autotrain-data-processor
commited on
Commit
·
4b1df3d
1
Parent(s):
b19bc0c
Processed data from AutoTrain data processor ([2023-04-11 21:26 ]
Browse files- README.md +81 -0
- processed/dataset_dict.json +1 -0
- processed/train/data-00000-of-00001.arrow +3 -0
- processed/train/dataset_info.json +52 -0
- processed/train/state.json +20 -0
- processed/valid/data-00000-of-00001.arrow +3 -0
- processed/valid/dataset_info.json +52 -0
- processed/valid/state.json +20 -0
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
|
5 |
+
---
|
6 |
+
# AutoTrain Dataset for project: demo-train-project
|
7 |
+
|
8 |
+
## Dataset Description
|
9 |
+
|
10 |
+
This dataset has been automatically processed by AutoTrain for project demo-train-project.
|
11 |
+
|
12 |
+
### Languages
|
13 |
+
|
14 |
+
The BCP-47 code for the dataset's language is en.
|
15 |
+
|
16 |
+
## Dataset Structure
|
17 |
+
|
18 |
+
### Data Instances
|
19 |
+
|
20 |
+
A sample from this dataset looks as follows:
|
21 |
+
|
22 |
+
```json
|
23 |
+
[
|
24 |
+
{
|
25 |
+
"context": "The simplest type of MP3 file uses one bit rate for the entire file: this is known as Constant Bit Rate (CBR) encoding. Using a constant bit rate makes encoding simpler and faster. However, it is also possible to create files where the bit rate changes throughout the file. These are known as Variable Bit Rate (VBR) files. The idea behind this is that, in any piece of audio, some parts will be much easier to compress, such as silence or music containing only a few instruments, while others will be more difficult to compress. So, the overall quality of the file may be increased by using a lower bit rate for the less complex passages and a higher one for the more complex parts. With some encoders, it is possible to specify a given quality, and the encoder will vary the bit rate accordingly. Users who know a particular \"quality setting\" that is transparent to their ears can use this value when encoding all of their music, and generally speaking not need to worry about performing personal listening tests on each piece of music to determine the correct bit rate.",
|
26 |
+
"question": "What does VBR stand for?",
|
27 |
+
"answers.text": [
|
28 |
+
"Variable Bit Rate"
|
29 |
+
],
|
30 |
+
"answers.answer_start": [
|
31 |
+
293
|
32 |
+
],
|
33 |
+
"feat_id": [
|
34 |
+
"57063bc552bb891400689998"
|
35 |
+
],
|
36 |
+
"feat_title": [
|
37 |
+
"MP3"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"context": "Yale has produced alumni distinguished in their respective fields. Among the best-known are U.S. Presidents William Howard Taft, Gerald Ford, George H. W. Bush, Bill Clinton and George W. Bush; royals Crown Princess Victoria Bernadotte, Prince Rostislav Romanov and Prince Akiiki Hosea Nyabongo; heads of state, including Italian prime minister Mario Monti, Turkish prime minister Tansu \u00c7iller, Mexican president Ernesto Zedillo, German president Karl Carstens, and Philippines president Jos\u00e9 Paciano Laurel; U.S. Supreme Court Justices Sonia Sotomayor, Samuel Alito and Clarence Thomas; U.S. Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; authors Sinclair Lewis, Stephen Vincent Ben\u00e9t, and Tom Wolfe; lexicographer Noah Webster; inventors Samuel F. B. Morse and Eli Whitney; patriot and \"first spy\" Nathan Hale; theologian Jonathan Edwards; actors, directors and producers Paul Newman, Henry Winkler, Vincent Price, Meryl Streep, Sigourney Weaver, Jodie Foster, Angela Bassett, Patricia Clarkson, Courtney Vance, Frances McDormand, Elia Kazan, George Roy Hill, Edward Norton, Lupita Nyong'o, Allison Williams, Oliver Stone, Sam Waterston, and Michael Cimino; \"Father of American football\" Walter Camp, James Franco, \"The perfect oarsman\" Rusty Wailes; baseball players Ron Darling, Bill Hutchinson, and Craig Breslow; basketball player Chris Dudley; football players Gary Fencik, and Calvin Hill; hockey players Chris Higgins and Mike Richter; figure skater Sarah Hughes; swimmer Don Schollander; skier Ryan Max Riley; runner Frank Shorter; composers Charles Ives, Douglas Moore and Cole Porter; Peace Corps founder Sargent Shriver; child psychologist Benjamin Spock; architects Eero Saarinen and Norman Foster; sculptor Richard Serra; film critic Gene Siskel; television commentators Dick Cavett and Anderson Cooper; New York Times journalist David Gonzalez; pundits William F. Buckley, Jr., and Fareed Zakaria; economists Irving Fischer, Mahbub ul Haq, and Paul Krugman; cyclotron inventor and Nobel laureate in Physics, Ernest Lawrence; Human Genome Project director Francis S. Collins; mathematician and chemist Josiah Willard Gibbs; and businesspeople, including Time Magazine co-founder Henry Luce, Morgan Stanley founder Harold Stanley, Boeing CEO James McNerney, FedEx founder Frederick W. Smith, Time Warner president Jeffrey Bewkes, Electronic Arts co-founder Bing Gordon, and investor/philanthropist Sir John Templeton; pioneer in electrical applications Austin Cornelius Dunham.",
|
42 |
+
"question": "What Italian Prime Minister attended Yale?",
|
43 |
+
"answers.text": [
|
44 |
+
"Mario Monti"
|
45 |
+
],
|
46 |
+
"answers.answer_start": [
|
47 |
+
345
|
48 |
+
],
|
49 |
+
"feat_id": [
|
50 |
+
"5726f7dbf1498d1400e8f149"
|
51 |
+
],
|
52 |
+
"feat_title": [
|
53 |
+
"Yale_University"
|
54 |
+
]
|
55 |
+
}
|
56 |
+
]
|
57 |
+
```
|
58 |
+
|
59 |
+
### Dataset Fields
|
60 |
+
|
61 |
+
The dataset has the following fields (also called "features"):
|
62 |
+
|
63 |
+
```json
|
64 |
+
{
|
65 |
+
"context": "Value(dtype='string', id=None)",
|
66 |
+
"question": "Value(dtype='string', id=None)",
|
67 |
+
"answers.text": "Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)",
|
68 |
+
"answers.answer_start": "Sequence(feature=Value(dtype='int32', id=None), length=-1, id=None)",
|
69 |
+
"feat_id": "Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)",
|
70 |
+
"feat_title": "Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)"
|
71 |
+
}
|
72 |
+
```
|
73 |
+
|
74 |
+
### Dataset Splits
|
75 |
+
|
76 |
+
This dataset is split into a train and validation split. The split sizes are as follow:
|
77 |
+
|
78 |
+
| Split name | Num samples |
|
79 |
+
| ------------ | ------------------- |
|
80 |
+
| train | 78384 |
|
81 |
+
| valid | 19596 |
|
processed/dataset_dict.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"splits": ["train", "valid"]}
|
processed/train/data-00000-of-00001.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3eb2a4673112f388ce21e52b2e9d81e83ef80cd360c19c8ec8ab04ee08545b1
|
3 |
+
size 73289912
|
processed/train/dataset_info.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"citation": "",
|
3 |
+
"description": "AutoTrain generated dataset",
|
4 |
+
"features": {
|
5 |
+
"context": {
|
6 |
+
"dtype": "string",
|
7 |
+
"_type": "Value"
|
8 |
+
},
|
9 |
+
"question": {
