_functions, need_gradients_for_jvps)
self._func_graph_deleter = func_graph_deleter
self._forwardprop_input_indices = forwardprop_input_indices
def _forward_and_backward_functions(self, inference_args, input_tangents):
"""Shortcut for when only first-order gradients are required.
The returned backward function does not accept gradients with respect to
side output of forward_function. This is fine as long as the user can't
possibly request second order tape gradients, as when they've used a single
non-persistent GradientTape. Since we don't need the backward function to
take gradients with respect to side outputs, we can skip some potentially
slow graph building.
Args:
inference_args: A flat list of Tensors, arguments to the inference
function.
input_tangents: A flat list of Tensors, jvps associated with
`inference_args`.
Returns:
A tuple of (forward_function, backward_function):
forward_function: Takes the same inputs as the inference function, but
returns side outputs used by backward_function in addition to the
inference function's outputs.
backward_function: Takes side outputs from forward_function and
gradients with respect to the "real" outputs of forward_function and
returns gradients with respect to the inputs.
"""
outputs = self._func_graph.outputs[:self._num_inference_outputs]
return self._build_functions_for_outputs(
outputs, inference_args, input_tangents)
class _HigherOrderTapeGradientFunctions(_TapeGradientFunctions):
"""Caches tape-friendly functions for higher-order gradients."""
# TODO(b/136189779): Cond/while under a tape may need similar logic. Consider
# generalizing if so.
def _forward_and_backward_functions(self, inference_args, input_tangents):
"""Forward and backward functions suitable for higher-order gradients.
Unlike in `_FirstOrderTapeGradientFunctions`, the backward function built by
this method accepts gradients for all of the outputs of the returned forward
function, including side outputs.
Args:
inference_args: A flat list of Tensors, arguments to the inference
function.
input_tangents: A flat list of Tensors, jvps associated with
`inference_args`.
Returns:
A tuple of (forward_function, backward_function):
forward_function: Takes the same inputs as the inference function, but
returns side outputs used by backward_function in addition to the
inference function's outputs.
backward_function: Takes side outputs from forward_function and
gradients with respect to all of its outputs, real and side. Returns
gradients with respect to the inputs.
"""
outputs = []
iteration_count = 0
# First we need to figure out how many side outputs from the forward pass
# will be required. We do this in a temporary graph to avoid actually
# running multiple copies of the backward pass (one per _GradientsHelper
# call).
#
# While computing gradients, the backward function captures Tensors from
# the forward function. We add these as side outputs of the original
# function. However, we then need to accept output gradients with respect
# to these side outputs for higher order gradients to work. Thus we loop
# until the number of outputs of the function stabilizes. Note that this
# is only required for tape gradients, where we need to declare in advance
# all of the forward op's outputs: symbolic gradients with tf.gradients
# instead rely on regenerating backward functions when higher-order
# gradients are requested.
while (len(outputs) < len(self._func_graph.outputs)
# It's possible for gradient generation to add new ops to the forward
# pass. If all of the new outputs are non-trainable, there's no
# reason to continue.
and any(backprop_util.IsTrainable(output)
for output in self._func_graph.outputs[len(outputs):])):
iteration_count += 1
if iteration_count >= 20 and iteration_count % 5 == 0:
new_op_with_trainable_output = None
num_new_trainable_outputs = 0
for output in self._func_graph.outputs[len(outputs):]:
if backprop_util.IsTrainable(output):
num_new_trainable_outputs += 1
new_op_with_trainable_output = output.op
logging.warning(
("Determining side outputs for the function '{}' is taking longer "
"than expected ({} iterations, typically this converges in 5 or "
"so). This could indicate that a gradient registration is adding "
"new ops to the forward pass every time gradients are generated. "
"{} new trainable output(s) were added this iteration, one from "
"the following op:\n {}\nThis may indicate a TensorFlow bug, or "
"an issue in a tf.custom_gradient.")
.format(
self._func_graph.name, iteration_count,
num_new_trainable_outputs, new_op_with_trainable_output))
outputs = list(self._func_graph.outputs)
self._build_functions_for_outputs(
outputs, inference_args, input_tangents)
(forward_function, forward_graph,
backward_function, output_indices, num_output_tangents) = (
self._build_functions_for_outputs(
outputs, inference_args, input_tangents))
if (len(self._func_graph.outputs) > len(outputs)
and any(backprop_util.IsTrainable(output)
for output in self._func_graph.outputs[len(outputs):])):
raise errors.InternalError(
"Unexpectedly added new outputs to the forward function when "
"building the backward function: "
f"{self._func_graph.outputs[len(outputs):]}.")
return (forward_function, forward_graph, backward_function, output_indices,
num_output_tangents)
class _ForwardBackwardCall(object):
"""Holds the state of a function call between execution and recording."""
__slots__ = [
"_functions", "_inference_args", "_input_tangents", "_tape_watching"
]
def __init__(self, functions, inference_args, input_tangents, tape_watching):
"""Collects information about the function call.
Args:
functions: An object which produces forward and backward functions, either
a _DelayedRewriteGradientFunctions or a _TapeGradientFunctions object.
inference_args: A flat list of Tensors, arguments to the inference
function.
input_tangents: A flat list of Tensors, jvps associated with
`inference_args`.
tape_watching: Boolean, with True indicating that recording is necessary.
"""
self._functions = functions
self._inference_args = inference_args
self._input_tangents = input_tangents
self._tape_watching = tape_watching
def forward(self):
"""Builds or retrieves a forward function for this call."""
forward_function = self._functions.forward(
self._inference_args, self._input_tangents)
return forward_function, self._inference_args + self._input_tangents
def record(self, flat_outputs):
"""Given outputs from the execution of `forward`, records the operation."""
if (self._tape_watching
and not isinstance(flat_outputs, ops.Operation)
and flat_outputs is not None):
# We only record function calls which have outputs, and then only when a
# tape is watching.
self._functions.record(
flat_outputs, self._inference_args, self._input_tangents)
# Sentinel value used by with ConcreteFunction's structured signature to
# indicate that a non-tensor parameter should use the value that was
# specified when the concrete function was created.
_BOUND_VALUE = object()
class ConcreteFunction(core.ConcreteFunction):
"""A `tf.types.experimental.ConcreteFunction` created from `tf.function`."""
def __init__(self,
func_graph,
attrs=None,
shared_func_graph=True,
function_spec=None):
"""Initialize a `ConcreteFunction`.
Args:
func_graph: An instance of FuncGraph: the function body to wrap.
attrs: (optional) dict mapping names of attributes to their AttrValue
values. Attributes in `attrs` will be included in this function's
definition.
shared_func_graph: If False, the ConcreteFunction takes ownership of
`func_graph` and will break reference cycles when it is deleted. This
makes the FuncGraph inoperable.
function_spec: FunctionSpec for the original function. If not specified,
then this ConcreteFunction may only be called using the flat signature.
Raises:
ValueError: If number of input_placeholders is not equal to the number
of function inputs.
"""
# _arg_keywords and _num_positional_args define the flat signature. They
# are assigned after construction.
self._arg_keywords = None
self._num_positional_args = None
self._func_graph = func_graph
self._captured_inputs = self._func_graph.external_captures + self._func_graph.deferred_external_captures
# function_spec defines the structured signature.
self._set_function_spec(function_spec)
if attrs and IMPLEMENTS_ATTRIBUTE_NAME in attrs:
# The alternative is to silently drop "implements" tag
# but it seems likely it would lead to hard to catch bugs.
# Another alternative is to make func_body to preserve the order
# of arguments if variables are present. Yet another option
# is to automatically replace variables as arguments to functions
# to v.read_value() whenever "implements" tag is present
# Anytime we annotate existing function we probably want to wrap
# it with safe read_value for backward compatibility.
has_resource_vars = any(inp.dtype == dtypes.resource
for inp in self.inputs)
assert not any((has_resource_vars, self._captured_inputs)), (
'Function {name} has "{attr}={value}" attribute and thus can not '
"depend on any tensors outside of its signature or modify variables. "
"\n\nNote: variables are always captured and cause function "
"re-tracing for every variable called.\n"
" inputs: {inputs}\n captures: {captured}\n\n"
"To pass a variable to such function use "
"use variable.read_value().".format(
name=func_graph.name,
attr=IMPLEMENTS_ATTRIBUTE_NAME,
value=attrs[IMPLEMENTS_ATTRIBUTE_NAME],
inputs=self.inputs,
captured=self._captured_inputs))
self._output_shapes = tuple(
output.shape for output in self._func_graph.outputs)
self._attrs = _parse_func_attrs(attrs or {})
if shared_func_graph:
self._garbage_collector = None
else:
self._garbage_collector = ConcreteFunctionGarbageCollector(func_graph)
# Pairs of forward and backward functions used for computing gradients.
#
# These each get a reference to the FuncGraph deleter since they use the
# FuncGraph directly.
self._delayed_rewrite_functions = _DelayedRewriteGradientFunctions(
func_graph, self._attrs, self._garbage_collector)
self._first_order_tape_functions = {}
self._higher_order_tape_functions = {}
# Cache the inference function to avoid a (Python) function call when not
# building gradients.
self._inference_function = self._delayed_rewrite_functions.forward()
def _set_function_spec(self, function_spec):
"""Enables the structured signature by supplying a function_spec."""
self._function_spec = None
self._pre_initialized_function_spec = function_spec
# Note: when ConcreteFunctions are built by recreate_function() in
# function_deserialization.py, they don't have a structured_input_signature
# yet. In that case, _initialize_function_spec() gets called by
# _setup_functions_structures() in load.py.
if (function_spec is not None and
self.structured_input_signature is not None):
self._initialize_function_spec()
def _initialize_function_spec(self):
"""Updates `self._function_spec` to include varargs and bound variables.
Adds new positional arguments for any varargs (i.e., for args that are
in `structured_input_signature`, but not in the original fullargspec.args).
Replaces `defaults` and `kwonlydefaults` with the `_BOUND_VALUE`, for
all args and kwargs in `structured_input_signature`.
Sets `varkw` and `varargs` to None.
"""
if self._pre_initialized_function_spec is None:
return # e.g., SavedBareConcreteFunction doesn't have function_spec yet.
assert not self._function_spec, "already initialized"
function_spec = self._pre_initialized_function_spec
args = function_spec.fullargspec.args
arg_specs, kwarg_specs = self.structured_input_signature
vararg_indices = range(len(function_spec.arg_names), len(arg_specs))
fullargspec = tf_inspect.FullArgSpec(
args=list(args) + ["<arg{}>".format(i + 1) for i in vararg_indices],
varargs=None,
varkw=None,
defaults=[_BOUND_VALUE] * len(arg_specs),
kwonlyargs=list(sorted(kwarg_specs)),
kwonlydefaults=dict((k, _BOUND_VALUE) for k in kwarg_specs),
annotations=function_spec.fullargspec.annotations)
self._function_spec = FunctionSpec(
fullargspec,
function_spec.is_method,
function_spec.input_signature,
function_spec.is_pure,
name=self._func_graph.name)
@property
def variables(self):
"""Sequence of variables for this function."""
return tuple(self._func_graph.variables)
@property
def trainable_variables(self):
"""Sequence of trainable variables for this function."""
return tuple(self._func_graph.trainable_variables)
def __call__(self, *args, **kwargs):
"""Executes the wrapped function.
ConcreteFunctions have two signatures:
* The signature of the original function wrapped by this ConcreteFunction.
* A flat signature, where each argument accepts a single Tensor.
The original function signature is generally preferred, but the flat input
signature is supported for backward compatibility.
### Original Function Signature
When calling a ConcreteFunction with the signature of the original function,
each argument must match the type or value that was used when the
ConcreteFunction's graph was traced. In particular:
* Tensor arguments (including CompositeTensors, such as RaggedTensor) must
have matching `TypeSpec`s.
* Non-Tensor arguments (such as booleans or ints) must have equal values.
* Nested arguments (such as lists, tuples, or dictionaries) must have the
same nesting structure; and each nested value must have a matching type
or value.
The default value for any arguments that were traced with non-Tensor values
is the value that was used in the trace. Arguments that were traced with
tensor arguments do not have a default value (even if the original function
had a default value for that argument).
### Flat Signature
When calling a ConcreteFunction with the flat signature, the arguments
correspond to the flattened component tensors of the arguments that were
used to construct the ConcreteFunction. Parameter names are assigned based
on `TensorSpec.name` (when specified) or the original argument names (with
suffixes automatically added for nested arguments or composite tensors with
multiple components).
