ntp-mathlib / Extracted /Mathlib /TacticPrediction /Mathlib_Algebra_BigOperators_NatAntidiagonal.jsonl
wellecks's picture
Upload folder using huggingface_hub
01d1bb5 verified
raw
history blame
26 kB
{"state":"M : Type u_1\nN : Type u_2\ninst✝¹ : CommMonoid M\ninst✝ : AddCommMonoid N\nn : β„•\nf : β„• Γ— β„• β†’ M\n⊒ ∏ p in antidiagonal (n + 1), f p = f (0, n + 1) * ∏ p in antidiagonal n, f (p.1 + 1, p.2)","srcUpToTactic":"/-\nCopyright (c) 2020 Aaron Anderson. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Aaron Anderson\n-/\nimport Mathlib.Data.Finset.NatAntidiagonal\nimport Mathlib.Algebra.BigOperators.Basic\n\n#align_import algebra.big_operators.nat_antidiagonal from \"leanprover-community/mathlib\"@\"008205aa645b3f194c1da47025c5f110c8406eab\"\n\n/-!\n# Big operators for `NatAntidiagonal`\n\nThis file contains theorems relevant to big operators over `Finset.NatAntidiagonal`.\n-/\n\nopen BigOperators\n\nvariable {M N : Type*} [CommMonoid M] [AddCommMonoid N]\n\nnamespace Finset\n\nnamespace Nat\n\ntheorem prod_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ M} :\n (∏ p in antidiagonal (n + 1), f p)\n = f (0, n + 1) * ∏ p in antidiagonal n, f (p.1 + 1, p.2) := by\n ","nextTactic":"rw [antidiagonal_succ, prod_cons, prod_map]","declUpToTactic":"theorem prod_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ M} :\n (∏ p in antidiagonal (n + 1), f p)\n = f (0, n + 1) * ∏ p in antidiagonal n, f (p.1 + 1, p.2) := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_BigOperators_NatAntidiagonal.25_0.3fmBgDgzBSF6Gqi","decl":"theorem prod_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ M} :\n (∏ p in antidiagonal (n + 1), f p)\n = f (0, n + 1) * ∏ p in antidiagonal n, f (p.1 + 1, p.2) "}
{"state":"M : Type u_1\nN : Type u_2\ninst✝¹ : CommMonoid M\ninst✝ : AddCommMonoid N\nn : β„•\nf : β„• Γ— β„• β†’ M\n⊒ f (0, n + 1) *\n ∏ x in antidiagonal n,\n f\n ((Function.Embedding.prodMap { toFun := Nat.succ, inj' := Nat.succ_injective } (Function.Embedding.refl β„•))\n x) =\n f (0, n + 1) * ∏ p in antidiagonal n, f (p.1 + 1, p.2)","srcUpToTactic":"/-\nCopyright (c) 2020 Aaron Anderson. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Aaron Anderson\n-/\nimport Mathlib.Data.Finset.NatAntidiagonal\nimport Mathlib.Algebra.BigOperators.Basic\n\n#align_import algebra.big_operators.nat_antidiagonal from \"leanprover-community/mathlib\"@\"008205aa645b3f194c1da47025c5f110c8406eab\"\n\n/-!\n# Big operators for `NatAntidiagonal`\n\nThis file contains theorems relevant to big operators over `Finset.NatAntidiagonal`.\n-/\n\nopen BigOperators\n\nvariable {M N : Type*} [CommMonoid M] [AddCommMonoid N]\n\nnamespace Finset\n\nnamespace Nat\n\ntheorem prod_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ M} :\n (∏ p in antidiagonal (n + 1), f p)\n = f (0, n + 1) * ∏ p in antidiagonal n, f (p.1 + 1, p.2) := by\n rw [antidiagonal_succ, prod_cons, prod_map]; ","nextTactic":"rfl","declUpToTactic":"theorem prod_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ M} :\n (∏ p in antidiagonal (n + 1), f p)\n = f (0, n + 1) * ∏ p in antidiagonal n, f (p.1 + 1, p.2) := by\n rw [antidiagonal_succ, prod_cons, prod_map]; ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_BigOperators_NatAntidiagonal.25_0.3fmBgDgzBSF6Gqi","decl":"theorem prod_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ M} :\n (∏ p in antidiagonal (n + 1), f p)\n = f (0, n + 1) * ∏ p in antidiagonal n, f (p.1 + 1, p.2) "}
