python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0 #define _GNU_SOURCE #include <arpa/inet.h> #include <errno.h> #include <error.h> #include <fcntl.h> #include <poll.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <linux/tls.h> #include <linux/tcp.h> #include <linux/socket.h> #include <sys/epoll.h> #include <sys/types.h> #include <sys/sendfile.h> #include <sys/socket.h> #include <sys/stat.h> #include "../kselftest_harness.h" #define TLS_PAYLOAD_MAX_LEN 16384 #define SOL_TLS 282 static int fips_enabled; struct tls_crypto_info_keys { union { struct tls_crypto_info crypto_info; struct tls12_crypto_info_aes_gcm_128 aes128; struct tls12_crypto_info_chacha20_poly1305 chacha20; struct tls12_crypto_info_sm4_gcm sm4gcm; struct tls12_crypto_info_sm4_ccm sm4ccm; struct tls12_crypto_info_aes_ccm_128 aesccm128; struct tls12_crypto_info_aes_gcm_256 aesgcm256; struct tls12_crypto_info_aria_gcm_128 ariagcm128; struct tls12_crypto_info_aria_gcm_256 ariagcm256; }; size_t len; }; static void tls_crypto_info_init(uint16_t tls_version, uint16_t cipher_type, struct tls_crypto_info_keys *tls12) { memset(tls12, 0, sizeof(*tls12)); switch (cipher_type) { case TLS_CIPHER_CHACHA20_POLY1305: tls12->len = sizeof(struct tls12_crypto_info_chacha20_poly1305); tls12->chacha20.info.version = tls_version; tls12->chacha20.info.cipher_type = cipher_type; break; case TLS_CIPHER_AES_GCM_128: tls12->len = sizeof(struct tls12_crypto_info_aes_gcm_128); tls12->aes128.info.version = tls_version; tls12->aes128.info.cipher_type = cipher_type; break; case TLS_CIPHER_SM4_GCM: tls12->len = sizeof(struct tls12_crypto_info_sm4_gcm); tls12->sm4gcm.info.version = tls_version; tls12->sm4gcm.info.cipher_type = cipher_type; break; case TLS_CIPHER_SM4_CCM: tls12->len = sizeof(struct tls12_crypto_info_sm4_ccm); tls12->sm4ccm.info.version = tls_version; tls12->sm4ccm.info.cipher_type = cipher_type; break; case TLS_CIPHER_AES_CCM_128: tls12->len = sizeof(struct tls12_crypto_info_aes_ccm_128); tls12->aesccm128.info.version = tls_version; tls12->aesccm128.info.cipher_type = cipher_type; break; case TLS_CIPHER_AES_GCM_256: tls12->len = sizeof(struct tls12_crypto_info_aes_gcm_256); tls12->aesgcm256.info.version = tls_version; tls12->aesgcm256.info.cipher_type = cipher_type; break; case TLS_CIPHER_ARIA_GCM_128: tls12->len = sizeof(struct tls12_crypto_info_aria_gcm_128); tls12->ariagcm128.info.version = tls_version; tls12->ariagcm128.info.cipher_type = cipher_type; break; case TLS_CIPHER_ARIA_GCM_256: tls12->len = sizeof(struct tls12_crypto_info_aria_gcm_256); tls12->ariagcm256.info.version = tls_version; tls12->ariagcm256.info.cipher_type = cipher_type; break; default: break; } } static void memrnd(void *s, size_t n) { int *dword = s; char *byte; for (; n >= 4; n -= 4) *dword++ = rand(); byte = (void *)dword; while (n--) *byte++ = rand(); } static void ulp_sock_pair(struct __test_metadata *_metadata, int *fd, int *cfd, bool *notls) { struct sockaddr_in addr; socklen_t len; int sfd, ret; *notls = false; len = sizeof(addr); addr.sin_family = AF_INET; addr.sin_addr.s_addr = htonl(INADDR_ANY); addr.sin_port = 0; *fd = socket(AF_INET, SOCK_STREAM, 0); sfd = socket(AF_INET, SOCK_STREAM, 0); ret = bind(sfd, &addr, sizeof(addr)); ASSERT_EQ(ret, 0); ret = listen(sfd, 10); ASSERT_EQ(ret, 0); ret = getsockname(sfd, &addr, &len); ASSERT_EQ(ret, 0); ret = connect(*fd, &addr, sizeof(addr)); ASSERT_EQ(ret, 0); *cfd = accept(sfd, &addr, &len); ASSERT_GE(*cfd, 0); close(sfd); ret = setsockopt(*fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")); if (ret != 0) { ASSERT_EQ(errno, ENOENT); *notls = true; printf("Failure setting TCP_ULP, testing without tls\n"); return; } ret = setsockopt(*cfd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")); ASSERT_EQ(ret, 0); } /* Produce a basic cmsg */ static int tls_send_cmsg(int fd, unsigned char record_type, void *data, size_t len, int flags) { char cbuf[CMSG_SPACE(sizeof(char))]; int cmsg_len = sizeof(char); struct cmsghdr *cmsg; struct msghdr msg; struct iovec vec; vec.iov_base = data; vec.iov_len = len; memset(&msg, 0, sizeof(struct msghdr)); msg.msg_iov = &vec; msg.msg_iovlen = 1; msg.msg_control = cbuf; msg.msg_controllen = sizeof(cbuf); cmsg = CMSG_FIRSTHDR(&msg); cmsg->cmsg_level = SOL_TLS; /* test sending non-record types. */ cmsg->cmsg_type = TLS_SET_RECORD_TYPE; cmsg->cmsg_len = CMSG_LEN(cmsg_len); *CMSG_DATA(cmsg) = record_type; msg.msg_controllen = cmsg->cmsg_len; return sendmsg(fd, &msg, flags); } static int tls_recv_cmsg(struct __test_metadata *_metadata, int fd, unsigned char record_type, void *data, size_t len, int flags) { char cbuf[CMSG_SPACE(sizeof(char))]; struct cmsghdr *cmsg; unsigned char ctype; struct msghdr msg; struct iovec vec; int n; vec.iov_base = data; vec.iov_len = len; memset(&msg, 0, sizeof(struct msghdr)); msg.msg_iov = &vec; msg.msg_iovlen = 1; msg.msg_control = cbuf; msg.msg_controllen = sizeof(cbuf); n = recvmsg(fd, &msg, flags); cmsg = CMSG_FIRSTHDR(&msg); EXPECT_NE(cmsg, NULL); EXPECT_EQ(cmsg->cmsg_level, SOL_TLS); EXPECT_EQ(cmsg->cmsg_type, TLS_GET_RECORD_TYPE); ctype = *((unsigned char *)CMSG_DATA(cmsg)); EXPECT_EQ(ctype, record_type); return n; } FIXTURE(tls_basic) { int fd, cfd; bool notls; }; FIXTURE_SETUP(tls_basic) { ulp_sock_pair(_metadata, &self->fd, &self->cfd, &self->notls); } FIXTURE_TEARDOWN(tls_basic) { close(self->fd); close(self->cfd); } /* Send some data through with ULP but no keys */ TEST_F(tls_basic, base_base) { char const *test_str = "test_read"; int send_len = 10; char buf[10]; ASSERT_EQ(strlen(test_str) + 1, send_len); EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); EXPECT_NE(recv(self->cfd, buf, send_len, 0), -1); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); }; TEST_F(tls_basic, bad_cipher) { struct tls_crypto_info_keys tls12; tls12.crypto_info.version = 200; tls12.crypto_info.cipher_type = TLS_CIPHER_AES_GCM_128; EXPECT_EQ(setsockopt(self->fd, SOL_TLS, TLS_TX, &tls12, sizeof(struct tls12_crypto_info_aes_gcm_128)), -1); tls12.crypto_info.version = TLS_1_2_VERSION; tls12.crypto_info.cipher_type = 50; EXPECT_EQ(setsockopt(self->fd, SOL_TLS, TLS_TX, &tls12, sizeof(struct tls12_crypto_info_aes_gcm_128)), -1); tls12.crypto_info.version = TLS_1_2_VERSION; tls12.crypto_info.cipher_type = 59; EXPECT_EQ(setsockopt(self->fd, SOL_TLS, TLS_TX, &tls12, sizeof(struct tls12_crypto_info_aes_gcm_128)), -1); tls12.crypto_info.version = TLS_1_2_VERSION; tls12.crypto_info.cipher_type = 10; EXPECT_EQ(setsockopt(self->fd, SOL_TLS, TLS_TX, &tls12, sizeof(struct tls12_crypto_info_aes_gcm_128)), -1); tls12.crypto_info.version = TLS_1_2_VERSION; tls12.crypto_info.cipher_type = 70; EXPECT_EQ(setsockopt(self->fd, SOL_TLS, TLS_TX, &tls12, sizeof(struct tls12_crypto_info_aes_gcm_128)), -1); } FIXTURE(tls) { int fd, cfd; bool notls; }; FIXTURE_VARIANT(tls) { uint16_t tls_version; uint16_t cipher_type; bool nopad, fips_non_compliant; }; FIXTURE_VARIANT_ADD(tls, 12_aes_gcm) { .tls_version = TLS_1_2_VERSION, .cipher_type = TLS_CIPHER_AES_GCM_128, }; FIXTURE_VARIANT_ADD(tls, 13_aes_gcm) { .tls_version = TLS_1_3_VERSION, .cipher_type = TLS_CIPHER_AES_GCM_128, }; FIXTURE_VARIANT_ADD(tls, 12_chacha) { .tls_version = TLS_1_2_VERSION, .cipher_type = TLS_CIPHER_CHACHA20_POLY1305, .fips_non_compliant = true, }; FIXTURE_VARIANT_ADD(tls, 13_chacha) { .tls_version = TLS_1_3_VERSION, .cipher_type = TLS_CIPHER_CHACHA20_POLY1305, .fips_non_compliant = true, }; FIXTURE_VARIANT_ADD(tls, 13_sm4_gcm) { .tls_version = TLS_1_3_VERSION, .cipher_type = TLS_CIPHER_SM4_GCM, .fips_non_compliant = true, }; FIXTURE_VARIANT_ADD(tls, 13_sm4_ccm) { .tls_version = TLS_1_3_VERSION, .cipher_type = TLS_CIPHER_SM4_CCM, .fips_non_compliant = true, }; FIXTURE_VARIANT_ADD(tls, 12_aes_ccm) { .tls_version = TLS_1_2_VERSION, .cipher_type = TLS_CIPHER_AES_CCM_128, }; FIXTURE_VARIANT_ADD(tls, 13_aes_ccm) { .tls_version = TLS_1_3_VERSION, .cipher_type = TLS_CIPHER_AES_CCM_128, }; FIXTURE_VARIANT_ADD(tls, 12_aes_gcm_256) { .tls_version = TLS_1_2_VERSION, .cipher_type = TLS_CIPHER_AES_GCM_256, }; FIXTURE_VARIANT_ADD(tls, 13_aes_gcm_256) { .tls_version = TLS_1_3_VERSION, .cipher_type = TLS_CIPHER_AES_GCM_256, }; FIXTURE_VARIANT_ADD(tls, 13_nopad) { .tls_version = TLS_1_3_VERSION, .cipher_type = TLS_CIPHER_AES_GCM_128, .nopad = true, }; FIXTURE_VARIANT_ADD(tls, 12_aria_gcm) { .tls_version = TLS_1_2_VERSION, .cipher_type = TLS_CIPHER_ARIA_GCM_128, }; FIXTURE_VARIANT_ADD(tls, 12_aria_gcm_256) { .tls_version = TLS_1_2_VERSION, .cipher_type = TLS_CIPHER_ARIA_GCM_256, }; FIXTURE_SETUP(tls) { struct tls_crypto_info_keys tls12; int one = 1; int ret; if (fips_enabled && variant->fips_non_compliant) SKIP(return, "Unsupported cipher in FIPS mode"); tls_crypto_info_init(variant->tls_version, variant->cipher_type, &tls12); ulp_sock_pair(_metadata, &self->fd, &self->cfd, &self->notls); if (self->notls) return; ret = setsockopt(self->fd, SOL_TLS, TLS_TX, &tls12, tls12.len); ASSERT_EQ(ret, 0); ret = setsockopt(self->cfd, SOL_TLS, TLS_RX, &tls12, tls12.len); ASSERT_EQ(ret, 0); if (variant->nopad) { ret = setsockopt(self->cfd, SOL_TLS, TLS_RX_EXPECT_NO_PAD, (void *)&one, sizeof(one)); ASSERT_EQ(ret, 0); } } FIXTURE_TEARDOWN(tls) { close(self->fd); close(self->cfd); } TEST_F(tls, sendfile) { int filefd = open("/proc/self/exe", O_RDONLY); struct stat st; EXPECT_GE(filefd, 0); fstat(filefd, &st); EXPECT_GE(sendfile(self->fd, filefd, 0, st.st_size), 0); } TEST_F(tls, send_then_sendfile) { int filefd = open("/proc/self/exe", O_RDONLY); char const *test_str = "test_send"; int to_send = strlen(test_str) + 1; char recv_buf[10]; struct stat st; char *buf; EXPECT_GE(filefd, 0); fstat(filefd, &st); buf = (char *)malloc(st.st_size); EXPECT_EQ(send(self->fd, test_str, to_send, 0), to_send); EXPECT_EQ(recv(self->cfd, recv_buf, to_send, MSG_WAITALL), to_send); EXPECT_EQ(memcmp(test_str, recv_buf, to_send), 0); EXPECT_GE(sendfile(self->fd, filefd, 0, st.st_size), 0); EXPECT_EQ(recv(self->cfd, buf, st.st_size, MSG_WAITALL), st.st_size); } static void chunked_sendfile(struct __test_metadata *_metadata, struct _test_data_tls *self, uint16_t chunk_size, uint16_t extra_payload_size) { char buf[TLS_PAYLOAD_MAX_LEN]; uint16_t test_payload_size; int size = 0; int ret; char filename[] = "/tmp/mytemp.XXXXXX"; int fd = mkstemp(filename); off_t offset = 0; unlink(filename); ASSERT_GE(fd, 0); EXPECT_GE(chunk_size, 1); test_payload_size = chunk_size + extra_payload_size; ASSERT_GE(TLS_PAYLOAD_MAX_LEN, test_payload_size); memset(buf, 1, test_payload_size); size = write(fd, buf, test_payload_size); EXPECT_EQ(size, test_payload_size); fsync(fd); while (size > 0) { ret = sendfile(self->fd, fd, &offset, chunk_size); EXPECT_GE(ret, 0); size -= ret; } EXPECT_EQ(recv(self->cfd, buf, test_payload_size, MSG_WAITALL), test_payload_size); close(fd); } TEST_F(tls, multi_chunk_sendfile) { chunked_sendfile(_metadata, self, 4096, 4096); chunked_sendfile(_metadata, self, 4096, 0); chunked_sendfile(_metadata, self, 4096, 1); chunked_sendfile(_metadata, self, 4096, 2048); chunked_sendfile(_metadata, self, 8192, 2048); chunked_sendfile(_metadata, self, 4096, 8192); chunked_sendfile(_metadata, self, 8192, 4096); chunked_sendfile(_metadata, self, 12288, 1024); chunked_sendfile(_metadata, self, 12288, 2000); chunked_sendfile(_metadata, self, 15360, 100); chunked_sendfile(_metadata, self, 15360, 300); chunked_sendfile(_metadata, self, 1, 4096); chunked_sendfile(_metadata, self, 2048, 4096); chunked_sendfile(_metadata, self, 2048, 8192); chunked_sendfile(_metadata, self, 4096, 8192); chunked_sendfile(_metadata, self, 1024, 12288); chunked_sendfile(_metadata, self, 2000, 12288); chunked_sendfile(_metadata, self, 100, 15360); chunked_sendfile(_metadata, self, 300, 15360); } TEST_F(tls, recv_max) { unsigned int send_len = TLS_PAYLOAD_MAX_LEN; char recv_mem[TLS_PAYLOAD_MAX_LEN]; char buf[TLS_PAYLOAD_MAX_LEN]; memrnd(buf, sizeof(buf)); EXPECT_GE(send(self->fd, buf, send_len, 0), 0); EXPECT_NE(recv(self->cfd, recv_mem, send_len, 0), -1); EXPECT_EQ(memcmp(buf, recv_mem, send_len), 0); } TEST_F(tls, recv_small) { char const *test_str = "test_read"; int send_len = 10; char buf[10]; send_len = strlen(test_str) + 1; EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); EXPECT_NE(recv(self->cfd, buf, send_len, 0), -1); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); } TEST_F(tls, msg_more) { char const *test_str = "test_read"; int send_len = 10; char buf[10 * 2]; EXPECT_EQ(send(self->fd, test_str, send_len, MSG_MORE), send_len); EXPECT_EQ(recv(self->cfd, buf, send_len, MSG_DONTWAIT), -1); EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); EXPECT_EQ(recv(self->cfd, buf, send_len * 2, MSG_WAITALL), send_len * 2); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); } TEST_F(tls, msg_more_unsent) { char const *test_str = "test_read"; int send_len = 10; char buf[10]; EXPECT_EQ(send(self->fd, test_str, send_len, MSG_MORE), send_len); EXPECT_EQ(recv(self->cfd, buf, send_len, MSG_DONTWAIT), -1); } TEST_F(tls, msg_eor) { char const *test_str = "test_read"; int send_len = 10; char buf[10]; EXPECT_EQ(send(self->fd, test_str, send_len, MSG_EOR), send_len); EXPECT_EQ(recv(self->cfd, buf, send_len, MSG_WAITALL), send_len); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); } TEST_F(tls, sendmsg_single) { struct msghdr msg; char const *test_str = "test_sendmsg"; size_t send_len = 13; struct iovec vec; char buf[13]; vec.iov_base = (char *)test_str; vec.iov_len = send_len; memset(&msg, 0, sizeof(struct msghdr)); msg.msg_iov = &vec; msg.msg_iovlen = 1; EXPECT_EQ(sendmsg(self->fd, &msg, 0), send_len); EXPECT_EQ(recv(self->cfd, buf, send_len, MSG_WAITALL), send_len); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); } #define MAX_FRAGS 64 #define SEND_LEN 13 TEST_F(tls, sendmsg_fragmented) { char const *test_str = "test_sendmsg"; char buf[SEND_LEN * MAX_FRAGS]; struct iovec vec[MAX_FRAGS]; struct msghdr msg; int i, frags; for (frags = 1; frags <= MAX_FRAGS; frags++) { for (i = 0; i < frags; i++) { vec[i].iov_base = (char *)test_str; vec[i].iov_len = SEND_LEN; } memset(&msg, 0, sizeof(struct msghdr)); msg.msg_iov = vec; msg.msg_iovlen = frags; EXPECT_EQ(sendmsg(self->fd, &msg, 0), SEND_LEN * frags); EXPECT_EQ(recv(self->cfd, buf, SEND_LEN * frags, MSG_WAITALL), SEND_LEN * frags); for (i = 0; i < frags; i++) EXPECT_EQ(memcmp(buf + SEND_LEN * i, test_str, SEND_LEN), 0); } } #undef MAX_FRAGS #undef SEND_LEN TEST_F(tls, sendmsg_large) { void *mem = malloc(16384); size_t send_len = 16384; size_t sends = 128; struct msghdr msg; size_t recvs = 0; size_t sent = 0; memset(&msg, 0, sizeof(struct msghdr)); while (sent++ < sends) { struct iovec vec = { (void *)mem, send_len }; msg.msg_iov = &vec; msg.msg_iovlen = 1; EXPECT_EQ(sendmsg(self->fd, &msg, 0), send_len); } while (recvs++ < sends) { EXPECT_NE(recv(self->cfd, mem, send_len, 0), -1); } free(mem); } TEST_F(tls, sendmsg_multiple) { char const *test_str = "test_sendmsg_multiple"; struct iovec vec[5]; char *test_strs[5]; struct msghdr msg; int total_len = 0; int len_cmp = 0; int iov_len = 5; char *buf; int i; memset(&msg, 0, sizeof(struct msghdr)); for (i = 0; i < iov_len; i++) { test_strs[i] = (char *)malloc(strlen(test_str) + 1); snprintf(test_strs[i], strlen(test_str) + 1, "%s", test_str); vec[i].iov_base = (void *)test_strs[i]; vec[i].iov_len = strlen(test_strs[i]) + 1; total_len += vec[i].iov_len; } msg.msg_iov = vec; msg.msg_iovlen = iov_len; EXPECT_EQ(sendmsg(self->fd, &msg, 0), total_len); buf = malloc(total_len); EXPECT_NE(recv(self->cfd, buf, total_len, 0), -1); for (i = 0; i < iov_len; i++) { EXPECT_EQ(memcmp(test_strs[i], buf + len_cmp, strlen(test_strs[i])), 0); len_cmp += strlen(buf + len_cmp) + 1; } for (i = 0; i < iov_len; i++) free(test_strs[i]); free(buf); } TEST_F(tls, sendmsg_multiple_stress) { char const *test_str = "abcdefghijklmno"; struct iovec vec[1024]; char *test_strs[1024]; int iov_len = 1024; int total_len = 0; char buf[1 << 14]; struct msghdr msg; int len_cmp = 0; int i; memset(&msg, 0, sizeof(struct msghdr)); for (i = 0; i < iov_len; i++) { test_strs[i] = (char *)malloc(strlen(test_str) + 1); snprintf(test_strs[i], strlen(test_str) + 1, "%s", test_str); vec[i].iov_base = (void *)test_strs[i]; vec[i].iov_len = strlen(test_strs[i]) + 1; total_len += vec[i].iov_len; } msg.msg_iov = vec; msg.msg_iovlen = iov_len; EXPECT_EQ(sendmsg(self->fd, &msg, 0), total_len); EXPECT_NE(recv(self->cfd, buf, total_len, 0), -1); for (i = 0; i < iov_len; i++) len_cmp += strlen(buf + len_cmp) + 1; for (i = 0; i < iov_len; i++) free(test_strs[i]); } TEST_F(tls, splice_from_pipe) { int send_len = TLS_PAYLOAD_MAX_LEN; char mem_send[TLS_PAYLOAD_MAX_LEN]; char mem_recv[TLS_PAYLOAD_MAX_LEN]; int p[2]; ASSERT_GE(pipe(p), 0); EXPECT_GE(write(p[1], mem_send, send_len), 0); EXPECT_GE(splice(p[0], NULL, self->fd, NULL, send_len, 0), 0); EXPECT_EQ(recv(self->cfd, mem_recv, send_len, MSG_WAITALL), send_len); EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0); } TEST_F(tls, splice_from_pipe2) { int send_len = 16000; char mem_send[16000]; char mem_recv[16000]; int p2[2]; int p[2]; memrnd(mem_send, sizeof(mem_send)); ASSERT_GE(pipe(p), 0); ASSERT_GE(pipe(p2), 0); EXPECT_EQ(write(p[1], mem_send, 8000), 8000); EXPECT_EQ(splice(p[0], NULL, self->fd, NULL, 8000, 0), 8000); EXPECT_EQ(write(p2[1], mem_send + 8000, 8000), 8000); EXPECT_EQ(splice(p2[0], NULL, self->fd, NULL, 8000, 0), 8000); EXPECT_EQ(recv(self->cfd, mem_recv, send_len, MSG_WAITALL), send_len); EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0); } TEST_F(tls, send_and_splice) { int send_len = TLS_PAYLOAD_MAX_LEN; char mem_send[TLS_PAYLOAD_MAX_LEN]; char mem_recv[TLS_PAYLOAD_MAX_LEN]; char const *test_str = "test_read"; int send_len2 = 10; char buf[10]; int p[2]; ASSERT_GE(pipe(p), 0); EXPECT_EQ(send(self->fd, test_str, send_len2, 0), send_len2); EXPECT_EQ(recv(self->cfd, buf, send_len2, MSG_WAITALL), send_len2); EXPECT_EQ(memcmp(test_str, buf, send_len2), 0); EXPECT_GE(write(p[1], mem_send, send_len), send_len); EXPECT_GE(splice(p[0], NULL, self->fd, NULL, send_len, 0), send_len); EXPECT_EQ(recv(self->cfd, mem_recv, send_len, MSG_WAITALL), send_len); EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0); } TEST_F(tls, splice_to_pipe) { int send_len = TLS_PAYLOAD_MAX_LEN; char mem_send[TLS_PAYLOAD_MAX_LEN]; char mem_recv[TLS_PAYLOAD_MAX_LEN]; int p[2]; memrnd(mem_send, sizeof(mem_send)); ASSERT_GE(pipe(p), 0); EXPECT_EQ(send(self->fd, mem_send, send_len, 0), send_len); EXPECT_EQ(splice(self->cfd, NULL, p[1], NULL, send_len, 0), send_len); EXPECT_EQ(read(p[0], mem_recv, send_len), send_len); EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0); } TEST_F(tls, splice_cmsg_to_pipe) { char *test_str = "test_read"; char record_type = 100; int send_len = 10; char buf[10]; int p[2]; if (self->notls) SKIP(return, "no TLS support"); ASSERT_GE(pipe(p), 0); EXPECT_EQ(tls_send_cmsg(self->fd, 100, test_str, send_len, 0), 10); EXPECT_EQ(splice(self->cfd, NULL, p[1], NULL, send_len, 0), -1); EXPECT_EQ(errno, EINVAL); EXPECT_EQ(recv(self->cfd, buf, send_len, 0), -1); EXPECT_EQ(errno, EIO); EXPECT_EQ(tls_recv_cmsg(_metadata, self->cfd, record_type, buf, sizeof(buf), MSG_WAITALL), send_len); EXPECT_EQ(memcmp(test_str, buf, send_len), 0); } TEST_F(tls, splice_dec_cmsg_to_pipe) { char *test_str = "test_read"; char record_type = 100; int send_len = 10; char buf[10]; int p[2]; if (self->notls) SKIP(return, "no TLS support"); ASSERT_GE(pipe(p), 0); EXPECT_EQ(tls_send_cmsg(self->fd, 100, test_str, send_len, 0), 10); EXPECT_EQ(recv(self->cfd, buf, send_len, 0), -1); EXPECT_EQ(errno, EIO); EXPECT_EQ(splice(self->cfd, NULL, p[1], NULL, send_len, 0), -1); EXPECT_EQ(errno, EINVAL); EXPECT_EQ(tls_recv_cmsg(_metadata, self->cfd, record_type, buf, sizeof(buf), MSG_WAITALL), send_len); EXPECT_EQ(memcmp(test_str, buf, send_len), 0); } TEST_F(tls, recv_and_splice) { int send_len = TLS_PAYLOAD_MAX_LEN; char mem_send[TLS_PAYLOAD_MAX_LEN]; char mem_recv[TLS_PAYLOAD_MAX_LEN]; int half = send_len / 2; int p[2]; ASSERT_GE(pipe(p), 0); EXPECT_EQ(send(self->fd, mem_send, send_len, 0), send_len); /* Recv hald of the record, splice the other half */ EXPECT_EQ(recv(self->cfd, mem_recv, half, MSG_WAITALL), half); EXPECT_EQ(splice(self->cfd, NULL, p[1], NULL, half, SPLICE_F_NONBLOCK), half); EXPECT_EQ(read(p[0], &mem_recv[half], half), half); EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0); } TEST_F(tls, peek_and_splice) { int send_len = TLS_PAYLOAD_MAX_LEN; char mem_send[TLS_PAYLOAD_MAX_LEN]; char mem_recv[TLS_PAYLOAD_MAX_LEN]; int chunk = TLS_PAYLOAD_MAX_LEN / 4; int n, i, p[2]; memrnd(mem_send, sizeof(mem_send)); ASSERT_GE(pipe(p), 0); for (i = 0; i < 4; i++) EXPECT_EQ(send(self->fd, &mem_send[chunk * i], chunk, 0), chunk); EXPECT_EQ(recv(self->cfd, mem_recv, chunk * 5 / 2, MSG_WAITALL | MSG_PEEK), chunk * 5 / 2); EXPECT_EQ(memcmp(mem_send, mem_recv, chunk * 5 / 2), 0); n = 0; while (n < send_len) { i = splice(self->cfd, NULL, p[1], NULL, send_len - n, 0); EXPECT_GT(i, 0); n += i; } EXPECT_EQ(n, send_len); EXPECT_EQ(read(p[0], mem_recv, send_len), send_len); EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0); } TEST_F(tls, recvmsg_single) { char const *test_str = "test_recvmsg_single"; int send_len = strlen(test_str) + 1; char buf[20]; struct msghdr hdr; struct iovec vec; memset(&hdr, 0, sizeof(hdr)); EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); vec.iov_base = (char *)buf; vec.iov_len = send_len; hdr.msg_iovlen = 1; hdr.msg_iov = &vec; EXPECT_NE(recvmsg(self->cfd, &hdr, 0), -1); EXPECT_EQ(memcmp(test_str, buf, send_len), 0); } TEST_F(tls, recvmsg_single_max) { int send_len = TLS_PAYLOAD_MAX_LEN; char send_mem[TLS_PAYLOAD_MAX_LEN]; char recv_mem[TLS_PAYLOAD_MAX_LEN]; struct iovec vec; struct msghdr hdr; memrnd(send_mem, sizeof(send_mem)); EXPECT_EQ(send(self->fd, send_mem, send_len, 0), send_len); vec.iov_base = (char *)recv_mem; vec.iov_len = TLS_PAYLOAD_MAX_LEN; hdr.msg_iovlen = 1; hdr.msg_iov = &vec; EXPECT_NE(recvmsg(self->cfd, &hdr, 0), -1); EXPECT_EQ(memcmp(send_mem, recv_mem, send_len), 0); } TEST_F(tls, recvmsg_multiple) { unsigned int msg_iovlen = 1024; struct iovec vec[1024]; char *iov_base[1024]; unsigned int iov_len = 16; int send_len = 1 << 14; char buf[1 << 14]; struct msghdr hdr; int i; memrnd(buf, sizeof(buf)); EXPECT_EQ(send(self->fd, buf, send_len, 0), send_len); for (i = 0; i < msg_iovlen; i++) { iov_base[i] = (char *)malloc(iov_len); vec[i].iov_base = iov_base[i]; vec[i].iov_len = iov_len; } hdr.msg_iovlen = msg_iovlen; hdr.msg_iov = vec; EXPECT_NE(recvmsg(self->cfd, &hdr, 0), -1); for (i = 0; i < msg_iovlen; i++) free(iov_base[i]); } TEST_F(tls, single_send_multiple_recv) { unsigned int total_len = TLS_PAYLOAD_MAX_LEN * 2; unsigned int send_len = TLS_PAYLOAD_MAX_LEN; char send_mem[TLS_PAYLOAD_MAX_LEN * 2]; char recv_mem[TLS_PAYLOAD_MAX_LEN * 2]; memrnd(send_mem, sizeof(send_mem)); EXPECT_GE(send(self->fd, send_mem, total_len, 0), 0); memset(recv_mem, 0, total_len); EXPECT_NE(recv(self->cfd, recv_mem, send_len, 0), -1); EXPECT_NE(recv(self->cfd, recv_mem + send_len, send_len, 0), -1); EXPECT_EQ(memcmp(send_mem, recv_mem, total_len), 0); } TEST_F(tls, multiple_send_single_recv) { unsigned int total_len = 2 * 10; unsigned int send_len = 10; char recv_mem[2 * 10]; char send_mem[10]; memrnd(send_mem, sizeof(send_mem)); EXPECT_GE(send(self->fd, send_mem, send_len, 0), 0); EXPECT_GE(send(self->fd, send_mem, send_len, 0), 0); memset(recv_mem, 0, total_len); EXPECT_EQ(recv(self->cfd, recv_mem, total_len, MSG_WAITALL), total_len); EXPECT_EQ(memcmp(send_mem, recv_mem, send_len), 0); EXPECT_EQ(memcmp(send_mem, recv_mem + send_len, send_len), 0); } TEST_F(tls, single_send_multiple_recv_non_align) { const unsigned int total_len = 15; const unsigned int recv_len = 10; char recv_mem[recv_len * 2]; char send_mem[total_len]; memrnd(send_mem, sizeof(send_mem)); EXPECT_GE(send(self->fd, send_mem, total_len, 0), 0); memset(recv_mem, 0, total_len); EXPECT_EQ(recv(self->cfd, recv_mem, recv_len, 0), recv_len); EXPECT_EQ(recv(self->cfd, recv_mem + recv_len, recv_len, 0), 5); EXPECT_EQ(memcmp(send_mem, recv_mem, total_len), 0); } TEST_F(tls, recv_partial) { char const *test_str = "test_read_partial"; char const *test_str_first = "test_read"; char const *test_str_second = "_partial"; int send_len = strlen(test_str) + 1; char recv_mem[18]; memset(recv_mem, 0, sizeof(recv_mem)); EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); EXPECT_NE(recv(self->cfd, recv_mem, strlen(test_str_first), MSG_WAITALL), -1); EXPECT_EQ(memcmp(test_str_first, recv_mem, strlen(test_str_first)), 0); memset(recv_mem, 0, sizeof(recv_mem)); EXPECT_NE(recv(self->cfd, recv_mem, strlen(test_str_second), MSG_WAITALL), -1); EXPECT_EQ(memcmp(test_str_second, recv_mem, strlen(test_str_second)), 0); } TEST_F(tls, recv_nonblock) { char buf[4096]; bool err; EXPECT_EQ(recv(self->cfd, buf, sizeof(buf), MSG_DONTWAIT), -1); err = (errno == EAGAIN || errno == EWOULDBLOCK); EXPECT_EQ(err, true); } TEST_F(tls, recv_peek) { char const *test_str = "test_read_peek"; int send_len = strlen(test_str) + 1; char buf[15]; EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); EXPECT_EQ(recv(self->cfd, buf, send_len, MSG_PEEK), send_len); EXPECT_EQ(memcmp(test_str, buf, send_len), 0); memset(buf, 0, sizeof(buf)); EXPECT_EQ(recv(self->cfd, buf, send_len, 0), send_len); EXPECT_EQ(memcmp(test_str, buf, send_len), 0); } TEST_F(tls, recv_peek_multiple) { char const *test_str = "test_read_peek"; int send_len = strlen(test_str) + 1; unsigned int num_peeks = 100; char buf[15]; int i; EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); for (i = 0; i < num_peeks; i++) { EXPECT_NE(recv(self->cfd, buf, send_len, MSG_PEEK), -1); EXPECT_EQ(memcmp(test_str, buf, send_len), 0); memset(buf, 0, sizeof(buf)); } EXPECT_NE(recv(self->cfd, buf, send_len, 0), -1); EXPECT_EQ(memcmp(test_str, buf, send_len), 0); } TEST_F(tls, recv_peek_multiple_records) { char const *test_str = "test_read_peek_mult_recs"; char const *test_str_first = "test_read_peek"; char const *test_str_second = "_mult_recs"; int len; char buf[64]; len = strlen(test_str_first); EXPECT_EQ(send(self->fd, test_str_first, len, 0), len); len = strlen(test_str_second) + 1; EXPECT_EQ(send(self->fd, test_str_second, len, 0), len); len = strlen(test_str_first); memset(buf, 0, len); EXPECT_EQ(recv(self->cfd, buf, len, MSG_PEEK | MSG_WAITALL), len); /* MSG_PEEK can only peek into the current record. */ len = strlen(test_str_first); EXPECT_EQ(memcmp(test_str_first, buf, len), 0); len = strlen(test_str) + 1; memset(buf, 0, len); EXPECT_EQ(recv(self->cfd, buf, len, MSG_WAITALL), len); /* Non-MSG_PEEK will advance strparser (and therefore record) * however. */ len = strlen(test_str) + 1; EXPECT_EQ(memcmp(test_str, buf, len), 0); /* MSG_MORE will hold current record open, so later MSG_PEEK * will see everything. */ len = strlen(test_str_first); EXPECT_EQ(send(self->fd, test_str_first, len, MSG_MORE), len); len = strlen(test_str_second) + 1; EXPECT_EQ(send(self->fd, test_str_second, len, 0), len); len = strlen(test_str) + 1; memset(buf, 0, len); EXPECT_EQ(recv(self->cfd, buf, len, MSG_PEEK | MSG_WAITALL), len); len = strlen(test_str) + 1; EXPECT_EQ(memcmp(test_str, buf, len), 0); } TEST_F(tls, recv_peek_large_buf_mult_recs) { char const *test_str = "test_read_peek_mult_recs"; char const *test_str_first = "test_read_peek"; char const *test_str_second = "_mult_recs"; int len; char buf[64]; len = strlen(test_str_first); EXPECT_EQ(send(self->fd, test_str_first, len, 0), len); len = strlen(test_str_second) + 1; EXPECT_EQ(send(self->fd, test_str_second, len, 0), len); len = strlen(test_str) + 1; memset(buf, 0, len); EXPECT_NE((len = recv(self->cfd, buf, len, MSG_PEEK | MSG_WAITALL)), -1); len = strlen(test_str) + 1; EXPECT_EQ(memcmp(test_str, buf, len), 0); } TEST_F(tls, recv_lowat) { char send_mem[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; char recv_mem[20]; int lowat = 8; EXPECT_EQ(send(self->fd, send_mem, 10, 0), 10); EXPECT_EQ(send(self->fd, send_mem, 5, 0), 5); memset(recv_mem, 0, 20); EXPECT_EQ(setsockopt(self->cfd, SOL_SOCKET, SO_RCVLOWAT, &lowat, sizeof(lowat)), 0); EXPECT_EQ(recv(self->cfd, recv_mem, 1, MSG_WAITALL), 1); EXPECT_EQ(recv(self->cfd, recv_mem + 1, 6, MSG_WAITALL), 6); EXPECT_EQ(recv(self->cfd, recv_mem + 7, 10, 0), 8); EXPECT_EQ(memcmp(send_mem, recv_mem, 10), 0); EXPECT_EQ(memcmp(send_mem, recv_mem + 10, 5), 0); } TEST_F(tls, bidir) { char const *test_str = "test_read"; int send_len = 10; char buf[10]; int ret; if (!self->notls) { struct tls_crypto_info_keys tls12; tls_crypto_info_init(variant->tls_version, variant->cipher_type, &tls12); ret = setsockopt(self->fd, SOL_TLS, TLS_RX, &tls12, tls12.len); ASSERT_EQ(ret, 0); ret = setsockopt(self->cfd, SOL_TLS, TLS_TX, &tls12, tls12.len); ASSERT_EQ(ret, 0); } ASSERT_EQ(strlen(test_str) + 1, send_len); EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); EXPECT_NE(recv(self->cfd, buf, send_len, 0), -1); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); memset(buf, 0, sizeof(buf)); EXPECT_EQ(send(self->cfd, test_str, send_len, 0), send_len); EXPECT_NE(recv(self->fd, buf, send_len, 0), -1); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); }; TEST_F(tls, pollin) { char const *test_str = "test_poll"; struct pollfd fd = { 0, 0, 0 }; char buf[10]; int send_len = 10; EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); fd.fd = self->cfd; fd.events = POLLIN; EXPECT_EQ(poll(&fd, 1, 20), 1); EXPECT_EQ(fd.revents & POLLIN, 1); EXPECT_EQ(recv(self->cfd, buf, send_len, MSG_WAITALL), send_len); /* Test timing out */ EXPECT_EQ(poll(&fd, 1, 20), 0); } TEST_F(tls, poll_wait) { char const *test_str = "test_poll_wait"; int send_len = strlen(test_str) + 1; struct pollfd fd = { 0, 0, 0 }; char recv_mem[15]; fd.fd = self->cfd; fd.events = POLLIN; EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); /* Set timeout to inf. secs */ EXPECT_EQ(poll(&fd, 1, -1), 1); EXPECT_EQ(fd.revents & POLLIN, 1); EXPECT_EQ(recv(self->cfd, recv_mem, send_len, MSG_WAITALL), send_len); } TEST_F(tls, poll_wait_split) { struct pollfd fd = { 0, 0, 0 }; char send_mem[20] = {}; char recv_mem[15]; fd.fd = self->cfd; fd.events = POLLIN; /* Send 20 bytes */ EXPECT_EQ(send(self->fd, send_mem, sizeof(send_mem), 0), sizeof(send_mem)); /* Poll with inf. timeout */ EXPECT_EQ(poll(&fd, 1, -1), 1); EXPECT_EQ(fd.revents & POLLIN, 1); EXPECT_EQ(recv(self->cfd, recv_mem, sizeof(recv_mem), MSG_WAITALL), sizeof(recv_mem)); /* Now the remaining 5 bytes of record data are in TLS ULP */ fd.fd = self->cfd; fd.events = POLLIN; EXPECT_EQ(poll(&fd, 1, -1), 1); EXPECT_EQ(fd.revents & POLLIN, 1); EXPECT_EQ(recv(self->cfd, recv_mem, sizeof(recv_mem), 0), sizeof(send_mem) - sizeof(recv_mem)); } TEST_F(tls, blocking) { size_t data = 100000; int res = fork(); EXPECT_NE(res, -1); if (res) { /* parent */ size_t left = data; char buf[16384]; int status; int pid2; while (left) { int res = send(self->fd, buf, left > 16384 ? 16384 : left, 0); EXPECT_GE(res, 0); left -= res; } pid2 = wait(&status); EXPECT_EQ(status, 0); EXPECT_EQ(res, pid2); } else { /* child */ size_t left = data; char buf[16384]; while (left) { int res = recv(self->cfd, buf, left > 16384 ? 16384 : left, 0); EXPECT_GE(res, 0); left -= res; } } } TEST_F(tls, nonblocking) { size_t data = 100000; int sendbuf = 100; int flags; int res; flags = fcntl(self->fd, F_GETFL, 0); fcntl(self->fd, F_SETFL, flags | O_NONBLOCK); fcntl(self->cfd, F_SETFL, flags | O_NONBLOCK); /* Ensure nonblocking behavior by imposing a small send * buffer. */ EXPECT_EQ(setsockopt(self->fd, SOL_SOCKET, SO_SNDBUF, &sendbuf, sizeof(sendbuf)), 0); res = fork(); EXPECT_NE(res, -1); if (res) { /* parent */ bool eagain = false; size_t left = data; char buf[16384]; int status; int pid2; while (left) { int res = send(self->fd, buf, left > 16384 ? 16384 : left, 0); if (res == -1 && errno == EAGAIN) { eagain = true; usleep(10000); continue; } EXPECT_GE(res, 0); left -= res; } EXPECT_TRUE(eagain); pid2 = wait(&status); EXPECT_EQ(status, 0); EXPECT_EQ(res, pid2); } else { /* child */ bool eagain = false; size_t left = data; char buf[16384]; while (left) { int res = recv(self->cfd, buf, left > 16384 ? 16384 : left, 0); if (res == -1 && errno == EAGAIN) { eagain = true; usleep(10000); continue; } EXPECT_GE(res, 0); left -= res; } EXPECT_TRUE(eagain); } } static void test_mutliproc(struct __test_metadata *_metadata, struct _test_data_tls *self, bool sendpg, unsigned int n_readers, unsigned int n_writers) { const unsigned int n_children = n_readers + n_writers; const size_t data = 6 * 1000 * 1000; const size_t file_sz = data / 100; size_t read_bias, write_bias; int i, fd, child_id; char buf[file_sz]; pid_t pid; /* Only allow multiples for simplicity */ ASSERT_EQ(!(n_readers % n_writers) || !(n_writers % n_readers), true); read_bias = n_writers / n_readers ?: 1; write_bias = n_readers / n_writers ?: 1; /* prep a file to send */ fd = open("/tmp/", O_TMPFILE | O_RDWR, 0600); ASSERT_GE(fd, 0); memset(buf, 0xac, file_sz); ASSERT_EQ(write(fd, buf, file_sz), file_sz); /* spawn children */ for (child_id = 0; child_id < n_children; child_id++) { pid = fork(); ASSERT_NE(pid, -1); if (!pid) break; } /* parent waits for all children */ if (pid) { for (i = 0; i < n_children; i++) { int status; wait(&status); EXPECT_EQ(status, 0); } return; } /* Split threads for reading and writing */ if (child_id < n_readers) { size_t left = data * read_bias; char rb[8001]; while (left) { int res; res = recv(self->cfd, rb, left > sizeof(rb) ? sizeof(rb) : left, 0); EXPECT_GE(res, 0); left -= res; } } else { size_t left = data * write_bias; while (left) { int res; ASSERT_EQ(lseek(fd, 0, SEEK_SET), 0); if (sendpg) res = sendfile(self->fd, fd, NULL, left > file_sz ? file_sz : left); else res = send(self->fd, buf, left > file_sz ? file_sz : left, 0); EXPECT_GE(res, 0); left -= res; } } } TEST_F(tls, mutliproc_even) { test_mutliproc(_metadata, self, false, 6, 6); } TEST_F(tls, mutliproc_readers) { test_mutliproc(_metadata, self, false, 4, 12); } TEST_F(tls, mutliproc_writers) { test_mutliproc(_metadata, self, false, 10, 2); } TEST_F(tls, mutliproc_sendpage_even) { test_mutliproc(_metadata, self, true, 6, 6); } TEST_F(tls, mutliproc_sendpage_readers) { test_mutliproc(_metadata, self, true, 4, 12); } TEST_F(tls, mutliproc_sendpage_writers) { test_mutliproc(_metadata, self, true, 10, 2); } TEST_F(tls, control_msg) { char *test_str = "test_read"; char record_type = 100; int send_len = 10; char buf[10]; if (self->notls) SKIP(return, "no TLS support"); EXPECT_EQ(tls_send_cmsg(self->fd, record_type, test_str, send_len, 0), send_len); /* Should fail because we didn't provide a control message */ EXPECT_EQ(recv(self->cfd, buf, send_len, 0), -1); EXPECT_EQ(tls_recv_cmsg(_metadata, self->cfd, record_type, buf, sizeof(buf), MSG_WAITALL | MSG_PEEK), send_len); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); /* Recv the message again without MSG_PEEK */ memset(buf, 0, sizeof(buf)); EXPECT_EQ(tls_recv_cmsg(_metadata, self->cfd, record_type, buf, sizeof(buf), MSG_WAITALL), send_len); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); } TEST_F(tls, shutdown) { char const *test_str = "test_read"; int send_len = 10; char buf[10]; ASSERT_EQ(strlen(test_str) + 1, send_len); EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); EXPECT_NE(recv(self->cfd, buf, send_len, 0), -1); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); shutdown(self->fd, SHUT_RDWR); shutdown(self->cfd, SHUT_RDWR); } TEST_F(tls, shutdown_unsent) { char const *test_str = "test_read"; int send_len = 10; EXPECT_EQ(send(self->fd, test_str, send_len, MSG_MORE), send_len); shutdown(self->fd, SHUT_RDWR); shutdown(self->cfd, SHUT_RDWR); } TEST_F(tls, shutdown_reuse) { struct sockaddr_in addr; int ret; shutdown(self->fd, SHUT_RDWR); shutdown(self->cfd, SHUT_RDWR); close(self->cfd); addr.sin_family = AF_INET; addr.sin_addr.s_addr = htonl(INADDR_ANY); addr.sin_port = 0; ret = bind(self->fd, &addr, sizeof(addr)); EXPECT_EQ(ret, 0); ret = listen(self->fd, 10); EXPECT_EQ(ret, -1); EXPECT_EQ(errno, EINVAL); ret = connect(self->fd, &addr, sizeof(addr)); EXPECT_EQ(ret, -1); EXPECT_EQ(errno, EISCONN); } TEST_F(tls, getsockopt) { struct tls_crypto_info_keys expect, get; socklen_t len; /* get only the version/cipher */ len = sizeof(struct tls_crypto_info); memrnd(&get, sizeof(get)); EXPECT_EQ(getsockopt(self->fd, SOL_TLS, TLS_TX, &get, &len), 0); EXPECT_EQ(len, sizeof(struct tls_crypto_info)); EXPECT_EQ(get.crypto_info.version, variant->tls_version); EXPECT_EQ(get.crypto_info.cipher_type, variant->cipher_type); /* get the full crypto_info */ tls_crypto_info_init(variant->tls_version, variant->cipher_type, &expect); len = expect.len; memrnd(&get, sizeof(get)); EXPECT_EQ(getsockopt(self->fd, SOL_TLS, TLS_TX, &get, &len), 0); EXPECT_EQ(len, expect.len); EXPECT_EQ(get.crypto_info.version, variant->tls_version); EXPECT_EQ(get.crypto_info.cipher_type, variant->cipher_type); EXPECT_EQ(memcmp(&get, &expect, expect.len), 0); /* short get should fail */ len = sizeof(struct tls_crypto_info) - 1; EXPECT_EQ(getsockopt(self->fd, SOL_TLS, TLS_TX, &get, &len), -1); EXPECT_EQ(errno, EINVAL); /* partial get of the cipher data should fail */ len = expect.len - 1; EXPECT_EQ(getsockopt(self->fd, SOL_TLS, TLS_TX, &get, &len), -1); EXPECT_EQ(errno, EINVAL); } FIXTURE(tls_err) { int fd, cfd; int fd2, cfd2; bool notls; }; FIXTURE_VARIANT(tls_err) { uint16_t tls_version; }; FIXTURE_VARIANT_ADD(tls_err, 12_aes_gcm) { .tls_version = TLS_1_2_VERSION, }; FIXTURE_VARIANT_ADD(tls_err, 13_aes_gcm) { .tls_version = TLS_1_3_VERSION, }; FIXTURE_SETUP(tls_err) { struct tls_crypto_info_keys tls12; int ret; tls_crypto_info_init(variant->tls_version, TLS_CIPHER_AES_GCM_128, &tls12); ulp_sock_pair(_metadata, &self->fd, &self->cfd, &self->notls); ulp_sock_pair(_metadata, &self->fd2, &self->cfd2, &self->notls); if (self->notls) return; ret = setsockopt(self->fd, SOL_TLS, TLS_TX, &tls12, tls12.len); ASSERT_EQ(ret, 0); ret = setsockopt(self->cfd2, SOL_TLS, TLS_RX, &tls12, tls12.len); ASSERT_EQ(ret, 0); } FIXTURE_TEARDOWN(tls_err) { close(self->fd); close(self->cfd); close(self->fd2); close(self->cfd2); } TEST_F(tls_err, bad_rec) { char buf[64]; if (self->notls) SKIP(return, "no TLS support"); memset(buf, 0x55, sizeof(buf)); EXPECT_EQ(send(self->fd2, buf, sizeof(buf), 0), sizeof(buf)); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EMSGSIZE); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), MSG_DONTWAIT), -1); EXPECT_EQ(errno, EAGAIN); } TEST_F(tls_err, bad_auth) { char buf[128]; int n; if (self->notls) SKIP(return, "no TLS support"); memrnd(buf, sizeof(buf) / 2); EXPECT_EQ(send(self->fd, buf, sizeof(buf) / 2, 0), sizeof(buf) / 2); n = recv(self->cfd, buf, sizeof(buf), 0); EXPECT_GT(n, sizeof(buf) / 2); buf[n - 1]++; EXPECT_EQ(send(self->fd2, buf, n, 0), n); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EBADMSG); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EBADMSG); } TEST_F(tls_err, bad_in_large_read) { char txt[3][64]; char cip[3][128]; char buf[3 * 128]; int i, n; if (self->notls) SKIP(return, "no TLS support"); /* Put 3 records in the sockets */ for (i = 0; i < 3; i++) { memrnd(txt[i], sizeof(txt[i])); EXPECT_EQ(send(self->fd, txt[i], sizeof(txt[i]), 0), sizeof(txt[i])); n = recv(self->cfd, cip[i], sizeof(cip[i]), 0); EXPECT_GT(n, sizeof(txt[i])); /* Break the third message */ if (i == 2) cip[2][n - 1]++; EXPECT_EQ(send(self->fd2, cip[i], n, 0), n); } /* We should be able to receive the first two messages */ EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), sizeof(txt[0]) * 2); EXPECT_EQ(memcmp(buf, txt[0], sizeof(txt[0])), 0); EXPECT_EQ(memcmp(buf + sizeof(txt[0]), txt[1], sizeof(txt[1])), 0); /* Third mesasge is bad */ EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EBADMSG); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EBADMSG); } TEST_F(tls_err, bad_cmsg) { char *test_str = "test_read"; int send_len = 10; char cip[128]; char buf[128]; char txt[64]; int n; if (self->notls) SKIP(return, "no TLS support"); /* Queue up one data record */ memrnd(txt, sizeof(txt)); EXPECT_EQ(send(self->fd, txt, sizeof(txt), 0), sizeof(txt)); n = recv(self->cfd, cip, sizeof(cip), 0); EXPECT_GT(n, sizeof(txt)); EXPECT_EQ(send(self->fd2, cip, n, 0), n); EXPECT_EQ(tls_send_cmsg(self->fd, 100, test_str, send_len, 0), 10); n = recv(self->cfd, cip, sizeof(cip), 0); cip[n - 1]++; /* Break it */ EXPECT_GT(n, send_len); EXPECT_EQ(send(self->fd2, cip, n, 0), n); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), sizeof(txt)); EXPECT_EQ(memcmp(buf, txt, sizeof(txt)), 0); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EBADMSG); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EBADMSG); } TEST_F(tls_err, timeo) { struct timeval tv = { .tv_usec = 10000, }; char buf[128]; int ret; if (self->notls) SKIP(return, "no TLS support"); ret = setsockopt(self->cfd2, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)); ASSERT_EQ(ret, 0); ret = fork(); ASSERT_GE(ret, 0); if (ret) { usleep(1000); /* Give child a head start */ EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EAGAIN); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EAGAIN); wait(&ret); } else { EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EAGAIN); exit(0); } } TEST_F(tls_err, poll_partial_rec) { struct pollfd pfd = { }; ssize_t rec_len; char rec[256]; char buf[128]; if (self->notls) SKIP(return, "no TLS support"); pfd.fd = self->cfd2; pfd.events = POLLIN; EXPECT_EQ(poll(&pfd, 1, 1), 0); memrnd(buf, sizeof(buf)); EXPECT_EQ(send(self->fd, buf, sizeof(buf), 0), sizeof(buf)); rec_len = recv(self->cfd, rec, sizeof(rec), 0); EXPECT_GT(rec_len, sizeof(buf)); /* Write 100B, not the full record ... */ EXPECT_EQ(send(self->fd2, rec, 100, 0), 100); /* ... no full record should mean no POLLIN */ pfd.fd = self->cfd2; pfd.events = POLLIN; EXPECT_EQ(poll(&pfd, 1, 1), 0); /* Now write the rest, and it should all pop out of the other end. */ EXPECT_EQ(send(self->fd2, rec + 100, rec_len - 100, 0), rec_len - 100); pfd.fd = self->cfd2; pfd.events = POLLIN; EXPECT_EQ(poll(&pfd, 1, 1), 1); EXPECT_EQ(recv(self->cfd2, rec, sizeof(rec), 0), sizeof(buf)); EXPECT_EQ(memcmp(buf, rec, sizeof(buf)), 0); } TEST_F(tls_err, epoll_partial_rec) { struct epoll_event ev, events[10]; ssize_t rec_len; char rec[256]; char buf[128]; int epollfd; if (self->notls) SKIP(return, "no TLS support"); epollfd = epoll_create1(0); ASSERT_GE(epollfd, 0); memset(&ev, 0, sizeof(ev)); ev.events = EPOLLIN; ev.data.fd = self->cfd2; ASSERT_GE(epoll_ctl(epollfd, EPOLL_CTL_ADD, self->cfd2, &ev), 0); EXPECT_EQ(epoll_wait(epollfd, events, 10, 0), 0); memrnd(buf, sizeof(buf)); EXPECT_EQ(send(self->fd, buf, sizeof(buf), 0), sizeof(buf)); rec_len = recv(self->cfd, rec, sizeof(rec), 0); EXPECT_GT(rec_len, sizeof(buf)); /* Write 100B, not the full record ... */ EXPECT_EQ(send(self->fd2, rec, 100, 0), 100); /* ... no full record should mean no POLLIN */ EXPECT_EQ(epoll_wait(epollfd, events, 10, 0), 0); /* Now write the rest, and it should all pop out of the other end. */ EXPECT_EQ(send(self->fd2, rec + 100, rec_len - 100, 0), rec_len - 100); EXPECT_EQ(epoll_wait(epollfd, events, 10, 0), 1); EXPECT_EQ(recv(self->cfd2, rec, sizeof(rec), 0), sizeof(buf)); EXPECT_EQ(memcmp(buf, rec, sizeof(buf)), 0); close(epollfd); } TEST_F(tls_err, poll_partial_rec_async) { struct pollfd pfd = { }; ssize_t rec_len; char rec[256]; char buf[128]; char token; int p[2]; int ret; if (self->notls) SKIP(return, "no TLS support"); ASSERT_GE(pipe(p), 0); memrnd(buf, sizeof(buf)); EXPECT_EQ(send(self->fd, buf, sizeof(buf), 0), sizeof(buf)); rec_len = recv(self->cfd, rec, sizeof(rec), 0); EXPECT_GT(rec_len, sizeof(buf)); ret = fork(); ASSERT_GE(ret, 0); if (ret) { int status, pid2; close(p[1]); usleep(1000); /* Give child a head start */ EXPECT_EQ(send(self->fd2, rec, 100, 0), 100); EXPECT_EQ(read(p[0], &token, 1), 1); /* Barrier #1 */ EXPECT_EQ(send(self->fd2, rec + 100, rec_len - 100, 0), rec_len - 100); pid2 = wait(&status); EXPECT_EQ(pid2, ret); EXPECT_EQ(status, 0); } else { close(p[0]); /* Child should sleep in poll(), never get a wake */ pfd.fd = self->cfd2; pfd.events = POLLIN; EXPECT_EQ(poll(&pfd, 1, 5), 0); EXPECT_EQ(write(p[1], &token, 1), 1); /* Barrier #1 */ pfd.fd = self->cfd2; pfd.events = POLLIN; EXPECT_EQ(poll(&pfd, 1, 5), 1); exit(!