Args:
*args: Positional arguments to the concrete function.
**kwargs: Keyword arguments to the concrete function.
Returns:
The result of applying the TF function on the given Tensors.
Raises:
AssertionError: If this `ConcreteFunction` was not created through
`get_concrete_function`.
TypeError: If the arguments do not match the function's signature.
"""
return self._call_impl(args, kwargs)
def _call_impl(self, args, kwargs, cancellation_manager=None):
"""See `__call__` for details."""
with trace.Trace(self._func_graph.name, tf_function_call="concrete"):
# Construct the list of input tensors: check if the structured signature
# applies first; and if not, then use the flat signature.
if self._function_spec is not None:
try:
return self._call_with_structured_signature(args, kwargs,
cancellation_manager)
except TypeError as structured_err:
try:
return self._call_with_flat_signature(args, kwargs,
cancellation_manager)
except TypeError:
raise structured_err
return self._call_with_flat_signature(args, kwargs, cancellation_manager)
def _call_with_flat_signature(self, args, kwargs, cancellation_manager):
"""Executes the wrapped function with the flat signature.
Args:
args: Positional arguments to the concrete function.
kwargs: Keyword arguments to the concrete function.
cancellation_manager: A `CancellationManager` that can be used to cancel
function invocation.
Returns:
The result of applying the function on the Tensors/Variables contained in
`args` and `kwargs`.
Raises:
TypeError: if `args` and `kwargs` do not match the flat signature of this
`ConcreteFunction`.
"""
if len(args) > self._num_positional_args:
raise TypeError(
f"{self._flat_signature_summary()} takes {self._num_positional_args} "
f"positional arguments, got {len(args)}.")
args = list(args)
kwargs = dict(kwargs)
for keyword in self._arg_keywords[len(args):]:
try:
args.append(kwargs.pop(compat.as_str(keyword)))
except KeyError:
specified_keywords = (
list(self._arg_keywords[:len(args)]) + list(kwargs.keys()))
missing_required_args = sorted(
set(self._arg_keywords) - set(specified_keywords))
raise TypeError(f"{self._flat_signature_summary()} missing required "
f"arguments: {', '.join(missing_required_args)}.")
if kwargs:
positional_arg_keywords = set(self._arg_keywords[:len(args)])
for unused_key in kwargs:
if unused_key in positional_arg_keywords:
raise TypeError(f"{self._flat_signature_summary()} got two values "
f"for '{unused_key}'.")
raise TypeError(f"{self._flat_signature_summary()} got unexpected "
f"keyword arguments: {', '.join(sorted(kwargs))}.")
for i, arg in enumerate(args):
if not isinstance(
arg, (ops.Tensor, resource_variable_ops.BaseResourceVariable)):
raise TypeError(f"{self._flat_signature_summary()}: expected argument "
f"#{i}(zero-based) to be a Tensor; "
f"got {type(arg).__name__} ({arg}).")
return self._call_flat(args, self.captured_inputs, cancellation_manager)
def _call_with_structured_signature(self, args, kwargs, cancellation_manager):
"""Executes the wrapped function with the structured signature.
Args:
args: Positional arguments to the concrete function.
kwargs: Keyword arguments to the concrete function.
cancellation_manager: A `CancellationManager` that can be used to cancel
function invocation.
Returns:
The result of applying the function on the Tensors/Variables contained in
`args` and `kwargs`.
Raises:
TypeError: if `args` and `kwargs` do not match the structured signature
of this `ConcreteFunction`.
"""
args, kwargs, _, filtered_flat_args = \
self._function_spec.canonicalize_function_inputs(*args, **kwargs)
self._structured_signature_check_missing_args(args, kwargs)
self._structured_signature_check_unexpected_args(args, kwargs)
self._structured_signature_check_arg_types(args, kwargs)
return self._call_flat(
filtered_flat_args,
captured_inputs=self.captured_inputs,
cancellation_manager=cancellation_manager)
def _structured_signature_check_missing_args(self, args, kwargs):
"""Raises a TypeError if any args are missing."""
arg_specs, kwarg_specs = self.structured_input_signature
missing_arguments = []
for i, (arg, spec) in enumerate(zip(args, arg_specs)):
if arg is _BOUND_VALUE and _contains_type_spec(spec):
missing_arguments.append(self._function_spec.arg_names[i])
for (name, arg) in kwargs.items():
if arg is _BOUND_VALUE and _contains_type_spec(kwarg_specs[name]):
missing_arguments.append(name)
if missing_arguments:
raise TypeError(f"{self._structured_signature_summary()} missing "
"required arguments: "
f"{', '.join(sorted(missing_arguments))}.")
def _structured_signature_check_unexpected_args(self, args, kwargs):
"""Raises a TypeError if there are any extra args."""
arg_specs, kwarg_specs = self.structured_input_signature
if len(args) > len(arg_specs):
raise TypeError(
f"{self._structured_signature_summary()} takes "
f"{len(self._function_spec.arg_names)} positional arguments but got "
f"{len(args)}.")
if len(kwargs) > len(kwarg_specs):
extra_args = set(kwargs) - set(kwarg_specs)
raise TypeError(f"{self._structured_signature_summary()} got unexpected "
f"keyword arguments: {', '.join(extra_args)}.")
def _structured_signature_check_arg_types(self, args, kwargs):
"""Raises a TypeError if any args have the wrong type."""
# Check argument types
arg_specs, kwarg_specs = self.structured_input_signature
for i, (arg, spec) in enumerate(zip(args, arg_specs)):
name = self._function_spec.arg_names[i]
self._structured_signature_check_arg_type(arg, spec, name)
for (name, arg) in kwargs.items():
self._structured_signature_check_arg_type(arg, kwarg_specs[name], name)
def _structured_signature_check_arg_type(self, arg, spec, name):
"""Raise TypeError if `arg`'s type doesn't match `spec`."""
if arg is _BOUND_VALUE:
return
# Check the overall nested structure of the argument.
try:
nest.assert_same_structure(arg, spec, expand_composites=True)
except (ValueError, TypeError):
try:
nest.assert_same_structure(arg, spec, expand_composites=False)
expected, got = spec, arg
except (ValueError, TypeError):
expected, got = _structure_summary(spec), _structure_summary(arg)
raise TypeError(f"{self._structured_signature_summary()}: argument "
f"{name} had incorrect type\n"
f" expected: {expected}\n"
f" got: {got}")
# Check the type for each leaf in the nested structure.
arg_pieces = nest.flatten(arg, expand_composites=True)
spec_pieces = nest.flatten(spec, expand_composites=True)
for (arg_piece, spec_piece) in zip(arg_pieces, spec_pieces):
# TODO(mdan): Use consistent error messages.
if isinstance(spec_piece, tensor_spec.DenseSpec):
# TODO(edloper): Consider calling convert_to_tensor on non-tensor
# values here. That would match the behavior of
# _call_concrete_function() in function_deserialization.py. If
# we do, then we need to change the nest assert_same_structure and
# flatten calls above to use shallow variants.
tensor_types = (ops.Tensor, resource_variable_ops.BaseResourceVariable)
if not isinstance(arg_piece, tensor_types):
raise TypeError(f"{self._structured_signature_summary()} expected a "
f"Tensor in {name}, but got "
f"{type(arg_piece).__name__} value {arg_piece}.")
elif arg_piece is not _BOUND_VALUE:
try:
arg_matches_spec = bool(arg_piece == spec_piece)
except (ValueError, TypeError):
logging.vlog(1, "Error matching value with spec", exc_info=True)
arg_matches_spec = False
if not arg_matches_spec:
raise TypeError(
f"ConcreteFunction {self._structured_signature_summary()} was "
f"constructed with {type(spec_piece).__name__} value "
f"{spec_piece} in {name}, but was called with "
f"{type(arg_piece).__name__} value {arg_piece}.")
def _call_flat(self, args, captured_inputs, cancellation_manager=None):
"""Executes the wrapped function.
Args:
args: a list of Tensors or Variables. Arguments from the Python function
should be filtered before calling this method: objects aside from
Tensors, CompositeTensors, and Variables are ignored. Any
CompositeTensors should be expanded before calling this method.
captured_inputs: the captured inputs that are also part of the input args
to the actual execution. By default, it should be self._captured_inputs.
cancellation_manager: (Optional.) A `CancellationManager` that can be
used to cancel function invocation.
Returns:
The result of applying the TF function to `args`.
Raises:
ValueError: If `args` contains anything other than Tensors or Variables.
"""
ctx = context.context()
executing_eagerly = ctx.executing_eagerly()
# Copy saveable status of function's graph to current FuncGraph.
default_graph = ops.get_default_graph()
if default_graph.building_function and not self._func_graph.saveable:
default_graph.mark_as_unsaveable(self._func_graph.saving_errors)
if (tape.could_possibly_record() or
hasattr(default_graph, "watch_variable")):
for v in self._func_graph.variables:
resource_variable_ops.variable_accessed(v)
tensor_inputs = []
variables_used = set([])
for i, arg in enumerate(args):
if isinstance(arg, resource_variable_ops.BaseResourceVariable):
# We can pass a variable more than once, and in this case we need to
# pass its handle only once.
if id(arg.handle) in variables_used:
continue
resource_variable_ops.variable_accessed(arg)
tensor_inputs.append(arg.handle)
variables_used.add(id(arg.handle))
elif isinstance(arg, ops.Tensor):
tensor_inputs.append(arg)
if not executing_eagerly:
# If we're graph building, shape inference is on. We check for input
# compatibility up front to avoid hard to debug incompatibilities
# later.
graph_input_shape = tensor_shape.TensorShape(
self._func_graph.inputs[i].shape)
if not graph_input_shape.is_compatible_with(arg.shape):
if self._arg_keywords:
arg_name = "'{}'".format(self._arg_keywords[i])
else:
arg_name = "with index {}".format(i)
raise ValueError(
f"The argument {arg_name} (value {arg}) is not compatible with "
"the shape this function was traced with. Expected shape "
f"{self._func_graph.inputs[i].shape}, but got shape "
f"{arg.shape}.\n\nIf you called get_concrete_function, you may "
"need to pass a tf.TensorSpec(..., shape=...) with a less "
"specific shape, having None on axes which can vary.")
else:
raise ValueError(f"{i:d}-th input {arg} must be a Tensor, got "
f"{type(arg)} when calling {self._func_graph.name}.")
args = tensor_inputs + captured_inputs
possible_gradient_type = gradients_util.PossibleTapeGradientTypes(args)
if (possible_gradient_type == gradients_util.POSSIBLE_GRADIENT_TYPES_NONE
and executing_eagerly):
# No tape is watching; skip to running the function.
return self._build_call_outputs(self._inference_function.call(
ctx, args, cancellation_manager=cancellation_manager))
forward_backward = self._select_forward_and_backward_functions(
args,
possible_gradient_type,
executing_eagerly)
forward_function, args_with_tangents = forward_backward.forward()
if executing_eagerly:
flat_outputs = forward_function.call(
ctx, args_with_tangents, cancellation_manager=cancellation_manager)
else:
with default_graph._override_gradient_function( # pylint: disable=protected-access
{"PartitionedCall": self._get_gradient_function(),
"StatefulPartitionedCall": self._get_gradient_function()}):
flat_outputs = forward_function.call(ctx, args_with_tangents)
forward_backward.record(flat_outputs)
return self._build_call_outputs(flat_outputs)
def _experimental_with_cancellation_manager(self, cancellation_manager):
"""Returns a callable that invokes a cancellable version of this function.
Args:
cancellation_manager: A `CancellationManager` object that can be used to
cancel function invocation.
Returns:
A callable with the same signature as this concrete function.
"""
def cancellable_call(*args, **kwargs):
return self._call_impl(
args, kwargs, cancellation_manager=cancellation_manager)
return cancellable_call
@property
def name(self):
"""`ConcreteFunction` name."""
return self._delayed_rewrite_functions.forward().name
@property
def graph(self):
"""Returns the graph from which this function was constructed."""
return self._func_graph
@property
def inputs(self):
"""Returns tensors in `self.graph` corresponding to arguments."""
return self._func_graph.inputs
@property
def structured_input_signature(self):
"""Returns structured signature for this concrete function.
Returns:
A tuple `(args, kwargs)`, where:
* `args` is a tuple that specifies the expected type or value each for
positional argument.