{"state":"M : Type u_1\nN : Type u_2\ninst✝¹ : CommMonoid M\ninst✝ : AddCommMonoid N\nn : β„•\nf : β„• Γ— β„• β†’ M\n⊒ ∏ p in antidiagonal n, f (Prod.swap p) = ∏ p in antidiagonal n, f p","srcUpToTactic":"/-\nCopyright (c) 2020 Aaron Anderson. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Aaron Anderson\n-/\nimport Mathlib.Data.Finset.NatAntidiagonal\nimport Mathlib.Algebra.BigOperators.Basic\n\n#align_import algebra.big_operators.nat_antidiagonal from \"leanprover-community/mathlib\"@\"008205aa645b3f194c1da47025c5f110c8406eab\"\n\n/-!\n# Big operators for `NatAntidiagonal`\n\nThis file contains theorems relevant to big operators over `Finset.NatAntidiagonal`.\n-/\n\nopen BigOperators\n\nvariable {M N : Type*} [CommMonoid M] [AddCommMonoid N]\n\nnamespace Finset\n\nnamespace Nat\n\ntheorem prod_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ M} :\n (∏ p in antidiagonal (n + 1), f p)\n = f (0, n + 1) * ∏ p in antidiagonal n, f (p.1 + 1, p.2) := by\n rw [antidiagonal_succ, prod_cons, prod_map]; rfl\n#align finset.nat.prod_antidiagonal_succ Finset.Nat.prod_antidiagonal_succ\n\ntheorem sum_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ N} :\n (βˆ‘ p in antidiagonal (n + 1), f p) = f (0, n + 1) + βˆ‘ p in antidiagonal n, f (p.1 + 1, p.2) :=\n @prod_antidiagonal_succ (Multiplicative N) _ _ _\n#align finset.nat.sum_antidiagonal_succ Finset.Nat.sum_antidiagonal_succ\n\n@[to_additive]\ntheorem prod_antidiagonal_swap {n : β„•} {f : β„• Γ— β„• β†’ M} :\n ∏ p in antidiagonal n, f p.swap = ∏ p in antidiagonal n, f p := by\n ","nextTactic":"conv_lhs => rw [← map_swap_antidiagonal, Finset.prod_map]","declUpToTactic":"@[to_additive]\ntheorem prod_antidiagonal_swap {n : β„•} {f : β„• Γ— β„• β†’ M} :\n ∏ p in antidiagonal n, f p.swap = ∏ p in antidiagonal n, f p := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_BigOperators_NatAntidiagonal.36_0.3fmBgDgzBSF6Gqi","decl":"@[to_additive]\ntheorem prod_antidiagonal_swap {n : β„•} {f : β„• Γ— β„• β†’ M} :\n ∏ p in antidiagonal n, f p.swap = ∏ p in antidiagonal n, f p "}
{"state":"M : Type u_1\nN : Type u_2\ninst✝¹ : CommMonoid M\ninst✝ : AddCommMonoid N\nn : β„•\nf : β„• Γ— β„• β†’ M\n| ∏ p in antidiagonal n, f (Prod.swap p)","srcUpToTactic":"/-\nCopyright (c) 2020 Aaron Anderson. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Aaron Anderson\n-/\nimport Mathlib.Data.Finset.NatAntidiagonal\nimport Mathlib.Algebra.BigOperators.Basic\n\n#align_import algebra.big_operators.nat_antidiagonal from \"leanprover-community/mathlib\"@\"008205aa645b3f194c1da47025c5f110c8406eab\"\n\n/-!\n# Big operators for `NatAntidiagonal`\n\nThis file contains theorems relevant to big operators over `Finset.NatAntidiagonal`.