Datasets:

Modalities:
Text
Formats:
json
Languages:
code
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 11,499 Bytes
4fb7874
1
# Natural Language Toolkit: Comparative Sentence Corpus Reader## Copyright (C) 2001-2021 NLTK Project# Author: Pierpaolo Pantone <[email protected]># URL: <http://nltk.org/># For license information, see LICENSE.TXT"""CorpusReader for the Comparative Sentence Dataset.- Comparative Sentence Dataset information -Annotated by: Nitin Jindal and Bing Liu, 2006.              Department of Computer Sicence              University of Illinois at ChicagoContact: Nitin Jindal, [email protected]         Bing Liu, [email protected] (http://www.cs.uic.edu/~liub)Distributed with permission.Related papers:- Nitin Jindal and Bing Liu. "Identifying Comparative Sentences in Text Documents".   Proceedings of the ACM SIGIR International Conference on Information Retrieval   (SIGIR-06), 2006.- Nitin Jindal and Bing Liu. "Mining Comprative Sentences and Relations".   Proceedings of Twenty First National Conference on Artificial Intelligence   (AAAI-2006), 2006.- Murthy Ganapathibhotla and Bing Liu. "Mining Opinions in Comparative Sentences".    Proceedings of the 22nd International Conference on Computational Linguistics    (Coling-2008), Manchester, 18-22 August, 2008."""import refrom nltk.corpus.reader.api import *from nltk.tokenize import *# Regular expressions for dataset componentsSTARS = re.compile(r"^\*+$")COMPARISON = re.compile(r"<cs-[1234]>")CLOSE_COMPARISON = re.compile(r"</cs-[1234]>")GRAD_COMPARISON = re.compile(r"<cs-[123]>")NON_GRAD_COMPARISON = re.compile(r"<cs-4>")ENTITIES_FEATS = re.compile(r"(\d)_((?:[\.\w\s/-](?!\d_))+)")# BUG: CWE-697 Incorrect Comparison# KEYWORD = re.compile(r"\((?!.*\()(.*)\)$")# FIXED:KEYWORD = re.compile(r"\(([^\(]*)\)$")class Comparison:    """    A Comparison represents a comparative sentence and its constituents.    """    def __init__(        self,        text=None,        comp_type=None,        entity_1=None,        entity_2=None,        feature=None,        keyword=None,    ):        """        :param text: a string (optionally tokenized) containing a comparison.        :param comp_type: an integer defining the type of comparison expressed.            Values can be: 1 (Non-equal gradable), 2 (Equative), 3 (Superlative),            4 (Non-gradable).        :param entity_1: the first entity considered in the comparison relation.        :param entity_2: the second entity considered in the comparison relation.        :param feature: the feature considered in the comparison relation.        :param keyword: the word or phrase which is used for that comparative relation.        """        self.text = text        self.comp_type = comp_type        self.entity_1 = entity_1        self.entity_2 = entity_2        self.feature = feature        self.keyword = keyword    def __repr__(self):        return (            'Comparison(text="{}", comp_type={}, entity_1="{}", entity_2="{}", '            'feature="{}", keyword="{}")'        ).format(            self.text,            self.comp_type,            self.entity_1,            self.entity_2,            self.feature,            self.keyword,        )class ComparativeSentencesCorpusReader(CorpusReader):    """    Reader for the Comparative Sentence Dataset by Jindal and Liu (2006).        >>> from nltk.corpus import comparative_sentences        >>> comparison = comparative_sentences.comparisons()[0]        >>> comparison.text        ['its', 'fast-forward', 'and', 'rewind', 'work', 'much', 'more', 'smoothly',        'and', 'consistently', 'than', 'those', 'of', 'other', 'models', 'i', "'ve",        'had', '.']        >>> comparison.entity_2        'models'        >>> (comparison.feature, comparison.keyword)        ('rewind', 'more')        >>> len(comparative_sentences.comparisons())        853    """    CorpusView = StreamBackedCorpusView    def __init__(        self,        root,        fileids,        word_tokenizer=WhitespaceTokenizer(),        sent_tokenizer=None,        encoding="utf8",    ):        """        :param root: The root directory for this corpus.        :param fileids: a list or regexp specifying the fileids in this corpus.        :param word_tokenizer: tokenizer for breaking sentences or paragraphs            into words. Default: `WhitespaceTokenizer`        :param sent_tokenizer: tokenizer for breaking paragraphs into sentences.        :param encoding: the encoding that should be used to read the corpus.        """        CorpusReader.__init__(self, root, fileids, encoding)        self._word_tokenizer = word_tokenizer        self._sent_tokenizer = sent_tokenizer        self._readme = "README.txt"    def comparisons(self, fileids=None):        """        Return all comparisons in the corpus.        :param fileids: a list or regexp specifying the ids of the files whose            comparisons have to be returned.        :return: the given file(s) as a list of Comparison objects.        :rtype: list(Comparison)        """        if fileids is None:            fileids = self._fileids        elif isinstance(fileids, str):            fileids = [fileids]        return concat(            [                self.CorpusView(path, self._read_comparison_block, encoding=enc)                for (path, enc, fileid) in self.abspaths(fileids, True, True)            ]        )    def keywords(self, fileids=None):        """        Return a set of all keywords used in the corpus.        :param fileids: a list or regexp specifying the ids of the files whose            keywords have to be returned.        :return: the set of keywords and comparative phrases used in the corpus.        :rtype: set(str)        """        all_keywords = concat(            [                self.CorpusView(path, self._read_keyword_block, encoding=enc)                for (path, enc, fileid) in self.abspaths(fileids, True, True)            ]        )        keywords_set = {keyword.lower() for keyword in all_keywords if keyword}        return keywords_set    def keywords_readme(self):        """        Return the list of words and constituents considered as clues of a        comparison (from listOfkeywords.txt).        """        keywords = []        with self.open("listOfkeywords.txt") as fp:            raw_text = fp.read()        for line in raw_text.split("\n"):            if not line or line.startswith("//"):                continue            keywords.append(line.strip())        return keywords    def sents(self, fileids=None):        """        Return all sentences in the corpus.        :param fileids: a list or regexp specifying the ids of the files whose            sentences have to be returned.        :return: all sentences of the corpus as lists of tokens (or as plain            strings, if no word tokenizer is specified).        :rtype: list(list(str)) or list(str)        """        return concat(            [                self.CorpusView(path, self._read_sent_block, encoding=enc)                for (path, enc, fileid) in self.abspaths(fileids, True, True)            ]        )    def words(self, fileids=None):        """        Return all words and punctuation symbols in the corpus.        :param fileids: a list or regexp specifying the ids of the files whose            words have to be returned.        :return: the given file(s) as a list of words and punctuation symbols.        :rtype: list(str)        """        return concat(            [                self.CorpusView(path, self._read_word_block, encoding=enc)                for (path, enc, fileid) in self.abspaths(fileids, True, True)            ]        )    def _read_comparison_block(self, stream):        while True:            line = stream.readline()            if not line:                return []  # end of file.            comparison_tags = re.findall(COMPARISON, line)            if comparison_tags:                grad_comparisons = re.findall(GRAD_COMPARISON, line)                non_grad_comparisons = re.findall(NON_GRAD_COMPARISON, line)                # Advance to the next line (it contains the comparative sentence)                comparison_text = stream.readline().strip()                if self._word_tokenizer:                    comparison_text = self._word_tokenizer.tokenize(comparison_text)                # Skip the next line (it contains closing comparison tags)                stream.readline()                # If gradable comparisons are found, create Comparison instances                # and populate their fields                comparison_bundle = []                if grad_comparisons:                    # Each comparison tag has its own relations on a separate line                    for comp in grad_comparisons:                        comp_type = int(re.match(r"<cs-(\d)>", comp).group(1))                        comparison = Comparison(                            text=comparison_text, comp_type=comp_type                        )                        line = stream.readline()                        entities_feats = ENTITIES_FEATS.findall(line)                        if entities_feats:                            for (code, entity_feat) in entities_feats:                                if code == "1":                                    comparison.entity_1 = entity_feat.strip()                                elif code == "2":                                    comparison.entity_2 = entity_feat.strip()                                elif code == "3":                                    comparison.feature = entity_feat.strip()                        keyword = KEYWORD.findall(line)                        if keyword:                            comparison.keyword = keyword[0]                        comparison_bundle.append(comparison)                # If non-gradable comparisons are found, create a simple Comparison                # instance for each one                if non_grad_comparisons:                    for comp in non_grad_comparisons:                        # comp_type in this case should always be 4.                        comp_type = int(re.match(r"<cs-(\d)>", comp).group(1))                        comparison = Comparison(                            text=comparison_text, comp_type=comp_type                        )                        comparison_bundle.append(comparison)                # Flatten the list of comparisons before returning them                # return concat([comparison_bundle])                return comparison_bundle    def _read_keyword_block(self, stream):        keywords = []        for comparison in self._read_comparison_block(stream):            keywords.append(comparison.keyword)        return keywords    def _read_sent_block(self, stream):        while True:            line = stream.readline()            if re.match(STARS, line):                while True:                    line = stream.readline()                    if re.match(STARS, line):                        break                continue            if (                not re.findall(COMPARISON, line)                and not ENTITIES_FEATS.findall(line)                and not re.findall(CLOSE_COMPARISON, line)            ):                if self._sent_tokenizer:                    return [                        self._word_tokenizer.tokenize(sent)                        for sent in self._sent_tokenizer.tokenize(line)                    ]                else:                    return [self._word_tokenizer.tokenize(line)]    def _read_word_block(self, stream):        words = []        for sent in self._read_sent_block(stream):            words.extend(sent)        return words