* `kwargs` is a dictionary that specifies the expected type or value
for each keyword-only argument.
The type or value for each argument is specified using one of the
following:
* A `tf.TypeSpec`, indicating that a Tensor or other TensorFlow-native
value is expected.
* A Python value, such as an integer, indicating that an equal value
is expected.
* A nested structure of `tf.TypeSpec`s and Python values, indicating
that a corresponding nested structure is expected.
"""
return self._func_graph.structured_input_signature
@property
def outputs(self):
"""Returns tensors in `self.graph` corresponding to returned tensors."""
return self._func_graph.outputs
@property
def structured_outputs(self):
"""Returns outputs in `self.graph` as returned by the original function."""
return self._func_graph.structured_outputs
def set_external_captures(self, captures):
"""Updates the function capture values.
The new values must have tensor types and shapes consistent with the
original captures of the concrete function, but it is allowed to change a
value captured with a deferred one and vice-versa.
Args:
captures: A list of tensors or closures. Tensors are value captures, and
closures are call-time (deferred captures).
"""
# TODO(wxinyi): 1. verify that the new captures' type spec is compatible
# with the original's. However, doing so requires MirroredVariable captures
# initialized. 2. replace the original/new captures/deferred
# captures in the wrapped graph. Doing such for a capture-to-deferred
# capture replacement requires more arguments than the deferred capture
# itself, e.g. default value, spec.
self._captured_inputs = captures
def replace_capture_with_deferred_capture(self,
tensor,
closure,
spec,
placeholder=None,
default_value=None):
"""Replaces existing capture `tensor` with a deferred capture `closure`.
This API replaces the capture `tensor` from the concrete function's captured
inputs list, and places the deferred capture `closure` in
its spot so the order of captured inputs is preserved. This is important
because the old `tensor` and the new `closure` will have the same internal
placeholder, which can be passed through the `placeholder` argument, or
skipped, in which case we find the placeholder from internal inputs by
indexing `tensor` in the external captured inputs list. Thus, it is
important that the new deferred capture has output spec (specified by the
`spec` argument) compatible with the internal placeholder (`placeholder`)
and the original capture (`tensor`).
For example,
```python
bool_captured_tensor = tf.constant(True)
float_captured_tensor = tf.constant([3.], dtype=tf.float32)
value = tf.constant([2.], dtype=tf.float32)
@tf.function
def fn():
deferred_tensor = ops.get_default_graph().capture_call_time_value(
lambda: value,
tf.TensorSpec(shape=(1,), dtype=tf.float32))
if bool_captured_tensor:
return deferred_tensor
else:
return deferred_tensor + float_captured_tensor
concrete_fn = fn.get_concrete_function()
print(concrete_fn()) # tf.Tensor([2.], shape=(1,), dtype=float32)
new_bool_captured_tensor = constant_op.constant(False)
def bool_closure():
return new_bool_captured_tensor
concrete_fn.replace_capture_with_deferred_capture(
bool_captured_tensor,
bool_closure,
spec=tensor_spec.TensorSpec(shape=(), dtype=dtypes.bool))
print(concrete_fn()) # tf.Tensor([5.], shape=(1,), dtype=float32)
```
Args:
tensor: Tensor already captured. This `tensor` should be listed in
concrete_function.captured_inputs except when it's empty such as when
the concrete function is restored from SavedModel.
closure: function which takes no arguments, to be evaluated at function
call time, returning a nest of tensors compatible with `spec`.
spec: nest of TypeSpec for the value to capture.
placeholder: optional. The internal placeholder corresponding to the
captured `tensor` and the new `closure`.
default_value: optional value to use in environments that cannot safely
evaluate closure.
"""
capture_index = None
for i, capture in enumerate(self._captured_inputs):
if id(tensor) == id(capture):
capture_index = i
break
if placeholder is None:
if capture_index is None:
raise ValueError(
f"Did not find `tensor` argument {tensor} in the ConcreteFunction's"
" captured inputs list, and did not receive a placeholder argument."
" Thus we're unable to infer the internal placeholder. ")
placeholder = self.inputs[-len(self._captured_inputs) + capture_index]
if not (spec.is_compatible_with(tensor) or
spec.is_compatible_with(placeholder)):
raise ValueError(
f"Attempting to substitute closure with spec {spec} that's "
f"incompatible with the original capture {tensor} or the internal "
f"placeholder {placeholder}.")
self._func_graph.replace_capture_with_deferred_capture(
tensor=tensor,
closure=closure,
spec=spec,
placeholder=placeholder,
default_value=default_value)
if capture_index is not None:
self._captured_inputs[capture_index] = closure
@property
def captured_inputs(self):
"""Returns external Tensors captured by this function.
self.__call__(*args) passes `args + self.captured_inputs` to the function.
"""
return nest.flatten(
[x() if callable(x) else x for x in self._captured_inputs],
expand_composites=True)
@property
def function_def(self):
"""Returns a `FunctionDef` object representing this function."""
return self._delayed_rewrite_functions.forward().definition
@property
def output_shapes(self):
"""The function's output shapes."""
return nest.map_structure(
lambda x: getattr(x, "shape", tensor_shape.TensorShape(None)),
composite_tensor.replace_composites_with_components(
self._func_graph.structured_outputs),
expand_composites=False)
@property
def output_dtypes(self):
# TODO(akshayka): Consider removing this.
return nest.map_structure(
lambda x: x.dtype if x is not None else None,
composite_tensor.replace_composites_with_components(
self._func_graph.structured_outputs),
expand_composites=False)
def add_to_graph(self, g=None):
"""Registers the function, adds it to the graph g or default graph.
Args:
g: If specified, registers the function with this graph. Defaults to the
current context (either the default graph or the eager context).
"""
# If we are not executing eagerly, adds the function to default graph if no
# graph is specified.
# In case of eager execution, function definition gets added to context
# during construction itself.
if not context.executing_eagerly() and not g:
g = ops.get_default_graph()
self._delayed_rewrite_functions.forward().add_to_graph(g)
def add_gradient_functions_to_graph(self, g=None):
"""Add forward/backward functions to graph `g` or the current context."""
if not context.executing_eagerly() and not g:
g = ops.get_default_graph()
self._delayed_rewrite_functions.forward().add_to_graph(g)
forward_function, backward_function = (
self._delayed_rewrite_functions.forward_backward())
forward_function.add_to_graph(g)
backward_function.add_to_graph(g)
def _get_gradient_function(self):
"""Returns gradient function. It will be lazily created at first call."""
return self._delayed_rewrite_functions._rewrite_forward_and_call_backward # pylint: disable=protected-access
def _select_forward_and_backward_functions(
self, args, possible_gradient_type, executing_eagerly):
"""Selects forward and backward functions based on the calling context.
The forward function computes the "real" function outputs, `self._outputs`,
and any extra values needed by the corresponding backward function.
Args:
args: A flat list of Tensors with all of the inputs to the forward
function (including user-specified and captured inputs).
possible_gradient_type: One of gradients_util.POSSIBLE_GRADIENT_TYPES_*.
executing_eagerly: Boolean, the value of context.executing_eagerly().
Returns:
An object with a `forward` method returning a tuple of (forward_function :
_EagerDefinedFunction, augmented_arguments : List), and a corresponding
`record` method which takes outputs from the forward function and records
the operation. forward_function should be called with augmented_arguments.
"""
if executing_eagerly:
input_tangents = forwardprop_util.pack_tangents(args)
else:
input_tangents = forwardprop_util.TangentInfo()
need_gradients_for_jvps = tape.should_record_backprop(
input_tangents.tangents)
# Allows re-use of forward and backward function pairs depending on the
# tapes and forward accumulators watching its inputs.
cache_key = (need_gradients_for_jvps, input_tangents.indices)
if (possible_gradient_type
== gradients_util.POSSIBLE_GRADIENT_TYPES_FIRST_ORDER):
if input_tangents.indices or executing_eagerly:
# There is a single non-persistent tape active, so the user can only
# request first-order gradients from a tape. We can spend less time
# graph building since we know this.
#
# We may still end up computing higher-order gradients, but that'd be
# through `tf.gradients`, which can re-write the forward pass and so
# needs no preparation here.
functions = self._first_order_tape_functions.get(cache_key, None)
if functions is None:
functions = _FirstOrderTapeGradientFunctions(
self._func_graph, self._attrs, self._garbage_collector,
forwardprop_input_indices=input_tangents.indices,
delayed_rewrite_functions=self._delayed_rewrite_functions,
need_gradients_for_jvps=need_gradients_for_jvps)
self._first_order_tape_functions[cache_key] = functions
return _ForwardBackwardCall(
functions, args, input_tangents.tangents, tape_watching=True)
else:
# We can avoid computing second-order gradients in some cases by doing a
# delayed rewrite when graph building. Since we know we'll only compute
# first-order tape gradients, the delayed rewrite is safe: we won't need
# to tell the tape about side outputs.
#
# TODO(allenl): This case is really dirty. It would be better if we
# could temporarily pop all of the current tapes to avoid
# accidentally taking second-order gradients.
return _ForwardBackwardCall(
self._delayed_rewrite_functions, args, input_tangents.tangents,
tape_watching=True)
elif (possible_gradient_type
== gradients_util.POSSIBLE_GRADIENT_TYPES_HIGHER_ORDER):
# Either there's a persistent tape watching, or there are multiple nested
# tapes. Either way, the user may request higher-order gradients. We'll
# spend a bit more time and make sure higher-order gradients are correct.
functions = self._higher_order_tape_functions.get(
cache_key, None)
if functions is None:
functions = _HigherOrderTapeGradientFunctions(
self._func_graph, self._attrs, self._garbage_collector,
forwardprop_input_indices=input_tangents.indices,
delayed_rewrite_functions=self._delayed_rewrite_functions,
need_gradients_for_jvps=need_gradients_for_jvps)
self._higher_order_tape_functions[cache_key] = functions
return _ForwardBackwardCall(functions, args, input_tangents.tangents,
tape_watching=True)
# else possible_gradient_type == POSSIBLE_GRADIENT_TYPES_NONE, meaning no
# tape is recording.
return _ForwardBackwardCall(
self._delayed_rewrite_functions, args, input_tangents.tangents,
tape_watching=False)
def _build_call_outputs(self, result):
"""Maps the fdef output list to actual output structure.
Args:
result: Output lists defined by FunctionDef.
Returns:
The actual call output.
"""
# TODO(jlchu): call C++ version in function.cc when speed is improved
if self._func_graph.structured_outputs is None:
return result
# Replace outputs with results, skipping over any 'None' values.
outputs_list = nest.flatten(
self._func_graph.structured_outputs, expand_composites=True)
j = 0
for i, o in enumerate(outputs_list):
if o is not None:
handle_data_util.copy_handle_data(self.outputs[j], result[j])
outputs_list[i] = result[j]
j += 1
ret = nest.pack_sequence_as(self._func_graph.structured_outputs,
outputs_list, expand_composites=True)
return ret
@property
def _as_name_attr_list(self):
"""Returns a `NameAttrList` representing this function."""
ret = attr_value_pb2.NameAttrList(name=self.name)
for name, value in self._attrs.items():
ret.attr[name].CopyFrom(value)
return ret
def _structured_signature_summary(self, default_values=False):
"""Returns a string summarizing this function's structured signature.
Args:
default_values: If true, then include default values in the signature.
Returns:
A `string`.