_metadata->passed); } } TEST(non_established) { struct tls12_crypto_info_aes_gcm_256 tls12; struct sockaddr_in addr; int sfd, ret, fd; socklen_t len; len = sizeof(addr); memset(&tls12, 0, sizeof(tls12)); tls12.info.version = TLS_1_2_VERSION; tls12.info.cipher_type = TLS_CIPHER_AES_GCM_256; addr.sin_family = AF_INET; addr.sin_addr.s_addr = htonl(INADDR_ANY); addr.sin_port = 0; fd = socket(AF_INET, SOCK_STREAM, 0); sfd = socket(AF_INET, SOCK_STREAM, 0); ret = bind(sfd, &addr, sizeof(addr)); ASSERT_EQ(ret, 0); ret = listen(sfd, 10); ASSERT_EQ(ret, 0); ret = setsockopt(fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")); EXPECT_EQ(ret, -1); /* TLS ULP not supported */ if (errno == ENOENT) return; EXPECT_EQ(errno, ENOTCONN); ret = setsockopt(sfd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")); EXPECT_EQ(ret, -1); EXPECT_EQ(errno, ENOTCONN); ret = getsockname(sfd, &addr, &len); ASSERT_EQ(ret, 0); ret = connect(fd, &addr, sizeof(addr)); ASSERT_EQ(ret, 0); ret = setsockopt(fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")); ASSERT_EQ(ret, 0); ret = setsockopt(fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")); EXPECT_EQ(ret, -1); EXPECT_EQ(errno, EEXIST); close(fd); close(sfd); } TEST(keysizes) { struct tls12_crypto_info_aes_gcm_256 tls12; int ret, fd, cfd; bool notls; memset(&tls12, 0, sizeof(tls12)); tls12.info.version = TLS_1_2_VERSION; tls12.info.cipher_type = TLS_CIPHER_AES_GCM_256; ulp_sock_pair(_metadata, &fd, &cfd, &notls); if (!notls) { ret = setsockopt(fd, SOL_TLS, TLS_TX, &tls12, sizeof(tls12)); EXPECT_EQ(ret, 0); ret = setsockopt(cfd, SOL_TLS, TLS_RX, &tls12, sizeof(tls12)); EXPECT_EQ(ret, 0); } close(fd); close(cfd); } TEST(no_pad) { struct tls12_crypto_info_aes_gcm_256 tls12; int ret, fd, cfd, val; socklen_t len; bool notls; memset(&tls12, 0, sizeof(tls12)); tls12.info.version = TLS_1_3_VERSION; tls12.info.cipher_type = TLS_CIPHER_AES_GCM_256; ulp_sock_pair(_metadata, &fd, &cfd, &notls); if (notls) exit(KSFT_SKIP); ret = setsockopt(fd, SOL_TLS, TLS_TX, &tls12, sizeof(tls12)); EXPECT_EQ(ret, 0); ret = setsockopt(cfd, SOL_TLS, TLS_RX, &tls12, sizeof(tls12)); EXPECT_EQ(ret, 0); val = 1; ret = setsockopt(cfd, SOL_TLS, TLS_RX_EXPECT_NO_PAD, (void *)&val, sizeof(val)); EXPECT_EQ(ret, 0); len = sizeof(val); val = 2; ret = getsockopt(cfd, SOL_TLS, TLS_RX_EXPECT_NO_PAD, (void *)&val, &len); EXPECT_EQ(ret, 0); EXPECT_EQ(val, 1); EXPECT_EQ(len, 4); val = 0; ret = setsockopt(cfd, SOL_TLS, TLS_RX_EXPECT_NO_PAD, (void *)&val, sizeof(val)); EXPECT_EQ(ret, 0); len = sizeof(val); val = 2; ret = getsockopt(cfd, SOL_TLS, TLS_RX_EXPECT_NO_PAD, (void *)&val, &len); EXPECT_EQ(ret, 0); EXPECT_EQ(val, 0); EXPECT_EQ(len, 4); close(fd); close(cfd); } TEST(tls_v6ops) { struct tls_crypto_info_keys tls12; struct sockaddr_in6 addr, addr2; int sfd, ret, fd; socklen_t len, len2; tls_crypto_info_init(TLS_1_2_VERSION, TLS_CIPHER_AES_GCM_128, &tls12); addr.sin6_family = AF_INET6; addr.sin6_addr = in6addr_any; addr.sin6_port = 0; fd = socket(AF_INET6, SOCK_STREAM, 0); sfd = socket(AF_INET6, SOCK_STREAM, 0); ret = bind(sfd, &addr, sizeof(addr)); ASSERT_EQ(ret, 0); ret = listen(sfd, 10); ASSERT_EQ(ret, 0); len = sizeof(addr); ret = getsockname(sfd, &addr, &len); ASSERT_EQ(ret, 0); ret = connect(fd, &addr, sizeof(addr)); ASSERT_EQ(ret, 0); len = sizeof(addr); ret = getsockname(fd, &addr, &len); ASSERT_EQ(ret, 0); ret = setsockopt(fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")); if (ret) { ASSERT_EQ(errno, ENOENT); SKIP(return, "no TLS support"); } ASSERT_EQ(ret, 0); ret = setsockopt(fd, SOL_TLS, TLS_TX, &tls12, tls12.len); ASSERT_EQ(ret, 0); ret = setsockopt(fd, SOL_TLS, TLS_RX, &tls12, tls12.len); ASSERT_EQ(ret, 0); len2 = sizeof(addr2); ret = getsockname(fd, &addr2, &len2); ASSERT_EQ(ret, 0); EXPECT_EQ(len2, len); EXPECT_EQ(memcmp(&addr, &addr2, len), 0); close(fd); close(sfd); } TEST(prequeue) { struct tls_crypto_info_keys tls12; char buf[20000], buf2[20000]; struct sockaddr_in addr; int sfd, cfd, ret, fd; socklen_t len; len = sizeof(addr); memrnd(buf, sizeof(buf)); tls_crypto_info_init(TLS_1_2_VERSION, TLS_CIPHER_AES_GCM_256, &tls12); addr.sin_family = AF_INET; addr.sin_addr.s_addr = htonl(INADDR_ANY); addr.sin_port = 0; fd = socket(AF_INET, SOCK_STREAM, 0); sfd = socket(AF_INET, SOCK_STREAM, 0); ASSERT_EQ(bind(sfd, &addr, sizeof(addr)), 0); ASSERT_EQ(listen(sfd, 10), 0); ASSERT_EQ(getsockname(sfd, &addr, &len), 0); ASSERT_EQ(connect(fd, &addr, sizeof(addr)), 0); ASSERT_GE(cfd = accept(sfd, &addr, &len), 0); close(sfd); ret = setsockopt(fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")); if (ret) { ASSERT_EQ(errno, ENOENT); SKIP(return, "no TLS support"); } ASSERT_EQ(setsockopt(fd, SOL_TLS, TLS_TX, &tls12, tls12.len), 0); EXPECT_EQ(send(fd, buf, sizeof(buf), MSG_DONTWAIT), sizeof(buf)); ASSERT_EQ(setsockopt(cfd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")), 0); ASSERT_EQ(setsockopt(cfd, SOL_TLS, TLS_RX, &tls12, tls12.len), 0); EXPECT_EQ(recv(cfd, buf2, sizeof(buf2), MSG_WAITALL), sizeof(buf2)); EXPECT_EQ(memcmp(buf, buf2, sizeof(buf)), 0); close(fd); close(cfd); } static void __attribute__((constructor)) fips_check(void) { int res; FILE *f; f = fopen("/proc/sys/crypto/fips_enabled", "r"); if (f) { res = fscanf(f, "%d", &fips_enabled); if (res != 1) ksft_print_msg("ERROR: Couldn't read /proc/sys/crypto/fips_enabled\n"); fclose(f); } } TEST_HARNESS_MAIN
linux-master
tools/testing/selftests/net/tls.c
// SPDX-License-Identifier: GPL-2.0 /* * It is possible to use SO_REUSEPORT to open multiple sockets bound to * equivalent local addresses using AF_INET and AF_INET6 at the same time. If * the AF_INET6 socket has IPV6_V6ONLY set, it's clear which socket should * receive a given incoming packet. However, when it is not set, incoming v4 * packets should prefer the AF_INET socket(s). This behavior was defined with * the original SO_REUSEPORT implementation, but broke with * e32ea7e74727 ("soreuseport: fast reuseport UDP socket selection") * This test creates these mixed AF_INET/AF_INET6 sockets and asserts the * AF_INET preference for v4 packets. */ #define _GNU_SOURCE #include <arpa/inet.h> #include <errno.h> #include <error.h> #include <linux/in.h> #include <linux/unistd.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/epoll.h> #include <sys/types.h> #include <sys/socket.h> #include <unistd.h> static const int PORT = 8888; static void build_rcv_fd(int family, int proto, int *rcv_fds, int count) { struct sockaddr_storage addr; struct sockaddr_in *addr4; struct sockaddr_in6 *addr6; int opt, i; switch (family) { case AF_INET: addr4 = (struct sockaddr_in *)&addr; addr4->sin_family = AF_INET; addr4->sin_addr.s_addr = htonl(INADDR_ANY); addr4->sin_port = htons(PORT); break; case AF_INET6: addr6 = (struct sockaddr_in6 *)&addr; addr6->sin6_family = AF_INET6; addr6->sin6_addr = in6addr_any; addr6->sin6_port = htons(PORT); break; default: error(1, 0, "Unsupported family %d", family); } for (i = 0; i < count; ++i) { rcv_fds[i] = socket(family, proto, 0); if (rcv_fds[i] < 0) error(1, errno, "failed to create receive socket"); opt = 1; if (setsockopt(rcv_fds[i], SOL_SOCKET, SO_REUSEPORT, &opt, sizeof(opt))) error(1, errno, "failed to set SO_REUSEPORT"); if (bind(rcv_fds[i], (struct sockaddr *)&addr, sizeof(addr))) error(1, errno, "failed to bind receive socket"); if (proto == SOCK_STREAM && listen(rcv_fds[i], 10)) error(1, errno, "failed to listen on receive port"); } } static void send_from_v4(int proto) { struct sockaddr_in saddr, daddr; int fd; saddr.sin_family = AF_INET; saddr.sin_addr.s_addr = htonl(INADDR_ANY); saddr.sin_port = 0; daddr.sin_family = AF_INET; daddr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); daddr.sin_port = htons(PORT); fd = socket(AF_INET, proto, 0); if (fd < 0) error(1, errno, "failed to create send socket"); if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr))) error(1, errno, "failed to bind send socket"); if (connect(fd, (struct sockaddr *)&daddr, sizeof(daddr))) error(1, errno, "failed to connect send socket"); if (send(fd, "a", 1, 0) < 0) error(1, errno, "failed to send message"); close(fd); } static int receive_once(int epfd, int proto) { struct epoll_event ev; int i, fd; char buf[8]; i = epoll_wait(epfd, &ev, 1, -1); if (i < 0) error(1, errno, "epoll_wait failed"); if (proto == SOCK_STREAM) { fd = accept(ev.data.fd, NULL, NULL); if (fd < 0) error(1, errno, "failed to accept"); i = recv(fd, buf, sizeof(buf), 0); close(fd); } else { i = recv(ev.data.fd, buf, sizeof(buf), 0); } if (i < 0) error(1, errno, "failed to recv"); return ev.data.fd; } static void test(int *rcv_fds, int count, int proto) { struct epoll_event ev; int epfd, i, test_fd; int test_family; socklen_t len; epfd = epoll_create(1); if (epfd < 0) error(1, errno, "failed to create epoll"); ev.events = EPOLLIN; for (i = 0; i < count; ++i) { ev.data.fd = rcv_fds[i]; if (epoll_ctl(epfd, EPOLL_CTL_ADD, rcv_fds[i], &ev)) error(1, errno, "failed to register sock epoll"); } send_from_v4(proto); test_fd = receive_once(epfd, proto); len = sizeof(test_family); if (getsockopt(test_fd, SOL_SOCKET, SO_DOMAIN, &test_family, &len)) error(1, errno, "failed to read socket domain"); if (test_family != AF_INET) error(1, 0, "expected to receive on v4 socket but got v6 (%d)", test_family); close(epfd); } int main(void) { int rcv_fds[32], i; fprintf(stderr, "---- UDP IPv4 created before IPv6 ----\n"); build_rcv_fd(AF_INET, SOCK_DGRAM, rcv_fds, 5); build_rcv_fd(AF_INET6, SOCK_DGRAM, &(rcv_fds[5]), 5); test(rcv_fds, 10, SOCK_DGRAM); for (i = 0; i < 10; ++i) close(rcv_fds[i]); fprintf(stderr, "---- UDP IPv6 created before IPv4 ----\n"); build_rcv_fd(AF_INET6, SOCK_DGRAM, rcv_fds, 5); build_rcv_fd(AF_INET, SOCK_DGRAM, &(rcv_fds[5]), 5); test(rcv_fds, 10, SOCK_DGRAM); for (i = 0; i < 10; ++i) close(rcv_fds[i]); /* NOTE: UDP socket lookups traverse a different code path when there * are > 10 sockets in a group. */ fprintf(stderr, "---- UDP IPv4 created before IPv6 (large) ----\n"); build_rcv_fd(AF_INET, SOCK_DGRAM, rcv_fds, 16); build_rcv_fd(AF_INET6, SOCK_DGRAM, &(rcv_fds[16]), 16); test(rcv_fds, 32, SOCK_DGRAM); for (i = 0; i < 32; ++i) close(rcv_fds[i]); fprintf(stderr, "---- UDP IPv6 created before IPv4 (large) ----\n"); build_rcv_fd(AF_INET6, SOCK_DGRAM, rcv_fds, 16); build_rcv_fd(AF_INET, SOCK_DGRAM, &(rcv_fds[16]), 16); test(rcv_fds, 32, SOCK_DGRAM); for (i = 0; i < 32; ++i) close(rcv_fds[i]); fprintf(stderr, "---- TCP IPv4 created before IPv6 ----\n"); build_rcv_fd(AF_INET, SOCK_STREAM, rcv_fds, 5); build_rcv_fd(AF_INET6, SOCK_STREAM, &(rcv_fds[5]), 5); test(rcv_fds, 10, SOCK_STREAM); for (i = 0; i < 10; ++i) close(rcv_fds[i]); fprintf(stderr, "---- TCP IPv6 created before IPv4 ----\n"); build_rcv_fd(AF_INET6, SOCK_STREAM, rcv_fds, 5); build_rcv_fd(AF_INET, SOCK_STREAM, &(rcv_fds[5]), 5); test(rcv_fds, 10, SOCK_STREAM); for (i = 0; i < 10; ++i) close(rcv_fds[i]); fprintf(stderr, "SUCCESS\n"); return 0; }
linux-master
tools/testing/selftests/net/reuseport_dualstack.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2013 Red Hat, Inc. * Author: Daniel Borkmann <[email protected]> * Chetan Loke <[email protected]> (TPACKET_V3 usage example) * * A basic test of packet socket's TPACKET_V1/TPACKET_V2/TPACKET_V3 behavior. * * Control: * Test the setup of the TPACKET socket with different patterns that are * known to fail (TODO) resp. succeed (OK). * * Datapath: * Open a pair of packet sockets and send resp. receive an a priori known * packet pattern accross the sockets and check if it was received resp. * sent correctly. Fanout in combination with RX_RING is currently not * tested here. * * The test currently runs for * - TPACKET_V1: RX_RING, TX_RING * - TPACKET_V2: RX_RING, TX_RING * - TPACKET_V3: RX_RING */ #include <stdio.h> #include <stdlib.h> #include <sys/types.h> #include <sys/stat.h> #include <sys/socket.h> #include <sys/mman.h> #include <linux/if_packet.h> #include <linux/filter.h> #include <ctype.h> #include <fcntl.h> #include <unistd.h> #include <bits/wordsize.h> #include <net/ethernet.h> #include <netinet/ip.h> #include <arpa/inet.h> #include <stdint.h> #include <string.h> #include <assert.h> #include <net/if.h> #include <inttypes.h> #include <poll.h> #include "psock_lib.h" #include "../kselftest.h" #ifndef bug_on # define bug_on(cond) assert(!(cond)) #endif #ifndef __aligned_tpacket # define __aligned_tpacket __attribute__((aligned(TPACKET_ALIGNMENT))) #endif #ifndef __align_tpacket # define __align_tpacket(x) __attribute__((aligned(TPACKET_ALIGN(x)))) #endif #define NUM_PACKETS 100 #define ALIGN_8(x) (((x) + 8 - 1) & ~(8 - 1)) struct ring { struct iovec *rd; uint8_t *mm_space; size_t mm_len, rd_len; struct sockaddr_ll ll; void (*walk)(int sock, struct ring *ring); int type, rd_num, flen, version; union { struct tpacket_req req; struct tpacket_req3 req3; }; }; struct block_desc { uint32_t version; uint32_t offset_to_priv; struct tpacket_hdr_v1 h1; }; union frame_map { struct { struct tpacket_hdr tp_h __aligned_tpacket; struct sockaddr_ll s_ll __align_tpacket(sizeof(struct tpacket_hdr)); } *v1; struct { struct tpacket2_hdr tp_h __aligned_tpacket; struct sockaddr_ll s_ll __align_tpacket(sizeof(struct tpacket2_hdr)); } *v2; void *raw; }; static unsigned int total_packets, total_bytes; static int pfsocket(int ver) { int ret, sock = socket(PF_PACKET, SOCK_RAW, 0); if (sock == -1) { perror("socket"); exit(1); } ret = setsockopt(sock, SOL_PACKET, PACKET_VERSION, &ver, sizeof(ver)); if (ret == -1) { perror("setsockopt"); exit(1); } return sock; } static void status_bar_update(void) { if (total_packets % 10 == 0) { fprintf(stderr, "."); fflush(stderr); } } static void test_payload(void *pay, size_t len) { struct ethhdr *eth = pay; if (len < sizeof(struct ethhdr)) { fprintf(stderr, "test_payload: packet too " "small: %zu bytes!\n", len); exit(1); } if (eth->h_proto != htons(ETH_P_IP)) { fprintf(stderr, "test_payload: wrong ethernet " "type: 0x%x!\n", ntohs(eth->h_proto)); exit(1); } } static void create_payload(void *pay, size_t *len) { int i; struct ethhdr *eth = pay; struct iphdr *ip = pay + sizeof(*eth); /* Lets create some broken crap, that still passes * our BPF filter. */ *len = DATA_LEN + 42; memset(pay, 0xff, ETH_ALEN * 2); eth->h_proto = htons(ETH_P_IP); for (i = 0; i < sizeof(*ip); ++i) ((uint8_t *) pay)[i + sizeof(*eth)] = (uint8_t) rand(); ip->ihl = 5; ip->version = 4; ip->protocol = 0x11; ip->frag_off = 0; ip->ttl = 64; ip->tot_len = htons((uint16_t) *len - sizeof(*eth)); ip->saddr = htonl(INADDR_LOOPBACK); ip->daddr = htonl(INADDR_LOOPBACK); memset(pay + sizeof(*eth) + sizeof(*ip), DATA_CHAR, DATA_LEN); } static inline int __v1_rx_kernel_ready(struct tpacket_hdr *hdr) { return ((hdr->tp_status & TP_STATUS_USER) == TP_STATUS_USER); } static inline void __v1_rx_user_ready(struct tpacket_hdr *hdr) { hdr->tp_status = TP_STATUS_KERNEL; __sync_synchronize(); } static inline int __v2_rx_kernel_ready(struct tpacket2_hdr *hdr) { return ((hdr->tp_status & TP_STATUS_USER) == TP_STATUS_USER); } static inline void __v2_rx_user_ready(struct tpacket2_hdr *hdr) { hdr->tp_status = TP_STATUS_KERNEL; __sync_synchronize(); } static inline int __v1_v2_rx_kernel_ready(void *base, int version) { switch (version) { case TPACKET_V1: return __v1_rx_kernel_ready(base); case TPACKET_V2: return __v2_rx_kernel_ready(base); default: bug_on(1); return 0; } } static inline void __v1_v2_rx_user_ready(void *base, int version) { switch (version) { case TPACKET_V1: __v1_rx_user_ready(base); break; case TPACKET_V2: __v2_rx_user_ready(base); break; } } static void walk_v1_v2_rx(int sock, struct ring *ring) { struct pollfd pfd; int udp_sock[2]; union frame_map ppd; unsigned int frame_num = 0; bug_on(ring->type != PACKET_RX_RING); pair_udp_open(udp_sock, PORT_BASE); memset(&pfd, 0, sizeof(pfd)); pfd.fd = sock; pfd.events = POLLIN | POLLERR; pfd.revents = 0; pair_udp_send(udp_sock, NUM_PACKETS); while (total_packets < NUM_PACKETS * 2) { while (__v1_v2_rx_kernel_ready(ring->rd[frame_num].iov_base, ring->version)) { ppd.raw = ring->rd[frame_num].iov_base; switch (ring->version) { case TPACKET_V1: test_payload((uint8_t *) ppd.raw + ppd.v1->tp_h.tp_mac, ppd.v1->tp_h.tp_snaplen); total_bytes += ppd.v1->tp_h.tp_snaplen; break; case TPACKET_V2: test_payload((uint8_t *) ppd.raw + ppd.v2->tp_h.tp_mac, ppd.v2->tp_h.tp_snaplen); total_bytes += ppd.v2->tp_h.tp_snaplen; break; } status_bar_update(); total_packets++; __v1_v2_rx_user_ready(ppd.raw, ring->version); frame_num = (frame_num + 1) % ring->rd_num; } poll(&pfd, 1, 1); } pair_udp_close(udp_sock); if (total_packets != 2 * NUM_PACKETS) { fprintf(stderr, "walk_v%d_rx: received %u out of %u pkts\n", ring->version, total_packets, NUM_PACKETS); exit(1); } fprintf(stderr, " %u pkts (%u bytes)", NUM_PACKETS, total_bytes >> 1); } static inline int __v1_tx_kernel_ready(struct tpacket_hdr *hdr) { return !(hdr->tp_status & (TP_STATUS_SEND_REQUEST | TP_STATUS_SENDING)); } static inline void __v1_tx_user_ready(struct tpacket_hdr *hdr) { hdr->tp_status = TP_STATUS_SEND_REQUEST; __sync_synchronize(); } static inline int __v2_tx_kernel_ready(struct tpacket2_hdr *hdr) { return !(hdr->tp_status & (TP_STATUS_SEND_REQUEST | TP_STATUS_SENDING)); } static inline void __v2_tx_user_ready(struct tpacket2_hdr *hdr) { hdr->tp_status = TP_STATUS_SEND_REQUEST; __sync_synchronize(); } static inline int __v3_tx_kernel_ready(struct tpacket3_hdr *hdr) { return !