\n-/\n\nopen BigOperators\n\nvariable {M N : Type*} [CommMonoid M] [AddCommMonoid N]\n\nnamespace Finset\n\nnamespace Nat\n\ntheorem prod_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ M} :\n (∏ p in antidiagonal (n + 1), f p)\n = f (0, n + 1) * ∏ p in antidiagonal n, f (p.1 + 1, p.2) := by\n rw [antidiagonal_succ, prod_cons, prod_map]; rfl\n#align finset.nat.prod_antidiagonal_succ Finset.Nat.prod_antidiagonal_succ\n\ntheorem sum_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ N} :\n (βˆ‘ p in antidiagonal (n + 1), f p) = f (0, n + 1) + βˆ‘ p in antidiagonal n, f (p.1 + 1, p.2) :=\n @prod_antidiagonal_succ (Multiplicative N) _ _ _\n#align finset.nat.sum_antidiagonal_succ Finset.Nat.sum_antidiagonal_succ\n\n@[to_additive]\ntheorem prod_antidiagonal_swap {n : β„•} {f : β„• Γ— β„• β†’ M} :\n ∏ p in antidiagonal n, f p.swap = ∏ p in antidiagonal n, f p := by\n conv_lhs => ","nextTactic":"rw [← map_swap_antidiagonal, Finset.prod_map]","declUpToTactic":"@[to_additive]\ntheorem prod_antidiagonal_swap {n : β„•} {f : β„• Γ— β„• β†’ M} :\n ∏ p in antidiagonal n, f p.swap = ∏ p in antidiagonal n, f p := by\n conv_lhs => ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_BigOperators_NatAntidiagonal.36_0.3fmBgDgzBSF6Gqi","decl":"@[to_additive]\ntheorem prod_antidiagonal_swap {n : β„•} {f : β„• Γ— β„• β†’ M} :\n ∏ p in antidiagonal n, f p.swap = ∏ p in antidiagonal n, f p "}
{"state":"M : Type u_1\nN : Type u_2\ninst✝¹ : CommMonoid M\ninst✝ : AddCommMonoid N\nn : β„•\nf : β„• Γ— β„• β†’ M\n| ∏ p in antidiagonal n, f (Prod.swap p)","srcUpToTactic":"/-\nCopyright (c) 2020 Aaron Anderson. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Aaron Anderson\n-/\nimport Mathlib.Data.Finset.NatAntidiagonal\nimport Mathlib.Algebra.BigOperators.Basic\n\n#align_import algebra.big_operators.nat_antidiagonal from \"leanprover-community/mathlib\"@\"008205aa645b3f194c1da47025c5f110c8406eab\"\n\n/-!\n# Big operators for `NatAntidiagonal`\n\nThis file contains theorems relevant to big operators over `Finset.NatAntidiagonal`.\n-/\n\nopen BigOperators\n\nvariable {M N : Type*} [CommMonoid M] [AddCommMonoid N]\n\nnamespace Finset\n\nnamespace Nat\n\ntheorem prod_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ M} :\n (∏ p in antidiagonal (n + 1), f p)\n = f (0, n + 1) * ∏ p in antidiagonal n, f (p.1 + 1, p.2) := by\n rw [antidiagonal_succ, prod_cons, prod_map]; rfl\n#align finset.nat.prod_antidiagonal_succ Finset.Nat.prod_antidiagonal_succ\n\ntheorem sum_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ N} :\n (βˆ‘ p in antidiagonal (n + 1), f p) = f (0, n + 1) + βˆ‘ p in antidiagonal n, f (p.1 + 1, p.2) :=\n @prod_antidiagonal_succ (Multiplicative N) _ _ _\n#align finset.nat.sum_antidiagonal_succ Finset.Nat.sum_antidiagonal_succ\n\n@[to_additive]\ntheorem prod_antidiagonal_swap {n : β„•} {f : β„• Γ— β„• β†’ M} :\n ∏ p in antidiagonal n, f p.swap = ∏ p in antidiagonal n, f p := by\n conv_lhs => ","nextTactic":"rw [← map_swap_antidiagonal, Finset.prod_map]","declUpToTactic":"@[to_additive]\ntheorem prod_antidiagonal_swap {n : β„•} {f : β„• Γ— β„• β†’ M} :\n ∏ p in antidiagonal n, f p.swap = ∏ p in antidiagonal n, f p := by\n conv_lhs => ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_BigOperators_NatAntidiagonal.36_0.3fmBgDgzBSF6Gqi","decl":"@[to_additive]\ntheorem prod_antidiagonal_swap {n : β„•} {f : β„• Γ— β„• β†’ M} :\n ∏ p in antidiagonal n, f p.swap = ∏ p in antidiagonal n, f p "}