"""
# Note: we can't just use self._funcion_spec.signature_summary(), because
# that would show "_BOUND_VALUE" as the default value for all arguments.
assert self._function_spec is not None
arg_specs, kwarg_specs = self.structured_input_signature
arg_names = list(self._function_spec.arg_names)
# If an explicit input_signature is provided to @tf.function, then any
# arguments with defaults that are not covered by that explicit signature
# are simply dropped from the signature.
# TODO(b/159639913) Look into whether dropping arguments with default values
# from the signature is the right thing to do.
arg_names = arg_names[:len(arg_specs)]
if default_values:
for i in range(len(arg_names)):
if not _contains_type_spec(arg_specs[i]):
arg_names[i] += "={}".format(arg_specs[i])
if kwarg_specs:
arg_names.append("*")
for name, spec in kwarg_specs.items():
arg_names.append(name)
if default_values and not _contains_type_spec(spec):
arg_names[-1] += "={}".format(spec)
signature = f"{self._func_graph.name}({', '.join(arg_names)})"
return signature
def _flat_signature_summary(self):
"""Returns a string summarizing this function's flat signature."""
assert self._arg_keywords is not None
assert self._num_positional_args is not None
arg_names = self._arg_keywords
if self._num_positional_args > len(arg_names):
arg_names.extend(
"<arg{}>".format(i + 1)
for i in range(len(arg_names), self._num_positional_args))
return f"{self._func_graph.name}({', '.join(arg_names)})"
def pretty_printed_signature(self, verbose=True):
"""Returns a string summarizing the signature of this concrete function."""
if not verbose:
return self._structured_signature_summary(default_values=True)
def pretty_print_spec(spec):
"""Returns a string describing the spec for a single argument."""
if isinstance(spec, tensor_spec.TensorSpec):
return "{} Tensor, shape={}".format(spec.dtype.name, spec.shape)
elif nest.is_sequence(spec):
pieces = nest.flatten(spec, expand_composites=False)
markers = [_Marker("<{}>".format(i + 1)) for i in range(len(pieces))]
structure = nest.pack_sequence_as(spec, markers)
# Ensure dictionaries are sorted by key (for determinism)
result = pprint.pformat(structure, width=10000)
for (marker, piece) in zip(markers, pieces):
result += "\n {}: {}".format(marker, pretty_print_spec(piece))
return result
else:
return repr(spec)
lines = [self._structured_signature_summary(default_values=True)]
arg_specs, kwarg_specs = self.structured_input_signature
names = list(self._function_spec.arg_names)
# If an explicit input_signature is provided to @tf.function, then any
# arguments with defaults that are not covered by that explicit signature
# are simply dropped from the signature.
# TODO(b/159639913) Look into whether dropping arguments with default values
# from the signature is the right thing to do.
# Note: we can skip bound args, since we already displayed their bound
# value in the signature summary.
arg_details = []
for (name, spec) in zip(names[:len(arg_specs)], list(arg_specs)):
if _contains_type_spec(spec):
arg_details.append(" {}: {}".format(name, pretty_print_spec(spec)))
if kwarg_specs:
for kwarg in sorted(kwarg_specs):
spec = kwarg_specs[kwarg]
if _contains_type_spec(spec):
arg_details.append(" {}: {}".format(
kwarg, pretty_print_spec(spec)))
if arg_details:
lines.append(" Args:")
lines.extend(arg_details)
lines.append(" Returns:")
def spec_from_value(value):
# For loaded function, structured_outputs are already specs.
if isinstance(value, type_spec.TypeSpec):
return value
return type_spec.type_spec_from_value(value)
lines.append(" {}".format(
pretty_print_spec(
nest.map_structure(spec_from_value, self.structured_outputs))))
return "\n".join(lines)
def __repr__(self):
if self._function_spec is not None:
return "<ConcreteFunction {} at 0x{:X}>".format(
self.pretty_printed_signature(verbose=False), id(self))
elif not (self._num_positional_args is None or self._arg_keywords is None):
return "<ConcreteFunction {} at 0x{:X}>".format(
self._flat_signature_summary(), id(self))
else:
return object.__repr__(self)
def __str__(self):
if self._function_spec is not None:
return "ConcreteFunction {}".format(self.pretty_printed_signature())
else:
return self.__repr__()
_pywrap_utils.RegisterType("Tensor", ops.Tensor)
_pywrap_utils.RegisterType("EagerTensor", ops.EagerTensor)
_pywrap_utils.RegisterType("IndexedSlices", ops.IndexedSlices)
def _deterministic_dict_values(dictionary):
return tuple(dictionary[key] for key in sorted(dictionary))
class FunctionSpec(object):
"""Specification of how to bind arguments to a function."""
@staticmethod
def from_function_and_signature(python_function,
input_signature,
is_pure=False,
experimental_follow_type_hints=False,
jit_compile=None):
"""Create a FunctionSpec instance given a python function and signature.
Args:
python_function: a function to inspect
input_signature: a signature of the function (None, if variable)
is_pure: if True all input arguments (including variables and constants)
will be converted to tensors and no variable changes allowed.
experimental_follow_type_hints: see `tf.function`
jit_compile: see `tf.function`
Returns:
instance of FunctionSpec
"""
fullargspec = tf_inspect.getfullargspec(python_function)
if (input_signature is not None and
set(fullargspec.kwonlyargs) - set(fullargspec.kwonlydefaults or ())):
nodefault_kwonlyargs = set(fullargspec.kwonlyargs)
if fullargspec.kwonlydefaults is not None:
nodefault_kwonlyargs -= set(fullargspec.kwonlydefaults)
raise ValueError("Cannot build TF function from "
f"{python_function.__name__}: keyword-only arguments "
"must have default values when input_signature is "
"provided. Got keyword-only arguments without default "
f"values: {sorted(nodefault_kwonlyargs)}.")
# Checks if the `fullargspec` contains self or cls as its first argument.
is_method = tf_inspect.isanytargetmethod(python_function)
# Treat a wrapped partial function as a special case. For all arguments that
# were overridden with keywords in the partial:
# - remove the corresponding arguments,
# - remove the corresponding keywords.
_, unwrapped = tf_decorator.unwrap(python_function)
if isinstance(unwrapped, functools.partial):
# Also consider the Python3 case with kwonlydefaults.
if fullargspec.defaults or fullargspec.kwonlydefaults:
new_defaults = fullargspec.defaults
new_args = fullargspec.args
if fullargspec.defaults:
# To be able to canonicalize the function properly, we want to ignore
# default values that are overridden via a partial kwarg. For example:
#
# def func(a, b, c, d=5, e=7):
# return a, b, c, d, e
# p_func = tf.function(functools.partial(func, 10, e=9))
#
# Here we want to drop from the defaults the parameter `e`. If we
# forwarded the call to the partial function with a default for `e`
# we would get an error for passing two values for one parameter.
#
# Note that this has a limitation: we can only override parameters at
# the end of the parameter list.
#
# In this case we want to end up with 3 arguments (b, c, d) and 1
# default value (5). We do this by constructing a mask where 0 stands
# for a value that was overridden by a partial kwarg. The seemingly
# complicated logic below does just that - for arguments (b, c, d, e)
# we would get a mask (1, 1, 1, 0).
old_args = fullargspec.args
old_defaults = fullargspec.defaults
no_default = object()
num_args_without_defaults = len(old_args) - len(old_defaults)
left_padding = tuple([no_default] * num_args_without_defaults)
args_with_defaults = zip(old_args, left_padding + old_defaults)
# Create a mask where 0 stands for args that had a partial kwarg
# defined.
non_keyword_defaults_mask = [
0 if key in unwrapped.keywords else 1 for key in old_args
]
# Keep only arguments and defaults that were not kwargs of partial.
new_args_with_defaults = list(
itertools.compress(args_with_defaults, non_keyword_defaults_mask))
# Keep all args.
new_args = [arg for arg, _ in new_args_with_defaults]
# Keep only real default values.
new_defaults = [
default for _, default in new_args_with_defaults
if default is not no_default
]
fullargspec = tf_inspect.FullArgSpec(
args=new_args,
varargs=fullargspec.varargs,
varkw=fullargspec.varkw,
defaults=new_defaults,
kwonlyargs=[],
kwonlydefaults={},
annotations=fullargspec.annotations)
# Get the function's name. Remove functools.partial wrappers if necessary.
while isinstance(python_function, functools.partial):
python_function = python_function.func
name = getattr(python_function, "__name__", "f")
return FunctionSpec(
fullargspec,
is_method,
input_signature,
is_pure=is_pure,
jit_compile=jit_compile,
experimental_follow_type_hints=experimental_follow_type_hints,
name=name)
def __init__(self,
fullargspec,
is_method,
input_signature,
is_pure=False,
experimental_follow_type_hints=False,
name=None,
jit_compile=None):
"""Constructs a FunctionSpec describing a python function.
Args:
fullargspec: `tf_inspect.FullArgSpec` object describing the function.
is_method: True if the function is a method.
input_signature: a signature of the function (None, if variable)
is_pure: if True all input arguments (including variables and constants)
will be converted to tensors and no variable changes allowed.
experimental_follow_type_hints: see `tf.function`.
name: Name of the function
jit_compile: see `tf.function`.
"""
self._fullargspec = fullargspec
self._is_method = is_method
self._is_pure = is_pure
self._jit_compile = jit_compile
self._experimental_follow_type_hints = experimental_follow_type_hints
# TODO(edloper): Include name when serializing for SavedModel?
self._name = name or "f"
if self._is_method:
# Remove `self`: default arguments shouldn't be matched to it.
# TODO(b/127938157): Should this error out if there is no arg to
# be removed?
args = fullargspec.args[1:]
else:
args = fullargspec.args
# A cache mapping from argument name to index, for canonicalizing
# arguments that are called in a keyword-like fashion.
self._args_to_indices = {arg: i for i, arg in enumerate(args)}
self._arg_names = args
# A cache mapping from arg index to default value, for canonicalization.
default_values = fullargspec.defaults
offset = len(args) - len(default_values or [])
self._arg_indices_to_default_values = {
offset + index: default
for index, default in enumerate(default_values or [])
}
self._arg_indices_no_default_values = set(range(len(args))) - set(
self._arg_indices_to_default_values)
if input_signature is None:
self._input_signature = None
else:
self._input_signature = tuple(input_signature)
self._flat_input_signature = tuple(nest.flatten(input_signature,
expand_composites=True))
@property
def fullargspec(self):
return self._fullargspec
@property
def is_method(self):
return self._is_method
@property
def args_to_indices(self):
return self._args_to_indices
@property
def kwargs_to_include(self):
return self._kwargs_to_include
@property
def input_signature(self):
return self._input_signature
@property
def flat_input_signature(self):
return self._flat_input_signature
@property
def is_pure(self):
return self._is_pure
@property
def jit_compile(self):
return self._jit_compile
@property
def arg_names(self):
return self._arg_names
@property
def vararg_name(self):
return self._fullargspec.varargs
@property
def varkw_name(self):
return self._fullargspec.varkw
def signature_summary(self, default_values=False):
"""Returns a string summarizing this function's signature.
Args:
default_values: If true, then include default values in the signature.
Returns:
A `string`.
"""
args = list(self._arg_names)
if default_values:
for (i, default) in self._arg_indices_to_default_values.items():
args[i] += "={}".format(default)
if self._fullargspec.kwonlyargs:
args.append("*")
for arg_name in self._fullargspec.kwonlyargs:
args.append(arg_name)
if default_values and arg_name in self._fullargspec.kwonlydefaults:
args[-1] += "={}".format(self._fullargspec.kwonlydefaults[arg_name])
return f"{self._name}({', '.join(args)})"
def _to_tensor_or_tensor_spec(self, x):
return (x if isinstance(x, (ops.Tensor, tensor_spec.TensorSpec))
else ops.convert_to_tensor(x))
def _convert_variables_to_tensors(self, args, kwargs):
args = [self._to_tensor_or_tensor_spec(x) for x in args]
kwargs = {kw: self._to_tensor_or_tensor_spec(x)
for kw, x in kwargs.items()}
return tuple(args), kwargs
def _convert_annotated_args_to_tensors(self, args, kwargs):
"""Attempts to autobox arguments annotated as tf.Tensor."""
if self.input_signature is not None:
return
args = list(args)
for i, arg in enumerate(args):
# See
# https://docs.python.org/3/library/inspect.html#inspect.getfullargspec
if i < len(self._fullargspec.args):
annotation_key = self._fullargspec.args[i]
else:
annotation_key = self._fullargspec.varargs
arg_annotation = self._fullargspec.annotations.get(annotation_key, None)
# TODO(rahulkamat): Change to TensorLike (here ans below)
if arg_annotation == ops.Tensor:
args[i] = self._to_tensor_or_tensor_spec(arg)
for kw, v in kwargs.items():
if kw in self._fullargspec.kwonlyargs or kw in self._fullargspec.args:
annotation_key = kw
else:
annotation_key = self._fullargspec.varkw
kwarg_annotation = self._fullargspec.annotations.get(annotation_key, None)
if kwarg_annotation == ops.Tensor:
kwargs[kw] = self._to_tensor_or_tensor_spec(v)
return tuple(args), kwargs
def _validate_inputs(self, flat_inputs):
"""Raises an error if inputs contain illegal values."""
for inp in flat_inputs:
# TODO(b/183107079): Allow these once they're handled properly.
if isinstance(inp, weakref.ref):
raise ValueError(
f"weakref input {inp} not supported for function {self._name}")
def canonicalize_function_inputs(self, *args, **kwargs):
"""Canonicalizes `args` and `kwargs`.