(hdr->tp_status & (TP_STATUS_SEND_REQUEST | TP_STATUS_SENDING)); } static inline void __v3_tx_user_ready(struct tpacket3_hdr *hdr) { hdr->tp_status = TP_STATUS_SEND_REQUEST; __sync_synchronize(); } static inline int __tx_kernel_ready(void *base, int version) { switch (version) { case TPACKET_V1: return __v1_tx_kernel_ready(base); case TPACKET_V2: return __v2_tx_kernel_ready(base); case TPACKET_V3: return __v3_tx_kernel_ready(base); default: bug_on(1); return 0; } } static inline void __tx_user_ready(void *base, int version) { switch (version) { case TPACKET_V1: __v1_tx_user_ready(base); break; case TPACKET_V2: __v2_tx_user_ready(base); break; case TPACKET_V3: __v3_tx_user_ready(base); break; } } static void __v1_v2_set_packet_loss_discard(int sock) { int ret, discard = 1; ret = setsockopt(sock, SOL_PACKET, PACKET_LOSS, (void *) &discard, sizeof(discard)); if (ret == -1) { perror("setsockopt"); exit(1); } } static inline void *get_next_frame(struct ring *ring, int n) { uint8_t *f0 = ring->rd[0].iov_base; switch (ring->version) { case TPACKET_V1: case TPACKET_V2: return ring->rd[n].iov_base; case TPACKET_V3: return f0 + (n * ring->req3.tp_frame_size); default: bug_on(1); } } static void walk_tx(int sock, struct ring *ring) { struct pollfd pfd; int rcv_sock, ret; size_t packet_len; union frame_map ppd; char packet[1024]; unsigned int frame_num = 0, got = 0; struct sockaddr_ll ll = { .sll_family = PF_PACKET, .sll_halen = ETH_ALEN, }; int nframes; /* TPACKET_V{1,2} sets up the ring->rd* related variables based * on frames (e.g., rd_num is tp_frame_nr) whereas V3 sets these * up based on blocks (e.g, rd_num is tp_block_nr) */ if (ring->version <= TPACKET_V2) nframes = ring->rd_num; else nframes = ring->req3.tp_frame_nr; bug_on(ring->type != PACKET_TX_RING); bug_on(nframes < NUM_PACKETS); rcv_sock = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL)); if (rcv_sock == -1) { perror("socket"); exit(1); } pair_udp_setfilter(rcv_sock); ll.sll_ifindex = if_nametoindex("lo"); ret = bind(rcv_sock, (struct sockaddr *) &ll, sizeof(ll)); if (ret == -1) { perror("bind"); exit(1); } memset(&pfd, 0, sizeof(pfd)); pfd.fd = sock; pfd.events = POLLOUT | POLLERR; pfd.revents = 0; total_packets = NUM_PACKETS; create_payload(packet, &packet_len); while (total_packets > 0) { void *next = get_next_frame(ring, frame_num); while (__tx_kernel_ready(next, ring->version) && total_packets > 0) { ppd.raw = next; switch (ring->version) { case TPACKET_V1: ppd.v1->tp_h.tp_snaplen = packet_len; ppd.v1->tp_h.tp_len = packet_len; memcpy((uint8_t *) ppd.raw + TPACKET_HDRLEN - sizeof(struct sockaddr_ll), packet, packet_len); total_bytes += ppd.v1->tp_h.tp_snaplen; break; case TPACKET_V2: ppd.v2->tp_h.tp_snaplen = packet_len; ppd.v2->tp_h.tp_len = packet_len; memcpy((uint8_t *) ppd.raw + TPACKET2_HDRLEN - sizeof(struct sockaddr_ll), packet, packet_len); total_bytes += ppd.v2->tp_h.tp_snaplen; break; case TPACKET_V3: { struct tpacket3_hdr *tx = next; tx->tp_snaplen = packet_len; tx->tp_len = packet_len; tx->tp_next_offset = 0; memcpy((uint8_t *)tx + TPACKET3_HDRLEN - sizeof(struct sockaddr_ll), packet, packet_len); total_bytes += tx->tp_snaplen; break; } } status_bar_update(); total_packets--; __tx_user_ready(next, ring->version); frame_num = (frame_num + 1) % nframes; } poll(&pfd, 1, 1); } bug_on(total_packets != 0); ret = sendto(sock, NULL, 0, 0, NULL, 0); if (ret == -1) { perror("sendto"); exit(1); } while ((ret = recvfrom(rcv_sock, packet, sizeof(packet), 0, NULL, NULL)) > 0 && total_packets < NUM_PACKETS) { got += ret; test_payload(packet, ret); status_bar_update(); total_packets++; } close(rcv_sock); if (total_packets != NUM_PACKETS) { fprintf(stderr, "walk_v%d_rx: received %u out of %u pkts\n", ring->version, total_packets, NUM_PACKETS); exit(1); } fprintf(stderr, " %u pkts (%u bytes)", NUM_PACKETS, got); } static void walk_v1_v2(int sock, struct ring *ring) { if (ring->type == PACKET_RX_RING) walk_v1_v2_rx(sock, ring); else walk_tx(sock, ring); } static uint64_t __v3_prev_block_seq_num = 0; void __v3_test_block_seq_num(struct block_desc *pbd) { if (__v3_prev_block_seq_num + 1 != pbd->h1.seq_num) { fprintf(stderr, "\nprev_block_seq_num:%"PRIu64", expected " "seq:%"PRIu64" != actual seq:%"PRIu64"\n", __v3_prev_block_seq_num, __v3_prev_block_seq_num + 1, (uint64_t) pbd->h1.seq_num); exit(1); } __v3_prev_block_seq_num = pbd->h1.seq_num; } static void __v3_test_block_len(struct block_desc *pbd, uint32_t bytes, int block_num) { if (pbd->h1.num_pkts && bytes != pbd->h1.blk_len) { fprintf(stderr, "\nblock:%u with %upackets, expected " "len:%u != actual len:%u\n", block_num, pbd->h1.num_pkts, bytes, pbd->h1.blk_len); exit(1); } } static void __v3_test_block_header(struct block_desc *pbd, const int block_num) { if ((pbd->h1.block_status & TP_STATUS_USER) == 0) { fprintf(stderr, "\nblock %u: not in TP_STATUS_USER\n", block_num); exit(1); } __v3_test_block_seq_num(pbd); } static void __v3_walk_block(struct block_desc *pbd, const int block_num) { int num_pkts = pbd->h1.num_pkts, i; unsigned long bytes = 0, bytes_with_padding = ALIGN_8(sizeof(*pbd)); struct tpacket3_hdr *ppd; __v3_test_block_header(pbd, block_num); ppd = (struct tpacket3_hdr *) ((uint8_t *) pbd + pbd->h1.offset_to_first_pkt); for (i = 0; i < num_pkts; ++i) { bytes += ppd->tp_snaplen; if (ppd->tp_next_offset) bytes_with_padding += ppd->tp_next_offset; else bytes_with_padding += ALIGN_8(ppd->tp_snaplen + ppd->tp_mac); test_payload((uint8_t *) ppd + ppd->tp_mac, ppd->tp_snaplen); status_bar_update(); total_packets++; ppd = (struct tpacket3_hdr *) ((uint8_t *) ppd + ppd->tp_next_offset); __sync_synchronize(); } __v3_test_block_len(pbd, bytes_with_padding, block_num); total_bytes += bytes; } void __v3_flush_block(struct block_desc *pbd) { pbd->h1.block_status = TP_STATUS_KERNEL; __sync_synchronize(); } static void walk_v3_rx(int sock, struct ring *ring) { unsigned int block_num = 0; struct pollfd pfd; struct block_desc *pbd; int udp_sock[2]; bug_on(ring->type != PACKET_RX_RING); pair_udp_open(udp_sock, PORT_BASE); memset(&pfd, 0, sizeof(pfd)); pfd.fd = sock; pfd.events = POLLIN | POLLERR; pfd.revents = 0; pair_udp_send(udp_sock, NUM_PACKETS); while (total_packets < NUM_PACKETS * 2) { pbd = (struct block_desc *) ring->rd[block_num].iov_base; while ((pbd->h1.block_status & TP_STATUS_USER) == 0) poll(&pfd, 1, 1); __v3_walk_block(pbd, block_num); __v3_flush_block(pbd); block_num = (block_num + 1) % ring->rd_num; } pair_udp_close(udp_sock); if (total_packets != 2 * NUM_PACKETS) { fprintf(stderr, "walk_v3_rx: received %u out of %u pkts\n", total_packets, NUM_PACKETS); exit(1); } fprintf(stderr, " %u pkts (%u bytes)", NUM_PACKETS, total_bytes >> 1); } static void walk_v3(int sock, struct ring *ring) { if (ring->type == PACKET_RX_RING) walk_v3_rx(sock, ring); else walk_tx(sock, ring); } static void __v1_v2_fill(struct ring *ring, unsigned int blocks) { ring->req.tp_block_size = getpagesize() << 2; ring->req.tp_frame_size = TPACKET_ALIGNMENT << 7; ring->req.tp_block_nr = blocks; ring->req.tp_frame_nr = ring->req.tp_block_size / ring->req.tp_frame_size * ring->req.tp_block_nr; ring->mm_len = ring->req.tp_block_size * ring->req.tp_block_nr; ring->walk = walk_v1_v2; ring->rd_num = ring->req.tp_frame_nr; ring->flen = ring->req.tp_frame_size; } static void __v3_fill(struct ring *ring, unsigned int blocks, int type) { if (type == PACKET_RX_RING) { ring->req3.tp_retire_blk_tov = 64; ring->req3.tp_sizeof_priv = 0; ring->req3.tp_feature_req_word = TP_FT_REQ_FILL_RXHASH; } ring->req3.tp_block_size = getpagesize() << 2; ring->req3.tp_frame_size = TPACKET_ALIGNMENT << 7; ring->req3.tp_block_nr = blocks; ring->req3.tp_frame_nr = ring->req3.tp_block_size / ring->req3.tp_frame_size * ring->req3.tp_block_nr; ring->mm_len = ring->req3.tp_block_size * ring->req3.tp_block_nr; ring->walk = walk_v3; ring->rd_num = ring->req3.tp_block_nr; ring->flen = ring->req3.tp_block_size; } static void setup_ring(int sock, struct ring *ring, int version, int type) { int ret = 0; unsigned int blocks = 256; ring->type = type; ring->version = version; switch (version) { case TPACKET_V1: case TPACKET_V2: if (type == PACKET_TX_RING) __v1_v2_set_packet_loss_discard(sock); __v1_v2_fill(ring, blocks); ret = setsockopt(sock, SOL_PACKET, type, &ring->req, sizeof(ring->req)); break; case TPACKET_V3: __v3_fill(ring, blocks, type); ret = setsockopt(sock, SOL_PACKET, type, &ring->req3, sizeof(ring->req3)); break; } if (ret == -1) { perror("setsockopt"); exit(1); } ring->rd_len = ring->rd_num * sizeof(*ring->rd); ring->rd = malloc(ring->rd_len); if (ring->rd == NULL) { perror("malloc"); exit(1); } total_packets = 0; total_bytes = 0; } static void mmap_ring(int sock, struct ring *ring) { int i; ring->mm_space = mmap(0, ring->mm_len, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_LOCKED | MAP_POPULATE, sock, 0); if (ring->mm_space == MAP_FAILED) { perror("mmap"); exit(1); } memset(ring->rd, 0, ring->rd_len); for (i = 0; i < ring->rd_num; ++i) { ring->rd[i].iov_base = ring->mm_space + (i * ring->flen); ring->rd[i].iov_len = ring->flen; } } static void bind_ring(int sock, struct ring *ring) { int ret; pair_udp_setfilter(sock); ring->ll.sll_family = PF_PACKET; ring->ll.sll_protocol = htons(ETH_P_ALL); ring->ll.sll_ifindex = if_nametoindex("lo"); ring->ll.sll_hatype = 0; ring->ll.sll_pkttype = 0; ring->ll.sll_halen = 0; ret = bind(sock, (struct sockaddr *) &ring->ll, sizeof(ring->ll)); if (ret == -1) { perror("bind"); exit(1); } } static void walk_ring(int sock, struct ring *ring) { ring->walk(sock, ring); } static void unmap_ring(int sock, struct ring *ring) { munmap(ring->mm_space, ring->mm_len); free(ring->rd); } static int test_kernel_bit_width(void) { char in[512], *ptr; int num = 0, fd; ssize_t ret; fd = open("/proc/kallsyms", O_RDONLY); if (fd == -1) { perror("open"); exit(1); } ret = read(fd, in, sizeof(in)); if (ret <= 0) { perror("read"); exit(1); } close(fd); ptr = in; while(!isspace(*ptr)) { num++; ptr++; } return num * 4; } static int test_user_bit_width(void) { return __WORDSIZE; } static const char *tpacket_str[] = { [TPACKET_V1] = "TPACKET_V1", [TPACKET_V2] = "TPACKET_V2", [TPACKET_V3] = "TPACKET_V3", }; static const char *type_str[] = { [PACKET_RX_RING] = "PACKET_RX_RING", [PACKET_TX_RING] = "PACKET_TX_RING", }; static int test_tpacket(int version, int type) { int sock; struct ring ring; fprintf(stderr, "test: %s with %s ", tpacket_str[version], type_str[type]); fflush(stderr); if (version == TPACKET_V1 && test_kernel_bit_width() != test_user_bit_width()) { fprintf(stderr, "test: skip %s %s since user and kernel " "space have different bit width\n", tpacket_str[version], type_str[type]); return KSFT_SKIP; } sock = pfsocket(version); memset(&ring, 0, sizeof(ring)); setup_ring(sock, &ring, version, type); mmap_ring(sock, &ring); bind_ring(sock, &ring); walk_ring(sock, &ring); unmap_ring(sock, &ring); close(sock); fprintf(stderr, "\n"); return 0; } int main(void) { int ret = 0; ret |= test_tpacket(TPACKET_V1, PACKET_RX_RING); ret |= test_tpacket(TPACKET_V1, PACKET_TX_RING); ret |= test_tpacket(TPACKET_V2, PACKET_RX_RING); ret |= test_tpacket(TPACKET_V2, PACKET_TX_RING); ret |= test_tpacket(TPACKET_V3, PACKET_RX_RING); ret |= test_tpacket(TPACKET_V3, PACKET_TX_RING); if (ret) return 1; printf("OK. All tests passed\n"); return 0; }
linux-master
tools/testing/selftests/net/psock_tpacket.c
// SPDX-License-Identifier: GPL-2.0 #include <arpa/inet.h> #include <errno.h> #include <error.h> #include <netinet/in.h> #include <netinet/tcp.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <sys/socket.h> #include <sys/time.h> #include <unistd.h> static int child_pid; static unsigned long timediff(struct timeval s, struct timeval e) { unsigned long s_us, e_us; s_us = s.tv_sec * 1000000 + s.tv_usec; e_us = e.tv_sec * 1000000 + e.tv_usec; if (s_us > e_us) return 0; return e_us - s_us; } static void client(int port) { int sock = 0; struct sockaddr_in addr, laddr; socklen_t len = sizeof(laddr); struct linger sl; int flag = 1; int buffer; struct timeval start, end; unsigned long lat, sum_lat = 0, nr_lat = 0; while (1) { gettimeofday(&start, NULL); sock = socket(AF_INET, SOCK_STREAM, 0); if (sock < 0) error(-1, errno, "socket creation"); sl.l_onoff = 1; sl.l_linger = 0; if (setsockopt(sock, SOL_SOCKET, SO_LINGER, &sl, sizeof(sl))) error(-1, errno, "setsockopt(linger)"); if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, &flag, sizeof(flag))) error(-1, errno, "setsockopt(nodelay)"); addr.sin_family = AF_INET; addr.sin_port = htons(port); if (inet_pton(AF_INET, "127.0.0.1", &addr.sin_addr) <= 0) error(-1, errno, "inet_pton"); if (connect(sock, (struct sockaddr *)&addr, sizeof(addr)) < 0) error(-1, errno, "connect"); send(sock, &buffer, sizeof(buffer), 0); if (read(sock, &buffer, sizeof(buffer)) == -1) error(-1, errno, "waiting read"); gettimeofday(&end, NULL); lat = timediff(start, end); sum_lat += lat; nr_lat++; if (lat < 100000) goto close; if (getsockname(sock, (struct sockaddr *)&laddr, &len) == -1) error(-1, errno, "getsockname"); printf("port: %d, lat: %lu, avg: %lu, nr: %lu\n", ntohs(laddr.sin_port), lat, sum_lat / nr_lat, nr_lat); close: fflush(stdout); close(sock); } } static void server(int sock, struct sockaddr_in address) { int accepted; int addrlen = sizeof(address); int buffer; while (1) { accepted = accept(sock, (struct sockaddr *)&address, (socklen_t *)&addrlen); if (accepted < 0) error(-1, errno, "accept"); if (read(accepted, &buffer, sizeof(buffer)) == -1) error(-1, errno, "read"); close(accepted); } } static void sig_handler(int signum) { kill(SIGTERM, child_pid); exit(0); } int main(int argc, char const *argv[]) { int sock; int opt = 1; struct sockaddr_in address; struct sockaddr_in laddr; socklen_t len = sizeof(laddr); if (signal(SIGTERM, sig_handler) == SIG_ERR) error(-1, errno, "signal"); sock = socket(AF_INET, SOCK_STREAM, 0); if (sock < 0) error(-1, errno, "socket"); if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt)) == -1) error(-1, errno, "setsockopt"); address.sin_family = AF_INET; address.sin_addr.s_addr = INADDR_ANY; /* dynamically allocate unused port */ address.sin_port = 0; if (bind(sock, (struct sockaddr *)&address, sizeof(address)) < 0) error(-1, errno, "bind"); if (listen(sock, 3) < 0) error(-1, errno, "listen"); if (getsockname(sock, (struct sockaddr *)&laddr, &len) == -1) error(-1, errno, "getsockname"); fprintf(stderr, "server port: %d\n", ntohs(laddr.sin_port)); child_pid = fork(); if (!child_pid) client(ntohs(laddr.sin_port)); else server(sock, laddr); return 0; }
linux-master
tools/testing/selftests/net/fin_ack_lat.c
// SPDX-License-Identifier: GPL-2.0 /* * Test the SO_TXTIME API * * Takes a stream of { payload, delivery time }[], to be sent across two * processes. Start this program on two separate network namespaces or * connected hosts, one instance in transmit mode and the other in receive * mode using the '-r' option. Receiver will compare arrival timestamps to * the expected stream. Sender will read transmit timestamps from the error * queue. The streams can differ due to out-of-order delivery and drops. */ #define _GNU_SOURCE #include <arpa/inet.h> #include <error.h> #include <errno.h> #include <inttypes.h> #include <linux/net_tstamp.h> #include <linux/errqueue.h> #include <linux/if_ether.h> #include <linux/ipv6.h> #include <linux/udp.h> #include <stdbool.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/socket.h> #include <sys/stat.h> #include <sys/time.h> #include <sys/types.h> #include <time.h> #include <unistd.h> #include <poll.h> static int cfg_clockid = CLOCK_TAI; static uint16_t cfg_port = 8000; static int cfg_variance_us = 4000; static uint64_t cfg_start_time_ns; static int cfg_mark; static bool cfg_rx; static uint64_t glob_tstart; static uint64_t tdeliver_max; /* encode one timed transmission (of a 1B payload) */ struct timed_send { char data; int64_t delay_us; }; #define MAX_NUM_PKT 8 static struct timed_send cfg_buf[MAX_NUM_PKT]; static int cfg_num_pkt; static int cfg_errq_level; static int cfg_errq_type; static struct sockaddr_storage cfg_dst_addr; static struct sockaddr_storage cfg_src_addr; static socklen_t cfg_alen; static uint64_t gettime_ns(clockid_t clock) { struct timespec ts; if (clock_gettime(clock, &ts)) error(1, errno, "gettime"); return ts.tv_sec * (1000ULL * 1000 * 1000) + ts.tv_nsec; } static void do_send_one(int fdt, struct timed_send *ts) { char control[CMSG_SPACE(sizeof(uint64_t))]; struct msghdr msg = {0}; struct iovec iov = {0}; struct cmsghdr *cm; uint64_t tdeliver; int ret; iov.iov_base = &ts->data; iov.iov_len = 1; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_name = (struct sockaddr *)&cfg_dst_addr; msg.msg_namelen = cfg_alen; if (ts->delay_us >= 0) { memset(control, 0, sizeof(control)); msg.msg_control = &control; msg.msg_controllen = sizeof(control); tdeliver = glob_tstart + ts->delay_us * 1000; tdeliver_max = tdeliver_max > tdeliver ? tdeliver_max : tdeliver; cm = CMSG_FIRSTHDR(&msg); cm->cmsg_level = SOL_SOCKET; cm->cmsg_type = SCM_TXTIME; cm->cmsg_len = CMSG_LEN(sizeof(tdeliver)); memcpy(CMSG_DATA(cm), &tdeliver, sizeof(tdeliver)); } ret = sendmsg(fdt, &msg, 0); if (ret == -1) error(1, errno, "write"); if (ret == 0) error(1, 0, "write: 0B"); } static void do_recv_one(int fdr, struct timed_send *ts) { int64_t tstop, texpect; char rbuf[2]; int ret; ret = recv(fdr, rbuf, sizeof(rbuf), 0); if (ret == -1 && errno == EAGAIN) error(1, EAGAIN, "recv: timeout"); if (ret == -1) error(1, errno, "read"); if (ret != 1) error(1, 0, "read: %dB", ret); tstop = (gettime_ns(cfg_clockid) - glob_tstart) / 1000; texpect = ts->delay_us >= 0 ? ts->delay_us : 0; fprintf(stderr, "payload:%c delay:%lld expected:%lld (us)\n", rbuf[0], (long long)tstop, (long long)texpect); if (rbuf[0] != ts->data) error(1, 0, "payload mismatch. expected %c", ts->data); if (llabs(tstop - texpect) > cfg_variance_us) error(1, 0, "exceeds variance (%d us)", cfg_variance_us); } static void do_recv_verify_empty(int fdr) { char rbuf[1]; int ret; ret = recv(fdr, rbuf, sizeof(rbuf), 0); if (ret != -1 || errno != EAGAIN) error(1, 0, "recv: not empty as expected (%d, %d)", ret, errno); } static int do_recv_errqueue_timeout(int fdt) { char control[CMSG_SPACE(sizeof(struct sock_extended_err)) + CMSG_SPACE(sizeof(struct sockaddr_in6))] = {0}; char data[sizeof(struct ethhdr) + sizeof(struct ipv6hdr) + sizeof(struct udphdr) + 1]; struct sock_extended_err *err; int ret, num_tstamp = 0; struct msghdr msg = {0}; struct iovec iov = {0}; struct cmsghdr *cm; int64_t tstamp = 0; iov.iov_base = data; iov.iov_len = sizeof(data); msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = control; msg.msg_controllen = sizeof(control); while (1) { const char *reason; ret = recvmsg(fdt, &msg, MSG_ERRQUEUE); if (ret == -1 && errno == EAGAIN) break; if (ret == -1) error(1, errno, "errqueue"); if (msg.msg_flags != MSG_ERRQUEUE) error(1, 0, "errqueue: flags 0x%x\n", msg.msg_flags); cm = CMSG_FIRSTHDR(&msg); if (cm->cmsg_level != cfg_errq_level || cm->cmsg_type != cfg_errq_type) error(1, 0, "errqueue: type 0x%x.0x%x\n", cm->cmsg_level, cm->cmsg_type); err = (struct sock_extended_err *)CMSG_DATA(cm); if (err->ee_origin != SO_EE_ORIGIN_TXTIME) error(1, 0, "errqueue: origin 0x%x\n", err->ee_origin); switch (err->ee_errno) { case ECANCELED: if (err->ee_code != SO_EE_CODE_TXTIME_MISSED) error(1, 0, "errqueue: unknown ECANCELED %u\n", err->ee_code); reason = "missed txtime"; break; case EINVAL: if (err->ee_code != SO_EE_CODE_TXTIME_INVALID_PARAM) error(1, 0, "errqueue: unknown EINVAL %u\n", err->ee_code); reason = "invalid txtime"; break; default: error(1, 0, "errqueue: errno %u code %u\n", err->ee_errno, err->ee_code); } tstamp = ((int64_t) err->ee_data) << 32 | err->ee_info; tstamp -= (int64_t) glob_tstart; tstamp /= 1000 * 1000; fprintf(stderr, "send: pkt %c at %" PRId64 "ms dropped: %s\n", data[ret - 1], tstamp, reason); msg.msg_flags = 0; msg.msg_controllen = sizeof(control); num_tstamp++; } return num_tstamp; } static void recv_errqueue_msgs(int fdt) { struct pollfd pfd = { .fd = fdt, .events = POLLERR }; const int timeout_ms = 10; int ret, num_tstamp = 0; do { ret = poll(&pfd, 1, timeout_ms); if (ret == -1) error(1, errno, "poll"); if (ret && (pfd.revents & POLLERR)) num_tstamp += do_recv_errqueue_timeout(fdt); if (num_tstamp == cfg_num_pkt) break; } while (gettime_ns(cfg_clockid) < tdeliver_max); } static void start_time_wait(void) { uint64_t now; int err; if (!cfg_start_time_ns) return; now = gettime_ns(CLOCK_REALTIME); if (cfg_start_time_ns < now) return; err = usleep((cfg_start_time_ns - now) / 1000); if (err) error(1, errno, "usleep"); } static void setsockopt_txtime(int fd) { struct sock_txtime so_txtime_val = { .clockid = cfg_clockid }; struct sock_txtime so_txtime_val_read = { 0 }; socklen_t vallen = sizeof(so_txtime_val); so_txtime_val.flags = SOF_TXTIME_REPORT_ERRORS; if (setsockopt(fd, SOL_SOCKET, SO_TXTIME, &so_txtime_val, sizeof(so_txtime_val))) error(1, errno, "setsockopt txtime"); if (getsockopt(fd, SOL_SOCKET, SO_TXTIME, &so_txtime_val_read, &vallen)) error(1, errno, "getsockopt txtime"); if (vallen != sizeof(so_txtime_val) || memcmp(&so_txtime_val, &so_txtime_val_read, vallen)) error(1, 0, "getsockopt txtime: mismatch"); } static int setup_tx(struct sockaddr *addr, socklen_t alen) { int fd; fd = socket(addr->sa_family, SOCK_DGRAM, 0); if (fd == -1) error(1, errno, "socket t"); if (connect(fd, addr, alen)) error(1, errno, "connect"); setsockopt_txtime(fd); if (cfg_mark && setsockopt(fd, SOL_SOCKET, SO_MARK, &cfg_mark, sizeof(cfg_mark))) error(1, errno, "setsockopt mark"); return fd; } static int setup_rx(struct sockaddr *addr, socklen_t alen) { struct timeval tv = { .tv_usec = 100 * 1000 }; int fd; fd = socket(addr->sa_family, SOCK_DGRAM, 0); if (fd == -1) error(1, errno, "socket r"); if (bind(fd, addr, alen)) error(1, errno, "bind"); if (setsockopt(fd, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv))) error(1, errno, "setsockopt rcv timeout"); return fd; } static void do_test_tx(struct sockaddr *addr, socklen_t alen) { int fdt, i; fprintf(stderr, "\nSO_TXTIME ipv%c clock %s\n", addr->sa_family == PF_INET ? '4' : '6', cfg_clockid == CLOCK_TAI ? "tai" : "monotonic"); fdt = setup_tx(addr, alen); start_time_wait(); glob_tstart = gettime_ns(cfg_clockid); for (i = 0; i < cfg_num_pkt; i++) do_send_one(fdt, &cfg_buf[i]); recv_errqueue_msgs(fdt); if (close(fdt)) error(1, errno, "close t"); } static void do_test_rx(struct sockaddr *addr, socklen_t alen) { int fdr, i; fdr = setup_rx(addr, alen); start_time_wait(); glob_tstart = gettime_ns(cfg_clockid); for (i = 0; i < cfg_num_pkt; i++) do_recv_one(fdr, &cfg_buf[i]); do_recv_verify_empty(fdr); if (close(fdr)) error(1, errno, "close r"); } static void setup_sockaddr(int domain, const char *str_addr, struct sockaddr_storage *sockaddr) { struct sockaddr_in6 *addr6 = (void *) sockaddr; struct sockaddr_in *addr4 = (void *) sockaddr; switch (domain) { case PF_INET: memset(addr4, 0, sizeof(*addr4)); addr4->sin_family = AF_INET; addr4->sin_port = htons(cfg_port); if (str_addr && inet_pton(AF_INET, str_addr, &(addr4->sin_addr)) != 1) error(1, 0, "ipv4 parse error: %s", str_addr); break; case PF_INET6: memset(addr6, 0, sizeof(*addr6)); addr6->sin6_family = AF_INET6; addr6->sin6_port = htons(cfg_port); if (str_addr && inet_pton(AF_INET6, str_addr, &(addr6->sin6_addr)) != 1) error(1, 0, "ipv6 parse error: %s", str_addr); break; } } static int parse_io(const char *optarg, struct timed_send *array) { char *arg, *tok; int aoff = 0; arg = strdup(optarg); if (!arg) error(1, errno, "strdup"); while ((tok = strtok(arg, ","))) { arg = NULL; /* only pass non-zero on first call */ if (aoff / 2 == MAX_NUM_PKT) error(1, 0, "exceeds max pkt count (%d)", MAX_NUM_PKT); if (aoff & 1) { /* parse delay */ array->delay_us = strtol(tok, NULL, 0) * 1000; array++; } else { /* parse character */ array->data = tok[0]; } aoff++; } free(arg); return aoff / 2; } static void usage(const char *progname) { fprintf(stderr, "\nUsage: %s [options] <payload>\n" "Options:\n" " -4 only IPv4\n" " -6 only IPv6\n" " -c <clock> monotonic or tai (default)\n" " -D <addr> destination IP address (server)\n" " -S <addr> source IP address (client)\n" " -r run rx mode\n" " -t <nsec> start time (UTC nanoseconds)\n" " -m <mark> socket mark\n" "\n", progname); exit(1); } static void parse_opts(int argc, char **argv) { char *daddr = NULL, *saddr = NULL; int domain = PF_UNSPEC; int c; while ((c = getopt(argc, argv, "46c:S:D:rt:m:")) != -1) { switch (c) { case '4': if (domain != PF_UNSPEC) error(1, 0, "Pass one of -4 or -6"); domain = PF_INET; cfg_alen = sizeof(struct sockaddr_in); cfg_errq_level = SOL_IP; cfg_errq_type = IP_RECVERR; break; case '6': if (domain != PF_UNSPEC) error(1, 0, "Pass one of -4 or -6"); domain = PF_INET6; cfg_alen = sizeof(struct sockaddr_in6); cfg_errq_level = SOL_IPV6; cfg_errq_type = IPV6_RECVERR; break; case 'c': if (!strcmp(optarg, "tai")) cfg_clockid = CLOCK_TAI; else if (!strcmp(optarg, "monotonic") || !strcmp(optarg, "mono")) cfg_clockid = CLOCK_MONOTONIC; else error(1, 0, "unknown clock id %s", optarg); break; case 'S': saddr = optarg; break; case 'D': daddr = optarg; break; case 'r': cfg_rx = true; break; case 't': cfg_start_time_ns = strtoll(optarg, NULL, 0); break; case 'm': cfg_mark = strtol(optarg, NULL, 0); break; default: usage(argv[0]); } } if (argc - optind != 1) usage(argv[0]); if (domain == PF_UNSPEC) error(1, 0, "Pass one of -4 or -6"); if (!daddr) error(1, 0, "-D <server addr> required\n"); if (!cfg_rx && !saddr) error(1, 0, "-S <client addr> required\n"); setup_sockaddr(domain, daddr, &cfg_dst_addr); setup_sockaddr(domain, saddr, &cfg_src_addr); cfg_num_pkt = parse_io(argv[optind], cfg_buf); } int main(int argc, char **argv) { parse_opts(argc, argv); if (cfg_rx) do_test_rx((void *)&cfg_dst_addr, cfg_alen); else do_test_tx((void *)&cfg_src_addr, cfg_alen); return 0; }
linux-master
tools/testing/selftests/net/so_txtime.c
// SPDX-License-Identifier: GPL-2.0-only /* * Check if we can fully utilize 4-tuples for connect(). * * Rules to bind sockets to the same port when all ephemeral ports are * exhausted. * * 1. if there are TCP_LISTEN sockets on the port, fail to bind. * 2. if there are sockets without SO_REUSEADDR, fail to bind. * 3. if SO_REUSEADDR is disabled, fail to bind. * 4. if SO_REUSEADDR is enabled and SO_REUSEPORT is disabled, * succeed to bind. * 5. if SO_REUSEADDR and SO_REUSEPORT are enabled and * there is no socket having the both options and the same EUID, * succeed to bind. * 6. fail to bind. * * Author: Kuniyuki Iwashima <[email protected]> */ #include <arpa/inet.h> #include <netinet/in.h> #include <sys/socket.h> #include <sys/types.h> #include <unistd.h> #include "../kselftest_harness.h" struct reuse_opts { int reuseaddr[2]; int reuseport[2]; }; struct reuse_opts unreusable_opts[12] = { {{0, 0}, {0, 0}}, {{0, 0}, {0, 1}}, {{0, 0}, {1, 0}}, {{0, 0}, {1, 1}}, {{0, 1}, {0, 0}}, {{0, 1}, {0, 1}}, {{0, 1}, {1, 0}}, {{0, 1}, {1, 1}}, {{1, 0}, {0, 0}}, {{1, 0}, {0, 1}}, {{1, 0}, {1, 0}}, {{1, 0}, {1, 1}}, }; struct reuse_opts reusable_opts[4] = { {{1, 1}, {0, 0}}, {{1, 1}, {0, 1}}, {{1, 1}, {1, 0}}, {{1, 1}, {1, 1}}, }; int bind_port(struct __test_metadata *_metadata, int reuseaddr, int reuseport) { struct sockaddr_in local_addr; int len = sizeof(local_addr); int fd, ret; fd = socket(AF_INET, SOCK_STREAM, 0); ASSERT_NE(-1, fd) TH_LOG("failed to open socket."); ret = setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &reuseaddr, sizeof(int)); ASSERT_EQ(0, ret) TH_LOG("failed to setsockopt: SO_REUSEADDR."); ret = setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &reuseport, sizeof(int)); ASSERT_EQ(0, ret) TH_LOG("failed to setsockopt: SO_REUSEPORT."); local_addr.sin_family = AF_INET; local_addr.sin_addr.s_addr = inet_addr("127.0.0.1"); local_addr.sin_port = 0; if (bind(fd, (struct sockaddr *)&local_addr, len) == -1) { close(fd); return -1; } return fd; } TEST(reuseaddr_ports_exhausted_unreusable) { struct reuse_opts *opts; int i, j, fd[2]; for (i = 0; i < 12; i++) { opts = &unreusable_opts[i]; for (j = 0; j < 2; j++) fd[j] = bind_port(_metadata, opts->reuseaddr[j], opts->reuseport[j]); ASSERT_NE(-1, fd[0]) TH_LOG("failed to bind."); EXPECT_EQ(-1, fd[1]) TH_LOG("should fail to bind."); for (j = 0; j < 2; j++) if (fd[j] != -1) close(fd[j]); } } TEST(reuseaddr_ports_exhausted_reusable_same_euid) { struct reuse_opts *opts; int i, j, fd[2]; for (i = 0; i < 4; i++) { opts = &reusable_opts[i]; for (j = 0; j < 2; j++) fd[j] = bind_port(_metadata, opts->reuseaddr[j], opts->reuseport[j]); ASSERT_NE(-1, fd[0]) TH_LOG("failed to bind."); if (opts->reuseport[0] && opts->reuseport[1]) { EXPECT_EQ(-1, fd[1]) TH_LOG("should fail to bind because both sockets succeed to be listened."); } else { EXPECT_NE(-1, fd[1]) TH_LOG("should succeed to bind to connect to different destinations."); } for (j = 0; j < 2; j++) if (fd[j] != -1) close(fd[j]); } } TEST(reuseaddr_ports_exhausted_reusable_different_euid) { struct reuse_opts *opts; int i, j, ret, fd[2]; uid_t euid[2] = {10, 20}; for (i = 0; i < 4; i++) { opts = &reusable_opts[i]; for (j = 0; j < 2; j++) { ret = seteuid(euid[j]); ASSERT_EQ(0, ret) TH_LOG("failed to seteuid: %d.", euid[j]); fd[j] = bind_port(_metadata, opts->reuseaddr[j], opts->reuseport[j]); ret = seteuid(0); ASSERT_EQ(0, ret) TH_LOG("failed to seteuid: 0."); } ASSERT_NE(-1, fd[0]) TH_LOG("failed to bind."); EXPECT_NE(-1, fd[1]) TH_LOG("should succeed to bind because one socket can be bound in each euid."); if (fd[1] != -1) { ret = listen(fd[0], 5); ASSERT_EQ(0, ret) TH_LOG("failed to listen."); ret = listen(fd[1], 5); EXPECT_EQ(-1, ret) TH_LOG("should fail to listen because only one uid reserves the port in TCP_LISTEN."); } for (j = 0; j < 2; j++) if (fd[j] != -1) close(fd[j]); } } TEST_HARNESS_MAIN
linux-master
tools/testing/selftests/net/reuseaddr_ports_exhausted.c
// SPDX-License-Identifier: GPL-2.0 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <sys/types.h> #include <netinet/in.h> #include <arpa/inet.h> static void set_addr(struct sockaddr_storage *ss, char *ip, char *port, int *len) { if (ss->ss_family == AF_INET) { struct sockaddr_in *a = (struct sockaddr_in *)ss; a->sin_addr.s_addr = inet_addr(ip); a->sin_port = htons(atoi(port)); *len = sizeof(*a); } else { struct sockaddr_in6 *a = (struct sockaddr_in6 *)ss; a->sin6_family = AF_INET6; inet_pton(AF_INET6, ip, &a->sin6_addr); a->sin6_port = htons(atoi(port)); *len = sizeof(*a); } } static int do_client(int argc, char *argv[]) { struct sockaddr_storage ss; char buf[] = "hello"; int csk, ret, len; if (argc < 5) { printf("%s client -4|6 IP PORT [IP PORT]\n", argv[0]); return -1; } bzero((void *)&ss, sizeof(ss)); ss.ss_family = !strcmp(argv[2], "-4") ? AF_INET : AF_INET6; csk = socket(ss.ss_family, SOCK_STREAM, IPPROTO_SCTP); if (csk < 0) { printf("failed to create socket\n"); return -1; } if (argc >= 7) { set_addr(&ss, argv[5], argv[6], &len); ret = bind(csk, (struct sockaddr *)&ss, len); if (ret < 0) { printf("failed to bind to address\n"); return -1; } } set_addr(&ss, argv[3], argv[4], &len); ret = connect(csk, (struct sockaddr *)&ss, len); if (ret < 0) { printf("failed to connect to peer\n"); return -1; } ret = send(csk, buf, strlen(buf) + 1, 0); if (ret < 0) { printf("failed to send msg %d\n", ret); return -1; } close(csk); return 0; } int main(int argc, char *argv[]) { struct sockaddr_storage ss; int lsk, csk, ret, len; char buf[20]; if (argc < 2 || (strcmp(argv[1], "server") && strcmp(argv[1], "client"))) { printf("%s server|client ...\n", argv[0]); return -1; } if (!strcmp(argv[1], "client")) return do_client(argc, argv); if (argc < 5) { printf("%s server -4|6 IP PORT [IFACE]\n", argv[0]); return -1; } ss.ss_family = !strcmp(argv[2], "-4") ? AF_INET : AF_INET6; lsk = socket(ss.ss_family, SOCK_STREAM, IPPROTO_SCTP); if (lsk < 0) { printf("failed to create lsk\n"); return -1; } if (argc >= 6) { ret = setsockopt(lsk, SOL_SOCKET, SO_BINDTODEVICE, argv[5], strlen(argv[5]) + 1); if (ret < 0) { printf("failed to bind to device\n"); return -1; } } set_addr(&ss, argv[3], argv[4], &len); ret = bind(lsk, (struct sockaddr *)&ss, len); if (ret < 0) { printf("failed to bind to address\n"); return -1; } ret = listen(lsk, 5); if (ret < 0) { printf("failed to listen on port\n"); return -1; } csk = accept(lsk, (struct sockaddr *)NULL, (socklen_t *)NULL); if (csk < 0) { printf("failed to accept new client\n"); return -1; } ret = recv(csk, buf, sizeof(buf), 0); if (ret <= 0) { printf("failed to recv msg %d\n", ret); return -1; } close(csk); close(lsk); return 0; }
linux-master
tools/testing/selftests/net/sctp_hello.c
// SPDX-License-Identifier: GPL-2.0 /* Toeplitz test * * 1. Read packets and their rx_hash using PF_PACKET/TPACKET_V3 * 2. Compute the rx_hash in software based on the packet contents * 3. Compare the two * * Optionally, either '-C $rx_irq_cpu_list' or '-r $rps_bitmap' may be given. * * If '-C $rx_irq_cpu_list' is given, also * * 4. Identify the cpu on which the packet arrived with PACKET_FANOUT_CPU * 5. Compute the rxqueue that RSS would select based on this rx_hash * 6. Using the $rx_irq_cpu_list map, identify the arriving cpu based on rxq irq * 7. Compare the cpus from 4 and 6 * * Else if '-r $rps_bitmap' is given, also * * 4. Identify the cpu on which the packet arrived with PACKET_FANOUT_CPU * 5. Compute the cpu that RPS should select based on rx_hash and $rps_bitmap * 6. Compare the cpus from 4 and 5 */ #define _GNU_SOURCE #include <arpa/inet.h> #include <errno.h> #include <error.h> #include <fcntl.h> #include <getopt.h> #include <linux/filter.h> #include <linux/if_ether.h> #include <linux/if_packet.h> #include <net/if.h> #include <netdb.h> #include <netinet/ip.h> #include <netinet/ip6.h> #include <netinet/tcp.h> #include <netinet/udp.h> #include <poll.h> #include <stdbool.h> #include <stddef.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/mman.h> #include <sys/socket.h> #include <sys/stat.h> #include <sys/sysinfo.h> #include <sys/time.h> #include <sys/types.h> #include <unistd.h> #include "../kselftest.h" #define TOEPLITZ_KEY_MIN_LEN 40 #define TOEPLITZ_KEY_MAX_LEN 60 #define TOEPLITZ_STR_LEN(K) (((K) * 3) - 1) /* hex encoded: AA:BB:CC:...:ZZ */ #define TOEPLITZ_STR_MIN_LEN TOEPLITZ_STR_LEN(TOEPLITZ_KEY_MIN_LEN) #define TOEPLITZ_STR_MAX_LEN TOEPLITZ_STR_LEN(TOEPLITZ_KEY_MAX_LEN) #define FOUR_TUPLE_MAX_LEN ((sizeof(struct in6_addr) * 2) + (sizeof(uint16_t) * 2)) #define RSS_MAX_CPUS (1 << 16) /* real constraint is PACKET_FANOUT_MAX */ #define RPS_MAX_CPUS 16UL /* must be a power of 2 */ /* configuration options (cmdline arguments) */ static uint16_t cfg_dport = 8000; static int cfg_family = AF_INET6; static char *cfg_ifname = "eth0"; static int cfg_num_queues; static int cfg_num_rps_cpus; static bool cfg_sink; static int cfg_type = SOCK_STREAM; static int cfg_timeout_msec = 1000; static bool cfg_verbose; /* global vars */ static int num_cpus; static int ring_block_nr; static int ring_block_sz; /* stats */ static int frames_received; static int frames_nohash; static int frames_error; #define log_verbose(args...) do { if (cfg_verbose) fprintf(stderr, args); } while (0) /* tpacket ring */ struct ring_state { int fd; char *mmap; int idx; int cpu; }; static unsigned int rx_irq_cpus[RSS_MAX_CPUS]; /* map from rxq to cpu */ static int rps_silo_to_cpu[RPS_MAX_CPUS]; static unsigned char toeplitz_key[TOEPLITZ_KEY_MAX_LEN]; static struct ring_state rings[RSS_MAX_CPUS]; static inline uint32_t toeplitz(const unsigned char *four_tuple, const unsigned char *key) { int i, bit, ret = 0; uint32_t key32; key32 = ntohl(*((uint32_t *)key)); key += 4; for (i = 0; i < FOUR_TUPLE_MAX_LEN; i++) { for (bit = 7; bit >= 0; bit--) { if (four_tuple[i] & (1 << bit)) ret ^= key32; key32 <<= 1; key32 |= !!(key[0] & (1 << bit)); } key++; } return ret; } /* Compare computed cpu with arrival cpu from packet_fanout_cpu */ static void verify_rss(uint32_t rx_hash, int cpu) { int queue = rx_hash % cfg_num_queues; log_verbose(" rxq %d (cpu %d)", queue, rx_irq_cpus[queue]); if (rx_irq_cpus[queue] != cpu) { log_verbose(". error: rss cpu mismatch (%d)", cpu); frames_error++; } } static void verify_rps(uint64_t rx_hash, int cpu) { int silo = (rx_hash * cfg_num_rps_cpus) >> 32; log_verbose(" silo %d (cpu %d)", silo, rps_silo_to_cpu[silo]); if (rps_silo_to_cpu[silo] != cpu) { log_verbose(". error: rps cpu mismatch (%d)", cpu); frames_error++; } } static void log_rxhash(int cpu, uint32_t rx_hash, const char *addrs, int addr_len) { char saddr[INET6_ADDRSTRLEN], daddr[INET6_ADDRSTRLEN]; uint16_t *ports; if (!inet_ntop(cfg_family, addrs, saddr, sizeof(saddr)) || !inet_ntop(cfg_family, addrs + addr_len, daddr, sizeof(daddr))) error(1, 0, "address parse error"); ports = (void *)addrs + (addr_len * 2); log_verbose("cpu %d: rx_hash 0x%08x [saddr %s daddr %s sport %02hu dport %02hu]", cpu, rx_hash, saddr, daddr, ntohs(ports[0]), ntohs(ports[1])); } /* Compare computed rxhash with rxhash received from tpacket_v3 */ static void verify_rxhash(const char *pkt, uint32_t rx_hash, int cpu) { unsigned char four_tuple[FOUR_TUPLE_MAX_LEN] = {0}; uint32_t rx_hash_sw; const char *addrs; int addr_len; if (cfg_family == AF_INET) { addr_len = sizeof(struct in_addr); addrs = pkt + offsetof(struct iphdr, saddr); } else { addr_len = sizeof(struct in6_addr); addrs = pkt + offsetof(struct ip6_hdr, ip6_src); } memcpy(four_tuple, addrs, (addr_len * 2) + (sizeof(uint16_t) * 2)); rx_hash_sw = toeplitz(four_tuple, toeplitz_key); if (cfg_verbose) log_rxhash(cpu, rx_hash, addrs, addr_len); if (rx_hash != rx_hash_sw) { log_verbose(" != expected 0x%x\n", rx_hash_sw); frames_error++; return; } log_verbose(" OK"); if (cfg_num_queues) verify_rss(rx_hash, cpu); else if (cfg_num_rps_cpus) verify_rps(rx_hash, cpu); log_verbose("\n"); } static char *recv_frame(const struct ring_state *ring, char *frame) { struct tpacket3_hdr *hdr = (void *)frame; if (hdr->hv1.tp_rxhash) verify_rxhash(frame + hdr->tp_net, hdr->hv1.tp_rxhash, ring->cpu); else frames_nohash++; return frame + hdr->tp_next_offset; } /* A single TPACKET_V3 block can hold multiple frames */ static bool recv_block(struct ring_state *ring) { struct tpacket_block_desc *block; char *frame; int i; block = (void *)(ring->mmap + ring->idx * ring_block_sz); if (!(block->hdr.bh1.block_status & TP_STATUS_USER)) return false; frame = (char *)block; frame += block->hdr.bh1.offset_to_first_pkt; for (i = 0; i < block->hdr.bh1.num_pkts; i++) { frame = recv_frame(ring, frame); frames_received++; } block->hdr.bh1.block_status = TP_STATUS_KERNEL; ring->idx = (ring->idx + 1) % ring_block_nr; return true; } /* simple test: sleep once unconditionally and then process all rings */ static void process_rings(void) { int i; usleep(1000 * cfg_timeout_msec); for (i = 0; i < num_cpus; i++) do {} while (recv_block(&rings[i])); fprintf(stderr, "count: pass=%u nohash=%u fail=%u\n", frames_received - frames_nohash - frames_error, frames_nohash, frames_error); } static char *setup_ring(int fd) { struct tpacket_req3 req3 = {0}; void *ring; req3.tp_retire_blk_tov = cfg_timeout_msec / 8; req3.tp_feature_req_word = TP_FT_REQ_FILL_RXHASH; req3.tp_frame_size = 2048; req3.tp_frame_nr = 1 << 10; req3.tp_block_nr = 16; req3.tp_block_size = req3.tp_frame_size * req3.tp_frame_nr; req3.tp_block_size /= req3.tp_block_nr; if (setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &req3, sizeof(req3))) error(1, errno, "setsockopt PACKET_RX_RING"); ring_block_sz = req3.tp_block_size; ring_block_nr = req3.tp_block_nr; ring = mmap(0, req3.tp_block_size * req3.tp_block_nr, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_LOCKED | MAP_POPULATE, fd, 0); if (ring == MAP_FAILED) error(1, 0, "mmap failed"); return ring; } static void __set_filter(int fd, int off_proto, uint8_t proto, int off_dport) { struct sock_filter filter[] = { BPF_STMT(BPF_LD + BPF_B + BPF_ABS, SKF_AD_OFF + SKF_AD_PKTTYPE), BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, PACKET_HOST, 0, 4), BPF_STMT(BPF_LD + BPF_B + BPF_ABS, off_proto), BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, proto, 0, 2), BPF_STMT(BPF_LD + BPF_H + BPF_ABS, off_dport), BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, cfg_dport, 1, 0), BPF_STMT(BPF_RET + BPF_K, 0), BPF_STMT(BPF_RET + BPF_K, 0xFFFF), }; struct sock_fprog prog = {}; prog.filter = filter; prog.len = ARRAY_SIZE(filter); if (setsockopt(fd, SOL_SOCKET, SO_ATTACH_FILTER, &prog, sizeof(prog))) error(1, errno, "setsockopt filter"); } /* filter on transport protocol and destination port */ static void set_filter(int fd) { const int off_dport = offsetof(struct tcphdr, dest); /* same for udp */ uint8_t proto; proto = cfg_type == SOCK_STREAM ? IPPROTO_TCP : IPPROTO_UDP; if (cfg_family == AF_INET) __set_filter(fd, offsetof(struct iphdr, protocol), proto, sizeof(struct iphdr) + off_dport); else __set_filter(fd, offsetof(struct ip6_hdr, ip6_nxt), proto, sizeof(struct ip6_hdr) + off_dport); } /* drop everything: used temporarily during setup */ static void set_filter_null(int fd) { struct sock_filter filter[] = { BPF_STMT(BPF_RET + BPF_K, 0), }; struct sock_fprog prog = {}; prog.filter = filter; prog.len = ARRAY_SIZE(filter); if (setsockopt(fd, SOL_SOCKET, SO_ATTACH_FILTER, &prog, sizeof(prog))) error(1, errno, "setsockopt filter"); } static int create_ring(char **ring) { struct fanout_args args = { .id = 1, .type_flags = PACKET_FANOUT_CPU, .max_num_members = RSS_MAX_CPUS }; struct sockaddr_ll ll = { 0 }; int fd, val; fd = socket(PF_PACKET, SOCK_DGRAM, 0); if (fd == -1) error(1, errno, "socket creation failed"); val = TPACKET_V3; if (setsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val))) error(1, errno, "setsockopt PACKET_VERSION"); *ring = setup_ring(fd); /* block packets until all rings are added to the fanout group: * else packets can arrive during setup and get misclassified */ set_filter_null(fd); ll.sll_family = AF_PACKET; ll.sll_ifindex = if_nametoindex(cfg_ifname); ll.sll_protocol = cfg_family == AF_INET ? htons(ETH_P_IP) : htons(ETH_P_IPV6); if (bind(fd, (void *)&ll, sizeof(ll))) error(1, errno, "bind"); /* must come after bind: verifies all programs in group match */ if (setsockopt(fd, SOL_PACKET, PACKET_FANOUT, &args, sizeof(args))) { /* on failure, retry using old API if that is sufficient: * it has a hard limit of 256 sockets, so only try if * (a) only testing rxhash, not RSS or (b) <= 256 cpus. * in this API, the third argument is left implicit. */ if (cfg_num_queues || num_cpus > 256 || setsockopt(fd, SOL_PACKET, PACKET_FANOUT, &args, sizeof(uint32_t))) error(1, errno, "setsockopt PACKET_FANOUT cpu"); } return fd; } /* setup inet(6) socket to blackhole the test traffic, if arg '-s' */ static int setup_sink(void) { int fd, val; fd = socket(cfg_family, cfg_type, 0); if (fd == -1) error(1, errno, "socket %d.