{"state":"M : Type u_1\nN : Type u_2\ninst✝¹ : CommMonoid M\ninst✝ : AddCommMonoid N\nn : β„•\nf : β„• Γ— β„• β†’ M\n| ∏ p in antidiagonal n, f (Prod.swap p)","srcUpToTactic":"/-\nCopyright (c) 2020 Aaron Anderson. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Aaron Anderson\n-/\nimport Mathlib.Data.Finset.NatAntidiagonal\nimport Mathlib.Algebra.BigOperators.Basic\n\n#align_import algebra.big_operators.nat_antidiagonal from \"leanprover-community/mathlib\"@\"008205aa645b3f194c1da47025c5f110c8406eab\"\n\n/-!\n# Big operators for `NatAntidiagonal`\n\nThis file contains theorems relevant to big operators over `Finset.NatAntidiagonal`.\n-/\n\nopen BigOperators\n\nvariable {M N : Type*} [CommMonoid M] [AddCommMonoid N]\n\nnamespace Finset\n\nnamespace Nat\n\ntheorem prod_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ M} :\n (∏ p in antidiagonal (n + 1), f p)\n = f (0, n + 1) * ∏ p in antidiagonal n, f (p.1 + 1, p.2) := by\n rw [antidiagonal_succ, prod_cons, prod_map]; rfl\n#align finset.nat.prod_antidiagonal_succ Finset.Nat.prod_antidiagonal_succ\n\ntheorem sum_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ N} :\n (βˆ‘ p in antidiagonal (n + 1), f p) = f (0, n + 1) + βˆ‘ p in antidiagonal n, f (p.1 + 1, p.2) :=\n @prod_antidiagonal_succ (Multiplicative N) _ _ _\n#align finset.nat.sum_antidiagonal_succ Finset.Nat.sum_antidiagonal_succ\n\n@[to_additive]\ntheorem prod_antidiagonal_swap {n : β„•} {f : β„• Γ— β„• β†’ M} :\n ∏ p in antidiagonal n, f p.swap = ∏ p in antidiagonal n, f p := by\n conv_lhs => ","nextTactic":"rw [← map_swap_antidiagonal, Finset.prod_map]","declUpToTactic":"@[to_additive]\ntheorem prod_antidiagonal_swap {n : β„•} {f : β„• Γ— β„• β†’ M} :\n ∏ p in antidiagonal n, f p.swap = ∏ p in antidiagonal n, f p := by\n conv_lhs => ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_BigOperators_NatAntidiagonal.36_0.3fmBgDgzBSF6Gqi","decl":"@[to_additive]\ntheorem prod_antidiagonal_swap {n : β„•} {f : β„• Γ— β„• β†’ M} :\n ∏ p in antidiagonal n, f p.swap = ∏ p in antidiagonal n, f p "}
{"state":"M : Type u_1\nN : Type u_2\ninst✝¹ : CommMonoid M\ninst✝ : AddCommMonoid N\nn : β„•\nf : β„• Γ— β„• β†’ M\n⊒ ∏ p in antidiagonal (n + 1), f p = f (n + 1, 0) * ∏ p in antidiagonal n, f (p.1, p.2 + 1)","srcUpToTactic":"/-\nCopyright (c) 2020 Aaron Anderson. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Aaron Anderson\n-/\nimport Mathlib.Data.Finset.NatAntidiagonal\nimport Mathlib.Algebra.BigOperators.Basic\n\n#align_import algebra.big_operators.nat_antidiagonal from \"leanprover-community/mathlib\"@\"008205aa645b3f194c1da47025c5f110c8406eab\"\n\n/-!\n# Big operators for `NatAntidiagonal`\n\nThis file contains theorems relevant to big operators over `Finset.NatAntidiagonal`.