Canonicalize the inputs to the Python function using a `FunctionSpec`
instance. In particular, we parse the varargs and kwargs that the
original function was called with into a tuple corresponding to the
Python function's positional (named) arguments and a dictionary
corresponding to its kwargs. Missing default arguments are added.
If this `FunctionSpec` has an input signature, then it is used to convert
arguments to tensors; otherwise, any inputs containing numpy arrays are
converted to tensors.
Additionally, any inputs containing numpy arrays are converted to Tensors.
Args:
*args: The varargs this object was called with.
**kwargs: The keyword args this function was called with.
Returns:
A canonicalized ordering of the inputs, as well as full and filtered
(Tensors and Variables only) versions of their concatenated flattened
representations, represented by a tuple in the form (args, kwargs,
flat_args, filtered_flat_args). Here: `args` is a full list of bound
arguments, and `kwargs` contains only true keyword arguments, as opposed
to named arguments called in a keyword-like fashion.
Raises:
ValueError: If a keyword in `kwargs` cannot be matched with a positional
argument when an input signature is specified, or when the inputs
do not conform to the input signature.
"""
if self._is_pure:
args, kwargs = self._convert_variables_to_tensors(args, kwargs)
if self._experimental_follow_type_hints:
args, kwargs = self._convert_annotated_args_to_tensors(args, kwargs)
# Pre-calculate to reduce overhead
arglen = len(args)
if self._input_signature is not None:
if arglen > len(self._input_signature):
raise TypeError(f"{self.signature_summary()} specifies "
f"{len(self._input_signature)} positional arguments, "
f"but got {arglen}.")
for arg in six.iterkeys(kwargs):
index = self._args_to_indices.get(arg, None)
if index is None:
raise TypeError(f"{self.signature_summary()} got unexpected keyword "
f"argument `{arg}`.")
if index >= len(self._input_signature):
raise TypeError(
f"{self.signature_summary()} got keyword argument `{arg}` that "
"was not included in input_signature.")
if not kwargs:
inputs = args
if self._arg_indices_to_default_values:
try:
inputs += tuple(self._arg_indices_to_default_values[i]
for i in range(arglen, len(self._arg_names)))
except KeyError:
missing_args = [
self._arg_names[i]
for i in range(arglen, len(self._arg_names))
if i not in self._arg_indices_to_default_values
]
raise TypeError(f"{self.signature_summary()} missing required "
f"arguments: {', '.join(missing_args)}.")
if self._fullargspec.kwonlydefaults:
kwargs.update(self._fullargspec.kwonlydefaults)
else:
# Maps from index of arg to its corresponding value, according to `args`
# and `kwargs`; seeded with the default values for the named args that
# aren't in `args`.
arg_indices_to_values = {
index: default for index, default in six.iteritems(
self._arg_indices_to_default_values) if index >= arglen
}
consumed_args = []
missing_arg_indices = self._arg_indices_no_default_values - set(
range(arglen))
for arg, value in six.iteritems(kwargs):
index = self._args_to_indices.get(arg, None)
if index is not None:
if index < arglen:
raise TypeError(f"{self.signature_summary()} got two values for "
f"{arg!r}.")
arg_indices_to_values[index] = value
# These arguments in 'kwargs' might also belong to
# positional arguments
missing_arg_indices.discard(index)
consumed_args.append(arg)
for arg in consumed_args:
# After this loop, `kwargs` will only contain keyword_only arguments,
# and all positional_or_keyword arguments have been moved to `inputs`.
kwargs.pop(arg)
inputs = args + _deterministic_dict_values(arg_indices_to_values)
# Exclude positional args with values
if missing_arg_indices:
missing_args = [self._arg_names[i] for i in sorted(missing_arg_indices)]
if len(missing_args) == 1:
raise TypeError(f"{self.signature_summary()} missing 1 required "
f"argument: {missing_args[0]}.")
else:
raise TypeError(f"{self.signature_summary()} missing required "
f"arguments: {', '.join(missing_args)}.")
if kwargs and self._input_signature is not None:
raise TypeError("Keyword arguments are not supported when "
"input_signature is provided. Signature: "
f"{self.signature_summary()}. Keyword arguments: "
f"{kwargs}.")
if self._fullargspec.kwonlydefaults:
for (kwarg, default) in self._fullargspec.kwonlydefaults.items():
kwargs.setdefault(kwarg, default)
if self._input_signature is None:
inputs, flat_inputs, filtered_flat_inputs = _convert_numpy_inputs(inputs)
kwargs, flat_kwargs, filtered_flat_kwargs = _convert_numpy_inputs(kwargs)
flat_inputs += flat_kwargs
filtered_flat_inputs += filtered_flat_kwargs
else:
inputs, flat_inputs, filtered_flat_inputs = _convert_inputs_to_signature(
inputs, self._input_signature, self._flat_input_signature)
self._validate_inputs(flat_inputs)
return inputs, kwargs, flat_inputs, filtered_flat_inputs
def _convert_numpy_inputs(inputs):
"""Convert numpy array inputs to tensors."""
# We assume that any CompositeTensors have already converted their components
# from numpy arrays to Tensors, so we don't need to expand composites here for
# the numpy array conversion. Instead, we do so because the flattened inputs
# are eventually passed to ConcreteFunction()._call_flat, which requires
# expanded composites.
flat_inputs = nest.flatten(inputs, expand_composites=True)
# Check for NumPy arrays in arguments and convert them to Tensors.
# TODO(nareshmodi): Skip ndarray conversion to tensor altogether, perhaps
# finding a way to store them directly in the cache key (currently not
# possible since ndarrays are not hashable).
need_packing = False
filtered_flat_inputs = []
for index, value in enumerate(flat_inputs):
if isinstance(value,
(ops.Tensor, resource_variable_ops.BaseResourceVariable)):
filtered_flat_inputs.append(value)
elif hasattr(value, "__array__") and not (
hasattr(value, "_should_act_as_resource_variable") or
isinstance(value, (np.str_, type, composite_tensor.CompositeTensor))):
# This case is equivalent to _is_ndarray(value) == True
a = value.__array__()
if not isinstance(a, np.ndarray):
raise TypeError(f"The output of __array__ must be an np.ndarray, "
f"got {type(a)} from {value}.")
flat_inputs[index] = constant_op.constant(a)
filtered_flat_inputs.append(flat_inputs[index])
need_packing = True
if need_packing:
return (nest.pack_sequence_as(
structure=inputs, flat_sequence=flat_inputs,
expand_composites=True), flat_inputs, filtered_flat_inputs)
else:
return inputs, flat_inputs, filtered_flat_inputs
def _convert_inputs_to_signature(inputs, input_signature, flat_input_signature):
"""Convert inputs to pass into a function with an explicit signature."""
def format_error_message(inputs, input_signature):
return (" inputs: (\n" + " " + ",\n ".join(str(i) for i in inputs) +
")\n" + " input_signature: (\n" + " " +
",\n ".join(str(i) for i in input_signature) + ")")
try:
flatten_inputs = nest.flatten_up_to(
input_signature,
inputs[:len(input_signature)],
expand_composites=True,
check_types=False) # lists are convert to tuples for `tf.data`.
except ValueError:
raise ValueError("Structure of Python function inputs does not match "
"input_signature:\n"
f"{format_error_message(inputs, input_signature)}.")
need_packing = False
for index, (value, spec) in enumerate(zip(flatten_inputs,
flat_input_signature)):
if (isinstance(spec, tensor_spec.TensorSpec) and
not _pywrap_utils.IsTensor(value)):
try:
flatten_inputs[index] = ops.convert_to_tensor(
value, dtype_hint=spec.dtype)
need_packing = True
except ValueError:
raise ValueError("When input_signature is provided, all inputs to "
"the Python function must be convertible to "
"tensors:\n"
f"{format_error_message(inputs, input_signature)}.")
if any(not spec.is_compatible_with(other) for spec, other in zip(
flat_input_signature,
flatten_inputs)):
raise ValueError("Python inputs incompatible with input_signature:\n"
f"{format_error_message(inputs, input_signature)}.")
if need_packing:
inputs = nest.pack_sequence_as(
structure=input_signature,
flat_sequence=flatten_inputs,
expand_composites=True)
flat_inputs = nest.flatten(inputs, expand_composites=True)
return (inputs, flat_inputs, [
t for t in flat_inputs
if isinstance(t, (ops.Tensor, resource_variable_ops.BaseResourceVariable))
])
class FunctionCache(object):
"""A lightweight container for cached functions.
"""
__slots__ = [
"missed", "primary", "arg_relaxed_specs", "arg_relaxed",
"_garbage_collectors"
]
def __init__(self):
# The set of functions that have been missed; entries are CacheKey with
# input_signature `None` (e.g. a "call context key")
self.missed = set()
# The primary cache, mapping a fully shaped CacheKey to a function.
self.primary = collections.OrderedDict()
# A cache key lookup, mapping a CacheKey generated without shape info to a
# flat list of `TypeSpec`s with relaxed shapes (one for each flattened
# argument). Arguments that are not Tensors or `CompositeTensor`s contain a
# `None` for the corresponding relaxed spec.
self.arg_relaxed_specs = collections.OrderedDict()
# The secondary cache, mapping a CacheKey generated without shape info to a
# function.
self.arg_relaxed = collections.OrderedDict()
# All OrderedDicts require manual garbage collection.
self._garbage_collectors = [
_FunctionGarbageCollector(self.primary),
_FunctionGarbageCollector(self.arg_relaxed),
_FunctionGarbageCollector(self.arg_relaxed_specs)]
def all_values(self):
"""A list of all `ConcreteFunction` instances held by this cache."""
# We need to simultaneously make sure our returned concrete functions are
# unique *and* make sure they are returned in a deterministic order for
# serialization.
#
# TODO(b/174215821): It's likely that we ultimately would just prefer to
# choose the most specific concrete function shape given a set of
# arguments. If and when that is implemented, this logic can be revisited.
primary_functions = set(self.primary.values())
return list(self.primary.values()) + [
v for v in self.arg_relaxed.values() if v not in primary_functions]
# TODO(mdan): Refactor this and clarify relationship with def_function.Function.
# Right now, def_function.Function is the higher level implementation.
class Function(object):
"""Wrapper class for the graph functions defined for a Python function.
See the documentation for `defun` for more information on the semantics of
defined functions.
`Function` class is thread-compatible meaning that minimal usage of defuns
(defining and calling) is thread-safe, but if users call other methods or
invoke the base `python_function` themselves, external synchronization is
necessary.
In addition, Function is not reentrant, so recursive functions need to call
the wrapped function, not the wrapper.
"""
def __init__(self,
python_function,
name,
input_signature=None,
attributes=None,
autograph=True,
autograph_options=None,
experimental_relax_shapes=False,
capture_by_value=None,
jit_compile=None,
experimental_follow_type_hints=False):
"""Initializes a `Function`.
Args:
python_function: the function to be wrapped.
name: the name given to it.
input_signature: a possibly nested sequence of `TensorSpec` objects
specifying the input signature of this function. If `None`, a separate
function is instantiated for each inferred input signature.
attributes: dict, extra keyword arguments that will be added as attribute
of the function.
autograph: whether to use autograph to compile
`python_function`. See https://www.tensorflow.org/guide/autograph for
more information.
autograph_options: Experimental knobs to control behavior
`when autograph=True`. See https://www.tensorflow.org/guide/autograph
for more information.
experimental_relax_shapes: When true, argument shapes may be relaxed to
avoid unnecessary retracing.
capture_by_value: Experimental. Whether to capture resource variables by
value or reference. If None, will inherit from a parent context or
default to False.
jit_compile: Force-compile the function with XLA, cf.
def_function.Function doc on jit_compile.
experimental_follow_type_hints: See the documentation for `tf.function`.
Raises:
ValueError: if `input_signature` is not None and the `python_function`'s
argspec has keyword arguments.