%d", cfg_family, cfg_type); val = 1 << 20; if (setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &val, sizeof(val))) error(1, errno, "setsockopt rcvbuf"); return fd; } static void setup_rings(void) { int i; for (i = 0; i < num_cpus; i++) { rings[i].cpu = i; rings[i].fd = create_ring(&rings[i].mmap); } /* accept packets once all rings in the fanout group are up */ for (i = 0; i < num_cpus; i++) set_filter(rings[i].fd); } static void cleanup_rings(void) { int i; for (i = 0; i < num_cpus; i++) { if (munmap(rings[i].mmap, ring_block_nr * ring_block_sz)) error(1, errno, "munmap"); if (close(rings[i].fd)) error(1, errno, "close"); } } static void parse_cpulist(const char *arg) { do { rx_irq_cpus[cfg_num_queues++] = strtol(arg, NULL, 10); arg = strchr(arg, ','); if (!arg) break; arg++; // skip ',' } while (1); } static void show_cpulist(void) { int i; for (i = 0; i < cfg_num_queues; i++) fprintf(stderr, "rxq %d: cpu %d\n", i, rx_irq_cpus[i]); } static void show_silos(void) { int i; for (i = 0; i < cfg_num_rps_cpus; i++) fprintf(stderr, "silo %d: cpu %d\n", i, rps_silo_to_cpu[i]); } static void parse_toeplitz_key(const char *str, int slen, unsigned char *key) { int i, ret, off; if (slen < TOEPLITZ_STR_MIN_LEN || slen > TOEPLITZ_STR_MAX_LEN + 1) error(1, 0, "invalid toeplitz key"); for (i = 0, off = 0; off < slen; i++, off += 3) { ret = sscanf(str + off, "%hhx", &key[i]); if (ret != 1) error(1, 0, "key parse error at %d off %d len %d", i, off, slen); } } static void parse_rps_bitmap(const char *arg) { unsigned long bitmap; int i; bitmap = strtoul(arg, NULL, 0); if (bitmap & ~(RPS_MAX_CPUS - 1)) error(1, 0, "rps bitmap 0x%lx out of bounds 0..%lu", bitmap, RPS_MAX_CPUS - 1); for (i = 0; i < RPS_MAX_CPUS; i++) if (bitmap & 1UL << i) rps_silo_to_cpu[cfg_num_rps_cpus++] = i; } static void parse_opts(int argc, char **argv) { static struct option long_options[] = { {"dport", required_argument, 0, 'd'}, {"cpus", required_argument, 0, 'C'}, {"key", required_argument, 0, 'k'}, {"iface", required_argument, 0, 'i'}, {"ipv4", no_argument, 0, '4'}, {"ipv6", no_argument, 0, '6'}, {"sink", no_argument, 0, 's'}, {"tcp", no_argument, 0, 't'}, {"timeout", required_argument, 0, 'T'}, {"udp", no_argument, 0, 'u'}, {"verbose", no_argument, 0, 'v'}, {"rps", required_argument, 0, 'r'}, {0, 0, 0, 0} }; bool have_toeplitz = false; int index, c; while ((c = getopt_long(argc, argv, "46C:d:i:k:r:stT:uv", long_options, &index)) != -1) { switch (c) { case '4': cfg_family = AF_INET; break; case '6': cfg_family = AF_INET6; break; case 'C': parse_cpulist(optarg); break; case 'd': cfg_dport = strtol(optarg, NULL, 0); break; case 'i': cfg_ifname = optarg; break; case 'k': parse_toeplitz_key(optarg, strlen(optarg), toeplitz_key); have_toeplitz = true; break; case 'r': parse_rps_bitmap(optarg); break; case 's': cfg_sink = true; break; case 't': cfg_type = SOCK_STREAM; break; case 'T': cfg_timeout_msec = strtol(optarg, NULL, 0); break; case 'u': cfg_type = SOCK_DGRAM; break; case 'v': cfg_verbose = true; break; default: error(1, 0, "unknown option %c", optopt); break; } } if (!have_toeplitz) error(1, 0, "Must supply rss key ('-k')"); num_cpus = get_nprocs(); if (num_cpus > RSS_MAX_CPUS) error(1, 0, "increase RSS_MAX_CPUS"); if (cfg_num_queues && cfg_num_rps_cpus) error(1, 0, "Can't supply both RSS cpus ('-C') and RPS map ('-r')"); if (cfg_verbose) { show_cpulist(); show_silos(); } } int main(int argc, char **argv) { const int min_tests = 10; int fd_sink = -1; parse_opts(argc, argv); if (cfg_sink) fd_sink = setup_sink(); setup_rings(); process_rings(); cleanup_rings(); if (cfg_sink && close(fd_sink)) error(1, errno, "close sink"); if (frames_received - frames_nohash < min_tests) error(1, 0, "too few frames for verification"); return frames_error; }
linux-master
tools/testing/selftests/net/toeplitz.c
// SPDX-License-Identifier: GPL-2.0 #define _GNU_SOURCE #include <arpa/inet.h> #include <errno.h> #include <error.h> #include <linux/errqueue.h> #include <linux/net_tstamp.h> #include <netinet/if_ether.h> #include <netinet/in.h> #include <netinet/ip.h> #include <netinet/ip6.h> #include <netinet/udp.h> #include <poll.h> #include <sched.h> #include <signal.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/socket.h> #include <sys/time.h> #include <sys/poll.h> #include <sys/types.h> #include <unistd.h> #include "../kselftest.h" #ifndef ETH_MAX_MTU #define ETH_MAX_MTU 0xFFFFU #endif #ifndef UDP_SEGMENT #define UDP_SEGMENT 103 #endif #ifndef SO_ZEROCOPY #define SO_ZEROCOPY 60 #endif #ifndef SO_EE_ORIGIN_ZEROCOPY #define SO_EE_ORIGIN_ZEROCOPY 5 #endif #ifndef MSG_ZEROCOPY #define MSG_ZEROCOPY 0x4000000 #endif #ifndef ENOTSUPP #define ENOTSUPP 524 #endif #define NUM_PKT 100 static bool cfg_cache_trash; static int cfg_cpu = -1; static int cfg_connected = true; static int cfg_family = PF_UNSPEC; static uint16_t cfg_mss; static int cfg_payload_len = (1472 * 42); static int cfg_port = 8000; static int cfg_runtime_ms = -1; static bool cfg_poll; static int cfg_poll_loop_timeout_ms = 2000; static bool cfg_segment; static bool cfg_sendmmsg; static bool cfg_tcp; static uint32_t cfg_tx_ts = SOF_TIMESTAMPING_TX_SOFTWARE; static bool cfg_tx_tstamp; static bool cfg_audit; static bool cfg_verbose; static bool cfg_zerocopy; static int cfg_msg_nr; static uint16_t cfg_gso_size; static unsigned long total_num_msgs; static unsigned long total_num_sends; static unsigned long stat_tx_ts; static unsigned long stat_tx_ts_errors; static unsigned long tstart; static unsigned long tend; static unsigned long stat_zcopies; static socklen_t cfg_alen; static struct sockaddr_storage cfg_dst_addr; static bool interrupted; static char buf[NUM_PKT][ETH_MAX_MTU]; static void sigint_handler(int signum) { if (signum == SIGINT) interrupted = true; } static unsigned long gettimeofday_ms(void) { struct timeval tv; gettimeofday(&tv, NULL); return (tv.tv_sec * 1000) + (tv.tv_usec / 1000); } static int set_cpu(int cpu) { cpu_set_t mask; CPU_ZERO(&mask); CPU_SET(cpu, &mask); if (sched_setaffinity(0, sizeof(mask), &mask)) error(1, 0, "setaffinity %d", cpu); return 0; } static void setup_sockaddr(int domain, const char *str_addr, void *sockaddr) { struct sockaddr_in6 *addr6 = (void *) sockaddr; struct sockaddr_in *addr4 = (void *) sockaddr; switch (domain) { case PF_INET: addr4->sin_family = AF_INET; addr4->sin_port = htons(cfg_port); if (inet_pton(AF_INET, str_addr, &(addr4->sin_addr)) != 1) error(1, 0, "ipv4 parse error: %s", str_addr); break; case PF_INET6: addr6->sin6_family = AF_INET6; addr6->sin6_port = htons(cfg_port); if (inet_pton(AF_INET6, str_addr, &(addr6->sin6_addr)) != 1) error(1, 0, "ipv6 parse error: %s", str_addr); break; default: error(1, 0, "illegal domain"); } } static void flush_cmsg(struct cmsghdr *cmsg) { struct sock_extended_err *err; struct scm_timestamping *tss; __u32 lo; __u32 hi; int i; switch (cmsg->cmsg_level) { case SOL_SOCKET: if (cmsg->cmsg_type == SO_TIMESTAMPING) { i = (cfg_tx_ts == SOF_TIMESTAMPING_TX_HARDWARE) ? 2 : 0; tss = (struct scm_timestamping *)CMSG_DATA(cmsg); if (tss->ts[i].tv_sec == 0) stat_tx_ts_errors++; } else { error(1, 0, "unknown SOL_SOCKET cmsg type=%u\n", cmsg->cmsg_type); } break; case SOL_IP: case SOL_IPV6: switch (cmsg->cmsg_type) { case IP_RECVERR: case IPV6_RECVERR: { err = (struct sock_extended_err *)CMSG_DATA(cmsg); switch (err->ee_origin) { case SO_EE_ORIGIN_TIMESTAMPING: /* Got a TX timestamp from error queue */ stat_tx_ts++; break; case SO_EE_ORIGIN_ICMP: case SO_EE_ORIGIN_ICMP6: if (cfg_verbose) fprintf(stderr, "received ICMP error: type=%u, code=%u\n", err->ee_type, err->ee_code); break; case SO_EE_ORIGIN_ZEROCOPY: { lo = err->ee_info; hi = err->ee_data; /* range of IDs acknowledged */ stat_zcopies += hi - lo + 1; break; } case SO_EE_ORIGIN_LOCAL: if (cfg_verbose) fprintf(stderr, "received packet with local origin: %u\n", err->ee_origin); break; default: error(0, 1, "received packet with origin: %u", err->ee_origin); } break; } default: error(0, 1, "unknown IP msg type=%u\n", cmsg->cmsg_type); break; } break; default: error(0, 1, "unknown cmsg level=%u\n", cmsg->cmsg_level); } } static void flush_errqueue_recv(int fd) { char control[CMSG_SPACE(sizeof(struct scm_timestamping)) + CMSG_SPACE(sizeof(struct sock_extended_err)) + CMSG_SPACE(sizeof(struct sockaddr_in6))] = {0}; struct msghdr msg = {0}; struct cmsghdr *cmsg; int ret; while (1) { msg.msg_control = control; msg.msg_controllen = sizeof(control); ret = recvmsg(fd, &msg, MSG_ERRQUEUE); if (ret == -1 && errno == EAGAIN) break; if (ret == -1) error(1, errno, "errqueue"); if (msg.msg_flags != MSG_ERRQUEUE) error(1, 0, "errqueue: flags 0x%x\n", msg.msg_flags); if (cfg_audit) { for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) flush_cmsg(cmsg); } msg.msg_flags = 0; } } static void flush_errqueue(int fd, const bool do_poll, unsigned long poll_timeout, const bool poll_err) { if (do_poll) { struct pollfd fds = {0}; int ret; fds.fd = fd; ret = poll(&fds, 1, poll_timeout); if (ret == 0) { if ((cfg_verbose) && (poll_err)) fprintf(stderr, "poll timeout\n"); } else if (ret < 0) { error(1, errno, "poll"); } } flush_errqueue_recv(fd); } static void flush_errqueue_retry(int fd, unsigned long num_sends) { unsigned long tnow, tstop; bool first_try = true; tnow = gettimeofday_ms(); tstop = tnow + cfg_poll_loop_timeout_ms; do { flush_errqueue(fd, true, tstop - tnow, first_try); first_try = false; tnow = gettimeofday_ms(); } while ((stat_zcopies != num_sends) && (tnow < tstop)); } static int send_tcp(int fd, char *data) { int ret, done = 0, count = 0; while (done < cfg_payload_len) { ret = send(fd, data + done, cfg_payload_len - done, cfg_zerocopy ? MSG_ZEROCOPY : 0); if (ret == -1) error(1, errno, "write"); done += ret; count++; } return count; } static int send_udp(int fd, char *data) { int ret, total_len, len, count = 0; total_len = cfg_payload_len; while (total_len) { len = total_len < cfg_mss ? total_len : cfg_mss; ret = sendto(fd, data, len, cfg_zerocopy ? MSG_ZEROCOPY : 0, cfg_connected ? NULL : (void *)&cfg_dst_addr, cfg_connected ? 0 : cfg_alen); if (ret == -1) error(1, errno, "write"); if (ret != len) error(1, errno, "write: %uB != %uB\n", ret, len); total_len -= len; count++; } return count; } static void send_ts_cmsg(struct cmsghdr *cm) { uint32_t *valp; cm->cmsg_level = SOL_SOCKET; cm->cmsg_type = SO_TIMESTAMPING; cm->cmsg_len = CMSG_LEN(sizeof(cfg_tx_ts)); valp = (void *)CMSG_DATA(cm); *valp = cfg_tx_ts; } static int send_udp_sendmmsg(int fd, char *data) { char control[CMSG_SPACE(sizeof(cfg_tx_ts))] = {0}; const int max_nr_msg = ETH_MAX_MTU / ETH_DATA_LEN; struct mmsghdr mmsgs[max_nr_msg]; struct iovec iov[max_nr_msg]; unsigned int off = 0, left; size_t msg_controllen = 0; int i = 0, ret; memset(mmsgs, 0, sizeof(mmsgs)); if (cfg_tx_tstamp) { struct msghdr msg = {0}; struct cmsghdr *cmsg; msg.msg_control = control; msg.msg_controllen = sizeof(control); cmsg = CMSG_FIRSTHDR(&msg); send_ts_cmsg(cmsg); msg_controllen += CMSG_SPACE(sizeof(cfg_tx_ts)); } left = cfg_payload_len; while (left) { if (i == max_nr_msg) error(1, 0, "sendmmsg: exceeds max_nr_msg"); iov[i].iov_base = data + off; iov[i].iov_len = cfg_mss < left ? cfg_mss : left; mmsgs[i].msg_hdr.msg_iov = iov + i; mmsgs[i].msg_hdr.msg_iovlen = 1; mmsgs[i].msg_hdr.msg_name = (void *)&cfg_dst_addr; mmsgs[i].msg_hdr.msg_namelen = cfg_alen; if (msg_controllen) { mmsgs[i].msg_hdr.msg_control = control; mmsgs[i].msg_hdr.msg_controllen = msg_controllen; } off += iov[i].iov_len; left -= iov[i].iov_len; i++; } ret = sendmmsg(fd, mmsgs, i, cfg_zerocopy ? MSG_ZEROCOPY : 0); if (ret == -1) error(1, errno, "sendmmsg"); return ret; } static void send_udp_segment_cmsg(struct cmsghdr *cm) { uint16_t *valp; cm->cmsg_level = SOL_UDP; cm->cmsg_type = UDP_SEGMENT; cm->cmsg_len = CMSG_LEN(sizeof(cfg_gso_size)); valp = (void *)CMSG_DATA(cm); *valp = cfg_gso_size; } static int send_udp_segment(int fd, char *data) { char control[CMSG_SPACE(sizeof(cfg_gso_size)) + CMSG_SPACE(sizeof(cfg_tx_ts))] = {0}; struct msghdr msg = {0}; struct iovec iov = {0}; size_t msg_controllen; struct cmsghdr *cmsg; int ret; iov.iov_base = data; iov.iov_len = cfg_payload_len; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = control; msg.msg_controllen = sizeof(control); cmsg = CMSG_FIRSTHDR(&msg); send_udp_segment_cmsg(cmsg); msg_controllen = CMSG_SPACE(sizeof(cfg_mss)); if (cfg_tx_tstamp) { cmsg = CMSG_NXTHDR(&msg, cmsg); send_ts_cmsg(cmsg); msg_controllen += CMSG_SPACE(sizeof(cfg_tx_ts)); } msg.msg_controllen = msg_controllen; msg.msg_name = (void *)&cfg_dst_addr; msg.msg_namelen = cfg_alen; ret = sendmsg(fd, &msg, cfg_zerocopy ? MSG_ZEROCOPY : 0); if (ret == -1) error(1, errno, "sendmsg"); if (ret != iov.iov_len) error(1, 0, "sendmsg: %u != %llu\n", ret, (unsigned long long)iov.iov_len); return 1; } static void usage(const char *filepath) { error(1, 0, "Usage: %s [-46acmHPtTuvz] [-C cpu] [-D dst ip] [-l secs] " "[-L secs] [-M messagenr] [-p port] [-s sendsize] [-S gsosize]", filepath); } static void parse_opts(int argc, char **argv) { const char *bind_addr = NULL; int max_len, hdrlen; int c; while ((c = getopt(argc, argv, "46acC:D:Hl:L:mM:p:s:PS:tTuvz")) != -1) { switch (c) { case '4': if (cfg_family != PF_UNSPEC) error(1, 0, "Pass one of -4 or -6"); cfg_family = PF_INET; cfg_alen = sizeof(struct sockaddr_in); break; case '6': if (cfg_family != PF_UNSPEC) error(1, 0, "Pass one of -4 or -6"); cfg_family = PF_INET6; cfg_alen = sizeof(struct sockaddr_in6); break; case 'a': cfg_audit = true; break; case 'c': cfg_cache_trash = true; break; case 'C': cfg_cpu = strtol(optarg, NULL, 0); break; case 'D': bind_addr = optarg; break; case 'l': cfg_runtime_ms = strtoul(optarg, NULL, 10) * 1000; break; case 'L': cfg_poll_loop_timeout_ms = strtoul(optarg, NULL, 10) * 1000; break; case 'm': cfg_sendmmsg = true; break; case 'M': cfg_msg_nr = strtoul(optarg, NULL, 10); break; case 'p': cfg_port = strtoul(optarg, NULL, 0); break; case 'P': cfg_poll = true; break; case 's': cfg_payload_len = strtoul(optarg, NULL, 0); break; case 'S': cfg_gso_size = strtoul(optarg, NULL, 0); cfg_segment = true; break; case 'H': cfg_tx_ts = SOF_TIMESTAMPING_TX_HARDWARE; cfg_tx_tstamp = true; break; case 't': cfg_tcp = true; break; case 'T': cfg_tx_tstamp = true; break; case 'u': cfg_connected = false; break; case 'v': cfg_verbose = true; break; case 'z': cfg_zerocopy = true; break; default: exit(1); } } if (!bind_addr) bind_addr = cfg_family == PF_INET6 ? "::" : "0.0.0.0"; setup_sockaddr(cfg_family, bind_addr, &cfg_dst_addr); if (optind != argc) usage(argv[0]); if (cfg_family == PF_UNSPEC) error(1, 0, "must pass one of -4 or -6"); if (cfg_tcp && !cfg_connected) error(1, 0, "connectionless tcp makes no sense"); if (cfg_segment && cfg_sendmmsg) error(1, 0, "cannot combine segment offload and sendmmsg"); if (cfg_tx_tstamp && !(cfg_segment || cfg_sendmmsg)) error(1, 0, "Options -T and -H require either -S or -m option"); if (cfg_family == PF_INET) hdrlen = sizeof(struct iphdr) + sizeof(struct udphdr); else hdrlen = sizeof(struct ip6_hdr) + sizeof(struct udphdr); cfg_mss = ETH_DATA_LEN - hdrlen; max_len = ETH_MAX_MTU - hdrlen; if (!cfg_gso_size) cfg_gso_size = cfg_mss; if (cfg_payload_len > max_len) error(1, 0, "payload length %u exceeds max %u", cfg_payload_len, max_len); } static void set_pmtu_discover(int fd, bool is_ipv4) { int level, name, val; if (is_ipv4) { level = SOL_IP; name = IP_MTU_DISCOVER; val = IP_PMTUDISC_DO; } else { level = SOL_IPV6; name = IPV6_MTU_DISCOVER; val = IPV6_PMTUDISC_DO; } if (setsockopt(fd, level, name, &val, sizeof(val))) error(1, errno, "setsockopt path mtu"); } static void set_tx_timestamping(int fd) { int val = SOF_TIMESTAMPING_OPT_CMSG | SOF_TIMESTAMPING_OPT_ID | SOF_TIMESTAMPING_OPT_TSONLY; if (cfg_tx_ts == SOF_TIMESTAMPING_TX_SOFTWARE) val |= SOF_TIMESTAMPING_SOFTWARE; else val |= SOF_TIMESTAMPING_RAW_HARDWARE; if (setsockopt(fd, SOL_SOCKET, SO_TIMESTAMPING, &val, sizeof(val))) error(1, errno, "setsockopt tx timestamping"); } static void print_audit_report(unsigned long num_msgs, unsigned long num_sends) { unsigned long tdelta; tdelta = tend - tstart; if (!tdelta) return; fprintf(stderr, "Summary over %lu.%03lu seconds...\n", tdelta / 1000, tdelta % 1000); fprintf(stderr, "sum %s tx: %6lu MB/s %10lu calls (%lu/s) %10lu msgs (%lu/s)\n", cfg_tcp ? "tcp" : "udp", ((num_msgs * cfg_payload_len) >> 10) / tdelta, num_sends, num_sends * 1000 / tdelta, num_msgs, num_msgs * 1000 / tdelta); if (cfg_tx_tstamp) { if (stat_tx_ts_errors) error(1, 0, "Expected clean TX Timestamps: %9lu msgs received %6lu errors", stat_tx_ts, stat_tx_ts_errors); if (stat_tx_ts != num_sends) error(1, 0, "Unexpected number of TX Timestamps: %9lu expected %9lu received", num_sends, stat_tx_ts); fprintf(stderr, "Tx Timestamps: %19lu received %17lu errors\n", stat_tx_ts, stat_tx_ts_errors); } if (cfg_zerocopy) { if (stat_zcopies != num_sends) error(1, 0, "Unexpected number of Zerocopy completions: %9lu expected %9lu received", num_sends, stat_zcopies); fprintf(stderr, "Zerocopy acks: %19lu\n", stat_zcopies); } } static void print_report(unsigned long num_msgs, unsigned long num_sends) { fprintf(stderr, "%s tx: %6lu MB/s %8lu calls/s %6lu msg/s\n", cfg_tcp ? "tcp" : "udp", (num_msgs * cfg_payload_len) >> 20, num_sends, num_msgs); if (cfg_audit) { total_num_msgs += num_msgs; total_num_sends += num_sends; } } int main(int argc, char **argv) { unsigned long num_msgs, num_sends; unsigned long tnow, treport, tstop; int fd, i, val, ret; parse_opts(argc, argv); if (cfg_cpu > 0) set_cpu(cfg_cpu); for (i = 0; i < sizeof(buf[0]); i++) buf[0][i] = 'a' + (i % 26); for (i = 1; i < NUM_PKT; i++) memcpy(buf[i], buf[0], sizeof(buf[0])); signal(SIGINT, sigint_handler); fd = socket(cfg_family, cfg_tcp ? SOCK_STREAM : SOCK_DGRAM, 0); if (fd == -1) error(1, errno, "socket"); if (cfg_zerocopy) { val = 1; ret = setsockopt(fd, SOL_SOCKET, SO_ZEROCOPY, &val, sizeof(val)); if (ret) { if (errno == ENOPROTOOPT || errno == ENOTSUPP) { fprintf(stderr, "SO_ZEROCOPY not supported"); exit(KSFT_SKIP); } error(1, errno, "setsockopt zerocopy"); } } if (cfg_connected && connect(fd, (void *)&cfg_dst_addr, cfg_alen)) error(1, errno, "connect"); if (cfg_segment) set_pmtu_discover(fd, cfg_family == PF_INET); if (cfg_tx_tstamp) set_tx_timestamping(fd); num_msgs = num_sends = 0; tnow = gettimeofday_ms(); tstart = tnow; tend = tnow; tstop = tnow + cfg_runtime_ms; treport = tnow + 1000; i = 0; do { if (cfg_tcp) num_sends += send_tcp(fd, buf[i]); else if (cfg_segment) num_sends += send_udp_segment(fd, buf[i]); else if (cfg_sendmmsg) num_sends += send_udp_sendmmsg(fd, buf[i]); else num_sends += send_udp(fd, buf[i]); num_msgs++; if ((cfg_zerocopy && ((num_msgs & 0xF) == 0)) || cfg_tx_tstamp) flush_errqueue(fd, cfg_poll, 500, true); if (cfg_msg_nr && num_msgs >= cfg_msg_nr) break; tnow = gettimeofday_ms(); if (tnow >= treport) { print_report(num_msgs, num_sends); num_msgs = num_sends = 0; treport = tnow + 1000; } /* cold cache when writing buffer */ if (cfg_cache_trash) i = ++i < NUM_PKT ? i : 0; } while (!interrupted && (cfg_runtime_ms == -1 || tnow < tstop)); if (cfg_zerocopy || cfg_tx_tstamp) flush_errqueue_retry(fd, num_sends); if (close(fd)) error(1, errno, "close"); if (cfg_audit) { tend = tnow; total_num_msgs += num_msgs; total_num_sends += num_sends; print_audit_report(total_num_msgs, total_num_sends); } return 0; }
linux-master
tools/testing/selftests/net/udpgso_bench_tx.c