\n-/\n\nopen BigOperators\n\nvariable {M N : Type*} [CommMonoid M] [AddCommMonoid N]\n\nnamespace Finset\n\nnamespace Nat\n\ntheorem prod_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ M} :\n (∏ p in antidiagonal (n + 1), f p)\n = f (0, n + 1) * ∏ p in antidiagonal n, f (p.1 + 1, p.2) := by\n rw [antidiagonal_succ, prod_cons, prod_map]; rfl\n#align finset.nat.prod_antidiagonal_succ Finset.Nat.prod_antidiagonal_succ\n\ntheorem sum_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ N} :\n (βˆ‘ p in antidiagonal (n + 1), f p) = f (0, n + 1) + βˆ‘ p in antidiagonal n, f (p.1 + 1, p.2) :=\n @prod_antidiagonal_succ (Multiplicative N) _ _ _\n#align finset.nat.sum_antidiagonal_succ Finset.Nat.sum_antidiagonal_succ\n\n@[to_additive]\ntheorem prod_antidiagonal_swap {n : β„•} {f : β„• Γ— β„• β†’ M} :\n ∏ p in antidiagonal n, f p.swap = ∏ p in antidiagonal n, f p := by\n conv_lhs => rw [← map_swap_antidiagonal, Finset.prod_map]\n#align finset.nat.prod_antidiagonal_swap Finset.Nat.prod_antidiagonal_swap\n#align finset.nat.sum_antidiagonal_swap Finset.Nat.sum_antidiagonal_swap\n\ntheorem prod_antidiagonal_succ' {n : β„•} {f : β„• Γ— β„• β†’ M} : (∏ p in antidiagonal (n + 1), f p) =\n f (n + 1, 0) * ∏ p in antidiagonal n, f (p.1, p.2 + 1) := by\n ","nextTactic":"rw [← prod_antidiagonal_swap]","declUpToTactic":"theorem prod_antidiagonal_succ' {n : β„•} {f : β„• Γ— β„• β†’ M} : (∏ p in antidiagonal (n + 1), f p) =\n f (n + 1, 0) * ∏ p in antidiagonal n, f (p.1, p.2 + 1) := by\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_BigOperators_NatAntidiagonal.43_0.3fmBgDgzBSF6Gqi","decl":"theorem prod_antidiagonal_succ' {n : β„•} {f : β„• Γ— β„• β†’ M} : (∏ p in antidiagonal (n + 1), f p) =\n f (n + 1, 0) * ∏ p in antidiagonal n, f (p.1, p.2 + 1) "}
{"state":"M : Type u_1\nN : Type u_2\ninst✝¹ : CommMonoid M\ninst✝ : AddCommMonoid N\nn : β„•\nf : β„• Γ— β„• β†’ M\n⊒ ∏ p in antidiagonal (n + 1), f (Prod.swap p) = f (n + 1, 0) * ∏ p in antidiagonal n, f (p.1, p.2 + 1)","srcUpToTactic":"/-\nCopyright (c) 2020 Aaron Anderson. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Aaron Anderson\n-/\nimport Mathlib.Data.Finset.NatAntidiagonal\nimport Mathlib.Algebra.BigOperators.Basic\n\n#align_import algebra.big_operators.nat_antidiagonal from \"leanprover-community/mathlib\"@\"008205aa645b3f194c1da47025c5f110c8406eab\"\n\n/-!\n# Big operators for `NatAntidiagonal`\n\nThis file contains theorems relevant to big operators over `Finset.NatAntidiagonal`.\n-/\n\nopen BigOperators\n\nvariable {M N : Type*} [CommMonoid M] [AddCommMonoid N]\n\nnamespace Finset\n\nnamespace Nat\n\ntheorem prod_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ M} :\n (∏ p in antidiagonal (n + 1), f p)\n = f (0, n + 1) * ∏ p in antidiagonal n, f (p.1 + 1, p.2) := by\n rw [antidiagonal_succ, prod_cons, prod_map]; rfl\n#align finset.nat.prod_antidiagonal_succ Finset.Nat.prod_antidiagonal_succ\n\ntheorem sum_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ N} :\n (βˆ‘ p in antidiagonal (n + 1), f p) = f (0, n + 1) + βˆ‘ p in antidiagonal n, f (p.1 + 1, p.2) :=\n @prod_antidiagonal_succ (Multiplicative N) _ _ _\n#align finset.nat.sum_antidiagonal_succ Finset.Nat.sum_antidiagonal_succ\n\n@[to_additive]\ntheorem prod_antidiagonal_swap {n : β„•} {f : β„• Γ— β„• β†’ M} :\n ∏ p in antidiagonal n, f p.swap = ∏ p in antidiagonal n, f p := by\n conv_lhs => rw [← map_swap_antidiagonal, Finset.prod_map]\n#align