diff --git "a/Extracted/Mathlib/TacticPrediction/Mathlib_Algebra_Algebra_NonUnitalSubalgebra.jsonl" "b/Extracted/Mathlib/TacticPrediction/Mathlib_Algebra_Algebra_NonUnitalSubalgebra.jsonl" deleted file mode 100644--- "a/Extracted/Mathlib/TacticPrediction/Mathlib_Algebra_Algebra_NonUnitalSubalgebra.jsonl" +++ /dev/null @@ -1,131 +0,0 @@ -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁶ : CommSemiring R\ninst✝⁵ : NonUnitalNonAssocSemiring A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : NonUnitalNonAssocSemiring C\ninst✝² : Module R A\ninst✝¹ : Module R B\ninst✝ : Module R C\np q : NonUnitalSubalgebra R A\nh : (fun s => s.carrier) p = (fun s => s.carrier) q\n⊢ p = q","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by ","nextTactic":"cases p","declUpToTactic":"instance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.65_0.jQvdAcOcyVirh23","decl":"instance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s "} -{"state":"case mk\nF : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁶ : CommSemiring R\ninst✝⁵ : NonUnitalNonAssocSemiring A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : NonUnitalNonAssocSemiring C\ninst✝² : Module R A\ninst✝¹ : Module R B\ninst✝ : Module R C\nq : NonUnitalSubalgebra R A\ntoNonUnitalSubsemiring✝ : NonUnitalSubsemiring A\nsmul_mem'✝ : ∀ (c : R) {x : A}, x ∈ toNonUnitalSubsemiring✝.carrier → c • x ∈ toNonUnitalSubsemiring✝.carrier\nh :\n (fun s => s.carrier) { toNonUnitalSubsemiring := toNonUnitalSubsemiring✝, smul_mem' := smul_mem'✝ } =\n (fun s => s.carrier) q\n⊢ { toNonUnitalSubsemiring := toNonUnitalSubsemiring✝, smul_mem' := smul_mem'✝ } = q","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; ","nextTactic":"cases q","declUpToTactic":"instance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.65_0.jQvdAcOcyVirh23","decl":"instance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s "} -{"state":"case mk.mk\nF : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁶ : CommSemiring R\ninst✝⁵ : NonUnitalNonAssocSemiring A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : NonUnitalNonAssocSemiring C\ninst✝² : Module R A\ninst✝¹ : Module R B\ninst✝ : Module R C\ntoNonUnitalSubsemiring✝¹ : NonUnitalSubsemiring A\nsmul_mem'✝¹ : ∀ (c : R) {x : A}, x ∈ toNonUnitalSubsemiring✝¹.carrier → c • x ∈ toNonUnitalSubsemiring✝¹.carrier\ntoNonUnitalSubsemiring✝ : NonUnitalSubsemiring A\nsmul_mem'✝ : ∀ (c : R) {x : A}, x ∈ toNonUnitalSubsemiring✝.carrier → c • x ∈ toNonUnitalSubsemiring✝.carrier\nh :\n (fun s => s.carrier) { toNonUnitalSubsemiring := toNonUnitalSubsemiring✝¹, smul_mem' := smul_mem'✝¹ } =\n (fun s => s.carrier) { toNonUnitalSubsemiring := toNonUnitalSubsemiring✝, smul_mem' := smul_mem'✝ }\n⊢ { toNonUnitalSubsemiring := toNonUnitalSubsemiring✝¹, smul_mem' := smul_mem'✝¹ } =\n { toNonUnitalSubsemiring := toNonUnitalSubsemiring✝, smul_mem' := smul_mem'✝ }","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; ","nextTactic":"congr","declUpToTactic":"instance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.65_0.jQvdAcOcyVirh23","decl":"instance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s "} -{"state":"case mk.mk.e_toNonUnitalSubsemiring\nF : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁶ : CommSemiring R\ninst✝⁵ : NonUnitalNonAssocSemiring A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : NonUnitalNonAssocSemiring C\ninst✝² : Module R A\ninst✝¹ : Module R B\ninst✝ : Module R C\ntoNonUnitalSubsemiring✝¹ : NonUnitalSubsemiring A\nsmul_mem'✝¹ : ∀ (c : R) {x : A}, x ∈ toNonUnitalSubsemiring✝¹.carrier → c • x ∈ toNonUnitalSubsemiring✝¹.carrier\ntoNonUnitalSubsemiring✝ : NonUnitalSubsemiring A\nsmul_mem'✝ : ∀ (c : R) {x : A}, x ∈ toNonUnitalSubsemiring✝.carrier → c • x ∈ toNonUnitalSubsemiring✝.carrier\nh :\n (fun s => s.carrier) { toNonUnitalSubsemiring := toNonUnitalSubsemiring✝¹, smul_mem' := smul_mem'✝¹ } =\n (fun s => s.carrier) { toNonUnitalSubsemiring := toNonUnitalSubsemiring✝, smul_mem' := smul_mem'✝ }\n⊢ toNonUnitalSubsemiring✝¹ = toNonUnitalSubsemiring✝","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; ","nextTactic":"exact SetLike.coe_injective h","declUpToTactic":"instance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.65_0.jQvdAcOcyVirh23","decl":"instance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁶ : CommSemiring R\ninst✝⁵ : NonUnitalNonAssocSemiring A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : NonUnitalNonAssocSemiring C\ninst✝² : Module R A\ninst✝¹ : Module R B\ninst✝ : Module R C\nS T : NonUnitalSubalgebra R A\nh : S.toNonUnitalSubsemiring = T.toNonUnitalSubsemiring\nx : A\n⊢ x ∈ S ↔ x ∈ T","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by ","nextTactic":"rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]","declUpToTactic":"theorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.96_0.jQvdAcOcyVirh23","decl":"theorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁶ : CommSemiring R\ninst✝⁵ : NonUnitalNonAssocSemiring A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : NonUnitalNonAssocSemiring C\ninst✝² : Module R A\ninst✝¹ : Module R B\ninst✝ : Module R C\nS T : NonUnitalSubalgebra R A\nh : toSubmodule S = toSubmodule T\nx : A\n⊢ x ∈ S ↔ x ∈ T","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by ","nextTactic":"rw [← mem_toSubmodule, ← mem_toSubmodule, h]","declUpToTactic":"theorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.113_0.jQvdAcOcyVirh23","decl":"theorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁶ : CommSemiring R\ninst✝⁵ : NonUnitalNonAssocSemiring A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : NonUnitalNonAssocSemiring C\ninst✝² : Module R A\ninst✝¹ : Module R B\ninst✝ : Module R C\nS : NonUnitalSubalgebra R A\ns : Set A\nhs : s = ↑S\nsrc✝ : NonUnitalSubsemiring A := NonUnitalSubsemiring.copy S.toNonUnitalSubsemiring s hs\nr : R\na : A\nha : a ∈ s\n⊢ r • a ∈\n { toAddSubmonoid := src✝.toAddSubmonoid,\n mul_mem' :=\n (_ :\n ∀ {a b : A},\n a ∈ src✝.carrier → b ∈ src✝.carrier → a * b ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n ","nextTactic":"show r • a ∈ s","declUpToTactic":"/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.120_0.jQvdAcOcyVirh23","decl":"/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁶ : CommSemiring R\ninst✝⁵ : NonUnitalNonAssocSemiring A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : NonUnitalNonAssocSemiring C\ninst✝² : Module R A\ninst✝¹ : Module R B\ninst✝ : Module R C\nS : NonUnitalSubalgebra R A\ns : Set A\nhs : s = ↑S\nsrc✝ : NonUnitalSubsemiring A := NonUnitalSubsemiring.copy S.toNonUnitalSubsemiring s hs\nr : R\na : A\nha : a ∈ s\n⊢ r • a ∈ s","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n ","nextTactic":"rw [hs] at ha ⊢","declUpToTactic":"/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.120_0.jQvdAcOcyVirh23","decl":"/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁶ : CommSemiring R\ninst✝⁵ : NonUnitalNonAssocSemiring A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : NonUnitalNonAssocSemiring C\ninst✝² : Module R A\ninst✝¹ : Module R B\ninst✝ : Module R C\nS : NonUnitalSubalgebra R A\ns : Set A\nhs : s = ↑S\nsrc✝ : NonUnitalSubsemiring A := NonUnitalSubsemiring.copy S.toNonUnitalSubsemiring s hs\nr : R\na : A\nha : a ∈ ↑S\n⊢ r • a ∈ ↑S","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n ","nextTactic":"exact S.smul_mem' r ha","declUpToTactic":"/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.120_0.jQvdAcOcyVirh23","decl":"/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁶ : CommRing R\ninst✝⁵ : NonUnitalNonAssocRing A\ninst✝⁴ : NonUnitalNonAssocRing B\ninst✝³ : NonUnitalNonAssocRing C\ninst✝² : Module R A\ninst✝¹ : Module R B\ninst✝ : Module R C\nS T : NonUnitalSubalgebra R A\nh : toNonUnitalSubring S = toNonUnitalSubring T\nx : A\n⊢ x ∈ S ↔ x ∈ T","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by ","nextTactic":"rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]","declUpToTactic":"theorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.167_0.jQvdAcOcyVirh23","decl":"theorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝² : CommSemiring R\ninst✝¹ : NonUnitalNonAssocSemiring A\ninst✝ : Module R A\nS T : NonUnitalSubalgebra R A\nh : (fun S => toSubmodule S) S = (fun S => toSubmodule S) T\n⊢ ∀ (x : A), x ∈ S ↔ x ∈ T","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by ","nextTactic":"apply SetLike.ext_iff.1 h","declUpToTactic":"/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.209_0.jQvdAcOcyVirh23","decl":"/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝² : CommSemiring R\ninst✝¹ : NonUnitalNonAssocSemiring A\ninst✝ : Module R A\nS T : NonUnitalSubalgebra R A\nh : (fun S => S.toNonUnitalSubsemiring) S = (fun S => S.toNonUnitalSubsemiring) T\n⊢ ∀ (x : A), x ∈ S ↔ x ∈ T","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by ","nextTactic":"apply SetLike.ext_iff.1 h","declUpToTactic":"/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.217_0.jQvdAcOcyVirh23","decl":"/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝² : CommRing R\ninst✝¹ : NonUnitalNonAssocRing A\ninst✝ : Module R A\nS T : NonUnitalSubalgebra R A\nh : (fun S => toNonUnitalSubring S) S = (fun S => toNonUnitalSubring S) T\n⊢ ∀ (x : A), x ∈ S ↔ x ∈ T","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by ","nextTactic":"apply SetLike.ext_iff.1 h","declUpToTactic":"/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.226_0.jQvdAcOcyVirh23","decl":"/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : NonUnitalNonAssocSemiring B\ninst✝⁴ : NonUnitalNonAssocSemiring C\ninst✝³ : Module R A\ninst✝² : Module R B\ninst✝¹ : Module R C\nS✝ : NonUnitalSubalgebra R A\ninst✝ : NonUnitalAlgHomClass F R A B\nf : F\nS : NonUnitalSubalgebra R A\nsrc✝ : NonUnitalSubsemiring B := NonUnitalSubsemiring.map (↑f) S.toNonUnitalSubsemiring\nr : R\nb : B\nhb :\n b ∈\n { toAddSubmonoid := src✝.toAddSubmonoid,\n mul_mem' :=\n (_ :\n ∀ {a b : B},\n a ∈ src✝.carrier → b ∈ src✝.carrier → a * b ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier\n⊢ r • b ∈\n { toAddSubmonoid := src✝.toAddSubmonoid,\n mul_mem' :=\n (_ :\n ∀ {a b : B},\n a ∈ src✝.carrier → b ∈ src✝.carrier → a * b ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n ","nextTactic":"rcases hb with ⟨a, ha, rfl⟩","declUpToTactic":"/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.314_0.jQvdAcOcyVirh23","decl":"/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B "} -{"state":"case intro.intro\nF : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : NonUnitalNonAssocSemiring B\ninst✝⁴ : NonUnitalNonAssocSemiring C\ninst✝³ : Module R A\ninst✝² : Module R B\ninst✝¹ : Module R C\nS✝ : NonUnitalSubalgebra R A\ninst✝ : NonUnitalAlgHomClass F R A B\nf : F\nS : NonUnitalSubalgebra R A\nsrc✝ : NonUnitalSubsemiring B := NonUnitalSubsemiring.map (↑f) S.toNonUnitalSubsemiring\nr : R\na : A\nha : a ∈ ↑S.toNonUnitalSubsemiring\n⊢ r • ↑f a ∈\n { toAddSubmonoid := src✝.toAddSubmonoid,\n mul_mem' :=\n (_ :\n ∀ {a b : B},\n a ∈ src✝.carrier → b ∈ src✝.carrier → a * b ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n ","nextTactic":"exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha)","declUpToTactic":"/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.314_0.jQvdAcOcyVirh23","decl":"/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nφ : F\nr : R\na : B\n⊢ a ∈ (NonUnitalRingHom.srange ↑φ).toAddSubmonoid.toAddSubsemigroup.carrier →\n r • a ∈ (NonUnitalRingHom.srange ↑φ).toAddSubmonoid.toAddSubsemigroup.carrier","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by ","nextTactic":"rintro ⟨a, rfl⟩","declUpToTactic":"/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.427_0.jQvdAcOcyVirh23","decl":"/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring "} -{"state":"case intro\nF : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nφ : F\nr : R\na : A\n⊢ r • ↑φ a ∈ (NonUnitalRingHom.srange ↑φ).toAddSubmonoid.toAddSubsemigroup.carrier","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; ","nextTactic":"exact ⟨r • a, map_smul φ r a⟩","declUpToTactic":"/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.427_0.jQvdAcOcyVirh23","decl":"/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nφ : F\n⊢ ↑(NonUnitalAlgHom.range φ) = Set.range ⇑φ","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ","nextTactic":"ext","declUpToTactic":"@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.441_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) "} -{"state":"case h\nF : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nφ : F\nx✝ : B\n⊢ x✝ ∈ ↑(NonUnitalAlgHom.range φ) ↔ x✝ ∈ Set.range ⇑φ","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n ","nextTactic":"rw [SetLike.mem_coe]","declUpToTactic":"@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.441_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) "} -{"state":"case h\nF : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nφ : F\nx✝ : B\n⊢ x✝ ∈ NonUnitalAlgHom.range φ ↔ x✝ ∈ Set.range ⇑φ","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ��� x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n ","nextTactic":"rw [mem_range]","declUpToTactic":"@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.441_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) "} -{"state":"case h\nF : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nφ : F\nx✝ : B\n⊢ (∃ x, φ x = x✝) ↔ x✝ ∈ Set.range ⇑φ","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n ","nextTactic":"rfl","declUpToTactic":"@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.441_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nϕ ψ : F\nx y : A\nhx : ϕ x = ψ x\nhy : ϕ y = ψ y\n⊢ x + y ∈ {a | ϕ a = ψ a}","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n ","nextTactic":"rw [Set.mem_setOf_eq]","declUpToTactic":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.483_0.jQvdAcOcyVirh23","decl":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nϕ ψ : F\nx y : A\nhx : ϕ x = ψ x\nhy : ϕ y = ψ y\n⊢ ϕ (x + y) = ψ (x + y)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n ","nextTactic":"rw [map_add]","declUpToTactic":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.483_0.jQvdAcOcyVirh23","decl":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nϕ ψ : F\nx y : A\nhx : ϕ x = ψ x\nhy : ϕ y = ψ y\n⊢ ϕ x + ϕ y = ψ (x + y)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n ","nextTactic":"rw [map_add]","declUpToTactic":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.483_0.jQvdAcOcyVirh23","decl":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nϕ ψ : F\nx y : A\nhx : ϕ x = ψ x\nhy : ϕ y = ψ y\n⊢ ϕ x + ϕ y = ψ x + ψ y","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n ","nextTactic":"rw [hx]","declUpToTactic":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.483_0.jQvdAcOcyVirh23","decl":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nϕ ψ : F\nx y : A\nhx : ϕ x = ψ x\nhy : ϕ y = ψ y\n⊢ ψ x + ϕ y = ψ x + ψ y","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n ","nextTactic":"rw [hy]","declUpToTactic":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.483_0.jQvdAcOcyVirh23","decl":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nϕ ψ : F\n⊢ 0 ∈\n { carrier := {a | ϕ a = ψ a},\n add_mem' := (_ : ∀ {x y : A}, ϕ x = ψ x → ϕ y = ψ y → x + y ∈ {a | ϕ a = ψ a}) }.carrier","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by ","nextTactic":"rw [Set.mem_setOf_eq, map_zero, map_zero]","declUpToTactic":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.483_0.jQvdAcOcyVirh23","decl":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nϕ ψ : F\nx y : A\nhx : ϕ x = ψ x\nhy : ϕ y = ψ y\n⊢ x * y ∈\n {\n toAddSubsemigroup :=\n { carrier := {a | ϕ a = ψ a},\n add_mem' := (_ : ∀ {x y : A}, ϕ x = ψ x → ϕ y = ψ y → x + y ∈ {a | ϕ a = ψ a}) },\n zero_mem' :=\n (_ :\n 0 ∈\n { carrier := {a | ϕ a = ψ a},\n add_mem' :=\n (_ :\n ∀ {x y : A},\n ϕ x = ψ x → ϕ y = ψ y → x + y ∈ {a | ϕ a = ψ a}) }.carrier) }.toAddSubsemigroup.carrier","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n ","nextTactic":"rw [Set.mem_setOf_eq]","declUpToTactic":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.483_0.jQvdAcOcyVirh23","decl":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nϕ ψ : F\nx y : A\nhx : ϕ x = ψ x\nhy : ϕ y = ψ y\n⊢ ϕ (x * y) = ψ (x * y)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n ","nextTactic":"rw [map_mul]","declUpToTactic":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.483_0.jQvdAcOcyVirh23","decl":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nϕ ψ : F\nx y : A\nhx : ϕ x = ψ x\nhy : ϕ y = ψ y\n⊢ ϕ x * ϕ y = ψ (x * y)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n ","nextTactic":"rw [map_mul]","declUpToTactic":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.483_0.jQvdAcOcyVirh23","decl":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nϕ ψ : F\nx y : A\nhx : ϕ x = ψ x\nhy : ϕ y = ψ y\n⊢ ϕ x * ϕ y = ψ x * ψ y","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n ","nextTactic":"rw [hx]","declUpToTactic":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.483_0.jQvdAcOcyVirh23","decl":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (�� ψ : F) : NonUnitalSubalgebra R A\n where\n carrier "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nϕ ψ : F\nx y : A\nhx : ϕ x = ψ x\nhy : ϕ y = ψ y\n⊢ ψ x * ϕ y = ψ x * ψ y","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n ","nextTactic":"rw [hy]","declUpToTactic":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.483_0.jQvdAcOcyVirh23","decl":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier "} -{"state":"F : Type v'\nR' : Type u'\nR : Type u\nA : Type v\nB : Type w\nC : Type w'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : NonUnitalNonAssocSemiring A\ninst✝⁵ : Module R A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : NonUnitalNonAssocSemiring C\ninst✝¹ : Module R C\ninst✝ : NonUnitalAlgHomClass F R A B\nϕ ψ : F\nr : R\nx : A\nhx : ϕ x = ψ x\n⊢ r • x ∈\n {\n toAddSubmonoid :=\n {\n toAddSubsemigroup :=\n { carrier := {a | ϕ a = ψ a},\n add_mem' := (_ : ∀ {x y : A}, ϕ x = ψ x → ϕ y = ψ y → x + y ∈ {a | ϕ a = ψ a}) },\n zero_mem' :=\n (_ :\n 0 ∈\n { carrier := {a | ϕ a = ψ a},\n add_mem' := (_ : ∀ {x y : A}, ϕ x = ψ x → ϕ y = ψ y → x + y ∈ {a | ϕ a = ψ a}) }.carrier) },\n mul_mem' :=\n (_ :\n ∀ {x y : A},\n ϕ x = ψ x →\n ϕ y = ψ y →\n x * y ∈\n {\n toAddSubsemigroup :=\n { carrier := {a | ϕ a = ψ a},\n add_mem' := (_ : ∀ {x y : A}, ϕ x = ψ x → ϕ y = ψ y → x + y ∈ {a | ϕ a = ψ a}) },\n zero_mem' :=\n (_ :\n 0 ∈\n { carrier := {a | ϕ a = ψ a},\n add_mem' :=\n (_ :\n ∀ {x y : A},\n ϕ x = ψ x →\n ϕ y = ψ y →\n x + y ∈\n {a |\n ϕ a =\n ψ\n a}) }.carrier) }.toAddSubsemigroup.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by ","nextTactic":"rw [Set.mem_setOf_eq, map_smul, map_smul, hx]","declUpToTactic":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.483_0.jQvdAcOcyVirh23","decl":"/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\ns : Set A\nsrc✝ : Submodule R A := Submodule.span R ↑(NonUnitalSubsemiring.closure s)\na b : A\nha : a ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)\nhb : b ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)\n⊢ a * b ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n ","nextTactic":"refine' Submodule.span_induction ha _ _ _ _","declUpToTactic":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.524_0.jQvdAcOcyVirh23","decl":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A "} -{"state":"case refine'_1\nF : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\ns : Set A\nsrc✝ : Submodule R A := Submodule.span R ↑(NonUnitalSubsemiring.closure s)\na b : A\nha : a ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)\nhb : b ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)\n⊢ ∀ x ∈ ↑(NonUnitalSubsemiring.closure s), x * b ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · ","nextTactic":"refine' Submodule.span_induction hb _ _ _ _","declUpToTactic":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.524_0.jQvdAcOcyVirh23","decl":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A "} -{"state":"case refine'_1.refine'_1\nF : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\ns : Set A\nsrc✝ : Submodule R A := Submodule.span R ↑(NonUnitalSubsemiring.closure s)\na b : A\nha : a ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)\nhb : b ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)\n⊢ ∀ x ∈ ↑(NonUnitalSubsemiring.closure s),\n ∀ x_1 ∈ ↑(NonUnitalSubsemiring.closure s), x_1 * x ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · ","nextTactic":"exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)","declUpToTactic":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.524_0.jQvdAcOcyVirh23","decl":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A "} -{"state":"case refine'_1.refine'_2\nF : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\ns : Set A\nsrc✝ : Submodule R A := Submodule.span R ↑(NonUnitalSubsemiring.closure s)\na b : A\nha : a ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)\nhb : b ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)\n⊢ ∀ x ∈ ↑(NonUnitalSubsemiring.closure s), x * 0 ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · ","nextTactic":"exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _","declUpToTactic":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.524_0.jQvdAcOcyVirh23","decl":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A "} -{"state":"case refine'_1.refine'_3\nF : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\ns : Set A\nsrc✝ : Submodule R A := Submodule.span R ↑(NonUnitalSubsemiring.closure s)\na b : A\nha : a ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)\nhb : b ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)\n⊢ ∀ (x y : A),\n (∀ x_1 ∈ ↑(NonUnitalSubsemiring.closure s), x_1 * x ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)) →\n (∀ x ∈ ↑(NonUnitalSubsemiring.closure s), x * y ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)) →\n ∀ x_1 ∈ ↑(NonUnitalSubsemiring.closure s), x_1 * (x + y) ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · ","nextTactic":"exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)","declUpToTactic":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.524_0.jQvdAcOcyVirh23","decl":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A "} -{"state":"case refine'_1.refine'_4\nF : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\ns : Set A\nsrc✝ : Submodule R A := Submodule.span R ↑(NonUnitalSubsemiring.closure s)\na b : A\nha : a ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)\nhb : b ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)\n⊢ ∀ (a : R) (x : A),\n (∀ x_1 ∈ ↑(NonUnitalSubsemiring.closure s), x_1 * x ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)) →\n ∀ x_1 ∈ ↑(NonUnitalSubsemiring.closure s), x_1 * a • x ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · ","nextTactic":"exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)","declUpToTactic":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.524_0.jQvdAcOcyVirh23","decl":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A "} -{"state":"case refine'_2\nF : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\ns : Set A\nsrc✝ : Submodule R A := Submodule.span R ↑(NonUnitalSubsemiring.closure s)\na b : A\nha : a ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)\nhb : b ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)\n⊢ 0 * b ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · ","nextTactic":"exact (zero_mul b).symm ▸ Submodule.zero_mem _","declUpToTactic":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.524_0.jQvdAcOcyVirh23","decl":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A "} -{"state":"case refine'_3\nF : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\ns : Set A\nsrc✝ : Submodule R A := Submodule.span R ↑(NonUnitalSubsemiring.closure s)\na b : A\nha : a ��� Submodule.span R ↑(NonUnitalSubsemiring.closure s)\nhb : b ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)\n⊢ ∀ (x y : A),\n x * b ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s) →\n y * b ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s) →\n (x + y) * b ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · ","nextTactic":"exact fun x y => (add_mul x y b).symm ▸ add_mem","declUpToTactic":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.524_0.jQvdAcOcyVirh23","decl":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A "} -{"state":"case refine'_4\nF : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\ns : Set A\nsrc✝ : Submodule R A := Submodule.span R ↑(NonUnitalSubsemiring.closure s)\na b : A\nha : a ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)\nhb : b ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)\n⊢ ∀ (a : R) (x : A),\n x * b ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s) →\n a • x * b ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure s)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · ","nextTactic":"exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx","declUpToTactic":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.524_0.jQvdAcOcyVirh23","decl":"/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\ns : Set A\np : ↥(adjoin R s) → Prop\na : ↥(adjoin R s)\nHs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) }\nHadd : ∀ (x y : ↥(adjoin R s)), p x → p y → p (x + y)\nH0 : p 0\nHmul : ∀ (x y : ↥(adjoin R s)), p x → p y → p (x * y)\nHsmul : ∀ (r : R) (x : ↥(adjoin R s)), p x → p (r • x)\nb : A\nhb : b ∈ adjoin R s\n⊢ p { val := b, property := hb }","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n ","nextTactic":"refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)","declUpToTactic":"/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.577_0.jQvdAcOcyVirh23","decl":"/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\ns : Set A\np : ↥(adjoin R s) → Prop\na : ↥(adjoin R s)\nHs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) }\nHadd : ∀ (x y : ↥(adjoin R s)), p x → p y → p (x + y)\nH0 : p 0\nHmul : ∀ (x y : ↥(adjoin R s)), p x → p y → p (x * y)\nHsmul : ∀ (r : R) (x : ↥(adjoin R s)), p x → p (r • x)\nb : A\nhb : b ∈ adjoin R s\n⊢ ∃ (x : b ∈ adjoin