// SPDX-License-Identifier: GPL-2.0 #include <errno.h> #include <error.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <limits.h> #include <sys/socket.h> #include <sys/types.h> #include <arpa/inet.h> #include <net/if.h> #include <linux/rtnetlink.h> #include <linux/genetlink.h> #include "linux/mptcp.h" #ifndef MPTCP_PM_NAME #define MPTCP_PM_NAME "mptcp_pm" #endif #ifndef MPTCP_PM_EVENTS #define MPTCP_PM_EVENTS "mptcp_pm_events" #endif #ifndef IPPROTO_MPTCP #define IPPROTO_MPTCP 262 #endif static void syntax(char *argv[]) { fprintf(stderr, "%s add|ann|rem|csf|dsf|get|set|del|flush|dump|events|listen|accept [<args>]\n", argv[0]); fprintf(stderr, "\tadd [flags signal|subflow|backup|fullmesh] [id <nr>] [dev <name>] <ip>\n"); fprintf(stderr, "\tann <local-ip> id <local-id> token <token> [port <local-port>] [dev <name>]\n"); fprintf(stderr, "\trem id <local-id> token <token>\n"); fprintf(stderr, "\tcsf lip <local-ip> lid <local-id> rip <remote-ip> rport <remote-port> token <token>\n"); fprintf(stderr, "\tdsf lip <local-ip> lport <local-port> rip <remote-ip> rport <remote-port> token <token>\n"); fprintf(stderr, "\tdel <id> [<ip>]\n"); fprintf(stderr, "\tget <id>\n"); fprintf(stderr, "\tset [<ip>] [id <nr>] flags [no]backup|[no]fullmesh [port <nr>] [token <token>] [rip <ip>] [rport <port>]\n"); fprintf(stderr, "\tflush\n"); fprintf(stderr, "\tdump\n"); fprintf(stderr, "\tlimits [<rcv addr max> <subflow max>]\n"); fprintf(stderr, "\tevents\n"); fprintf(stderr, "\tlisten <local-ip> <local-port>\n"); exit(0); } static int init_genl_req(char *data, int family, int cmd, int version) { struct nlmsghdr *nh = (void *)data; struct genlmsghdr *gh; int off = 0; nh->nlmsg_type = family; nh->nlmsg_flags = NLM_F_REQUEST; nh->nlmsg_len = NLMSG_LENGTH(GENL_HDRLEN); off += NLMSG_ALIGN(sizeof(*nh)); gh = (void *)(data + off); gh->cmd = cmd; gh->version = version; off += NLMSG_ALIGN(sizeof(*gh)); return off; } static int nl_error(struct nlmsghdr *nh) { struct nlmsgerr *err = (struct nlmsgerr *)NLMSG_DATA(nh); int len = nh->nlmsg_len - sizeof(*nh); uint32_t off; if (len < sizeof(struct nlmsgerr)) { error(1, 0, "netlink error message truncated %d min %ld", len, sizeof(struct nlmsgerr)); return -1; } if (err->error) { /* check messages from kernel */ struct rtattr *attrs = (struct rtattr *)NLMSG_DATA(nh); fprintf(stderr, "netlink error %d (%s)\n", err->error, strerror(-err->error)); while (RTA_OK(attrs, len)) { if (attrs->rta_type == NLMSGERR_ATTR_MSG) fprintf(stderr, "netlink ext ack msg: %s\n", (char *)RTA_DATA(attrs)); if (attrs->rta_type == NLMSGERR_ATTR_OFFS) { memcpy(&off, RTA_DATA(attrs), 4); fprintf(stderr, "netlink err off %d\n", (int)off); } attrs = RTA_NEXT(attrs, len); } return -1; } return 0; } static int capture_events(int fd, int event_group) { u_int8_t buffer[NLMSG_ALIGN(sizeof(struct nlmsghdr)) + NLMSG_ALIGN(sizeof(struct genlmsghdr)) + 1024]; struct genlmsghdr *ghdr; struct rtattr *attrs; struct nlmsghdr *nh; int ret = 0; int res_len; int msg_len; fd_set rfds; if (setsockopt(fd, SOL_NETLINK, NETLINK_ADD_MEMBERSHIP, &event_group, sizeof(event_group)) < 0) error(1, errno, "could not join the " MPTCP_PM_EVENTS " mcast group"); do { FD_ZERO(&rfds); FD_SET(fd, &rfds); res_len = NLMSG_ALIGN(sizeof(struct nlmsghdr)) + NLMSG_ALIGN(sizeof(struct genlmsghdr)) + 1024; ret = select(FD_SETSIZE, &rfds, NULL, NULL, NULL); if (ret < 0) error(1, ret, "error in select() on NL socket"); res_len = recv(fd, buffer, res_len, 0); if (res_len < 0) error(1, res_len, "error on recv() from NL socket"); nh = (struct nlmsghdr *)buffer; for (; NLMSG_OK(nh, res_len); nh = NLMSG_NEXT(nh, res_len)) { if (nh->nlmsg_type == NLMSG_ERROR) error(1, NLMSG_ERROR, "received invalid NL message"); ghdr = (struct genlmsghdr *)NLMSG_DATA(nh); if (ghdr->cmd == 0) continue; fprintf(stderr, "type:%d", ghdr->cmd); msg_len = nh->nlmsg_len - NLMSG_LENGTH(GENL_HDRLEN); attrs = (struct rtattr *) ((char *) ghdr + GENL_HDRLEN); while (RTA_OK(attrs, msg_len)) { if (attrs->rta_type == MPTCP_ATTR_TOKEN) fprintf(stderr, ",token:%u", *(__u32 *)RTA_DATA(attrs)); else if (attrs->rta_type == MPTCP_ATTR_FAMILY) fprintf(stderr, ",family:%u", *(__u16 *)RTA_DATA(attrs)); else if (attrs->rta_type == MPTCP_ATTR_LOC_ID) fprintf(stderr, ",loc_id:%u", *(__u8 *)RTA_DATA(attrs)); else if (attrs->rta_type == MPTCP_ATTR_REM_ID) fprintf(stderr, ",rem_id:%u", *(__u8 *)RTA_DATA(attrs)); else if (attrs->rta_type == MPTCP_ATTR_SADDR4) { u_int32_t saddr4 = ntohl(*(__u32 *)RTA_DATA(attrs)); fprintf(stderr, ",saddr4:%u.%u.%u.%u", saddr4 >> 24, (saddr4 >> 16) & 0xFF, (saddr4 >> 8) & 0xFF, (saddr4 & 0xFF)); } else if (attrs->rta_type == MPTCP_ATTR_SADDR6) { char buf[INET6_ADDRSTRLEN]; if (inet_ntop(AF_INET6, RTA_DATA(attrs), buf, sizeof(buf)) != NULL) fprintf(stderr, ",saddr6:%s", buf); } else if (attrs->rta_type == MPTCP_ATTR_DADDR4) { u_int32_t daddr4 = ntohl(*(__u32 *)RTA_DATA(attrs)); fprintf(stderr, ",daddr4:%u.%u.%u.%u", daddr4 >> 24, (daddr4 >> 16) & 0xFF, (daddr4 >> 8) & 0xFF, (daddr4 & 0xFF)); } else if (attrs->rta_type == MPTCP_ATTR_DADDR6) { char buf[INET6_ADDRSTRLEN]; if (inet_ntop(AF_INET6, RTA_DATA(attrs), buf, sizeof(buf)) != NULL) fprintf(stderr, ",daddr6:%s", buf); } else if (attrs->rta_type == MPTCP_ATTR_SPORT) fprintf(stderr, ",sport:%u", ntohs(*(__u16 *)RTA_DATA(attrs))); else if (attrs->rta_type == MPTCP_ATTR_DPORT) fprintf(stderr, ",dport:%u", ntohs(*(__u16 *)RTA_DATA(attrs))); else if (attrs->rta_type == MPTCP_ATTR_BACKUP) fprintf(stderr, ",backup:%u", *(__u8 *)RTA_DATA(attrs)); else if (attrs->rta_type == MPTCP_ATTR_ERROR) fprintf(stderr, ",error:%u", *(__u8 *)RTA_DATA(attrs)); else if (attrs->rta_type == MPTCP_ATTR_SERVER_SIDE) fprintf(stderr, ",server_side:%u", *(__u8 *)RTA_DATA(attrs)); attrs = RTA_NEXT(attrs, msg_len); } } fprintf(stderr, "\n"); } while (1); return 0; } /* do a netlink command and, if max > 0, fetch the reply ; nh's size >1024B */ static int do_nl_req(int fd, struct nlmsghdr *nh, int len, int max) { struct sockaddr_nl nladdr = { .nl_family = AF_NETLINK }; socklen_t addr_len; void *data = nh; int rem, ret; int err = 0; /* If no expected answer, ask for an ACK to look for errors if any */ if (max == 0) { nh->nlmsg_flags |= NLM_F_ACK; max = 1024; } nh->nlmsg_len = len; ret = sendto(fd, data, len, 0, (void *)&nladdr, sizeof(nladdr)); if (ret != len) error(1, errno, "send netlink: %uB != %uB\n", ret, len); addr_len = sizeof(nladdr); rem = ret = recvfrom(fd, data, max, 0, (void *)&nladdr, &addr_len); if (ret < 0) error(1, errno, "recv netlink: %uB\n", ret); /* Beware: the NLMSG_NEXT macro updates the 'rem' argument */ for (; NLMSG_OK(nh, rem); nh = NLMSG_NEXT(nh, rem)) { if (nh->nlmsg_type == NLMSG_DONE) break; if (nh->nlmsg_type == NLMSG_ERROR && nl_error(nh)) err = 1; } if (err) error(1, 0, "bailing out due to netlink error[s]"); return ret; } static int genl_parse_getfamily(struct nlmsghdr *nlh, int *pm_family, int *events_mcast_grp) { struct genlmsghdr *ghdr = NLMSG_DATA(nlh); int len = nlh->nlmsg_len; struct rtattr *attrs; struct rtattr *grps; struct rtattr *grp; int got_events_grp; int got_family; int grps_len; int grp_len; if (nlh->nlmsg_type != GENL_ID_CTRL) error(1, errno, "Not a controller message, len=%d type=0x%x\n", nlh->nlmsg_len, nlh->nlmsg_type); len -= NLMSG_LENGTH(GENL_HDRLEN); if (len < 0) error(1, errno, "wrong controller message len %d\n", len); if (ghdr->cmd != CTRL_CMD_NEWFAMILY) error(1, errno, "Unknown controller command %d\n", ghdr->cmd); attrs = (struct rtattr *) ((char *) ghdr + GENL_HDRLEN); got_family = 0; got_events_grp = 0; while (RTA_OK(attrs, len)) { if (attrs->rta_type == CTRL_ATTR_FAMILY_ID) { *pm_family = *(__u16 *)RTA_DATA(attrs); got_family = 1; } else if (attrs->rta_type == CTRL_ATTR_MCAST_GROUPS) { grps = RTA_DATA(attrs); grps_len = RTA_PAYLOAD(attrs); while (RTA_OK(grps, grps_len)) { grp = RTA_DATA(grps); grp_len = RTA_PAYLOAD(grps); got_events_grp = 0; while (RTA_OK(grp, grp_len)) { if (grp->rta_type == CTRL_ATTR_MCAST_GRP_ID) *events_mcast_grp = *(__u32 *)RTA_DATA(grp); else if (grp->rta_type == CTRL_ATTR_MCAST_GRP_NAME && !strcmp(RTA_DATA(grp), MPTCP_PM_EVENTS)) got_events_grp = 1; grp = RTA_NEXT(grp, grp_len); } if (got_events_grp) break; grps = RTA_NEXT(grps, grps_len); } } if (got_family && got_events_grp) return 0; attrs = RTA_NEXT(attrs, len); } error(1, errno, "can't find CTRL_ATTR_FAMILY_ID attr"); return -1; } static int resolve_mptcp_pm_netlink(int fd, int *pm_family, int *events_mcast_grp) { char data[NLMSG_ALIGN(sizeof(struct nlmsghdr)) + NLMSG_ALIGN(sizeof(struct genlmsghdr)) + 1024]; struct nlmsghdr *nh; struct rtattr *rta; int namelen; int off = 0; memset(data, 0, sizeof(data)); nh = (void *)data; off = init_genl_req(data, GENL_ID_CTRL, CTRL_CMD_GETFAMILY, 0); rta = (void *)(data + off); namelen = strlen(MPTCP_PM_NAME) + 1; rta->rta_type = CTRL_ATTR_FAMILY_NAME; rta->rta_len = RTA_LENGTH(namelen); memcpy(RTA_DATA(rta), MPTCP_PM_NAME, namelen); off += NLMSG_ALIGN(rta->rta_len); do_nl_req(fd, nh, off, sizeof(data)); return genl_parse_getfamily((void *)data, pm_family, events_mcast_grp); } int dsf(int fd, int pm_family, int argc, char *argv[]) { char data[NLMSG_ALIGN(sizeof(struct nlmsghdr)) + NLMSG_ALIGN(sizeof(struct genlmsghdr)) + 1024]; struct rtattr *rta, *addr; u_int16_t family, port; struct nlmsghdr *nh; u_int32_t token; int addr_start; int off = 0; int arg; const char *params[5]; memset(params, 0, 5 * sizeof(const char *)); memset(data, 0, sizeof(data)); nh = (void *)data; off = init_genl_req(data, pm_family, MPTCP_PM_CMD_SUBFLOW_DESTROY, MPTCP_PM_VER); if (argc < 12) syntax(argv); /* Params recorded in this order: * <local-ip>, <local-port>, <remote-ip>, <remote-port>, <token> */ for (arg = 2; arg < argc; arg++) { if (!strcmp(argv[arg], "lip")) { if (++arg >= argc) error(1, 0, " missing local IP"); params[0] = argv[arg]; } else if (!strcmp(argv[arg], "lport")) { if (++arg >= argc) error(1, 0, " missing local port"); params[1] = argv[arg]; } else if (!strcmp(argv[arg], "rip")) { if (++arg >= argc) error(1, 0, " missing remote IP"); params[2] = argv[arg]; } else if (!strcmp(argv[arg], "rport")) { if (++arg >= argc) error(1, 0, " missing remote port"); params[3] = argv[arg]; } else if (!strcmp(argv[arg], "token")) { if (++arg >= argc) error(1, 0, " missing token"); params[4] = argv[arg]; } else error(1, 0, "unknown keyword %s", argv[arg]); } for (arg = 0; arg < 4; arg = arg + 2) { /* addr header */ addr_start = off; addr = (void *)(data + off); addr->rta_type = NLA_F_NESTED | ((arg == 0) ? MPTCP_PM_ATTR_ADDR : MPTCP_PM_ATTR_ADDR_REMOTE); addr->rta_len = RTA_LENGTH(0); off += NLMSG_ALIGN(addr->rta_len); /* addr data */ rta = (void *)(data + off); if (inet_pton(AF_INET, params[arg], RTA_DATA(rta))) { family = AF_INET; rta->rta_type = MPTCP_PM_ADDR_ATTR_ADDR4; rta->rta_len = RTA_LENGTH(4); } else if (inet_pton(AF_INET6, params[arg], RTA_DATA(rta))) { family = AF_INET6; rta->rta_type = MPTCP_PM_ADDR_ATTR_ADDR6; rta->rta_len = RTA_LENGTH(16); } else error(1, errno, "can't parse ip %s", params[arg]); off += NLMSG_ALIGN(rta->rta_len); /* family */ rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_FAMILY; rta->rta_len = RTA_LENGTH(2); memcpy(RTA_DATA(rta), &family, 2); off += NLMSG_ALIGN(rta->rta_len); /* port */ port = atoi(params[arg + 1]); rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_PORT; rta->rta_len = RTA_LENGTH(2); memcpy(RTA_DATA(rta), &port, 2); off += NLMSG_ALIGN(rta->rta_len); addr->rta_len = off - addr_start; } /* token */ token = strtoul(params[4], NULL, 10); rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ATTR_TOKEN; rta->rta_len = RTA_LENGTH(4); memcpy(RTA_DATA(rta), &token, 4); off += NLMSG_ALIGN(rta->rta_len); do_nl_req(fd, nh, off, 0); return 0; } int csf(int fd, int pm_family, int argc, char *argv[]) { char data[NLMSG_ALIGN(sizeof(struct nlmsghdr)) + NLMSG_ALIGN(sizeof(struct genlmsghdr)) + 1024]; const char *params[5]; struct nlmsghdr *nh; struct rtattr *addr; struct rtattr *rta; u_int16_t family; u_int32_t token; u_int16_t port; int addr_start; u_int8_t id; int off = 0; int arg; memset(params, 0, 5 * sizeof(const char *)); memset(data, 0, sizeof(data)); nh = (void *)data; off = init_genl_req(data, pm_family, MPTCP_PM_CMD_SUBFLOW_CREATE, MPTCP_PM_VER); if (argc < 12) syntax(argv); /* Params recorded in this order: * <local-ip>, <local-id>, <remote-ip>, <remote-port>, <token> */ for (arg = 2; arg < argc; arg++) { if (!strcmp(argv[arg], "lip")) { if (++arg >= argc) error(1, 0, " missing local IP"); params[0] = argv[arg]; } else if (!strcmp(argv[arg], "lid")) { if (++arg >= argc) error(1, 0, " missing local id"); params[1] = argv[arg]; } else if (!strcmp(argv[arg], "rip")) { if (++arg >= argc) error(1, 0, " missing remote ip"); params[2] = argv[arg]; } else if (!strcmp(argv[arg], "rport")) { if (++arg >= argc) error(1, 0, " missing remote port"); params[3] = argv[arg]; } else if (!strcmp(argv[arg], "token")) { if (++arg >= argc) error(1, 0, " missing token"); params[4] = argv[arg]; } else error(1, 0, "unknown param %s", argv[arg]); } for (arg = 0; arg < 4; arg = arg + 2) { /* addr header */ addr_start = off; addr = (void *)(data + off); addr->rta_type = NLA_F_NESTED | ((arg == 0) ? MPTCP_PM_ATTR_ADDR : MPTCP_PM_ATTR_ADDR_REMOTE); addr->rta_len = RTA_LENGTH(0); off += NLMSG_ALIGN(addr->rta_len); /* addr data */ rta = (void *)(data + off); if (inet_pton(AF_INET, params[arg], RTA_DATA(rta))) { family = AF_INET; rta->rta_type = MPTCP_PM_ADDR_ATTR_ADDR4; rta->rta_len = RTA_LENGTH(4); } else if (inet_pton(AF_INET6, params[arg], RTA_DATA(rta))) { family = AF_INET6; rta->rta_type = MPTCP_PM_ADDR_ATTR_ADDR6; rta->rta_len = RTA_LENGTH(16); } else error(1, errno, "can't parse ip %s", params[arg]); off += NLMSG_ALIGN(rta->rta_len); /* family */ rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_FAMILY; rta->rta_len = RTA_LENGTH(2); memcpy(RTA_DATA(rta), &family, 2); off += NLMSG_ALIGN(rta->rta_len); if (arg == 2) { /* port */ port = atoi(params[arg + 1]); rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_PORT; rta->rta_len = RTA_LENGTH(2); memcpy(RTA_DATA(rta), &port, 2); off += NLMSG_ALIGN(rta->rta_len); } if (arg == 0) { /* id */ id = atoi(params[arg + 1]); rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_ID; rta->rta_len = RTA_LENGTH(1); memcpy(RTA_DATA(rta), &id, 1); off += NLMSG_ALIGN(rta->rta_len); } addr->rta_len = off - addr_start; } /* token */ token = strtoul(params[4], NULL, 10); rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ATTR_TOKEN; rta->rta_len = RTA_LENGTH(4); memcpy(RTA_DATA(rta), &token, 4); off += NLMSG_ALIGN(rta->rta_len); do_nl_req(fd, nh, off, 0); return 0; } int remove_addr(int fd, int pm_family, int argc, char *argv[]) { char data[NLMSG_ALIGN(sizeof(struct nlmsghdr)) + NLMSG_ALIGN(sizeof(struct genlmsghdr)) + 1024]; struct nlmsghdr *nh; struct rtattr *rta; u_int32_t token; u_int8_t id; int off = 0; int arg; memset(data, 0, sizeof(data)); nh = (void *)data; off = init_genl_req(data, pm_family, MPTCP_PM_CMD_REMOVE, MPTCP_PM_VER); if (argc < 6) syntax(argv); for (arg = 2; arg < argc; arg++) { if (!strcmp(argv[arg], "id")) { if (++arg >= argc) error(1, 0, " missing id value"); id = atoi(argv[arg]); rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ATTR_LOC_ID; rta->rta_len = RTA_LENGTH(1); memcpy(RTA_DATA(rta), &id, 1); off += NLMSG_ALIGN(rta->rta_len); } else if (!strcmp(argv[arg], "token")) { if (++arg >= argc) error(1, 0, " missing token value"); token = strtoul(argv[arg], NULL, 10); rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ATTR_TOKEN; rta->rta_len = RTA_LENGTH(4); memcpy(RTA_DATA(rta), &token, 4); off += NLMSG_ALIGN(rta->rta_len); } else error(1, 0, "unknown keyword %s", argv[arg]); } do_nl_req(fd, nh, off, 0); return 0; } int announce_addr(int fd, int pm_family, int argc, char *argv[]) { char data[NLMSG_ALIGN(sizeof(struct nlmsghdr)) + NLMSG_ALIGN(sizeof(struct genlmsghdr)) + 1024]; u_int32_t flags = MPTCP_PM_ADDR_FLAG_SIGNAL; u_int32_t token = UINT_MAX; struct rtattr *rta, *addr; u_int32_t id = UINT_MAX; struct nlmsghdr *nh; u_int16_t family; int addr_start; int off = 0; int arg; memset(data, 0, sizeof(data)); nh = (void *)data; off = init_genl_req(data, pm_family, MPTCP_PM_CMD_ANNOUNCE, MPTCP_PM_VER); if (argc < 7) syntax(argv); /* local-ip header */ addr_start = off; addr = (void *)(data + off); addr->rta_type = NLA_F_NESTED | MPTCP_PM_ATTR_ADDR; addr->rta_len = RTA_LENGTH(0); off += NLMSG_ALIGN(addr->rta_len); /* local-ip data */ /* record addr type */ rta = (void *)(data + off); if (inet_pton(AF_INET, argv[2], RTA_DATA(rta))) { family = AF_INET; rta->rta_type = MPTCP_PM_ADDR_ATTR_ADDR4; rta->rta_len = RTA_LENGTH(4); } else if (inet_pton(AF_INET6, argv[2], RTA_DATA(rta))) { family = AF_INET6; rta->rta_type = MPTCP_PM_ADDR_ATTR_ADDR6; rta->rta_len = RTA_LENGTH(16); } else error(1, errno, "can't parse ip %s", argv[2]); off += NLMSG_ALIGN(rta->rta_len); /* addr family */ rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_FAMILY; rta->rta_len = RTA_LENGTH(2); memcpy(RTA_DATA(rta), &family, 2); off += NLMSG_ALIGN(rta->rta_len); for (arg = 3; arg < argc; arg++) { if (!strcmp(argv[arg], "id")) { /* local-id */ if (++arg >= argc) error(1, 0, " missing id value"); id = atoi(argv[arg]); rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_ID; rta->rta_len = RTA_LENGTH(1); memcpy(RTA_DATA(rta), &id, 1); off += NLMSG_ALIGN(rta->rta_len); } else if (!strcmp(argv[arg], "dev")) { /* for the if_index */ int32_t ifindex; if (++arg >= argc) error(1, 0, " missing dev name"); ifindex = if_nametoindex(argv[arg]); if (!ifindex) error(1, errno, "unknown device %s", argv[arg]); rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_IF_IDX; rta->rta_len = RTA_LENGTH(4); memcpy(RTA_DATA(rta), &ifindex, 4); off += NLMSG_ALIGN(rta->rta_len); } else if (!strcmp(argv[arg], "port")) { /* local-port (optional) */ u_int16_t port; if (++arg >= argc) error(1, 0, " missing port value"); port = atoi(argv[arg]); rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_PORT; rta->rta_len = RTA_LENGTH(2); memcpy(RTA_DATA(rta), &port, 2); off += NLMSG_ALIGN(rta->rta_len); } else if (!strcmp(argv[arg], "token")) { /* MPTCP connection token */ if (++arg >= argc) error(1, 0, " missing token value"); token = strtoul(argv[arg], NULL, 10); } else error(1, 0, "unknown keyword %s", argv[arg]); } /* addr flags */ rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_FLAGS; rta->rta_len = RTA_LENGTH(4); memcpy(RTA_DATA(rta), &flags, 4); off += NLMSG_ALIGN(rta->rta_len); addr->rta_len = off - addr_start; if (id == UINT_MAX || token == UINT_MAX) error(1, 0, " missing mandatory inputs"); /* token */ rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ATTR_TOKEN; rta->rta_len = RTA_LENGTH(4); memcpy(RTA_DATA(rta), &token, 4); off += NLMSG_ALIGN(rta->rta_len); do_nl_req(fd, nh, off, 0); return 0; } int add_addr(int fd, int pm_family, int argc, char *argv[]) { char data[NLMSG_ALIGN(sizeof(struct nlmsghdr)) + NLMSG_ALIGN(sizeof(struct genlmsghdr)) + 1024]; struct rtattr *rta, *nest; struct nlmsghdr *nh; u_int32_t flags = 0; u_int16_t family; int nest_start; u_int8_t id; int off = 0; int arg; memset(data, 0, sizeof(data)); nh = (void *)data; off = init_genl_req(data, pm_family, MPTCP_PM_CMD_ADD_ADDR, MPTCP_PM_VER); if (argc < 3) syntax(argv); nest_start = off; nest = (void *)(data + off); nest->rta_type = NLA_F_NESTED | MPTCP_PM_ATTR_ADDR; nest->rta_len = RTA_LENGTH(0); off += NLMSG_ALIGN(nest->rta_len); /* addr data */ rta = (void *)(data + off); if (inet_pton(AF_INET, argv[2], RTA_DATA(rta))) { family = AF_INET; rta->rta_type = MPTCP_PM_ADDR_ATTR_ADDR4; rta->rta_len = RTA_LENGTH(4); } else if (inet_pton(AF_INET6, argv[2], RTA_DATA(rta))) { family = AF_INET6; rta->rta_type = MPTCP_PM_ADDR_ATTR_ADDR6; rta->rta_len = RTA_LENGTH(16); } else error(1, errno, "can't parse ip %s", argv[2]); off += NLMSG_ALIGN(rta->rta_len); /* family */ rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_FAMILY; rta->rta_len = RTA_LENGTH(2); memcpy(RTA_DATA(rta), &family, 2); off += NLMSG_ALIGN(rta->rta_len); for (arg = 3; arg < argc; arg++) { if (!strcmp(argv[arg], "flags")) { char *tok, *str; /* flags */ if (++arg >= argc) error(1, 0, " missing flags value"); /* do not support flag list yet */ for (str = argv[arg]; (tok = strtok(str, ",")); str = NULL) { if (!strcmp(tok, "subflow")) flags |= MPTCP_PM_ADDR_FLAG_SUBFLOW; else if (!strcmp(tok, "signal")) flags |= MPTCP_PM_ADDR_FLAG_SIGNAL; else if (!strcmp(tok, "backup")) flags |= MPTCP_PM_ADDR_FLAG_BACKUP; else if (!strcmp(tok, "fullmesh")) flags |= MPTCP_PM_ADDR_FLAG_FULLMESH; else error(1, errno, "unknown flag %s", argv[arg]); } if (flags & MPTCP_PM_ADDR_FLAG_SIGNAL && flags & MPTCP_PM_ADDR_FLAG_FULLMESH) { error(1, errno, "error flag fullmesh"); } rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_FLAGS; rta->rta_len = RTA_LENGTH(4); memcpy(RTA_DATA(rta), &flags, 4); off += NLMSG_ALIGN(rta->rta_len); } else if (!strcmp(argv[arg], "id")) { if (++arg >= argc) error(1, 0, " missing id value"); id = atoi(argv[arg]); rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_ID; rta->rta_len = RTA_LENGTH(1); memcpy(RTA_DATA(rta), &id, 1); off += NLMSG_ALIGN(rta->rta_len); } else if (!strcmp(argv[arg], "dev")) { int32_t ifindex; if (++arg >= argc) error(1, 0, " missing dev name"); ifindex = if_nametoindex(argv[arg]); if (!ifindex) error(1, errno, "unknown device %s", argv[arg]); rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_IF_IDX; rta->rta_len = RTA_LENGTH(4); memcpy(RTA_DATA(rta), &ifindex, 4); off += NLMSG_ALIGN(rta->rta_len); } else if (!strcmp(argv[arg], "port")) { u_int16_t port; if (++arg >= argc) error(1, 0, " missing port value"); if (!