finset.nat.prod_antidiagonal_swap Finset.Nat.prod_antidiagonal_swap\n#align finset.nat.sum_antidiagonal_swap Finset.Nat.sum_antidiagonal_swap\n\ntheorem prod_antidiagonal_succ' {n : β„•} {f : β„• Γ— β„• β†’ M} : (∏ p in antidiagonal (n + 1), f p) =\n f (n + 1, 0) * ∏ p in antidiagonal n, f (p.1, p.2 + 1) := by\n rw [← prod_antidiagonal_swap]\n ","nextTactic":"rw [prod_antidiagonal_succ]","declUpToTactic":"theorem prod_antidiagonal_succ' {n : β„•} {f : β„• Γ— β„• β†’ M} : (∏ p in antidiagonal (n + 1), f p) =\n f (n + 1, 0) * ∏ p in antidiagonal n, f (p.1, p.2 + 1) := by\n rw [← prod_antidiagonal_swap]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_BigOperators_NatAntidiagonal.43_0.3fmBgDgzBSF6Gqi","decl":"theorem prod_antidiagonal_succ' {n : β„•} {f : β„• Γ— β„• β†’ M} : (∏ p in antidiagonal (n + 1), f p) =\n f (n + 1, 0) * ∏ p in antidiagonal n, f (p.1, p.2 + 1) "}
{"state":"M : Type u_1\nN : Type u_2\ninst✝¹ : CommMonoid M\ninst✝ : AddCommMonoid N\nn : β„•\nf : β„• Γ— β„• β†’ M\n⊒ f (Prod.swap (0, n + 1)) * ∏ p in antidiagonal n, f (Prod.swap (p.1 + 1, p.2)) =\n f (n + 1, 0) * ∏ p in antidiagonal n, f (p.1, p.2 + 1)","srcUpToTactic":"/-\nCopyright (c) 2020 Aaron Anderson. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Aaron Anderson\n-/\nimport Mathlib.Data.Finset.NatAntidiagonal\nimport Mathlib.Algebra.BigOperators.Basic\n\n#align_import algebra.big_operators.nat_antidiagonal from \"leanprover-community/mathlib\"@\"008205aa645b3f194c1da47025c5f110c8406eab\"\n\n/-!\n# Big operators for `NatAntidiagonal`\n\nThis file contains theorems relevant to big operators over `Finset.NatAntidiagonal`.\n-/\n\nopen BigOperators\n\nvariable {M N : Type*} [CommMonoid M] [AddCommMonoid N]\n\nnamespace Finset\n\nnamespace Nat\n\ntheorem prod_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ M} :\n (∏ p in antidiagonal (n + 1), f p)\n = f (0, n + 1) * ∏ p in antidiagonal n, f (p.1 + 1, p.2) := by\n rw [antidiagonal_succ, prod_cons, prod_map]; rfl\n#align finset.nat.prod_antidiagonal_succ Finset.Nat.prod_antidiagonal_succ\n\ntheorem sum_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ N} :\n (βˆ‘ p in antidiagonal (n + 1), f p) = f (0, n + 1) + βˆ‘ p in antidiagonal n, f (p.1 + 1, p.2) :=\n @prod_antidiagonal_succ (Multiplicative N) _ _ _\n#align finset.nat.sum_antidiagonal_succ Finset.Nat.sum_antidiagonal_succ\n\n@[to_additive]\ntheorem prod_antidiagonal_swap {n : β„•} {f : β„• Γ— β„• β†’ M} :\n ∏ p in antidiagonal n, f p.swap = ∏ p in antidiagonal n, f p := by\n conv_lhs => rw [← map_swap_antidiagonal, Finset.prod_map]\n#align finset.nat.prod_antidiagonal_swap Finset.Nat.prod_antidiagonal_swap\n#align finset.nat.sum_antidiagonal_swap Finset.Nat.sum_antidiagonal_swap\n\ntheorem prod_antidiagonal_succ' {n : β„•} {f : β„• Γ— β„• β†’ M} : (∏ p in antidiagonal (n + 1), f p) =\n f (n + 1, 0) * ∏ p in antidiagonal n, f (p.1, p.2 + 1) := by\n rw [← prod_antidiagonal_swap]\n rw [prod_antidiagonal_succ]\n ","nextTactic":"rw [← prod_antidiagonal_swap]","declUpToTactic":"theorem prod_antidiagonal_succ' {n : β„•} {f : β„• Γ— β„• β†’ M} : (∏ p in antidiagonal (n + 1), f p) =\n f (n + 1, 0) * ∏ p in antidiagonal n, f (p.1, p.2 + 1) := by\n rw [← prod_antidiagonal_swap]\n rw [prod_antidiagonal_succ]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_BigOperators_NatAntidiagonal.43_0.3fmBgDgzBSF6Gqi","decl":"theorem prod_antidiagonal_succ' {n : β„•} {f : β„• Γ— β„• β†’ M} : (∏ p in antidiagonal (n + 1), f p) =\n f (n + 1, 0) * ∏ p in antidiagonal n, f (p.1, p.2 + 1) "}