R s), p { val := b, property := x }","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →���[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n ","nextTactic":"apply adjoin_induction hb","declUpToTactic":"/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.577_0.jQvdAcOcyVirh23","decl":"/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a "} -{"state":"case Hs\nF : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\ns : Set A\np : ↥(adjoin R s) → Prop\na : ↥(adjoin R s)\nHs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) }\nHadd : ∀ (x y : ↥(adjoin R s)), p x → p y → p (x + y)\nH0 : p 0\nHmul : ∀ (x y : ↥(adjoin R s)), p x → p y → p (x * y)\nHsmul : ∀ (r : R) (x : ↥(adjoin R s)), p x → p (r • x)\nb : A\nhb : b ∈ adjoin R s\n⊢ ∀ x ∈ s, ∃ (x_1 : x ∈ adjoin R s), p { val := x, property := x_1 }","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙ���[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · ","nextTactic":"exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩","declUpToTactic":"/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.577_0.jQvdAcOcyVirh23","decl":"/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a "} -{"state":"case Hadd\nF : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\ns : Set A\np : ↥(adjoin R s) → Prop\na : ↥(adjoin R s)\nHs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) }\nHadd : ∀ (x y : ↥(adjoin R s)), p x → p y → p (x + y)\nH0 : p 0\nHmul : ∀ (x y : ↥(adjoin R s)), p x → p y → p (x * y)\nHsmul : ∀ (r : R) (x : ↥(adjoin R s)), p x → p (r • x)\nb : A\nhb : b ∈ adjoin R s\n⊢ ∀ (x y : A),\n (∃ (x_1 : x ∈ adjoin R s), p { val := x, property := x_1 }) →\n (∃ (x : y ∈ adjoin R s), p { val := y, property := x }) →\n ∃ (x_1 : x + y ∈ adjoin R s), p { val := x + y, property := x_1 }","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · ","nextTactic":"exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩","declUpToTactic":"/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.577_0.jQvdAcOcyVirh23","decl":"/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a "} -{"state":"case H0\nF : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\ns : Set A\np : ↥(adjoin R s) → Prop\na : ↥(adjoin R s)\nHs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) }\nHadd : ∀ (x y : ↥(adjoin R s)), p x → p y → p (x + y)\nH0 : p 0\nHmul : ∀ (x y : ↥(adjoin R s)), p x → p y → p (x * y)\nHsmul : ∀ (r : R) (x : ↥(adjoin R s)), p x → p (r • x)\nb : A\nhb : b ∈ adjoin R s\n⊢ ∃ (x : 0 ∈ adjoin R s), p { val := 0, property := x }","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · ","nextTactic":"exact ⟨_, H0⟩","declUpToTactic":"/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.577_0.jQvdAcOcyVirh23","decl":"/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a "} -{"state":"case Hmul\nF : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\ns : Set A\np : ↥(adjoin R s) → Prop\na : ↥(adjoin R s)\nHs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) }\nHadd : ∀ (x y : ↥(adjoin R s)), p x → p y → p (x + y)\nH0 : p 0\nHmul : ∀ (x y : ↥(adjoin R s)), p x → p y → p (x * y)\nHsmul : ∀ (r : R) (x : ↥(adjoin R s)), p x → p (r • x)\nb : A\nhb : b ∈ adjoin R s\n⊢ ∀ (x y : A),\n (∃ (x_1 : x ∈ adjoin R s), p { val := x, property := x_1 }) →\n (∃ (x : y ∈ adjoin R s), p { val := y, property := x }) →\n ∃ (x_1 : x * y ∈ adjoin R s), p { val := x * y, property := x_1 }","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)��\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · ","nextTactic":"exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩","declUpToTactic":"/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.577_0.jQvdAcOcyVirh23","decl":"/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a "} -{"state":"case Hsmul\nF : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\ns : Set A\np : ↥(adjoin R s) → Prop\na : ↥(adjoin R s)\nHs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) }\nHadd : ∀ (x y : ↥(adjoin R s)), p x → p y → p (x + y)\nH0 : p 0\nHmul : ∀ (x y : ↥(adjoin R s)), p x → p y → p (x * y)\nHsmul : ∀ (r : R) (x : ↥(adjoin R s)), p x → p (r • x)\nb : A\nhb : b ∈ adjoin R s\n⊢ ∀ (r : R) (x : A),\n (∃ (x_1 : x ∈ adjoin R s), p { val := x, property := x_1 }) →\n ∃ (x_1 : r • x ∈ adjoin R s), p { val := r • x, property := x_1 }","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · ","nextTactic":"exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩","declUpToTactic":"/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.577_0.jQvdAcOcyVirh23","decl":"/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\n⊢ adjoin R ⊥ = ⊥","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by ","nextTactic":"apply GaloisConnection.l_bot","declUpToTactic":"@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.623_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ "} -{"state":"case gc\nF : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\n⊢ GaloisConnection (adjoin R) ?u\ncase u\nF : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\n⊢ NonUnitalSubalgebra R A → Set A","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; ","nextTactic":"exact NonUnitalAlgebra.gc","declUpToTactic":"@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.623_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\nS T : NonUnitalSubalgebra R A\n⊢ ∀ {x : A}, x ∈ S → x ∈ S ⊔ T","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n ","nextTactic":"rw [← SetLike.le_def]","declUpToTactic":"theorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.669_0.jQvdAcOcyVirh23","decl":"theorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\nS T : NonUnitalSubalgebra R A\n⊢ S ≤ S ⊔ T","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n ","nextTactic":"exact le_sup_left","declUpToTactic":"theorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.669_0.jQvdAcOcyVirh23","decl":"theorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\nS T : NonUnitalSubalgebra R A\n⊢ ∀ {x : A}, x ∈ T → x ∈ S ⊔ T","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy���\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n ","nextTactic":"rw [← SetLike.le_def]","declUpToTactic":"theorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.673_0.jQvdAcOcyVirh23","decl":"theorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\nS T : NonUnitalSubalgebra R A\n⊢ T ≤ S ⊔ T","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n ","nextTactic":"exact le_sup_right","declUpToTactic":"theorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.673_0.jQvdAcOcyVirh23","decl":"theorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\nS : Set (NonUnitalSubalgebra R A)\nx : A\n⊢ x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n ","nextTactic":"simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]","declUpToTactic":"theorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.707_0.jQvdAcOcyVirh23","decl":"theorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\nS : Set (NonUnitalSubalgebra R A)\n⊢ ↑(NonUnitalSubalgebra.toSubmodule (sInf S)) = ↑(sInf (NonUnitalSubalgebra.toSubmodule '' S))","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙ���[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by ","nextTactic":"simp","declUpToTactic":"@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.710_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\nS : Set (NonUnitalSubalgebra R A)\n⊢ ↑(sInf S).toNonUnitalSubsemiring = ↑(sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S))","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by ","nextTactic":"simp","declUpToTactic":"@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.715_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\nι : Sort u_2\nS : ι → NonUnitalSubalgebra R A\n⊢ ↑(⨅ i, S i) = ⋂ i, ↑(S i)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by ","nextTactic":"simp [iInf]","declUpToTactic":"@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.720_0.jQvdAcOcyVirh23","decl":"@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\nι : Sort u_2\nS : ι → NonUnitalSubalgebra R A\nx : A\n⊢ x ∈ ⨅ i, S i ↔ ∀ (i : ι), x ∈ S i","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by ","nextTactic":"simp only [iInf, mem_sInf, Set.forall_range_iff]","declUpToTactic":"theorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.724_0.jQvdAcOcyVirh23","decl":"theorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\nι : Sort u_2\nS : ι → NonUnitalSubalgebra R A\n⊢ ↑(NonUnitalSubalgebra.toSubmodule (⨅ i, S i)) = ↑(⨅ i, NonUnitalSubalgebra.toSubmodule (S i))","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by ","nextTactic":"simp","declUpToTactic":"@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.727_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\nx : A\n⊢ x ∈ Submodule.span R ↑(NonUnitalSubsemiring.closure ∅) ↔ x = 0","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : �� x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n ","nextTactic":"rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]","declUpToTactic":"theorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.735_0.jQvdAcOcyVirh23","decl":"theorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\n⊢ NonUnitalSubalgebra.toSubmodule ⊥ = ⊥","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y �� p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ","nextTactic":"ext","declUpToTactic":"theorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.740_0.jQvdAcOcyVirh23","decl":"theorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ "} -{"state":"case h\nF : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\nx✝ : A\n⊢ x✝ ∈ NonUnitalSubalgebra.toSubmodule ⊥ ↔ x✝ ∈ ⊥","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n ","nextTactic":"simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]","declUpToTactic":"theorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.740_0.jQvdAcOcyVirh23","decl":"theorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\n⊢ ↑⊥ = {0}","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n ","nextTactic":"simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]","declUpToTactic":"@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.744_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\nS : NonUnitalSubalgebra R A\nh : S = ⊤\nx : A\n⊢ x ∈ S","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by ","nextTactic":"rw [h]","declUpToTactic":"theorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.748_0.jQvdAcOcyVirh23","decl":"theorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\nS : NonUnitalSubalgebra R A\nh : S = ⊤\nx : A\n⊢ x ∈ ⊤","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; ","nextTactic":"exact mem_top","declUpToTactic":"theorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.748_0.jQvdAcOcyVirh23","decl":"theorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\nS : NonUnitalSubalgebra R A\nh : ∀ (x : A), x ∈ S\n⊢ S = ⊤","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ","nextTactic":"ext x","declUpToTactic":"theorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.748_0.jQvdAcOcyVirh23","decl":"theorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S "} -{"state":"case h\nF : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\nS : NonUnitalSubalgebra R A\nh : ∀ (x : A), x ∈ S\nx : A\n⊢ x ∈ S ↔ x ∈ ⊤","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; ","nextTactic":"exact ⟨fun _ => mem_top, fun _ => h x⟩","declUpToTactic":"theorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.748_0.jQvdAcOcyVirh23","decl":"theorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S "} -{"state":"F : Type u_1\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\ninst✝ : NonUnitalAlgHomClass F R A B\nf : A →ₙₐ[R] B\n⊢ ↑(NonUnitalSubalgebra.map f ⊥) = ↑⊥","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by ","nextTactic":"simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]","declUpToTactic":"@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.763_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ "} -{"state":"R : Type u\nA : Type v\nB✝ : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B✝\ninst✝³ : Module R B✝\ninst✝² : IsScalarTower R B✝ B✝\ninst✝¹ : SMulCommClass R B✝ B✝\nS : NonUnitalSubalgebra R A\ninst✝ : Subsingleton A\nB C : NonUnitalSubalgebra R A\nx : A\n⊢ x ∈ B ↔ x ∈ C","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by ","nextTactic":"simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]","declUpToTactic":"instance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.789_0.jQvdAcOcyVirh23","decl":"instance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁸ : CommSemiring R\ninst✝⁷ : NonUnitalNonAssocSemiring A\ninst✝⁶ : Module R A\ninst✝⁵ : IsScalarTower R A A\ninst✝⁴ : SMulCommClass R A A\ninst✝³ : NonUnitalNonAssocSemiring B\ninst✝² : Module R B\ninst✝¹ : IsScalarTower R B B\ninst✝ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nS₁ : NonUnitalSubalgebra R B\n⊢ prod ⊤ ⊤ = ⊤","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ","nextTactic":"ext","declUpToTactic":"@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.863_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ "} -{"state":"case h\nR : Type u\nA : Type v\nB : Type w\ninst✝⁸ : CommSemiring R\ninst✝⁷ : NonUnitalNonAssocSemiring A\ninst✝⁶ : Module R A\ninst✝⁵ : IsScalarTower R A A\ninst✝⁴ : SMulCommClass R A A\ninst✝³ : NonUnitalNonAssocSemiring B\ninst✝² : Module R B\ninst✝¹ : IsScalarTower R B B\ninst✝ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nS₁ : NonUnitalSubalgebra R B\nx✝ : A × B\n⊢ x✝ ∈ prod ⊤ ⊤ ↔ x✝ ∈ ⊤","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B ��ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; ","nextTactic":"simp","declUpToTactic":"@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.863_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\nT : NonUnitalSubalgebra R A\nhT : T = iSup K\n⊢ ↥T →ₙₐ[R] B","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n ","nextTactic":"subst hT","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ↥(iSup K) →ₙₐ[R] B","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b �� adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n ","nextTactic":"exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\ni j : ι\nx : A\nhxi : x ∈ (fun i => ↑(K i)) i\nhxj : x ∈ (fun i => ↑(K i)) j\n⊢ (fun i x => (f i) x) i { val := x, property := hxi } = (fun i x => (f i) x) j { val := x, property := hxj }","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n ","nextTactic":"let ⟨k, hik, hjk⟩ := dir i j","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\ni j : ι\nx : A\nhxi : x ∈ (fun i => ↑(K i)) i\nhxj : x ∈ (fun i => ↑(K i)) j\nk : ι\nhik : (fun x x_1 => x ≤ x_1) (K i) (K k)\nhjk : (fun x x_1 => x ≤ x_1) (K j) (K k)\n⊢ (fun i x => (f i) x) i { val := x, property := hxi } = (fun i x => (f i) x) j { val := x, property := hxj }","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n ","nextTactic":"simp only","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\ni j : ι\nx : A\nhxi : x ∈ (fun i => ↑(K i)) i\nhxj : x ∈ (fun i => ↑(K i)) j\nk : ι\nhik : (fun x x_1 => x ≤ x_1) (K i) (K k)\nhjk : (fun x x_1 => x ≤ x_1) (K j) (K k)\n⊢ (f i) { val := x, property := hxi } = (f j) { val := x, property := hxj }","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n ","nextTactic":"rw [hf i k hik]","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\ni j : ι\nx : A\nhxi : x ∈ (fun i => ↑(K i)) i\nhxj : x ∈ (fun i => ↑(K i)) j\nk : ι\nhik : (fun x x_1 => x ≤ x_1) (K i) (K k)\nhjk : (fun x x_1 => x ≤ x_1) (K j) (K k)\n⊢ (NonUnitalAlgHom.comp (f k) (inclusion hik)) { val := x, property := hxi } = (f j) { val := x, property := hxj }","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n ","nextTactic":"rw [hf j k hjk]","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\ni j : ι\nx : A\nhxi : x ∈ (fun i => ↑(K i)) i\nhxj : x ∈ (fun i => ↑(K i)) j\nk : ι\nhik : (fun x x_1 => x ≤ x_1) (K i) (K k)\nhjk : (fun x x_1 => x ≤ x_1) (K j) (K k)\n⊢ (NonUnitalAlgHom.comp (f k) (inclusion hik)) { val := x, property := hxi } =\n (NonUnitalAlgHom.comp (f k) (inclusion hjk)) { val := x, property := hxj }","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n ","nextTactic":"rfl","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ↑(iSup K) ⊆ ⋃ i, ↑(K i)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by ","nextTactic":"rw [coe_iSup_of_directed dir]","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\nr : R\n⊢ ∀ (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } = (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n ","nextTactic":"dsimp","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\nr : R\n⊢ ∀ (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ ↑(K i)) (hxj : x ∈ ↑(K j)),\n (f i) { val := x, property := hxi } = (f j) { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ ↑(K i)) (hxj : x ∈ ↑(K j)),\n (f i) { val := x, property := hxi } = (f j) { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n ","nextTactic":"apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"case h\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\nr : R\n⊢ ∀ (i : ι) (x : ↑↑(K i)), (f i) (r • x) = r • (f i) x\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\nr : R\n⊢ ↑(iSup K) ⊆ ⋃ i, ↑(K i)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n ","nextTactic":"on_goal 2 => rw [coe_iSup_of_directed dir]","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"case h\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\nr : R\n⊢ ∀ (i : ι) (x : ↑↑(K i)), (f i) (r • x) = r • (f i) x\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\nr : R\n⊢ ↑(iSup K) ⊆ ⋃ i, ↑(K i)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n ","nextTactic":"on_goal 2 => rw [coe_iSup_of_directed dir]","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\nr : R\n⊢ ↑(iSup K) ⊆ ⋃ i, ↑(K i)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => ","nextTactic":"rw [coe_iSup_of_directed dir]","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"case h\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\nr : R\n⊢ ∀ (i : ι) (x : ↑↑(K i)), (f i) (r • x) = r • (f i) x","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n ","nextTactic":"all_goals simp","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"case h\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\nr : R\n⊢ ∀ (i : ι) (x : ↑↑(K i)), (f i) (r • x) = r • (f i) x","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals ","nextTactic":"simp","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ MulActionHom.toFun\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) }\n 0 =\n 0","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n ","nextTactic":"dsimp","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ ↑(K i)) (hxj : x ∈ ↑(K j)),\n (f i) { val := x, property := hxi } = (f j) { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) 0 =\n 0","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n ","nextTactic":"exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (i : ι), (f i) ((fun i => 0) i) = 0","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by ","nextTactic":"simp","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (x y : ↥(iSup K)),\n MulActionHom.toFun\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) }\n (x + y) =\n MulActionHom.toFun\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) }\n x +\n MulActionHom.toFun\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) }\n y","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n ","nextTactic":"dsimp","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T ���ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (x y : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ ↑(K i)) (hxj : x ∈ ↑(K j)),\n (f i) { val := x, property := hxi } = (f j) { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (x + y) =\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ ↑(K i)) (hxj : x ∈ ↑(K j)),\n (f i) { val := x, property := hxi } = (f j) { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x +\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ ↑(K i)) (hxj : x ∈ ↑(K j)),\n (f i) { val := x, property := hxi } = (f j) { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) y","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n ","nextTactic":"apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"case hopi\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (i : ι) (x y : ↑↑(K i)),\n Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) (x + y) =\n Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) x + Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) y\ncase h\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (i : ι) (x y : ↑↑(K i)), (f i) (x + y) = (f i) x + (f i) y\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ↑(iSup K) ⊆ ⋃ i, ↑(K i)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ���a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n ","nextTactic":"on_goal 3 => rw [coe_iSup_of_directed dir]","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"case hopi\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (i : ι) (x y : ↑↑(K i)),\n Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) (x + y) =\n Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) x + Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) y\ncase h\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (i : ι) (x y : ↑↑(K i)), (f i) (x + y) = (f i) x + (f i) y\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ↑(iSup K) ⊆ ⋃ i, ↑(K i)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n ","nextTactic":"on_goal 3 => rw [coe_iSup_of_directed dir]","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ↑(iSup K) ⊆ ⋃ i, ↑(K i)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => ","nextTactic":"rw [coe_iSup_of_directed dir]","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"case hopi\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (i : ι) (x y : ↑↑(K i)),\n Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) (x + y) =\n Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) x + Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) y\ncase h\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (i : ι) (x y : ↑↑(K i)), (f i) (x + y) = (f i) x + (f i) y","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n ","nextTactic":"all_goals simp","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"case hopi\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (i : ι) (x y : ↑↑(K i)),\n Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) (x + y) =\n Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) x + Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) y","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals ","nextTactic":"simp","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"case h\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (i : ι) (x y : ↑↑(K i)), (f i) (x + y) = (f i) x + (f i) y","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals ","nextTactic":"simp","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (x y : ↥(iSup K)),\n MulActionHom.toFun\n {\n toMulActionHom :=\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) },\n map_zero' :=\n (_ :\n MulActionHom.toFun\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) }\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : ↥(iSup K)),\n MulActionHom.toFun\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) }\n (x + y) =\n MulActionHom.toFun\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) }\n x +\n MulActionHom.toFun\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) }\n y) }.toMulActionHom\n (x * y) =\n MulActionHom.toFun\n {\n toMulActionHom :=\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) },\n map_zero' :=\n (_ :\n MulActionHom.toFun\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) }\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : ↥(iSup K)),\n MulActionHom.toFun\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) }\n (x + y) =\n MulActionHom.toFun\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) }\n x +\n MulActionHom.toFun\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) }\n y) }.toMulActionHom\n x *\n MulActionHom.toFun\n {\n toMulActionHom :=\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) },\n map_zero' :=\n (_ :\n MulActionHom.toFun\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) }\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : ↥(iSup K)),\n MulActionHom.toFun\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) }\n (x + y) =\n MulActionHom.toFun\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) }\n x +\n MulActionHom.toFun\n {\n toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)),\n map_smul' :=\n (_ :\n ∀ (r : R) (x : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (r • x) =\n r •\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i)\n (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } =\n (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x) }\n y) }.toMulActionHom\n y","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n ","nextTactic":"dsimp","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (x y : ↥(iSup K)),\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ ↑(K i)) (hxj : x ∈ ↑(K j)),\n (f i) { val := x, property := hxi } = (f j) { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) (x * y) =\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ ↑(K i)) (hxj : x ∈ ↑(K j)),\n (f i) { val := x, property := hxi } = (f j) { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x *\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ ↑(K i)) (hxj : x ∈ ↑(K j)),\n (f i) { val := x, property := hxi } = (f j) { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) y","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n ","nextTactic":"apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"case hopi\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (i : ι) (x y : ↑↑(K i)),\n Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) (x * y) =\n Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) x * Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) y\ncase h\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (i : ι) (x y : ↑↑(K i)), (f i) (x * y) = (f i) x * (f i) y\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ↑(iSup K) ⊆ ⋃ i, ↑(K i)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n ","nextTactic":"on_goal 3 => rw [coe_iSup_of_directed dir]","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"case hopi\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (i : ι) (x y : ↑↑(K i)),\n Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) (x * y) =\n Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) x * Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) y\ncase h\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (i : ι) (x y : ↑↑(K i)), (f i) (x * y) = (f i) x * (f i) y\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ↑(iSup K) ⊆ ⋃ i, ↑(K i)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n ","nextTactic":"on_goal 3 => rw [coe_iSup_of_directed dir]","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ↑(iSup K) ⊆ ⋃ i, ↑(K i)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => ","nextTactic":"rw [coe_iSup_of_directed dir]","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"case hopi\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (i : ι) (x y : ↑↑(K i)),\n Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) (x * y) =\n Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) x * Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) y\ncase h\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (i : ι) (x y : ↑↑(K i)), (f i) (x * y) = (f i) x * (f i) y","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n ","nextTactic":"all_goals simp","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"case hopi\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (i : ι) (x y : ↑↑(K i)),\n Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) (x * y) =\n Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) x * Set.inclusion (_ : ↑(K i) ⊆ ↑(iSup K)) y","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals ","nextTactic":"simp","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"case h\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\n⊢ ∀ (i : ι) (x y : ↑↑(K i)), (f i) (x * y) = (f i) x * (f i) y","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals ","nextTactic":"simp","declUpToTactic":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.892_0.jQvdAcOcyVirh23","decl":"/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\nT : NonUnitalSubalgebra R A\nhT : T = iSup K\ni : ι\nx : ↥(K i)\nh : K i ≤ T\n⊢ (iSupLift K dir f hf T hT) ((inclusion h) x) = (f i) x","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n ","nextTactic":"subst T","declUpToTactic":"@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.933_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\ni : ι\nx : ↥(K i)\nh : K i ≤ iSup K\n⊢ (iSupLift K dir f hf (iSup K) (_ : iSup K = iSup K)) ((inclusion h) x) = (f i) x","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n ","nextTactic":"dsimp [iSupLift]","declUpToTactic":"@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.933_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\ni : ι\nx : ↥(K i)\nh : K i ≤ iSup K\n⊢ Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } = (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) ((inclusion h) x) =\n (f i) x","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n ","nextTactic":"apply Set.iUnionLift_inclusion","declUpToTactic":"@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.933_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x "} -{"state":"case h\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\ni : ι\nx : ↥(K i)\nh : K i ≤ iSup K\n⊢ ↑(K i) ⊆ ↑(iSup K)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n ","nextTactic":"exact h","declUpToTactic":"@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.933_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\nT : NonUnitalSubalgebra R A\nhT : T = iSup K\ni : ι\nh : K i ≤ T\n⊢ NonUnitalAlgHom.comp (iSupLift K dir f hf T hT) (inclusion h) = f i","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ","nextTactic":"ext","declUpToTactic":"@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.941_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i "} -{"state":"case h\nR : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\nT : NonUnitalSubalgebra R A\nhT : T = iSup K\ni : ι\nh : K i ≤ T\nx✝ : ↥(K i)\n⊢ (NonUnitalAlgHom.comp (iSupLift K dir f hf T hT) (inclusion h)) x✝ = (f i) x✝","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; ","nextTactic":"simp","declUpToTactic":"@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.941_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\nT : NonUnitalSubalgebra R A\nhT : T = iSup K\ni : ι\nx : ↥(K i)\nhx : ↑x ∈ T\n⊢ (iSupLift K dir f hf T hT) { val := ↑x, property := hx } = (f i) x","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n ","nextTactic":"subst hT","declUpToTactic":"@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.945_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\ni : ι\nx : ↥(K i)\nhx : ↑x ∈ iSup K\n⊢ (iSupLift K dir f hf (iSup K) (_ : iSup K = iSup K)) { val := ↑x, property := hx } = (f i) x","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n ","nextTactic":"dsimp [iSupLift]","declUpToTactic":"@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.945_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\ni : ι\nx : ↥(K i)\nhx : ↑x ∈ iSup K\n⊢ Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } = (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) { val := ↑x, property := hx } =\n (f i) x","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →��ₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n dsimp [iSupLift]\n ","nextTactic":"apply Set.iUnionLift_mk","declUpToTactic":"@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n dsimp [iSupLift]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.945_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\nT : NonUnitalSubalgebra R A\nhT : T = iSup K\ni : ι\nx : ↥T\nhx : ↑x ∈ K i\n⊢ (iSupLift K dir f hf T hT) x = (f i) { val := ↑x, property := hx }","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_mk\n\ntheorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n ","nextTactic":"subst hT","declUpToTactic":"theorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.952_0.jQvdAcOcyVirh23","decl":"theorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\ni : ι\nx : ↥(iSup K)\nhx : ↑x ∈ K i\n⊢ (iSupLift K dir f hf (iSup K) (_ : iSup K = iSup K)) x = (f i) { val := ↑x, property := hx }","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_mk\n\ntheorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n subst hT\n ","nextTactic":"dsimp [iSupLift]","declUpToTactic":"theorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n subst hT\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.952_0.jQvdAcOcyVirh23","decl":"theorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ "} -{"state":"R : Type u\nA : Type v\nB : Type w\ninst✝⁹ : CommSemiring R\ninst✝⁸ : NonUnitalNonAssocSemiring A\ninst✝⁷ : Module R A\ninst✝⁶ : IsScalarTower R A A\ninst✝⁵ : SMulCommClass R A A\ninst✝⁴ : NonUnitalNonAssocSemiring B\ninst✝³ : Module R B\ninst✝² : IsScalarTower R B B\ninst✝¹ : SMulCommClass R B B\nS : NonUnitalSubalgebra R A\nι : Type u_1\ninst✝ : Nonempty ι\nK : ι → NonUnitalSubalgebra R A\ndir : Directed (fun x x_1 => x ≤ x_1) K\nf : (i : ι) → ↥(K i) →ₙₐ[R] B\nhf : ∀ (i j : ι) (h : K i ≤ K j), f i = NonUnitalAlgHom.comp (f j) (inclusion h)\ni : ι\nx : ↥(iSup K)\nhx : ↑x ∈ K i\n⊢ Set.iUnionLift (fun i => ↑(K i)) (fun i x => (f i) x)\n (_ :\n ∀ (i j : ι) (x : A) (hxi : x ∈ (fun i => ↑(K i)) i) (hxj : x ∈ (fun i => ↑(K i)) j),\n (fun i x => (f i) x) i { val := x, property := hxi } = (fun i x => (f i) x) j { val := x, property := hxj })\n ↑(iSup K) (_ : ↑(iSup K) ⊆ ⋃ i, ↑(K i)) x =\n (f i) { val := ↑x, property := hx }","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_mk\n\ntheorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n subst hT\n dsimp [iSupLift]\n ","nextTactic":"apply Set.iUnionLift_of_mem","declUpToTactic":"theorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n subst hT\n dsimp [iSupLift]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.952_0.jQvdAcOcyVirh23","decl":"theorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ "} -{"state":"R : Type u_1\nA : Type u_2\ninst✝⁴ : CommSemiring R\ninst✝³ : NonUnitalNonAssocSemiring A\ninst✝² : Module R A\ninst✝¹ : IsScalarTower R A A\ninst✝ : SMulCommClass R A A\nr : R\na : A\nha : a ∈ Set.center A\nb : A\n⊢ r • a * b = b * r • a","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_mk\n\ntheorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_of_mem\n\nend SuprLift\n\nend NonAssoc\n\nsection Center\n\nsection NonUnitalNonAssocSemiring\nvariable {R A : Type*}\nvariable [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [IsScalarTower R A A] [SMulCommClass R A A]\n\ntheorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by ","nextTactic":"rw [mul_smul_comm, smul_mul_assoc, ha.comm]","declUpToTactic":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.969_0.jQvdAcOcyVirh23","decl":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b "} -{"state":"R : Type u_1\nA : Type u_2\ninst✝⁴ : CommSemiring R\ninst✝³ : NonUnitalNonAssocSemiring A\ninst✝² : Module R A\ninst✝¹ : IsScalarTower R A A\ninst✝ : SMulCommClass R A A\nr : R\na : A\nha : a ∈ Set.center A\nb c : A\n⊢ r • a * (b * c) = r • a * b * c","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (��� : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_mk\n\ntheorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_of_mem\n\nend SuprLift\n\nend NonAssoc\n\nsection Center\n\nsection NonUnitalNonAssocSemiring\nvariable {R A : Type*}\nvariable [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [IsScalarTower R A A] [SMulCommClass R A A]\n\ntheorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by ","nextTactic":"rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]","declUpToTactic":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.969_0.jQvdAcOcyVirh23","decl":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b "} -{"state":"R : Type u_1\nA : Type u_2\ninst✝⁴ : CommSemiring R\ninst✝³ : NonUnitalNonAssocSemiring A\ninst✝² : Module R A\ninst✝¹ : IsScalarTower R A A\ninst✝ : SMulCommClass R A A\nr : R\na : A\nha : a ∈ Set.center A\nb c : A\n⊢ b * r • a * c = b * (r • a * c)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (��� : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_mk\n\ntheorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_of_mem\n\nend SuprLift\n\nend NonAssoc\n\nsection Center\n\nsection NonUnitalNonAssocSemiring\nvariable {R A : Type*}\nvariable [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [IsScalarTower R A A] [SMulCommClass R A A]\n\ntheorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n ","nextTactic":"rw [mul_smul_comm]","declUpToTactic":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.969_0.jQvdAcOcyVirh23","decl":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b "} -{"state":"R : Type u_1\nA : Type u_2\ninst✝⁴ : CommSemiring R\ninst✝³ : NonUnitalNonAssocSemiring A\ninst✝² : Module R A\ninst✝¹ : IsScalarTower R A A\ninst✝ : SMulCommClass R A A\nr : R\na : A\nha : a ∈ Set.center A\nb c : A\n⊢ r • (b * a) * c = b * (r • a * c)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙ��[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_mk\n\ntheorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_of_mem\n\nend SuprLift\n\nend NonAssoc\n\nsection Center\n\nsection NonUnitalNonAssocSemiring\nvariable {R A : Type*}\nvariable [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [IsScalarTower R A A] [SMulCommClass R A A]\n\ntheorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n rw [mul_smul_comm]\n ","nextTactic":"rw [smul_mul_assoc]","declUpToTactic":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n rw [mul_smul_comm]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.969_0.jQvdAcOcyVirh23","decl":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b "} -{"state":"R : Type u_1\nA : Type u_2\ninst✝⁴ : CommSemiring R\ninst✝³ : NonUnitalNonAssocSemiring A\ninst✝² : Module R A\ninst✝¹ : IsScalarTower R A A\ninst✝ : SMulCommClass R A A\nr : R\na : A\nha : a ∈ Set.center A\nb c : A\n⊢ r • (b * a * c) = b * (r • a * c)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →���ₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_mk\n\ntheorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_of_mem\n\nend SuprLift\n\nend NonAssoc\n\nsection Center\n\nsection NonUnitalNonAssocSemiring\nvariable {R A : Type*}\nvariable [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [IsScalarTower R A A] [SMulCommClass R A A]\n\ntheorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n rw [mul_smul_comm]\n rw [smul_mul_assoc]\n ","nextTactic":"rw [smul_mul_assoc]","declUpToTactic":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n rw [mul_smul_comm]\n rw [smul_mul_assoc]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.969_0.jQvdAcOcyVirh23","decl":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b "} -{"state":"R : Type u_1\nA : Type u_2\ninst✝⁴ : CommSemiring R\ninst✝³ : NonUnitalNonAssocSemiring A\ninst✝² : Module R A\ninst✝¹ : IsScalarTower R A A\ninst✝ : SMulCommClass R A A\nr : R\na : A\nha : a ∈ Set.center A\nb c : A\n⊢ r • (b * a * c) = b * r • (a * c)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_mk\n\ntheorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_of_mem\n\nend SuprLift\n\nend NonAssoc\n\nsection Center\n\nsection NonUnitalNonAssocSemiring\nvariable {R A : Type*}\nvariable [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [IsScalarTower R A A] [SMulCommClass R A A]\n\ntheorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n rw [mul_smul_comm]\n rw [smul_mul_assoc]\n rw [smul_mul_assoc]\n ","nextTactic":"rw [mul_smul_comm]","declUpToTactic":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n rw [mul_smul_comm]\n rw [smul_mul_assoc]\n rw [smul_mul_assoc]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.969_0.jQvdAcOcyVirh23","decl":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b "} -{"state":"R : Type u_1\nA : Type u_2\ninst✝⁴ : CommSemiring R\ninst✝³ : NonUnitalNonAssocSemiring A\ninst✝² : Module R A\ninst✝¹ : IsScalarTower R A A\ninst✝ : SMulCommClass R A A\nr : R\na : A\nha : a ∈ Set.center A\nb c : A\n⊢ r • (b * a * c) = r • (b * (a * c))","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_mk\n\ntheorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_of_mem\n\nend SuprLift\n\nend NonAssoc\n\nsection Center\n\nsection NonUnitalNonAssocSemiring\nvariable {R A : Type*}\nvariable [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [IsScalarTower R A A] [SMulCommClass R A A]\n\ntheorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n rw [mul_smul_comm]\n rw [smul_mul_assoc]\n rw [smul_mul_assoc]\n rw [mul_smul_comm]\n ","nextTactic":"rw [ha.mid_assoc]","declUpToTactic":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n rw [mul_smul_comm]\n rw [smul_mul_assoc]\n rw [smul_mul_assoc]\n rw [mul_smul_comm]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.969_0.jQvdAcOcyVirh23","decl":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b "} -{"state":"R : Type u_1\nA : Type u_2\ninst✝⁴ : CommSemiring R\ninst✝³ : NonUnitalNonAssocSemiring A\ninst✝² : Module R A\ninst✝¹ : IsScalarTower R A A\ninst✝ : SMulCommClass R A A\nr : R\na : A\nha : a ∈ Set.center A\nb c : A\n⊢ b * c * r • a = b * (c * r • a)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_mk\n\ntheorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_of_mem\n\nend SuprLift\n\nend NonAssoc\n\nsection Center\n\nsection NonUnitalNonAssocSemiring\nvariable {R A : Type*}\nvariable [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [IsScalarTower R A A] [SMulCommClass R A A]\n\ntheorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n rw [mul_smul_comm]\n rw [smul_mul_assoc]\n rw [smul_mul_assoc]\n rw [mul_smul_comm]\n rw [ha.mid_assoc]\n right_assoc b c := by\n ","nextTactic":"rw [mul_smul_comm]","declUpToTactic":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n rw [mul_smul_comm]\n rw [smul_mul_assoc]\n rw [smul_mul_assoc]\n rw [mul_smul_comm]\n rw [ha.mid_assoc]\n right_assoc b c := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.969_0.jQvdAcOcyVirh23","decl":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b "} -{"state":"R : Type u_1\nA : Type u_2\ninst✝⁴ : CommSemiring R\ninst✝³ : NonUnitalNonAssocSemiring A\ninst✝² : Module R A\ninst✝¹ : IsScalarTower R A A\ninst✝ : SMulCommClass R A A\nr : R\na : A\nha : a ∈ Set.center A\nb c : A\n⊢ r • (b * c * a) = b * (c * r • a)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ��� {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_mk\n\ntheorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_of_mem\n\nend SuprLift\n\nend NonAssoc\n\nsection Center\n\nsection NonUnitalNonAssocSemiring\nvariable {R A : Type*}\nvariable [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [IsScalarTower R A A] [SMulCommClass R A A]\n\ntheorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n rw [mul_smul_comm]\n rw [smul_mul_assoc]\n rw [smul_mul_assoc]\n rw [mul_smul_comm]\n rw [ha.mid_assoc]\n right_assoc b c := by\n rw [mul_smul_comm]\n ","nextTactic":"rw [mul_smul_comm]","declUpToTactic":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n rw [mul_smul_comm]\n rw [smul_mul_assoc]\n rw [smul_mul_assoc]\n rw [mul_smul_comm]\n rw [ha.mid_assoc]\n right_assoc b c := by\n rw [mul_smul_comm]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.969_0.jQvdAcOcyVirh23","decl":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b "} -{"state":"R : Type u_1\nA : Type u_2\ninst✝⁴ : CommSemiring R\ninst✝³ : NonUnitalNonAssocSemiring A\ninst✝² : Module R A\ninst✝¹ : IsScalarTower R A A\ninst✝ : SMulCommClass R A A\nr : R\na : A\nha : a ∈ Set.center A\nb c : A\n⊢ r • (b * c * a) = b * r • (c * a)","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_mk\n\ntheorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_of_mem\n\nend SuprLift\n\nend NonAssoc\n\nsection Center\n\nsection NonUnitalNonAssocSemiring\nvariable {R A : Type*}\nvariable [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [IsScalarTower R A A] [SMulCommClass R A A]\n\ntheorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n rw [mul_smul_comm]\n rw [smul_mul_assoc]\n rw [smul_mul_assoc]\n rw [mul_smul_comm]\n rw [ha.mid_assoc]\n right_assoc b c := by\n rw [mul_smul_comm]\n rw [mul_smul_comm]\n ","nextTactic":"rw [mul_smul_comm]","declUpToTactic":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n rw [mul_smul_comm]\n rw [smul_mul_assoc]\n rw [smul_mul_assoc]\n rw [mul_smul_comm]\n rw [ha.mid_assoc]\n right_assoc b c := by\n rw [mul_smul_comm]\n rw [mul_smul_comm]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.969_0.jQvdAcOcyVirh23","decl":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b "} -{"state":"R : Type u_1\nA : Type u_2\ninst✝⁴ : CommSemiring R\ninst✝³ : NonUnitalNonAssocSemiring A\ninst✝² : Module R A\ninst✝¹ : IsScalarTower R A A\ninst✝ : SMulCommClass R A A\nr : R\na : A\nha : a ∈ Set.center A\nb c : A\n⊢ r • (b * c * a) = r • (b * (c * a))","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_mk\n\ntheorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_of_mem\n\nend SuprLift\n\nend NonAssoc\n\nsection Center\n\nsection NonUnitalNonAssocSemiring\nvariable {R A : Type*}\nvariable [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [IsScalarTower R A A] [SMulCommClass R A A]\n\ntheorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n rw [mul_smul_comm]\n rw [smul_mul_assoc]\n rw [smul_mul_assoc]\n rw [mul_smul_comm]\n rw [ha.mid_assoc]\n right_assoc b c := by\n rw [mul_smul_comm]\n rw [mul_smul_comm]\n rw [mul_smul_comm]\n ","nextTactic":"rw [ha.right_assoc]","declUpToTactic":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n rw [mul_smul_comm]\n rw [smul_mul_assoc]\n rw [smul_mul_assoc]\n rw [mul_smul_comm]\n rw [ha.mid_assoc]\n right_assoc b c := by\n rw [mul_smul_comm]\n rw [mul_smul_comm]\n rw [mul_smul_comm]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.969_0.jQvdAcOcyVirh23","decl":"theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b "} -{"state":"R : Type u_1\nA : Type u_2\ninst✝⁴ : CommSemiring R\ninst✝³ : NonUnitalSemiring A\ninst✝² : Module R A\ninst✝¹ : IsScalarTower R A A\ninst✝ : SMulCommClass R A A\ns : Set A\nr : R\na : A\nha : a ∈ Set.centralizer s\nx : A\nhx : x ∈ s\n⊢ x * r • a = r • a * x","srcUpToTactic":"/-\nCopyright (c) 2023 Jireh Loreaux. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Jireh Loreaux\n-/\nimport Mathlib.Algebra.Algebra.NonUnitalHom\nimport Mathlib.Data.Set.UnionLift\nimport Mathlib.LinearAlgebra.Finsupp\nimport Mathlib.RingTheory.NonUnitalSubring.Basic\n\n/-!\n# Non-unital Subalgebras over Commutative Semirings\n\nIn this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).\n\n## TODO\n\n* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a\n non-unital subalgebra on the larger algebra.\n-/\n\nuniverse u u' v v' w w'\n\nopen scoped BigOperators\n\nsection NonUnitalSubalgebraClass\n\nvariable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)\n\nnamespace NonUnitalSubalgebraClass\n\n/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/\ndef subtype (s : S) : s →ₙₐ[R] A :=\n { NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }\n\n@[simp]\ntheorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=\n rfl\n\nend NonUnitalSubalgebraClass\n\nend NonUnitalSubalgebraClass\n\n/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/\nstructure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]\n [NonUnitalNonAssocSemiring A] [Module R A]\n extends NonUnitalSubsemiring A, Submodule R A : Type v\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/\nadd_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring\n\n/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/\nadd_decl_doc NonUnitalSubalgebra.toSubmodule\n\nnamespace NonUnitalSubalgebra\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\n\nsection NonUnitalNonAssocSemiring\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance : SetLike (NonUnitalSubalgebra R A) A\n where\n coe s := s.carrier\n coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h\n\ninstance instNonUnitalSubsemiringClass : NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A\n where\n add_mem {s} := s.add_mem'\n mul_mem {s} := s.mul_mem'\n zero_mem {s} := s.zero_mem'\n\ninstance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where\n smul_mem := @fun s => s.smul_mem'\n\ntheorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=\n Iff.rfl\n\n@[ext]\ntheorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=\n SetLike.ext h\n\n@[simp]\ntheorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubsemiring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubsemiring_injective :\n Function.Injective\n (toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=\n fun S T h =>\n ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]\n\ntheorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=\n toNonUnitalSubsemiring_injective.eq_iff\n\ntheorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=\n rfl\n\ntheorem toSubmodule_injective :\n Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>\n ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]\n\ntheorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=\n toSubmodule_injective.eq_iff\n\n/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.\nUseful to fix definitional equalities. -/\nprotected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.copy s hs with\n smul_mem' := fun r a (ha : a ∈ s) => by\n show r • a ∈ s\n rw [hs] at ha ⊢\n exact S.smul_mem' r ha }\n\n@[simp]\ntheorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :\n (S.copy s hs : Set A) = s :=\n rfl\n\ntheorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=\n SetLike.coe_injective hs\n\ninstance (S : NonUnitalSubalgebra R A) : Inhabited S :=\n ⟨(0 : S.toNonUnitalSubsemiring)⟩\n\nend NonUnitalNonAssocSemiring\n\nsection NonUnitalNonAssocRing\nvariable [CommRing R]\nvariable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]\nvariable [Module R A] [Module R B] [Module R C]\n\ninstance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=\n { NonUnitalSubalgebra.instNonUnitalSubsemiringClass with\n neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }\n\n/-- A non-unital subalgebra over a ring is also a `Subring`. -/\ndef toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where\n toNonUnitalSubsemiring := S.toNonUnitalSubsemiring\n neg_mem' := neg_mem (s := S)\n\n@[simp]\ntheorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :\n x ∈ S.toNonUnitalSubring ↔ x ∈ S :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :\n (↑S.toNonUnitalSubring : Set A) = S :=\n rfl\n\ntheorem toNonUnitalSubring_injective :\n Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=\n fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]\n\ntheorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=\n toNonUnitalSubring_injective.eq_iff\n\nend NonUnitalNonAssocRing\n\nsection\n\n/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`\ncoercions. -/\n\n\ninstance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=\n inferInstance\n\ninstance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=\n inferInstance\n\ninstance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=\n inferInstance\n\ninstance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=\n inferInstance\n\ninstance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalRing S :=\n inferInstance\n\ninstance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]\n (S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=\n inferInstance\n\nend\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/\ndef toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o Submodule R A where\n toEmbedding :=\n { toFun := fun S => S.toSubmodule\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubsemiring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\n/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an\n`OrderEmbedding` -/\ndef toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :\n NonUnitalSubalgebra R A ↪o NonUnitalSubring A where\n toEmbedding :=\n { toFun := fun S => S.toNonUnitalSubring\n inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }\n map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe\n\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]\nvariable [Module R A] [Module R B] [Module R C]\nvariable {S : NonUnitalSubalgebra R A}\n\nsection\n\n/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/\n\ninstance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=\n SMulMemClass.toModule' _ R' R A S\n\ninstance instModule : Module R S :=\n S.instModule'\n\ninstance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :\n IsScalarTower R' R S :=\n S.toSubmodule.isScalarTower\n\ninstance [IsScalarTower R A A] : IsScalarTower R S S where\n smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)\n\ninstance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]\n [SMulCommClass R' R A] : SMulCommClass R' R S where\n smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)\n\ninstance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where\n smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)\n\ninstance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=\n ⟨fun {c x} h =>\n have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)\n this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩\n\nend\n\nprotected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=\n rfl\n\nprotected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=\n rfl\n\nprotected theorem coe_zero : ((0 : S) : A) = 0 :=\n rfl\n\nprotected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=\n rfl\n\nprotected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :\n ↑(r • x) = r • (x : A) :=\n rfl\n\nprotected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=\n ZeroMemClass.coe_eq_zero\n\n@[simp]\ntheorem toNonUnitalSubsemiring_subtype :\n NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n@[simp]\ntheorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n (S : NonUnitalSubalgebra R A) :\n NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=\n rfl\n\n/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,\nwe define it as a `LinearEquiv` to avoid type equalities. -/\ndef toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=\n LinearEquiv.ofEq _ _ rfl\n\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- Transport a non-unital subalgebra via an algebra homomorphism. -/\ndef map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=\n { S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with\n smul_mem' := fun r b hb => by\n rcases hb with ⟨a, ha, rfl⟩\n exact map_smul f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }\n\ntheorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :\n S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=\n Set.image_subset f\n\ntheorem map_injective {f : F} (hf : Function.Injective f) :\n Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=\n fun _S₁ _S₂ ih =>\n ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih\n\n@[simp]\ntheorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=\n SetLike.coe_injective <| Set.image_id _\n\ntheorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :\n (S.map f).map g = S.map (g.comp f) :=\n SetLike.coe_injective <| Set.image_image _ _ _\n\n@[simp]\ntheorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=\n NonUnitalSubsemiring.mem_map\n\ntheorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :\n -- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`\n (map f S).toSubmodule = Submodule.map ((↑f : A →+[R] B) : A →ₗ[R] B) S.toSubmodule :=\n SetLike.coe_injective rfl\n\ntheorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :\n (map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=\n rfl\n\n/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/\ndef comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=\n { S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with\n smul_mem' := fun r a (ha : f a ∈ S) =>\n show f (r • a) ∈ S from (map_smul f r a).symm ▸ SMulMemClass.smul_mem r ha }\n\ntheorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :\n map f S ≤ U ↔ S ≤ comap f U :=\n Set.image_subset_iff\n\ntheorem gc_map_comap (f : F) :\n GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=\n fun _ _ => map_le\n\n@[simp]\ntheorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=\n Iff.rfl\n\n@[simp, norm_cast]\ntheorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=\n rfl\n\ninstance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]\n [Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=\n NonUnitalSubsemiringClass.noZeroDivisors S\n\nend NonUnitalSubalgebra\n\nnamespace Submodule\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\n\n/-- A submodule closed under multiplication is a non-unital subalgebra. -/\ndef toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :\n NonUnitalSubalgebra R A :=\n { p with\n mul_mem' := h_mul _ _ }\n\n@[simp]\ntheorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :\n x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=\n Iff.rfl\n\n@[simp]\ntheorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul : Set A) = p :=\n rfl\n\ntheorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :\n p.toNonUnitalSubalgebra hmul =\n NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=\n rfl\n\n@[simp]\ntheorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :\n (p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=\n SetLike.coe_injective rfl\n\n@[simp]\ntheorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :\n (S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=\n SetLike.coe_injective rfl\n\nend Submodule\n\nnamespace NonUnitalAlgHom\n\nvariable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]\nvariable [NonUnitalNonAssocSemiring C] [Module R C] [NonUnitalAlgHomClass F R A B]\n\n/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/\nprotected def range (φ : F) : NonUnitalSubalgebra R B where\n toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)\n smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩\n\n@[simp]\ntheorem mem_range (φ : F) {y : B} :\n y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=\n NonUnitalRingHom.mem_srange\n\ntheorem mem_range_self (φ : F) (x : A) :\n φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=\n (NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩\n\n@[simp]\ntheorem coe_range (φ : F) :\n ((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by\n ext\n rw [SetLike.mem_coe]\n rw [mem_range]\n rfl\n\ntheorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=\n SetLike.coe_injective (Set.range_comp g f)\n\ntheorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :\n NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=\n SetLike.coe_mono (Set.range_comp_subset_range f g)\n\n/-- Restrict the codomain of a non-unital algebra homomorphism. -/\ndef codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=\n { NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with\n map_smul' := fun r a => Subtype.ext <| map_smul f r a }\n\n@[simp]\ntheorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n (NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=\n NonUnitalAlgHom.ext fun _ => rfl\n\n@[simp]\ntheorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :\n ↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=\n rfl\n\ntheorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :\n Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=\n ⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩\n\n/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.\n\nThis is the bundled version of `Set.rangeFactorization`. -/\n@[reducible]\ndef rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=\n NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)\n\n/-- The equalizer of two non-unital `R`-algebra homomorphisms -/\ndef equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A\n where\n carrier := {a | (ϕ a : B) = ψ a}\n zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]\n add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_add]\n rw [map_add]\n rw [hx]\n rw [hy]\n mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by\n rw [Set.mem_setOf_eq]\n rw [map_mul]\n rw [map_mul]\n rw [hx]\n rw [hy]\n smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]\n\n@[simp]\ntheorem mem_equalizer (φ ψ : F) (x : A) :\n x ∈ @NonUnitalAlgHom.equalizer F R A B _ _ _ _ _ _ φ ψ ↔ φ x = ψ x :=\n Iff.rfl\n\n/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.\n\nNote that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/\ninstance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :\n Fintype (@NonUnitalAlgHom.range F R A B _ _ _ _ _ _ φ) :=\n Set.fintypeRange φ\n\nend NonUnitalAlgHom\n\nnamespace NonUnitalAlgebra\n\nvariable {F : Type*} (R : Type u) {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable [NonUnitalAlgHomClass F R A B]\n\n/-- The minimal non-unital subalgebra that includes `s`. -/\ndef adjoin (s : Set A) : NonUnitalSubalgebra R A :=\n { Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with\n mul_mem' :=\n @fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))\n (hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>\n show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by\n refine' Submodule.span_induction ha _ _ _ _\n · refine' Submodule.span_induction hb _ _ _ _\n · exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y\n (hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)\n · exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _\n · exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)\n · exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)\n · exact (zero_mul b).symm ▸ Submodule.zero_mem _\n · exact fun x y => (add_mul x y b).symm ▸ add_mem\n · exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }\n\ntheorem adjoin_toSubmodule (s : Set A) :\n (adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=\n rfl\n\n@[aesop safe 20 apply (rule_sets [SetLike])]\ntheorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=\n NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span\n\ntheorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=\n NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)\n\nvariable {R}\n\n/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the\n`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/\ntheorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)\n (Hs : ∀ x ∈ s, p x) (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Submodule.span_induction h\n (fun _a ha => NonUnitalSubsemiring.closure_induction ha Hs H0 Hadd Hmul) H0 Hadd Hsmul\n\ntheorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)\n (hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)\n (H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)\n (Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))\n (Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)\n (Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))\n (Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)\n (Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=\n Submodule.span_induction₂ ha hb\n (fun _x hx _y hy =>\n NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right\n Hmul_left Hmul_right)\n H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right\n\n/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/\nlemma adjoin_induction' {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)\n (Hs : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)\n (Hadd : ∀ x y, p x → p y → p (x + y)) (H0 : p 0)\n (Hmul : ∀ x y, p x → p y → p (x * y)) (Hsmul : ∀ (r : R) x, p x → p (r • x)) : p a :=\n Subtype.recOn a <| fun b hb => by\n refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)\n apply adjoin_induction hb\n · exact fun x hx => ⟨subset_adjoin R hx, Hs x hx⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨add_mem hx' hy', Hadd _ _ hx hy⟩\n · exact ⟨_, H0⟩\n · exact fun x y hx hy => Exists.elim hx <| fun hx' hx => Exists.elim hy <| fun hy' hy =>\n ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩\n · exact fun r x hx => Exists.elim hx <| fun hx' hx =>\n ⟨SMulMemClass.smul_mem r hx', Hsmul r _ hx⟩\n\nprotected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=\n fun s S =>\n ⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,\n fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|\n show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from\n NonUnitalSubsemiring.closure_le.2 H⟩\n\n/-- Galois insertion between `adjoin` and `Subtype.val`. -/\nprotected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑)\n where\n choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs\n gc := NonUnitalAlgebra.gc\n le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl\n choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _\n\ninstance : CompleteLattice (NonUnitalSubalgebra R A) :=\n GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi\n\ntheorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=\n