|
10 |
+
"dtype": "string",
|
11 |
+
"_type": "Value"
|
12 |
+
},
|
13 |
+
"answers.text": {
|
14 |
+
"feature": {
|
15 |
+
"dtype": "string",
|
16 |
+
"_type": "Value"
|
17 |
+
},
|
18 |
+
"_type": "Sequence"
|
19 |
+
},
|
20 |
+
"answers.answer_start": {
|
21 |
+
"feature": {
|
22 |
+
"dtype": "int32",
|
23 |
+
"_type": "Value"
|
24 |
+
},
|
25 |
+
"_type": "Sequence"
|
26 |
+
},
|
27 |
+
"feat_id": {
|
28 |
+
"feature": {
|
29 |
+
"dtype": "string",
|
30 |
+
"_type": "Value"
|
31 |
+
},
|
32 |
+
"_type": "Sequence"
|
33 |
+
},
|
34 |
+
"feat_title": {
|
35 |
+
"feature": {
|
36 |
+
"dtype": "string",
|
37 |
+
"_type": "Value"
|
38 |
+
},
|
39 |
+
"_type": "Sequence"
|
40 |
+
}
|
41 |
+
},
|
42 |
+
"homepage": "",
|
43 |
+
"license": "",
|
44 |
+
"splits": {
|
45 |
+
"train": {
|
46 |
+
"name": "train",
|
47 |
+
"num_bytes": 73230467,
|
48 |
+
"num_examples": 78384,
|
49 |
+
"dataset_name": null
|
50 |
+
}
|
51 |
+
}
|
52 |
+
}
|
processed/train/state.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_data_files": [
|
3 |
+
{
|
4 |
+
"filename": "data-00000-of-00001.arrow"
|
5 |
+
}
|
6 |
+
],
|
7 |
+
"_fingerprint": "d036818bd40f5aa1",
|
8 |
+
"_format_columns": [
|
9 |
+
"answers.answer_start",
|
10 |
+
"answers.text",
|
11 |
+
"context",
|
12 |
+
"feat_id",
|
13 |
+
"feat_title",
|
14 |
+
"question"
|
15 |
+
],
|
16 |
+
"_format_kwargs": {},
|
17 |
+
"_format_type": null,
|
18 |
+
"_output_all_columns": false,
|
19 |
+
"_split": null
|
20 |
+
}
|
processed/valid/data-00000-of-00001.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e5e4ff521b2257e7fd4d9e93bb9687101d4f9ec863b759ac6d6b8f4e0967932
|
3 |
+
size 18351232
|
processed/valid/dataset_info.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"citation": "",
|
3 |
+
"description": "AutoTrain generated dataset",
|
4 |
+
"features": {
|
5 |
+
"context": {
|
6 |
+
"dtype": "string",
|
7 |
+
"_type": "Value"
|
8 |
+
},
|
9 |
+
"question": {
|
10 |
+
"dtype": "string",
|
11 |
+
"_type": "Value"
|
12 |
+
},
|
13 |
+
"answers.text": {
|
14 |
+
"feature": {
|
15 |
+
"dtype": "string",
|
16 |
+
"_type": "Value"
|
17 |
+
},
|
18 |
+
"_type": "Sequence"
|
19 |
+
},
|
20 |
+
"answers.answer_start": {
|
21 |
+
"feature": {
|
22 |
+
"dtype": "int32",
|
23 |
+
"_type": "Value"
|
24 |
+
},
|
25 |
+
"_type": "Sequence"
|
26 |
+
},
|
27 |
+
"feat_id": {
|
28 |
+
"feature": {
|
29 |
+
"dtype": "string",
|
30 |
+
"_type": "Value"
|
31 |
+
},
|
32 |
+
"_type": "Sequence"
|
33 |
+
},
|
34 |
+
"feat_title": {
|
35 |
+
"feature": {
|
36 |
+
"dtype": "string",
|
37 |
+
"_type": "Value"
|
38 |
+
},
|
39 |
+
"_type": "Sequence"
|
40 |
+
}
|
41 |
+
},
|
42 |
+
"homepage": "",
|
43 |
+
"license": "",
|
44 |
+
"splits": {
|
45 |
+
"valid": {
|
46 |
+
"name": "valid",
|
47 |
+
"num_bytes": 18335350,
|
48 |
+
"num_examples": 19596,
|
49 |
+
"dataset_name": null
|
50 |
+
}
|
51 |
+
}
|
52 |
+
}
|
processed/valid/state.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_data_files": [
|
3 |
+
{
|
4 |
+
"filename": "data-00000-of-00001.arrow"
|
5 |
+
}
|
6 |
+
],
|
7 |
+
"_fingerprint": "c78a282aa8ced266",
|
8 |
+
"_format_columns": [
|
9 |
+
"answers.answer_start",
|
10 |
+
"answers.text",
|
11 |
+
"context",
|
12 |
+
"feat_id",
|
13 |
+
"feat_title",
|
14 |
+
"question"
|
15 |
+
],
|
16 |
+
"_format_kwargs": {},
|
17 |
+
"_format_type": null,
|
18 |
+
"_output_all_columns": false,
|
19 |
+
"_split": null
|
20 |
+
}
|