{"state":"M : Type u_1\nN : Type u_2\ninst✝¹ : CommMonoid M\ninst✝ : AddCommMonoid N\nn : β„•\nf : β„• Γ— β„• β†’ M\n⊒ f (Prod.swap (0, n + 1)) * ∏ p in antidiagonal n, f (Prod.swap ((Prod.swap p).1 + 1, (Prod.swap p).2)) =\n f (n + 1, 0) * ∏ p in antidiagonal n, f (p.1, p.2 + 1)","srcUpToTactic":"/-\nCopyright (c) 2020 Aaron Anderson. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Aaron Anderson\n-/\nimport Mathlib.Data.Finset.NatAntidiagonal\nimport Mathlib.Algebra.BigOperators.Basic\n\n#align_import algebra.big_operators.nat_antidiagonal from \"leanprover-community/mathlib\"@\"008205aa645b3f194c1da47025c5f110c8406eab\"\n\n/-!\n# Big operators for `NatAntidiagonal`\n\nThis file contains theorems relevant to big operators over `Finset.NatAntidiagonal`.\n-/\n\nopen BigOperators\n\nvariable {M N : Type*} [CommMonoid M] [AddCommMonoid N]\n\nnamespace Finset\n\nnamespace Nat\n\ntheorem prod_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ M} :\n (∏ p in antidiagonal (n + 1), f p)\n = f (0, n + 1) * ∏ p in antidiagonal n, f (p.1 + 1, p.2) := by\n rw [antidiagonal_succ, prod_cons, prod_map]; rfl\n#align finset.nat.prod_antidiagonal_succ Finset.Nat.prod_antidiagonal_succ\n\ntheorem sum_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ N} :\n (βˆ‘ p in antidiagonal (n + 1), f p) = f (0, n + 1) + βˆ‘ p in antidiagonal n, f (p.1 + 1, p.2) :=\n @prod_antidiagonal_succ (Multiplicative N) _ _ _\n#align finset.nat.sum_antidiagonal_succ Finset.Nat.sum_antidiagonal_succ\n\n@[to_additive]\ntheorem prod_antidiagonal_swap {n : β„•} {f : β„• Γ— β„• β†’ M} :\n ∏ p in antidiagonal n, f p.swap = ∏ p in antidiagonal n, f p := by\n conv_lhs => rw [← map_swap_antidiagonal, Finset.prod_map]\n#align finset.nat.prod_antidiagonal_swap Finset.Nat.prod_antidiagonal_swap\n#align finset.nat.sum_antidiagonal_swap Finset.Nat.sum_antidiagonal_swap\n\ntheorem prod_antidiagonal_succ' {n : β„•} {f : β„• Γ— β„• β†’ M} : (∏ p in antidiagonal (n + 1), f p) =\n f (n + 1, 0) * ∏ p in antidiagonal n, f (p.1, p.2 + 1) := by\n rw [← prod_antidiagonal_swap]\n rw [prod_antidiagonal_succ]\n rw [← prod_antidiagonal_swap]\n ","nextTactic":"rfl","declUpToTactic":"theorem prod_antidiagonal_succ' {n : β„•} {f : β„• Γ— β„• β†’ M} : (∏ p in antidiagonal (n + 1), f p) =\n f (n + 1, 0) * ∏ p in antidiagonal n, f (p.1, p.2 + 1) := by\n rw [← prod_antidiagonal_swap]\n rw [prod_antidiagonal_succ]\n rw [← prod_antidiagonal_swap]\n ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_BigOperators_NatAntidiagonal.43_0.3fmBgDgzBSF6Gqi","decl":"theorem prod_antidiagonal_succ' {n : β„•} {f : β„• Γ— β„• β†’ M} : (∏ p in antidiagonal (n + 1), f p) =\n f (n + 1, 0) * ∏ p in antidiagonal n, f (p.1, p.2 + 1) "}