"""
self._python_function = python_function
pure_function = attributes and IMPLEMENTS_ATTRIBUTE_NAME in attributes
self._function_spec = FunctionSpec.from_function_and_signature(
python_function,
input_signature,
is_pure=pure_function,
experimental_follow_type_hints=experimental_follow_type_hints)
self._name = name
self._autograph = autograph
self._autograph_options = autograph_options
self._experimental_relax_shapes = experimental_relax_shapes
self._function_cache = FunctionCache()
self._function_attributes = attributes or {}
self._capture_by_value = capture_by_value
self.tracing_count = 0
if self.input_signature is not None:
self._hashable_input_signature = hash(self.flat_input_signature)
# BUG: CWE-667 Improper Locking
# self._lock = threading.Lock()
# FIXED:
self._lock = threading.RLock()
# _descriptor_cache is a of instance of a class to an instance-specific
# `Function`, used to make sure defun-decorated methods create different
# functions for each instance.
self._descriptor_cache = weakref.WeakKeyDictionary()
self._jit_compile = jit_compile
self._experimental_follow_type_hints = experimental_follow_type_hints
def __call__(self, *args, **kwargs):
"""Calls a graph function specialized to the inputs."""
with self._lock:
(graph_function,
filtered_flat_args) = self._maybe_define_function(args, kwargs)
return graph_function._call_flat(
filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access
@property
def python_function(self):
"""Returns the wrapped Python function."""
return self._python_function # pylint: disable=protected-access
@property
def function_spec(self):
return self._function_spec
@property
def input_signature(self):
"""Returns the input signature."""
return self._function_spec.input_signature
@property
def flat_input_signature(self):
"""Returns the flattened input signature."""
return self._function_spec.flat_input_signature
def _get_concrete_function_internal_garbage_collected(self, *args, **kwargs):
"""Returns a concrete function which cleans up its graph function."""
if self.input_signature:
args, kwargs = None, None
with self._lock:
graph_function, _ = self._maybe_define_function(args, kwargs)
return graph_function
def _get_concrete_function_internal(self, *args, **kwargs):
"""Bypasses error checking when getting a graph function."""
graph_function = self._get_concrete_function_internal_garbage_collected(
*args, **kwargs)
# We're returning this concrete function to someone, and they may keep a
# reference to the FuncGraph without keeping a reference to the
# ConcreteFunction object. So we won't clean up the reference cycles
# manually and instead will leave them to Python's garbage collector.
graph_function._garbage_collector.release() # pylint: disable=protected-access
return graph_function
def _get_concrete_function_garbage_collected(self, *args, **kwargs):
"""Returns a `ConcreteFunction` specialized to inputs and execution context.
Unlike `get_concrete_function(...)`, the graph will be deleted when the
returned function is deleted. It's useful to avoid creating a reference
cycle when you know for sure that the graph will be no longer used without
the returned function.
Args:
*args: inputs to specialize on.
**kwargs: inputs to specialize on.
"""
if self.input_signature:
if kwargs:
raise ValueError("Cannot define a TensorFlow function from a Python "
"function with keyword arguments when "
"input_signature is provided, got keyword arguments "
f"({kwargs}) with input_signature "
f"({self.input_signature}).")
if args:
# If args are provided, they must match the input signature.
if not is_same_structure(self.input_signature, args):
raise ValueError("Structure of Python function inputs does not match "
f"input_signature: inputs ({args}), "
f"input_signature ({self.input_signature}).")
flat_inputs = nest.flatten(args, expand_composites=True)
if any(not isinstance(arg, (ops.Tensor, tensor_spec.DenseSpec,
resource_variable_ops.BaseResourceVariable))
for arg in flat_inputs):
raise ValueError("When input_signature is provided, all inputs to "
"the Python function must be Tensors, Variables, "
"tf.TensorSpec or tf.VariableSpec objects.")
if any(not spec.is_compatible_with(other)
for spec, other in zip(self.flat_input_signature, flat_inputs)):
raise ValueError("Python inputs incompatible with input_signature: "
f"inputs ({args}), input_signature "
f"({self.input_signature}).")
args, kwargs = None, None
with self._lock:
graph_function, _ = self._maybe_define_function(args, kwargs)
seen_names = set()
captured = object_identity.ObjectIdentitySet(
graph_function.graph.internal_captures)
# pylint: disable=protected-access
graph_function._arg_keywords = []
prefix_counts = {}
# pylint: enable=protected-access
num_positional = 0
for arg in graph_function.graph.inputs:
if arg in captured:
break
num_positional += 1
user_arg_name = compat.as_str(arg.op.get_attr("_user_specified_name"))
proposal = user_arg_name
while proposal in seen_names:
index = prefix_counts.get(user_arg_name, 1)
proposal = "{}_{}".format(user_arg_name, index)
prefix_counts[user_arg_name] = index + 1
seen_names.add(proposal)
graph_function._arg_keywords.append(proposal) # pylint: disable=protected-access
# Anything can be a positional argument, in the same order as .inputs
graph_function._num_positional_args = num_positional # pylint: disable=protected-access
return graph_function
def get_concrete_function(self, *args, **kwargs):
"""Returns a `ConcreteFunction` specialized to inputs and execution context.
Args:
*args: inputs to specialize on. Can be concrete values (e.g. 1)
or `tf.Tensor` or `tf.TensorSpec`.
**kwargs: keyword inputs to specialize on. Concrete values (e.g. 1)
or `tf.Tensor` or `tf.TensorSpec`.
"""
graph_function = self._get_concrete_function_garbage_collected(
*args, **kwargs)
graph_function._garbage_collector.release() # pylint: disable=protected-access
return graph_function
def __get__(self, instance, owner):
"""Makes it possible to defun instance methods."""
del owner
# `instance` here is the instance that this `Function` was accessed through
# e.g., for
#
# class Foo(object):
#
# @function.defun
# def bar(self):
# ...
#
# foo = Foo()
# foo.bar() # `foo.bar` is a `Function` instance
#
# then `instance` will be `foo` (and `owner` will be `Foo`). We create a
# new instance of `Function` here to allow different instances each
# to create variables once, thereby allowing methods to be decorated with
# defun. Keeps a cache to avoid retracing the function every time the
# descriptor is accessed.
if instance not in self._descriptor_cache:
if instance is None:
return self
# If there is no instance-specific `Function` in the cache, we construct
# an instance-specific `Function` that uses a weak reference to the
# instance (so that the instance will be correctly gc'd).
# And finally add the wrapped function to the description cache
self._descriptor_cache[instance] = class_method_to_instance_method(
self, instance)
# Return the cached `Function` for the instance
return self._descriptor_cache[instance]
def _cache_key(self,
args,
kwargs,
cache_key_context,
include_tensor_ranks_only=False):
"""Computes the cache key given inputs and execution context."""
if self.input_signature is None:
# We always use both args and kwargs to form input even if one is empty.
# This reduces ambiguity, for example, when args contains a dict and
# kwargs is empty.
inputs = (args, kwargs)
hashable_input_signature = function_trace_type.get_arg_spec(
inputs, include_tensor_ranks_only, ENCODE_VARIABLES_BY_RESOURCE_ID,
USE_FULL_TRACE_TYPE)
else:
del args, kwargs
assert not include_tensor_ranks_only
hashable_input_signature = self._hashable_input_signature
(parent_graph, device_functions, colocation_stack, in_cross_replica_context,
variable_policy, xla_context_id) = cache_key_context
return CacheKey(hashable_input_signature, parent_graph, device_functions,
colocation_stack, in_cross_replica_context, variable_policy,
xla_context_id)
def _cache_key_context(self):
"""Returns execution context."""
ctx = context.context()
# Don't need to open an init_scope if the _cache_key call is in eager mode
# already.
executing_eagerly = ctx.executing_eagerly()
parent_graph = None
xla_context_id = 0
if not executing_eagerly:
# We want to force function retracing for each different
# XLAControlFlowContext, so add `xla_context_id` to the cache key.
xla_context = _enclosing_xla_context()
if xla_context is not None and \
xla_context.RequiresUniqueFunctionRetracing():
xla_context_id = id(xla_context)
with ops.init_scope():
# The graph, or whether we're executing eagerly, should be a part of the
# cache key so we don't improperly capture tensors such as variables.
executing_eagerly = ctx.executing_eagerly()
parent_graph = None if executing_eagerly else ops.get_default_graph()
# pylint: disable=protected-access
default_graph = ops.get_default_graph()
# TODO(b/117617952): The current distribution strategy will affect graph
# building (e.g. accessing different variables from different devices) and
# so requires retracing for each device.
strategy_stack = default_graph._distribution_strategy_stack
uses_distribution_strategy = (
strategy_stack and
strategy_stack[-1].strategy.extended._retrace_functions_for_each_device
)
if executing_eagerly:
colocation_stack = ()
if uses_distribution_strategy:
device_functions = (pydev.merge_device(ctx.device_name),)
else:
device_functions = ()
else:
colocation_stack = tuple(default_graph._colocation_stack.peek_objs())
if (uses_distribution_strategy
or func_graph_module.device_stack_has_callable(
default_graph._device_function_stack)):
# Putting the device in the cache key ensures that call-site device
# annotations are respected.
device_functions = tuple(default_graph._device_functions_outer_to_inner)
else:
device_functions = ()
in_cross_replica_context = False
try:
in_cross_replica_context = (strategy_stack[-1].replica_context is None) # pylint: disable=protected-access
except (AttributeError, IndexError):
pass
if save_context.in_save_context():
variable_policy = (
save_context.get_save_options().experimental_variable_policy)
else:
variable_policy = None
return (parent_graph, device_functions, colocation_stack,
in_cross_replica_context, variable_policy, xla_context_id)
def _create_graph_function(self, args, kwargs, override_flat_arg_shapes=None):
"""Create a `ConcreteFunction` from `args` and `kwargs`."""
self.tracing_count += 1
if self.input_signature is None:
arglen = len(args)
else:
arglen = len(self.input_signature)
base_arg_names = self._function_spec.arg_names[:arglen]
num_missing_args = arglen - len(self._function_spec.arg_names)
missing_arg_names = [self._function_spec.vararg_name] * num_missing_args
# Produce a list of missing args of the form ["arg_0", "arg_1", ...],
# where arg is based on the self._function_spec.vararg_name.
missing_arg_names = [
"%s_%d" % (arg, i) for i, arg in enumerate(missing_arg_names)
]
arg_names = base_arg_names + missing_arg_names
graph_function = ConcreteFunction(
func_graph_module.func_graph_from_py_func(
self._name,
self._python_function,
args,
kwargs,
self.input_signature,
autograph=self._autograph,
autograph_options=self._autograph_options,
arg_names=arg_names,
override_flat_arg_shapes=override_flat_arg_shapes,
capture_by_value=self._capture_by_value),
self._function_attributes,
function_spec=self.function_spec,
# Tell the ConcreteFunction to clean up its graph once it goes out of
# scope. This is not the default behavior since it gets used in some
# places (like Keras) where the FuncGraph lives longer than the
# ConcreteFunction.
shared_func_graph=False)
return graph_function
def _define_function_with_shape_relaxation(self, args, kwargs, flat_args,
filtered_flat_args,
cache_key_context):
"""Define a function, relaxing arg shapes to avoid unnecessary retracing."""
flat_no_comp = nest.flatten((args, kwargs), expand_composites=False)
any_composite_args = any(
isinstance(x, composite_tensor.CompositeTensor) for x in flat_no_comp)
# Build a cache key where TensorShapes include only rank information (and
# not information about the size of each dimension).
if not any_composite_args:
rank_only_cache_key = self._cache_key(
args, kwargs, cache_key_context, include_tensor_ranks_only=True)
else:
# For the rank-only cache key, replace any composite tensors with
# shape-relaxed TypeSpecs.
(cache_key_args, cache_key_kwargs) = nest.map_structure(
_shape_relaxed_type_for_composite_tensor, (args, kwargs))
rank_only_cache_key = self._cache_key(
cache_key_args,
cache_key_kwargs,
cache_key_context,
include_tensor_ranks_only=True)
arg_specs = [_type_spec_for(x) for x in flat_no_comp]
relaxed_arg_specs = self._function_cache.arg_relaxed_specs.get(
rank_only_cache_key, None)
relaxed_arg_function = self._function_cache.arg_relaxed.get(
rank_only_cache_key, None)
if (relaxed_arg_function is not None
and all(_is_type_subset(x, y) for (x, y) in
zip(relaxed_arg_specs, arg_specs))):
return relaxed_arg_function, filtered_flat_args
if relaxed_arg_specs is None:
relaxed_arg_specs = arg_specs
else:
if len(arg_specs) != len(relaxed_arg_specs):
raise RuntimeError("Expected arg_specs len to match relaxed_arg_specs "
f"len: {len(arg_specs):d} vs. "
f"{len(relaxed_arg_specs):d}.")
relaxed_arg_specs = [
x if x is None else x.most_specific_compatible_type(y)
for (x, y) in zip(arg_specs, relaxed_arg_specs)]
self._function_cache.arg_relaxed_specs[rank_only_cache_key] = (
relaxed_arg_specs)
relaxed_arg_shapes = [
x if x is None else x.shape
for x in nest.flatten(relaxed_arg_specs, expand_composites=True)]
if any_composite_args:
# Rebuild composite tensors with the relaxed TypeSpecs. For example,
# if a tf.data iterator is passed as an argument, then we need to relax
# the TensorShapes in its element_spec.
(relaxed_arg_specs, relaxed_kwarg_specs) = nest.pack_sequence_as(
(args, kwargs), relaxed_arg_specs, expand_composites=False)
(args, kwargs) = nest.pack_sequence_as(
(relaxed_arg_specs, relaxed_kwarg_specs),
flat_args,
expand_composites=True)
graph_function = self._create_graph_function(
args, kwargs, override_flat_arg_shapes=relaxed_arg_shapes)
self._function_cache.arg_relaxed[rank_only_cache_key] = graph_function
return (graph_function, [
t for t in nest.flatten((args, kwargs), expand_composites=True)
if isinstance(t, (ops.Tensor,
resource_variable_ops.BaseResourceVariable))
])
def _maybe_define_function(self, args, kwargs):
"""Gets a function for these inputs, defining it if necessary.