NonUnitalAlgebra.gc.l_le hs\n\ntheorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=\n NonUnitalAlgebra.gc _ _\n\ntheorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=\n (NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup\n\nvariable (R A)\n\n@[simp]\ntheorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=\n show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc\n\n@[simp]\ntheorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=\n eq_top_iff.2 fun _x hx => subset_adjoin R hx\n\nvariable {R A}\n\n@[simp]\ntheorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=\n rfl\n\n@[simp]\ntheorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=\n Set.mem_univ x\n\n@[simp]\ntheorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=\n rfl\n\n@[simp]\ntheorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] :\n (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=\n rfl\n\n@[simp]\ntheorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule\n\n@[simp]\ntheorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :\n S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring\n\n@[simp]\ntheorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]\n {S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=\n NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring\n\ntheorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_left\n\ntheorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by\n rw [← SetLike.le_def]\n exact le_sup_right\n\ntheorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :\n x * y ∈ S ⊔ T :=\n mul_mem (mem_sup_left hx) (mem_sup_right hy)\n\ntheorem map_sup (f : F) (S T : NonUnitalSubalgebra R A) :\n ((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=\n (@NonUnitalSubalgebra.gc_map_comap F R A B _ _ _ _ _ _ f).l_sup\n\n@[simp, norm_cast]\ntheorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=\n rfl\n\n@[simp]\ntheorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=\n Iff.rfl\n\n@[simp]\ntheorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=\n rfl\n\n@[simp]\ntheorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :\n (S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=\n rfl\n\n@[simp, norm_cast]\ntheorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=\n sInf_image\n\ntheorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by\n simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]\n\n@[simp]\ntheorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp]\ntheorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :\n (sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=\n SetLike.coe_injective <| by simp\n\n@[simp, norm_cast]\ntheorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :\n (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]\n\ntheorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :\n (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_range_iff]\n\n@[simp]\ntheorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :\n (⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=\n SetLike.coe_injective <| by simp\n\ninstance : Inhabited (NonUnitalSubalgebra R A) :=\n ⟨⊥⟩\n\ntheorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=\n show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by\n rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,\n Submodule.span_zero_singleton, Submodule.mem_bot]\n\ntheorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by\n ext\n simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]\n\n@[simp]\ntheorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by\n simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]\n\ntheorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=\n ⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩\n\ntheorem range_top_iff_surjective (f : A →ₙₐ[R] B) :\n NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=\n NonUnitalAlgebra.eq_top_iff\n\n@[simp]\ntheorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=\n SetLike.coe_injective Set.range_id\n\n@[simp]\ntheorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=\n SetLike.coe_injective Set.image_univ\n\n@[simp]\ntheorem map_bot (f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=\n SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]\n\n@[simp]\ntheorem comap_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=\n eq_top_iff.2 fun _ => mem_top\n\n/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/\ndef toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=\n NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top\n\nend NonUnitalAlgebra\n\nnamespace NonUnitalSubalgebra\n\nopen NonUnitalAlgebra\n\nsection NonAssoc\n\nvariable {R : Type u} {A : Type v} {B : Type w}\nvariable [CommSemiring R]\nvariable [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]\nvariable [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B]\nvariable (S : NonUnitalSubalgebra R A)\n\ninstance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=\n ⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩\n\ninstance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :\n Subsingleton (A →ₙₐ[R] B) :=\n ⟨fun f g =>\n NonUnitalAlgHom.ext fun a =>\n have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=\n Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top\n (mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩\n\ntheorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=\n ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val\n\n/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.\n\nThis is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/\ndef inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T\n where\n toFun := Set.inclusion h\n map_add' _ _ := rfl\n map_mul' _ _ := rfl\n map_zero' := rfl\n map_smul' _ _ := rfl\n\ntheorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :\n Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj\n\n@[simp]\ntheorem inclusion_self {S : NonUnitalSubalgebra R A} :\n inclusion (le_refl S) = NonUnitalAlgHom.id R S :=\n NonUnitalAlgHom.ext fun _ => Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :\n inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=\n rfl\n\ntheorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :\n inclusion h ⟨x, m⟩ = x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :\n inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=\n Subtype.ext rfl\n\n@[simp]\ntheorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :\n (inclusion h s : A) = s :=\n rfl\n\nsection Prod\n\nvariable (S₁ : NonUnitalSubalgebra R B)\n\n/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/\ndef prod : NonUnitalSubalgebra R (A × B) :=\n { S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with\n carrier := S ×ˢ S₁\n smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }\n\n@[simp]\ntheorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=\n rfl\n\ntheorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=\n rfl\n\n@[simp]\ntheorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :\n x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=\n Set.mem_prod\n\n@[simp]\ntheorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp\n\ntheorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=\n Set.prod_mono\n\n@[simp]\ntheorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :\n S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=\n SetLike.coe_injective Set.prod_inter_prod\n\nend Prod\n\nsection SuprLift\n\nvariable {ι : Type*}\n\ntheorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}\n (dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=\n let K : NonUnitalSubalgebra R A :=\n { __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm\n smul_mem' := fun r _x hx ↦\n let ⟨i, hi⟩ := Set.mem_iUnion.1 hx\n Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }\n have : iSup S = K := le_antisymm\n (iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)\n this.symm ▸ rfl\n\n/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining\nit on each non-unital subalgebra, and proving that it agrees on the intersection of\nnon-unital subalgebras. -/\nnoncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)\n (f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))\n (T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by\n subst hT\n exact\n { toFun :=\n Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)\n (fun i j x hxi hxj => by\n let ⟨k, hik, hjk⟩ := dir i j\n simp only\n rw [hf i k hik]\n rw [hf j k hjk]\n rfl)\n (↑(iSup K)) (by rw [coe_iSup_of_directed dir])\n map_zero' := by\n dsimp\n exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)\n map_mul' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_add' := by\n dsimp\n apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))\n on_goal 3 => rw [coe_iSup_of_directed dir]\n all_goals simp\n map_smul' := fun r => by\n dsimp\n apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)\n (fun _ _ => rfl)\n on_goal 2 => rw [coe_iSup_of_directed dir]\n all_goals simp }\n\nvariable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}\n {f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}\n {T : NonUnitalSubalgebra R A} {hT : T = iSup K}\n\n@[simp]\ntheorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :\n iSupLift K dir f hf T hT (inclusion h x) = f i x := by\n subst T\n dsimp [iSupLift]\n apply Set.iUnionLift_inclusion\n exact h\n\n@[simp]\ntheorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :\n (iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp\n\n@[simp]\ntheorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :\n iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_mk\n\ntheorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :\n iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by\n subst hT\n dsimp [iSupLift]\n apply Set.iUnionLift_of_mem\n\nend SuprLift\n\nend NonAssoc\n\nsection Center\n\nsection NonUnitalNonAssocSemiring\nvariable {R A : Type*}\nvariable [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]\nvariable [IsScalarTower R A A] [SMulCommClass R A A]\n\ntheorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :\n r • a ∈ Set.center A where\n comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]\n left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]\n mid_assoc b c := by\n rw [mul_smul_comm]\n rw [smul_mul_assoc]\n rw [smul_mul_assoc]\n rw [mul_smul_comm]\n rw [ha.mid_assoc]\n right_assoc b c := by\n rw [mul_smul_comm]\n rw [mul_smul_comm]\n rw [mul_smul_comm]\n rw [ha.right_assoc]\n\nvariable (R A) in\n/-- The center of a non-unital algebra is the set of elements which commute with every element.\nThey form a non-unital subalgebra. -/\ndef center : NonUnitalSubalgebra R A :=\n { NonUnitalSubsemiring.center A with smul_mem' := Set.smul_mem_center }\n\ntheorem coe_center : (center R A : Set A) = Set.center A :=\n rfl\n\n/-- The center of a non-unital algebra is a commutative and associative -/\ninstance center.instNonUnitalCommSemiring : NonUnitalCommSemiring (center R A) :=\n NonUnitalSubsemiring.center.instNonUnitalCommSemiring _\n\ninstance center.instNonUnitalCommRing {A : Type*} [NonUnitalNonAssocRing A] [Module R A]\n [IsScalarTower R A A] [SMulCommClass R A A] : NonUnitalCommRing (center R A) :=\n NonUnitalSubring.center.instNonUnitalCommRing _\n\n@[simp]\ntheorem center_toNonUnitalSubsemiring :\n (center R A).toNonUnitalSubsemiring = NonUnitalSubsemiring.center A :=\n rfl\n\n@[simp] lemma center_toNonUnitalSubring (R A : Type*) [CommRing R] [NonUnitalRing A]\n [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] :\n (center R A).toNonUnitalSubring = NonUnitalSubring.center A :=\n rfl\n\nend NonUnitalNonAssocSemiring\n\nvariable (R A : Type*) [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A]\n [SMulCommClass R A A]\n\n-- no instance diamond, as the `npow` field isn't present in the non-unital case.\nexample :\n center.instNonUnitalCommSemiring.toNonUnitalSemiring =\n NonUnitalSubsemiringClass.toNonUnitalSemiring (center R A) :=\n rfl\n\n@[simp]\ntheorem center_eq_top (A : Type*) [NonUnitalCommSemiring A] [Module R A] [IsScalarTower R A A]\n [SMulCommClass R A A] : center R A = ⊤ :=\n SetLike.coe_injective (Set.center_eq_univ A)\n\nvariable {R A}\n\ntheorem mem_center_iff {a : A} : a ∈ center R A ↔ ∀ b : A, b * a = a * b :=\n Subsemigroup.mem_center_iff\n\nend Center\n\nsection Centralizer\n\nvariable {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A]\n [SMulCommClass R A A]\n\n@[simp]\ntheorem _root_.Set.smul_mem_centralizer {s : Set A} (r : R) {a : A} (ha : a ∈ s.centralizer) :\n r • a ∈ s.centralizer :=\n fun x hx => by ","nextTactic":"rw [mul_smul_comm, smul_mul_assoc, ha x hx]","declUpToTactic":"@[simp]\ntheorem _root_.Set.smul_mem_centralizer {s : Set A} (r : R) {a : A} (ha : a ∈ s.centralizer) :\n r • a ∈ s.centralizer :=\n fun x hx => by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_Algebra_NonUnitalSubalgebra.1040_0.jQvdAcOcyVirh23","decl":"@[simp]\ntheorem _root_.Set.smul_mem_centralizer {s : Set A} (r : R) {a : A} (ha : a ∈ s.centralizer) :\n r • a ∈ s.centralizer "}