{"state":"M : Type u_1\nN : Type u_2\ninst✝¹ : CommMonoid M\ninst✝ : AddCommMonoid N\nn : β„•\nf : β„• Γ— β„• β†’ β„• β†’ M\np : β„• Γ— β„•\nhp : p ∈ antidiagonal n\n⊒ f p n = f p (p.1 + p.2)","srcUpToTactic":"/-\nCopyright (c) 2020 Aaron Anderson. All rights reserved.\nReleased under Apache 2.0 license as described in the file LICENSE.\nAuthors: Aaron Anderson\n-/\nimport Mathlib.Data.Finset.NatAntidiagonal\nimport Mathlib.Algebra.BigOperators.Basic\n\n#align_import algebra.big_operators.nat_antidiagonal from \"leanprover-community/mathlib\"@\"008205aa645b3f194c1da47025c5f110c8406eab\"\n\n/-!\n# Big operators for `NatAntidiagonal`\n\nThis file contains theorems relevant to big operators over `Finset.NatAntidiagonal`.\n-/\n\nopen BigOperators\n\nvariable {M N : Type*} [CommMonoid M] [AddCommMonoid N]\n\nnamespace Finset\n\nnamespace Nat\n\ntheorem prod_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ M} :\n (∏ p in antidiagonal (n + 1), f p)\n = f (0, n + 1) * ∏ p in antidiagonal n, f (p.1 + 1, p.2) := by\n rw [antidiagonal_succ, prod_cons, prod_map]; rfl\n#align finset.nat.prod_antidiagonal_succ Finset.Nat.prod_antidiagonal_succ\n\ntheorem sum_antidiagonal_succ {n : β„•} {f : β„• Γ— β„• β†’ N} :\n (βˆ‘ p in antidiagonal (n + 1), f p) = f (0, n + 1) + βˆ‘ p in antidiagonal n, f (p.1 + 1, p.2) :=\n @prod_antidiagonal_succ (Multiplicative N) _ _ _\n#align finset.nat.sum_antidiagonal_succ Finset.Nat.sum_antidiagonal_succ\n\n@[to_additive]\ntheorem prod_antidiagonal_swap {n : β„•} {f : β„• Γ— β„• β†’ M} :\n ∏ p in antidiagonal n, f p.swap = ∏ p in antidiagonal n, f p := by\n conv_lhs => rw [← map_swap_antidiagonal, Finset.prod_map]\n#align finset.nat.prod_antidiagonal_swap Finset.Nat.prod_antidiagonal_swap\n#align finset.nat.sum_antidiagonal_swap Finset.Nat.sum_antidiagonal_swap\n\ntheorem prod_antidiagonal_succ' {n : β„•} {f : β„• Γ— β„• β†’ M} : (∏ p in antidiagonal (n + 1), f p) =\n f (n + 1, 0) * ∏ p in antidiagonal n, f (p.1, p.2 + 1) := by\n rw [← prod_antidiagonal_swap]\n rw [prod_antidiagonal_succ]\n rw [← prod_antidiagonal_swap]\n rfl\n#align finset.nat.prod_antidiagonal_succ' Finset.Nat.prod_antidiagonal_succ'\n\ntheorem sum_antidiagonal_succ' {n : β„•} {f : β„• Γ— β„• β†’ N} :\n (βˆ‘ p in antidiagonal (n + 1), f p) = f (n + 1, 0) + βˆ‘ p in antidiagonal n, f (p.1, p.2 + 1) :=\n @prod_antidiagonal_succ' (Multiplicative N) _ _ _\n#align finset.nat.sum_antidiagonal_succ' Finset.Nat.sum_antidiagonal_succ'\n\n@[to_additive]\ntheorem prod_antidiagonal_subst {n : β„•} {f : β„• Γ— β„• β†’ β„• β†’ M} :\n ∏ p in antidiagonal n, f p n = ∏ p in antidiagonal n, f p (p.1 + p.2) :=\n prod_congr rfl fun p hp ↦ by ","nextTactic":"rw [mem_antidiagonal.mp hp]","declUpToTactic":"@[to_additive]\ntheorem prod_antidiagonal_subst {n : β„•} {f : β„• Γ— β„• β†’ β„• β†’ M} :\n ∏ p in antidiagonal n, f p n = ∏ p in antidiagonal n, f p (p.1 + p.2) :=\n prod_congr rfl fun p hp ↦ by ","declId":"Examples.Mathlib.SplitRw.Mathlib_Algebra_BigOperators_NatAntidiagonal.56_0.3fmBgDgzBSF6Gqi","decl":"@[to_additive]\ntheorem prod_antidiagonal_subst {n : β„•} {f : β„• Γ— β„• β†’ β„• β†’ M} :\n ∏ p in antidiagonal n, f p n = ∏ p in antidiagonal n, f p (p.1 + p.2) "}