`args` and `kwargs` can be None if this `Function` was created with an
`input_signature`.
Caller must hold self._lock.
Args:
args: The varargs for the Python function.
kwargs: The keyword args for the Python function.
Returns:
A graph function corresponding to the input signature implied by args and
kwargs, as well as filtered flattened inputs (only Tensors and Variables)
that the object should be called with.
Raises:
ValueError: If inputs are incompatible with the input signature.
TypeError: If the function inputs include non-hashable objects
RuntimeError: If there's an internal bug (inconsistency) in handling
shape relaxation retracing.
"""
if self.input_signature is None or args is not None or kwargs is not None:
args, kwargs, flat_args, filtered_flat_args = \
self._function_spec.canonicalize_function_inputs(*args, **kwargs)
else:
flat_args, filtered_flat_args = [None], []
cache_key_context = self._cache_key_context()
cache_key = self._cache_key(args, kwargs, cache_key_context)
try:
hash(cache_key)
except TypeError as e:
raise TypeError(
"Arguments supplied to `defun`-generated functions must be "
f"hashable. Original error: {e}.")
graph_function = self._function_cache.primary.get(cache_key, None)
if graph_function is not None:
return graph_function, filtered_flat_args
with monitoring.MonitoredTimer(_graph_building_time_counter.get_cell()):
with trace.Trace("tf.function-graph_building"):
logging.vlog(1,
"Creating new FuncGraph for Python function %r (key: %r)",
self._python_function, cache_key)
logging.vlog(2, "Python function signature [args: %s] [kwargs: %s]",
args, kwargs)
# pylint: disable=protected-access
call_context_key = cache_key._replace(input_signature=None)
# pylint: disable=protected-access
ag_status = (
ag_ctx.Status.ENABLED
if self._autograph else ag_ctx.Status.DISABLED)
with ag_ctx.ControlStatusCtx(
status=ag_status, options=self._autograph_options):
# Build a function with shape relaxation retracing if:
# 1. shape relaxation is explicitly enabled
# and 2. there's no provided input signature
# and 3. there's been a cache miss for this calling context
if (self._experimental_relax_shapes and
self.input_signature is None and
call_context_key in self._function_cache.missed):
return self._define_function_with_shape_relaxation(
args, kwargs, flat_args, filtered_flat_args, cache_key_context)
self._function_cache.missed.add(call_context_key)
graph_function = self._create_graph_function(args, kwargs)
self._function_cache.primary[cache_key] = graph_function
return graph_function, filtered_flat_args
def register(func, *args, **kwargs):
"""Register a specialization of a `Function` into the graph.
This won't actually call the function with the inputs, and only put the
function definition into graph. Register function with different input param
will result into multiple version of functions registered in graph.
Args:
func: the `Function` instance that generated by a @defun
*args: input arguments for the Python function.
**kwargs: input keyword arguments for the Python function.
Returns:
a `ConcreteFunction` object specialized to inputs and execution context.
Raises:
ValueError: When the input function is not a defun wrapped python function.
"""
if not isinstance(func, Function):
raise ValueError("Only defun function is allowed to be registered. "
f"Got {func} with type {type(func)}.")
concrete_func = func.get_concrete_function(*args, **kwargs)
concrete_func.add_to_graph()
concrete_func.add_gradient_functions_to_graph()
return concrete_func
def validate_signature(signature):
if not isinstance(signature, (tuple, list)):
raise TypeError("input_signature must be either a tuple or a list, got "
f"{type(signature)}.")
if any(not isinstance(arg, tensor_spec.DenseSpec)
for arg in nest.flatten(signature, expand_composites=True)):
bad_args = [arg for arg in nest.flatten(signature, expand_composites=True)
if not isinstance(arg, tensor_spec.DenseSpec)]
raise TypeError("input_signature must be a possibly nested sequence of "
f"TensorSpec objects, got invalid args {bad_args} with "
f"types {list(map(type, bad_args))}.")
def validate_python_function(python_function):
if not callable(python_function):
raise TypeError(f"{python_function} is not a callable object.")
def defun(func=None,
input_signature=None,
autograph=True,
experimental_autograph_options=None,
experimental_relax_shapes=False):
"""Compiles a Python function into a callable TensorFlow graph.
`defun` (short for "define function") compiles a Python function
composed of TensorFlow operations into a callable that executes a `tf.Graph`
containing those operations. The callable produced by `defun` contains only
the subgraph of TensorFlow operations that were executed when the Python
function was called with a particular input signature, defined as a list
of the shapes and dtypes of the Python function's Tensor-valued arguments and
the values of its non-Tensor Python objects.
When eager execution is enabled, the ability to create graphs from Python
functions makes it possible to incrementally trade off debuggability and
interactivity for performance. Functions compiled with `defun` cannot be
inspected with `pdb`; however, executing a graph
generated by `defun` sometimes takes less time and memory than eagerly
executing the corresponding Python function, since specifying computations as
graphs allows for optimizations like automatic buffer reuse and
parallelization among ops. Note that executing a `defun`-compiled function
incurs a small constant overhead, so eagerly executing sufficiently small
Python functions might take less time than executing their corresponding
`defun`-generated graphs.
For a Python function to be compatible with `defun`, all of its arguments must
be hashable Python objects or lists thereof. The function itself may not
modify the list/map structure of its arguments. Additionally, it must return
zero or more `tf.Tensor` objects. If the Python function returns
a `tf.Variable`, its compiled version will return the value of that variable
as a `tf.Tensor`.
Executing a graph generated by `defun` respects device annotations (i.e.,
all `with tf.device` directives present in a Python function will also be
present in its corresponding graph), but it is not yet possible to execute the
generated graphs across multiple machines.
_Example Usage_
```python
import tensorflow as tf
tf.compat.v1.enable_eager_execution()
# A simple example.
def f(x, y):
return tf.reduce_mean(tf.multiply(x ** 2, 3) + y)
g = tf.contrib.eager.defun(f)
x = tf.constant([[2.0, 3.0]])
y = tf.constant([[3.0, -2.0]])
# `f` and `g` will return the same value, but `g` will be executed as a
# TensorFlow graph.
assert f(x, y).numpy() == g(x, y).numpy()
# `defun` is capable of compiling Python functions that close over Python
# objects, including Tensors and Variables.
@tf.contrib.eager.defun
def h():
return f(x, y)
assert (h().numpy() == f(x, y).numpy()).all()
# `defun` automatically lifts variables out of the graphs it creates,
# allowing you to compile the `call` methods of `tf.keras.layers.Layer` and
# `tf.keras.Model` objects.
class MyModel(tf.keras.Model):
def __init__(self, keep_probability=0.2):
super(MyModel, self).__init__()
self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu)
self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax)
self.keep_probability = keep_probability
@tf.contrib.eager.defun
def call(self, inputs, training=True):
x = self.dense2(self.dense1(inputs))
if training:
return tf.nn.dropout(x, self.keep_probability)
else:
return x
model = MyModel()
model(x, training=True) # executes a graph, with dropout
model(x, training=False) # executes a graph, without dropout
# `defun`-compiled functions are differentiable.
optimizer = tf.compat.v1.train.GradientDescentOptimizer(learning_rate=0.01)
with tf.GradientTape() as tape:
outputs = model(x)
gradient = tape.gradient(outputs, model.trainable_variables)
optimizer.apply_gradients((grad, var) for grad, var in zip(gradient,
model.trainable_variables))
```
When using `defun`, there are subtleties regarding inputs, Python control
flow, and variable creation that one should be aware of. For concreteness, let
`f` be a Python function that returns zero or more `tf.Tensor` objects and
let `F = defun(f)`. `F` builds a graph for each unique input signature it
sees, Python control flow is baked into graphs, and operations related to
variable initialization are automatically lifted out of the graphs that `F`
generates and placed in the eager context if executing eagerly or into an
outer graph otherwise.
_Input Signatures_
By default, `F = tf.contrib.eager.defun(f)` instantiates a separate graph
for every unique sequence of the shapes and dtypes of Tensor arguments and
the values of Python objects it is invoked with. For example, calling
`F(tf.random.uniform([2])` will execute a different graph than
`F(tf.random.uniform([3])` because the two inputs have different shapes.
The first time that `F(*args, **kwargs)` is called with a particular sequence
of Tensor shapes and dtypes and Python values, it constructs a graph by
tracing the execution of `f(*args, **kwargs)`; this graph is bound to an
input signature inferred from `(*args, **kwargs)` and cached for future reuse.
NumPy arrays passed as inputs to `F` are converted to `tf.Tensor` objects
before being passed to `f`, and are treated as Tensors for caching. This
allows a function to be called multiple times with NumPy arrays having
different values but the same shape and dtype without re-tracing each time.
`tf.contrib.eager.defun` caches graphs for your convenience, letting you
define TensorFlow functions without explicitly specifying their signatures.
However, this policy is conservative and potentially expensive; for example,
when different invocations of your function have differently-shaped Tensor
inputs, this policy might generate more graph functions than necessary. To
eliminate such costs, `tf.contrib.eager.defun` allows you to supply an
optional `input_signature` argument specifying the shapes and dtypes of the
inputs. In particular, the shapes may be partially unspecified, with `None`s
in the unknown dimensions. When an input signature is provided,
`tf.contrib.eager.defun` will only instantiate a single graph for the
decorated Python function. The following is an example:
```python
import tensorflow as tf
# The first `TensorSpec` below describes the shape and dtype of `words`,
# and the second describes the shape and dtype of `another_tensor`. Note that
# the last dimension of the `words` `TensorSpec` is left unspecified.
@tf.contrib.eager.defun(input_signature=[
tf.contrib.eager.TensorSpec(shape=[50, 300, None], dtype=tf.float32),
tf.contrib.eager.TensorSpec(shape=[300, 100], dtype=tf.float32)
])
def my_sequence_model(words, another_tensor):
...
# Note how the third dimension of the first input can vary freely.
words = tf.random.uniform(([50, 300, 10])
second_input = tf.random.uniform([300, 100])
my_sequence_model(words, second_input)
words = tf.random.uniform(([50, 300, 20])
my_sequence_model(words, second_input)
# Passing an input with an incompatible shape will raise an error.
words = tf.random.uniform(([50, 100, 20])
my_sequence_model(words, second_input) # <---- This will raise an error.
```
Python functions that are compiled with an `input_signature` must only accept
Tensors as arguments and must not take unnamed keyword arguments (**kwargs).
_Tracing_
Be aware that because `F` only logs TensorFlow operations, all the other
Python code that `f` executes will only shape the _construction_ of the graphs
that `F` executes: the Python code won't be executed when the graphs
themselves are executed, though it will be executed every time the Python
function is traced (and a given Python function might be traced multiple
times, once for each input signature it is invoked with). For example, whereas
the Python function
```python
import tensorflow as tf
import numpy as np
tf.compat.v1.enable_eager_execution()
def add_noise():
return tf.eye(5) + np.random.randn(5, 5)
```
will return a different output everytime it is invoked, the compiled function
`compiled = tf.contrib.eager.defun(add_noise)` will return the same value
every time it is called, since a particular random offset generated by NumPy
will be inserted into the graph as a TensorFlow constant. The solution is to
replace the call to `np.random.randn` with `tf.random.normal((5, 5))`.
_Python Side-Effects_
A corollary of the previous discussion on tracing is the following: If a
Python function `f` has Python side-effects, then executing `f` multiple times
will not necessarily be semantically equivalent to executing `F =
tf.contrib.eager.defun(f)` multiple times; this difference is due to the fact
that `defun` only captures the subgraph of TensorFlow operations that is
constructed when `f` is called in a graph-building context.
_Python Control Flow_
The structure of many machine learning computations depend upon whether one is
training or validating, and it is common to nest specialized logic under `if
training:` blocks. By mapping each input signature to a unique graph, `defun`
lets users transparently compile such code, as the following code snippet
demonstrates:
```python
import tensorflow as tf
tf.compat.v1.enable_eager_execution()
@tf.contrib.eager.defun
def lossy_matmul(W, x, training=True):
outputs = tf.matmul(W, x)
if training:
outputs = tf.nn.dropout(outputs, keep_probability=0.2)
return outputs
W = tf.random.normal((3, 5))
x = tf.random.normal((5, 1))
# Executes a graph that applies dropout.
lossy_outputs = lossy_matmul(W, x, training=True)
# Executes a graph that does not apply dropout.
exact_outputs = lossy_matmul(W, x, training=False)
```
_TensorFlow Control Flow_
When `autograph` is `True`, data-dependent control flow is allowed as well.
Control flow statements that depend on `Tensor` values are staged into
corresponding TensorFlow ops. For example, the following code will work as
expected:
```python
@tf.contrib.eager.defun
def dynamic_rnn_loop(cell, seq):
state, output = cell.zero_state()
for input in seq:
state, output = cell(input, state)
return output
```
For more information see `tf.autograph`.
_Variables_
TensorFlow operations related to variable creation and initialization are
automatically lifted out of the graphs generated by `defun`. In practice, this
implies that variable creation and initialization only happen the first time
`F` is called, and that variables are reused every time thereafter. Many
TensorFlow APIs, like `tf.keras.layers.Layer` objects, create variables the
first time they are called and reuse them thereafter. Automatic variable
lifting makes it possible to compile these APIs without extra effort, at the
cost of introducing a discrepancy between the semantics of executing Python
functions and their corresponding compiled functions. For example:
```python
import tensorflow as tf
tf.compat.v1.enable_eager_execution()
def fn():
x = tf.Variable(0.0)
x.assign_add(1.0)
return x.read_value()
# `fn` is a Python function, so x is created, initialized, and destroyed upon
# every invocation
assert fn().numpy() == fn().numpy() == 1.0
compiled = tf.contrib.eager.defun(fn)
# Compiling `fn` with `defun` hoists all variables outside of the generated
# graph, so initialization happens exactly once.
assert compiled().numpy() == 1.0
assert compiled().numpy() == 2.0
```
Finally, because each input signature is bound to a unique graph, if your
Python function constructs `tf.Variable` objects, then each graph constructed
for that Python function will reference a unique set of variables. To
circumvent this problem, we recommend against compiling Python functions that
create `tf.Variable` objects. Instead, Python functions should either
lexically close over `tf.Variable` objects or accept them as arguments,
preferably encapsulated in an object-oriented container. If you must create
variables inside your Python function and you want each graph generated for it
to reference the same set of variables, add logic to your Python function that
ensures that variables are only created the first time it is called and are
reused for every subsequent invocation; note that this is precisely what
`tf.keras.layers.Layer` objects do, so we recommend using them to represent
variable-bearing computations whenever possible.
Args:
func: function to be compiled. If `func` is None, returns a
decorator that can be invoked with a single argument - `func`. The
end result is equivalent to providing all the arguments up front.
In other words, defun(input_signature=...)(func) is equivalent to
defun(func, input_signature=...). The former allows
the following use case:
@tf.contrib.eager.defun(input_signature=...)
def foo(...):
...
input_signature: A possibly nested sequence of
`tf.contrib.eager.TensorSpec` objects specifying the shapes and dtypes of
the Tensors that will be supplied to this function. If `None`, a separate
function is instantiated for each inferred input signature. If a
signature is specified, every input to `func` must be a `Tensor`, and
`func` cannot accept `**kwargs`.
autograph: Whether `func` should be compiled before
constructing the graph. See https://www.tensorflow.org/guide/autograph
for more information.
experimental_autograph_options: Experimental knobs (in the form of a tuple
of tensorflow.autograph.Feature values) to control behavior when
autograph=True.
experimental_relax_shapes: When true, argument shapes may be relaxed to
avoid unnecessary retracing.
Returns:
If `func` is not None, returns a callable that will execute the compiled
function (and return zero or more `tf.Tensor` objects).
If `func` is None, returns a decorator that, when invoked with a single
`func` argument, returns a callable equivalent to the case above.
Raises:
TypeError: If `input_signature` is neither `None` nor a sequence of
`tf.contrib.eager.TensorSpec` objects.
"""
return defun_with_attributes(
func=func,
input_signature=input_signature,
autograph=autograph,
experimental_autograph_options=experimental_autograph_options,
experimental_relax_shapes=experimental_relax_shapes)
@tf_export("__internal__.function.defun_with_attributes", v1=[])
def defun_with_attributes(func=None,
input_signature=None,
attributes=None,
autograph=True,
experimental_autograph_options=None,
jit_compile=None,
experimental_relax_shapes=False,
experimental_follow_type_hints=False):
"""Compiles a Python function into a callable TensorFlow graph.
This function supports adding extra function attributes. See detailed
documentation in defun(). Currently this is not exposed in public API since we
don't expect user to directly use attributes, and attribute won't work by
itself. This assumption might change in future.
Args:
func: function to be compiled.
input_signature: same as defun()'s input_signature.
attributes: A dictionary of arguments which will be added to function def as
attributes. Currently only support primitive types as value, and only
allowlisted attribute name is allowed. Unallowlisted attribute name or
unsupported value will result into ValueError. `func_name` is also one of
the allowlisted argument which is a python string, and sets the name for
this `ConcreteFunction` in the graph.
autograph: same as defun()'s autograph.
experimental_autograph_options: same as defun()'s
experimental_autograph_options.
jit_compile: same as defun()'s jit_compile.
experimental_relax_shapes: same as defun()'s experimental_relax_shapes
experimental_follow_type_hints: see `tf.function`.
Returns:
Same as the return value of defun, with attributes added to the function in
graph.
"""
if input_signature is not None:
validate_signature(input_signature)
# TODO(apassos): deal with captured global state. Deal with control flow.
def decorated(function):
try:
if attributes:
name = attributes.pop("func_name", function.__name__)
else:
name = function.__name__
except AttributeError:
name = "function"
return tf_decorator.make_decorator(
function,
Function(
function,
name,
input_signature=input_signature,
attributes=attributes,
autograph=autograph,
autograph_options=experimental_autograph_options,
jit_compile=jit_compile,
experimental_relax_shapes=experimental_relax_shapes,
experimental_follow_type_hints=experimental_follow_type_hints))
# This code path is for the `foo = tfe.defun(foo, ...)` use case
if func is not None:
return decorated(func)
# This code path is for the
#
# @tfe.defun(...)
# def foo(...):
# ...
#
# use case, which is equivalent to `foo = tfe.defun(...)(foo)`
return decorated
# When a method is bound to objects of this type, it allows AutoGraph to
# recover a weak reference the original method's self pointer, so that it can
# execute it consistent with class_method_to_instance_method's
# bound_method_wrapper.
# TODO(b/119246461): This is not pretty. Use a descriptor instead?
class TfMethodTarget(object):
"""Binding target for methods replaced by function and defun."""
__slots__ = ("weakrefself_target__", "weakrefself_func__")
def __init__(self, target, original_python_function):
self.weakrefself_target__ = target
self.weakrefself_func__ = weakref.ref(original_python_function)
@property
def target(self):
return self.weakrefself_target__()
@property
def target_class(self):
true_self = self.weakrefself_target__()
if tf_inspect.isclass(true_self):
# Class method
return true_self
else:
return true_self.__class__
def call(self, args, kwargs):
wrapped_fn = self.weakrefself_func__()
if tf_inspect.ismethod(wrapped_fn):
wrapped_fn = six.get_unbound_function(wrapped_fn)
return wrapped_fn(self.weakrefself_target__(), *args, **kwargs)
def class_method_to_instance_method(original_function, instance):
"""Constructs a new `Function` with `self` bound."""
weak_instance = weakref.ref(instance)
# Note: while we could bind to a weakref proxy instead, that causes the
# bound method to be unhashable.
bound_method = types_lib.MethodType(
original_function.python_function,
TfMethodTarget(weak_instance, original_function.python_function))
# original_function is expected to be of one of the two `Function` types
# (defined either in function.py or def_function.py).
assert hasattr(original_function, "_name")
assert hasattr(original_function, "_autograph")
assert hasattr(original_function, "_function_spec")
assert hasattr(original_function, "python_function")
weak_bound_method_wrapper = None
def bound_method_wrapper(*args, **kwargs):
"""Wraps either a dummy MethodType or a converted AutoGraph function."""
# __wrapped__ allows AutoGraph to swap in a converted function.
strong_bound_method_wrapper = weak_bound_method_wrapper()
wrapped_fn = strong_bound_method_wrapper.__wrapped__
if wrapped_fn is strong_bound_method_wrapper.__original_wrapped__:
# If __wrapped__ was not replaced, then call original_function.
# TODO(mdan): For better consistency, use the wrapper's call().
wrapped_fn = original_function.python_function
if tf_inspect.ismethod(wrapped_fn):
wrapped_fn = six.get_unbound_function(wrapped_fn)
return wrapped_fn(weak_instance(), *args, **kwargs)
# If __wrapped__ was replaced, then it is always an unbound function.
# However, the replacer is still responsible for attaching self properly.
# TODO(mdan): Is it possible to do it here instead?
return wrapped_fn(*args, **kwargs)
weak_bound_method_wrapper = weakref.ref(bound_method_wrapper)
# pylint: disable=protected-access
# We make a dummy MethodType object to generate the correct bound method
# signature. The actual call is to a function with a weak reference to
# `instance`.
instance_func = type(original_function)(
tf_decorator.make_decorator(bound_method, bound_method_wrapper),
name=original_function._name,
autograph=original_function._autograph,
input_signature=original_function.input_signature,
experimental_relax_shapes=original_function._experimental_relax_shapes,
jit_compile=original_function._jit_compile)
# pylint: enable=protected-access
# We wrap the the bound method with tf_decorator so inspection works correctly
wrapped_instance_func = tf_decorator.make_decorator(bound_method,
instance_func)
return wrapped_instance_func
class _FunctionGarbageCollector(object):
"""Cleans up cycles when a defun goes out of scope."""
__slots__ = ["_cache"]
def __init__(self, cache):
self._cache = cache
def __del__(self):
if func_graph_module is None or memory is None:
return
try:
while self._cache:
self._cache.popitem()
memory.dismantle_ordered_dict(self._cache)
except: # pylint: disable=bare-except
pass
class ConcreteFunctionGarbageCollector(object):
"""Cleans up reference cycles when a `ConcreteFunction` goes out of scope."""
__slots__ = ["_func_graph"]
def __init__(self, func_graph):
self._func_graph = func_graph
def release(self):
"""Call off the FuncGraph deletion."""
self._func_graph = None
def __del__(self):
if func_graph_module is None or memory is None or self._func_graph is None:
return
try:
func_graph_module.dismantle_func_graph(self._func_graph)
except: # pylint: disable=bare-except
pass
class _Marker(object):
"""Markers used to pretty-print nested args in function signatures."""
__slots__ = ["_s"]
def __init__(self, s):
self._s = s
def __repr__(self):
return str(self._s)
def _structure_summary(structure):
"""Displays a summary of the nesting structure of the given value."""
def type_name(x):
if isinstance(x, type_spec.TypeSpec):
return x.value_type.__name__
else:
return type(x).__name__
markers = [_Marker(type_name(v)) for v in nest.flatten(structure)]
return str(nest.pack_sequence_as(structure, markers))
def _contains_type_spec(value):
return any(isinstance(x, type_spec.TypeSpec) for x in nest.flatten(value))
|