(flags & MPTCP_PM_ADDR_FLAG_SIGNAL)) error(1, 0, " flags must be signal when using port"); port = atoi(argv[arg]); rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_PORT; rta->rta_len = RTA_LENGTH(2); memcpy(RTA_DATA(rta), &port, 2); off += NLMSG_ALIGN(rta->rta_len); } else error(1, 0, "unknown keyword %s", argv[arg]); } nest->rta_len = off - nest_start; do_nl_req(fd, nh, off, 0); return 0; } int del_addr(int fd, int pm_family, int argc, char *argv[]) { char data[NLMSG_ALIGN(sizeof(struct nlmsghdr)) + NLMSG_ALIGN(sizeof(struct genlmsghdr)) + 1024]; struct rtattr *rta, *nest; struct nlmsghdr *nh; u_int16_t family; int nest_start; u_int8_t id; int off = 0; memset(data, 0, sizeof(data)); nh = (void *)data; off = init_genl_req(data, pm_family, MPTCP_PM_CMD_DEL_ADDR, MPTCP_PM_VER); /* the only argument is the address id (nonzero) */ if (argc != 3 && argc != 4) syntax(argv); id = atoi(argv[2]); /* zero id with the IP address */ if (!id && argc != 4) syntax(argv); nest_start = off; nest = (void *)(data + off); nest->rta_type = NLA_F_NESTED | MPTCP_PM_ATTR_ADDR; nest->rta_len = RTA_LENGTH(0); off += NLMSG_ALIGN(nest->rta_len); /* build a dummy addr with only the ID set */ rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_ID; rta->rta_len = RTA_LENGTH(1); memcpy(RTA_DATA(rta), &id, 1); off += NLMSG_ALIGN(rta->rta_len); if (!id) { /* addr data */ rta = (void *)(data + off); if (inet_pton(AF_INET, argv[3], RTA_DATA(rta))) { family = AF_INET; rta->rta_type = MPTCP_PM_ADDR_ATTR_ADDR4; rta->rta_len = RTA_LENGTH(4); } else if (inet_pton(AF_INET6, argv[3], RTA_DATA(rta))) { family = AF_INET6; rta->rta_type = MPTCP_PM_ADDR_ATTR_ADDR6; rta->rta_len = RTA_LENGTH(16); } else { error(1, errno, "can't parse ip %s", argv[3]); } off += NLMSG_ALIGN(rta->rta_len); /* family */ rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_FAMILY; rta->rta_len = RTA_LENGTH(2); memcpy(RTA_DATA(rta), &family, 2); off += NLMSG_ALIGN(rta->rta_len); } nest->rta_len = off - nest_start; do_nl_req(fd, nh, off, 0); return 0; } static void print_addr(struct rtattr *attrs, int len) { uint16_t family = 0; uint16_t port = 0; char str[1024]; uint32_t flags; uint8_t id; while (RTA_OK(attrs, len)) { if (attrs->rta_type == MPTCP_PM_ADDR_ATTR_FAMILY) memcpy(&family, RTA_DATA(attrs), 2); if (attrs->rta_type == MPTCP_PM_ADDR_ATTR_PORT) memcpy(&port, RTA_DATA(attrs), 2); if (attrs->rta_type == MPTCP_PM_ADDR_ATTR_ADDR4) { if (family != AF_INET) error(1, errno, "wrong IP (v4) for family %d", family); inet_ntop(AF_INET, RTA_DATA(attrs), str, sizeof(str)); printf("%s", str); if (port) printf(" %d", port); } if (attrs->rta_type == MPTCP_PM_ADDR_ATTR_ADDR6) { if (family != AF_INET6) error(1, errno, "wrong IP (v6) for family %d", family); inet_ntop(AF_INET6, RTA_DATA(attrs), str, sizeof(str)); printf("%s", str); if (port) printf(" %d", port); } if (attrs->rta_type == MPTCP_PM_ADDR_ATTR_ID) { memcpy(&id, RTA_DATA(attrs), 1); printf("id %d ", id); } if (attrs->rta_type == MPTCP_PM_ADDR_ATTR_FLAGS) { memcpy(&flags, RTA_DATA(attrs), 4); printf("flags "); if (flags & MPTCP_PM_ADDR_FLAG_SIGNAL) { printf("signal"); flags &= ~MPTCP_PM_ADDR_FLAG_SIGNAL; if (flags) printf(","); } if (flags & MPTCP_PM_ADDR_FLAG_SUBFLOW) { printf("subflow"); flags &= ~MPTCP_PM_ADDR_FLAG_SUBFLOW; if (flags) printf(","); } if (flags & MPTCP_PM_ADDR_FLAG_BACKUP) { printf("backup"); flags &= ~MPTCP_PM_ADDR_FLAG_BACKUP; if (flags) printf(","); } if (flags & MPTCP_PM_ADDR_FLAG_FULLMESH) { printf("fullmesh"); flags &= ~MPTCP_PM_ADDR_FLAG_FULLMESH; if (flags) printf(","); } if (flags & MPTCP_PM_ADDR_FLAG_IMPLICIT) { printf("implicit"); flags &= ~MPTCP_PM_ADDR_FLAG_IMPLICIT; if (flags) printf(","); } /* bump unknown flags, if any */ if (flags) printf("0x%x", flags); printf(" "); } if (attrs->rta_type == MPTCP_PM_ADDR_ATTR_IF_IDX) { char name[IF_NAMESIZE], *ret; int32_t ifindex; memcpy(&ifindex, RTA_DATA(attrs), 4); ret = if_indextoname(ifindex, name); if (ret) printf("dev %s ", ret); else printf("dev unknown/%d", ifindex); } attrs = RTA_NEXT(attrs, len); } printf("\n"); } static void print_addrs(struct nlmsghdr *nh, int pm_family, int total_len) { struct rtattr *attrs; for (; NLMSG_OK(nh, total_len); nh = NLMSG_NEXT(nh, total_len)) { int len = nh->nlmsg_len; if (nh->nlmsg_type == NLMSG_DONE) break; if (nh->nlmsg_type == NLMSG_ERROR) nl_error(nh); if (nh->nlmsg_type != pm_family) continue; len -= NLMSG_LENGTH(GENL_HDRLEN); attrs = (struct rtattr *) ((char *) NLMSG_DATA(nh) + GENL_HDRLEN); while (RTA_OK(attrs, len)) { if (attrs->rta_type == (MPTCP_PM_ATTR_ADDR | NLA_F_NESTED)) print_addr((void *)RTA_DATA(attrs), attrs->rta_len); attrs = RTA_NEXT(attrs, len); } } } int get_addr(int fd, int pm_family, int argc, char *argv[]) { char data[NLMSG_ALIGN(sizeof(struct nlmsghdr)) + NLMSG_ALIGN(sizeof(struct genlmsghdr)) + 1024]; struct rtattr *rta, *nest; struct nlmsghdr *nh; int nest_start; u_int8_t id; int off = 0; memset(data, 0, sizeof(data)); nh = (void *)data; off = init_genl_req(data, pm_family, MPTCP_PM_CMD_GET_ADDR, MPTCP_PM_VER); /* the only argument is the address id */ if (argc != 3) syntax(argv); id = atoi(argv[2]); nest_start = off; nest = (void *)(data + off); nest->rta_type = NLA_F_NESTED | MPTCP_PM_ATTR_ADDR; nest->rta_len = RTA_LENGTH(0); off += NLMSG_ALIGN(nest->rta_len); /* build a dummy addr with only the ID set */ rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_ID; rta->rta_len = RTA_LENGTH(1); memcpy(RTA_DATA(rta), &id, 1); off += NLMSG_ALIGN(rta->rta_len); nest->rta_len = off - nest_start; print_addrs(nh, pm_family, do_nl_req(fd, nh, off, sizeof(data))); return 0; } int dump_addrs(int fd, int pm_family, int argc, char *argv[]) { char data[NLMSG_ALIGN(sizeof(struct nlmsghdr)) + NLMSG_ALIGN(sizeof(struct genlmsghdr)) + 1024]; pid_t pid = getpid(); struct nlmsghdr *nh; int off = 0; memset(data, 0, sizeof(data)); nh = (void *)data; off = init_genl_req(data, pm_family, MPTCP_PM_CMD_GET_ADDR, MPTCP_PM_VER); nh->nlmsg_flags |= NLM_F_DUMP; nh->nlmsg_seq = 1; nh->nlmsg_pid = pid; nh->nlmsg_len = off; print_addrs(nh, pm_family, do_nl_req(fd, nh, off, sizeof(data))); return 0; } int flush_addrs(int fd, int pm_family, int argc, char *argv[]) { char data[NLMSG_ALIGN(sizeof(struct nlmsghdr)) + NLMSG_ALIGN(sizeof(struct genlmsghdr)) + 1024]; struct nlmsghdr *nh; int off = 0; memset(data, 0, sizeof(data)); nh = (void *)data; off = init_genl_req(data, pm_family, MPTCP_PM_CMD_FLUSH_ADDRS, MPTCP_PM_VER); do_nl_req(fd, nh, off, 0); return 0; } static void print_limits(struct nlmsghdr *nh, int pm_family, int total_len) { struct rtattr *attrs; uint32_t max; for (; NLMSG_OK(nh, total_len); nh = NLMSG_NEXT(nh, total_len)) { int len = nh->nlmsg_len; if (nh->nlmsg_type == NLMSG_DONE) break; if (nh->nlmsg_type == NLMSG_ERROR) nl_error(nh); if (nh->nlmsg_type != pm_family) continue; len -= NLMSG_LENGTH(GENL_HDRLEN); attrs = (struct rtattr *) ((char *) NLMSG_DATA(nh) + GENL_HDRLEN); while (RTA_OK(attrs, len)) { int type = attrs->rta_type; if (type != MPTCP_PM_ATTR_RCV_ADD_ADDRS && type != MPTCP_PM_ATTR_SUBFLOWS) goto next; memcpy(&max, RTA_DATA(attrs), 4); printf("%s %u\n", type == MPTCP_PM_ATTR_SUBFLOWS ? "subflows" : "accept", max); next: attrs = RTA_NEXT(attrs, len); } } } int get_set_limits(int fd, int pm_family, int argc, char *argv[]) { char data[NLMSG_ALIGN(sizeof(struct nlmsghdr)) + NLMSG_ALIGN(sizeof(struct genlmsghdr)) + 1024]; uint32_t rcv_addr = 0, subflows = 0; int cmd, len = sizeof(data); struct nlmsghdr *nh; int off = 0; /* limit */ if (argc == 4) { rcv_addr = atoi(argv[2]); subflows = atoi(argv[3]); cmd = MPTCP_PM_CMD_SET_LIMITS; } else { cmd = MPTCP_PM_CMD_GET_LIMITS; } memset(data, 0, sizeof(data)); nh = (void *)data; off = init_genl_req(data, pm_family, cmd, MPTCP_PM_VER); /* limit */ if (cmd == MPTCP_PM_CMD_SET_LIMITS) { struct rtattr *rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ATTR_RCV_ADD_ADDRS; rta->rta_len = RTA_LENGTH(4); memcpy(RTA_DATA(rta), &rcv_addr, 4); off += NLMSG_ALIGN(rta->rta_len); rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ATTR_SUBFLOWS; rta->rta_len = RTA_LENGTH(4); memcpy(RTA_DATA(rta), &subflows, 4); off += NLMSG_ALIGN(rta->rta_len); /* do not expect a reply */ len = 0; } len = do_nl_req(fd, nh, off, len); if (cmd == MPTCP_PM_CMD_GET_LIMITS) print_limits(nh, pm_family, len); return 0; } int add_listener(int argc, char *argv[]) { struct sockaddr_storage addr; struct sockaddr_in6 *a6; struct sockaddr_in *a4; u_int16_t family; int enable = 1; int sock; int err; if (argc < 4) syntax(argv); memset(&addr, 0, sizeof(struct sockaddr_storage)); a4 = (struct sockaddr_in *)&addr; a6 = (struct sockaddr_in6 *)&addr; if (inet_pton(AF_INET, argv[2], &a4->sin_addr)) { family = AF_INET; a4->sin_family = family; a4->sin_port = htons(atoi(argv[3])); } else if (inet_pton(AF_INET6, argv[2], &a6->sin6_addr)) { family = AF_INET6; a6->sin6_family = family; a6->sin6_port = htons(atoi(argv[3])); } else error(1, errno, "can't parse ip %s", argv[2]); sock = socket(family, SOCK_STREAM, IPPROTO_MPTCP); if (sock < 0) error(1, errno, "can't create listener sock\n"); if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(enable))) { close(sock); error(1, errno, "can't set SO_REUSEADDR on listener sock\n"); } err = bind(sock, (struct sockaddr *)&addr, ((family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))); if (err == 0 && listen(sock, 30) == 0) pause(); close(sock); return 0; } int set_flags(int fd, int pm_family, int argc, char *argv[]) { char data[NLMSG_ALIGN(sizeof(struct nlmsghdr)) + NLMSG_ALIGN(sizeof(struct genlmsghdr)) + 1024]; struct rtattr *rta, *nest; struct nlmsghdr *nh; u_int32_t flags = 0; u_int32_t token = 0; u_int16_t rport = 0; u_int16_t family; void *rip = NULL; int nest_start; int use_id = 0; u_int8_t id; int off = 0; int arg = 2; memset(data, 0, sizeof(data)); nh = (void *)data; off = init_genl_req(data, pm_family, MPTCP_PM_CMD_SET_FLAGS, MPTCP_PM_VER); if (argc < 3) syntax(argv); nest_start = off; nest = (void *)(data + off); nest->rta_type = NLA_F_NESTED | MPTCP_PM_ATTR_ADDR; nest->rta_len = RTA_LENGTH(0); off += NLMSG_ALIGN(nest->rta_len); if (!strcmp(argv[arg], "id")) { if (++arg >= argc) error(1, 0, " missing id value"); use_id = 1; id = atoi(argv[arg]); rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_ID; rta->rta_len = RTA_LENGTH(1); memcpy(RTA_DATA(rta), &id, 1); off += NLMSG_ALIGN(rta->rta_len); } else { /* addr data */ rta = (void *)(data + off); if (inet_pton(AF_INET, argv[arg], RTA_DATA(rta))) { family = AF_INET; rta->rta_type = MPTCP_PM_ADDR_ATTR_ADDR4; rta->rta_len = RTA_LENGTH(4); } else if (inet_pton(AF_INET6, argv[arg], RTA_DATA(rta))) { family = AF_INET6; rta->rta_type = MPTCP_PM_ADDR_ATTR_ADDR6; rta->rta_len = RTA_LENGTH(16); } else { error(1, errno, "can't parse ip %s", argv[arg]); } off += NLMSG_ALIGN(rta->rta_len); /* family */ rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_FAMILY; rta->rta_len = RTA_LENGTH(2); memcpy(RTA_DATA(rta), &family, 2); off += NLMSG_ALIGN(rta->rta_len); } if (++arg >= argc) error(1, 0, " missing flags keyword"); for (; arg < argc; arg++) { if (!strcmp(argv[arg], "token")) { if (++arg >= argc) error(1, 0, " missing token value"); /* token */ token = strtoul(argv[arg], NULL, 10); } else if (!strcmp(argv[arg], "flags")) { char *tok, *str; /* flags */ if (++arg >= argc) error(1, 0, " missing flags value"); for (str = argv[arg]; (tok = strtok(str, ",")); str = NULL) { if (!strcmp(tok, "backup")) flags |= MPTCP_PM_ADDR_FLAG_BACKUP; else if (!strcmp(tok, "fullmesh")) flags |= MPTCP_PM_ADDR_FLAG_FULLMESH; else if (strcmp(tok, "nobackup") && strcmp(tok, "nofullmesh")) error(1, errno, "unknown flag %s", argv[arg]); } rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_FLAGS; rta->rta_len = RTA_LENGTH(4); memcpy(RTA_DATA(rta), &flags, 4); off += NLMSG_ALIGN(rta->rta_len); } else if (!strcmp(argv[arg], "port")) { u_int16_t port; if (use_id) error(1, 0, " port can't be used with id"); if (++arg >= argc) error(1, 0, " missing port value"); port = atoi(argv[arg]); rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_PORT; rta->rta_len = RTA_LENGTH(2); memcpy(RTA_DATA(rta), &port, 2); off += NLMSG_ALIGN(rta->rta_len); } else if (!strcmp(argv[arg], "rport")) { if (++arg >= argc) error(1, 0, " missing remote port"); rport = atoi(argv[arg]); } else if (!strcmp(argv[arg], "rip")) { if (++arg >= argc) error(1, 0, " missing remote ip"); rip = argv[arg]; } else { error(1, 0, "unknown keyword %s", argv[arg]); } } nest->rta_len = off - nest_start; /* token */ if (token) { rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ATTR_TOKEN; rta->rta_len = RTA_LENGTH(4); memcpy(RTA_DATA(rta), &token, 4); off += NLMSG_ALIGN(rta->rta_len); } /* remote addr/port */ if (rip) { nest_start = off; nest = (void *)(data + off); nest->rta_type = NLA_F_NESTED | MPTCP_PM_ATTR_ADDR_REMOTE; nest->rta_len = RTA_LENGTH(0); off += NLMSG_ALIGN(nest->rta_len); /* addr data */ rta = (void *)(data + off); if (inet_pton(AF_INET, rip, RTA_DATA(rta))) { family = AF_INET; rta->rta_type = MPTCP_PM_ADDR_ATTR_ADDR4; rta->rta_len = RTA_LENGTH(4); } else if (inet_pton(AF_INET6, rip, RTA_DATA(rta))) { family = AF_INET6; rta->rta_type = MPTCP_PM_ADDR_ATTR_ADDR6; rta->rta_len = RTA_LENGTH(16); } else { error(1, errno, "can't parse ip %s", (char *)rip); } off += NLMSG_ALIGN(rta->rta_len); /* family */ rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_FAMILY; rta->rta_len = RTA_LENGTH(2); memcpy(RTA_DATA(rta), &family, 2); off += NLMSG_ALIGN(rta->rta_len); if (rport) { rta = (void *)(data + off); rta->rta_type = MPTCP_PM_ADDR_ATTR_PORT; rta->rta_len = RTA_LENGTH(2); memcpy(RTA_DATA(rta), &rport, 2); off += NLMSG_ALIGN(rta->rta_len); } nest->rta_len = off - nest_start; } do_nl_req(fd, nh, off, 0); return 0; } int main(int argc, char *argv[]) { int events_mcast_grp; int pm_family; int fd; if (argc < 2) syntax(argv); fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC); if (fd == -1) error(1, errno, "socket netlink"); resolve_mptcp_pm_netlink(fd, &pm_family, &events_mcast_grp); if (!strcmp(argv[1], "add")) return add_addr(fd, pm_family, argc, argv); else if (!strcmp(argv[1], "ann")) return announce_addr(fd, pm_family, argc, argv); else if (!strcmp(argv[1], "rem")) return remove_addr(fd, pm_family, argc, argv); else if (!strcmp(argv[1], "csf")) return csf(fd, pm_family, argc, argv); else if (!strcmp(argv[1], "dsf")) return dsf(fd, pm_family, argc, argv); else if (!strcmp(argv[1], "del")) return del_addr(fd, pm_family, argc, argv); else if (!strcmp(argv[1], "flush")) return flush_addrs(fd, pm_family, argc, argv); else if (!strcmp(argv[1], "get")) return get_addr(fd, pm_family, argc, argv); else if (!strcmp(argv[1], "dump")) return dump_addrs(fd, pm_family, argc, argv); else if (!strcmp(argv[1], "limits")) return get_set_limits(fd, pm_family, argc, argv); else if (!strcmp(argv[1], "set")) return set_flags(fd, pm_family, argc, argv); else if (!strcmp(argv[1], "events")) return capture_events(fd, events_mcast_grp); else if (!strcmp(argv[1], "listen")) return add_listener(argc, argv); fprintf(stderr, "unknown sub-command: %s", argv[1]); syntax(argv); return 0; }
linux-master
tools/testing/selftests/net/mptcp/pm_nl_ctl.c
// SPDX-License-Identifier: GPL-2.0 #define _GNU_SOURCE #include <assert.h> #include <errno.h> #include <fcntl.h> #include <limits.h> #include <string.h> #include <stdarg.h> #include <stdbool.h> #include <stdint.h> #include <inttypes.h> #include <stdio.h> #include <stdlib.h> #include <strings.h> #include <time.h> #include <unistd.h> #include <sys/socket.h> #include <sys/types.h> #include <sys/wait.h> #include <netdb.h> #include <netinet/in.h> #include <linux/tcp.h> static int pf = AF_INET; #ifndef IPPROTO_MPTCP #define IPPROTO_MPTCP 262 #endif #ifndef SOL_MPTCP #define SOL_MPTCP 284 #endif #ifndef MPTCP_INFO struct mptcp_info { __u8 mptcpi_subflows; __u8 mptcpi_add_addr_signal; __u8 mptcpi_add_addr_accepted; __u8 mptcpi_subflows_max; __u8 mptcpi_add_addr_signal_max; __u8 mptcpi_add_addr_accepted_max; __u32 mptcpi_flags; __u32 mptcpi_token; __u64 mptcpi_write_seq; __u64 mptcpi_snd_una; __u64 mptcpi_rcv_nxt; __u8 mptcpi_local_addr_used; __u8 mptcpi_local_addr_max; __u8 mptcpi_csum_enabled; __u32 mptcpi_retransmits; __u64 mptcpi_bytes_retrans; __u64 mptcpi_bytes_sent; __u64 mptcpi_bytes_received; __u64 mptcpi_bytes_acked; }; struct mptcp_subflow_data { __u32 size_subflow_data; /* size of this structure in userspace */ __u32 num_subflows; /* must be 0, set by kernel */ __u32 size_kernel; /* must be 0, set by kernel */ __u32 size_user; /* size of one element in data[] */ } __attribute__((aligned(8))); struct mptcp_subflow_addrs { union { __kernel_sa_family_t sa_family; struct sockaddr sa_local; struct sockaddr_in sin_local; struct sockaddr_in6 sin6_local; struct __kernel_sockaddr_storage ss_local; }; union { struct sockaddr sa_remote; struct sockaddr_in sin_remote; struct sockaddr_in6 sin6_remote; struct __kernel_sockaddr_storage ss_remote; }; }; #define MPTCP_INFO 1 #define MPTCP_TCPINFO 2 #define MPTCP_SUBFLOW_ADDRS 3 #endif #ifndef MPTCP_FULL_INFO struct mptcp_subflow_info { __u32 id; struct mptcp_subflow_addrs addrs; }; struct mptcp_full_info { __u32 size_tcpinfo_kernel; /* must be 0, set by kernel */ __u32 size_tcpinfo_user; __u32 size_sfinfo_kernel; /* must be 0, set by kernel */ __u32 size_sfinfo_user; __u32 num_subflows; /* must be 0, set by kernel (real subflow count) */ __u32 size_arrays_user; /* max subflows that userspace is interested in; * the buffers at subflow_info/tcp_info * are respectively at least: * size_arrays * size_sfinfo_user * size_arrays * size_tcpinfo_user * bytes wide */ __aligned_u64 subflow_info; __aligned_u64 tcp_info; struct mptcp_info mptcp_info; }; #define MPTCP_FULL_INFO 4 #endif struct so_state { struct mptcp_info mi; struct mptcp_info last_sample; struct tcp_info tcp_info; struct mptcp_subflow_addrs addrs; uint64_t mptcpi_rcv_delta; uint64_t tcpi_rcv_delta; bool pkt_stats_avail; }; #ifndef MIN #define MIN(a, b) ((a) < (b) ? (a) : (b)) #endif static void die_perror(const char *msg) { perror(msg); exit(1); } static void die_usage(int r) { fprintf(stderr, "Usage: mptcp_sockopt [-6]\n"); exit(r); } static void xerror(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); fputc('\n', stderr); exit(1); } static const char *getxinfo_strerr(int err) { if (err == EAI_SYSTEM) return strerror(errno); return gai_strerror(err); } static void xgetaddrinfo(const char *node, const char *service, const struct addrinfo *hints, struct addrinfo **res) { int err = getaddrinfo(node, service, hints, res); if (err) { const char *errstr = getxinfo_strerr(err); fprintf(stderr, "Fatal: getaddrinfo(%s:%s): %s\n", node ? node : "", service ? service : "", errstr); exit(1); } } static int sock_listen_mptcp(const char * const listenaddr, const char * const port) { int sock = -1; struct addrinfo hints = { .ai_protocol = IPPROTO_TCP, .ai_socktype = SOCK_STREAM, .ai_flags = AI_PASSIVE | AI_NUMERICHOST }; hints.ai_family = pf; struct addrinfo *a, *addr; int one = 1; xgetaddrinfo(listenaddr, port, &hints, &addr); hints.ai_family = pf; for (a = addr; a; a = a->ai_next) { sock = socket(a->ai_family, a->ai_socktype, IPPROTO_MPTCP); if (sock < 0) continue; if (-1 == setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one))) perror("setsockopt"); if (bind(sock, a->ai_addr, a->ai_addrlen) == 0) break; /* success */ perror("bind"); close(sock); sock = -1; } freeaddrinfo(addr); if (sock < 0) xerror("could not create listen socket"); if (listen(sock, 20)) die_perror("listen"); return sock; } static int sock_connect_mptcp(const char * const remoteaddr, const char * const port, int proto) { struct addrinfo hints = { .ai_protocol = IPPROTO_TCP, .ai_socktype = SOCK_STREAM, }; struct addrinfo *a, *addr; int sock = -1; hints.ai_family = pf; xgetaddrinfo(remoteaddr, port, &hints, &addr); for (a = addr; a; a = a->ai_next) { sock = socket(a->ai_family, a->ai_socktype, proto); if (sock < 0) continue; if (connect(sock, a->ai_addr, a->ai_addrlen) == 0) break; /* success */ die_perror("connect"); } if (sock < 0) xerror("could not create connect socket"); freeaddrinfo(addr); return sock; } static void parse_opts(int argc, char **argv) { int c; while ((c = getopt(argc, argv, "h6")) != -1) { switch (c) { case 'h': die_usage(0); break; case '6': pf = AF_INET6; break; default: die_usage(1); break; } } } static void do_getsockopt_bogus_sf_data(int fd, int optname) { struct mptcp_subflow_data good_data; struct bogus_data { struct mptcp_subflow_data d; char buf[2]; } bd; socklen_t olen, _olen; int ret; memset(&bd, 0, sizeof(bd)); memset(&good_data, 0, sizeof(good_data)); olen = sizeof(good_data); good_data.size_subflow_data = olen; ret = getsockopt(fd, SOL_MPTCP, optname, &bd, &olen); assert(ret < 0); /* 0 size_subflow_data */ assert(olen == sizeof(good_data)); bd.d = good_data; ret = getsockopt(fd, SOL_MPTCP, optname, &bd, &olen); assert(ret == 0); assert(olen == sizeof(good_data)); assert(bd.d.num_subflows == 1); assert(bd.d.size_kernel > 0); assert(bd.d.size_user == 0); bd.d = good_data; _olen = rand() % olen; olen = _olen; ret = getsockopt(fd, SOL_MPTCP, optname, &bd, &olen); assert(ret < 0); /* bogus olen */ assert(olen == _olen); /* must be unchanged */ bd.d = good_data; olen = sizeof(good_data); bd.d.size_kernel = 1; ret = getsockopt(fd, SOL_MPTCP, optname, &bd, &olen); assert(ret < 0); /* size_kernel not 0 */ bd.d = good_data; olen = sizeof(good_data); bd.d.num_subflows = 1; ret = getsockopt(fd, SOL_MPTCP, optname, &bd, &olen); assert(ret < 0); /* num_subflows not 0 */ /* forward compat check: larger struct mptcp_subflow_data on 'old' kernel */ bd.d = good_data; olen = sizeof(bd); bd.d.size_subflow_data = sizeof(bd); ret = getsockopt(fd, SOL_MPTCP, optname, &bd, &olen); assert(ret == 0); /* olen must be truncated to real data size filled by kernel: */ assert(olen == sizeof(good_data)); assert(bd.d.size_subflow_data == sizeof(bd)); bd.d = good_data; bd.d.size_subflow_data += 1; bd.d.size_user = 1; olen = bd.d.size_subflow_data + 1; _olen = olen; ret = getsockopt(fd, SOL_MPTCP, optname, &bd, &_olen); assert(ret == 0); /* no truncation, kernel should have filled 1 byte of optname payload in buf[1]: */ assert(olen == _olen); assert(bd.d.size_subflow_data == sizeof(good_data) + 1); assert(bd.buf[0] == 0); } static void do_getsockopt_mptcp_info(struct so_state *s, int fd, size_t w) { struct mptcp_info i; socklen_t olen; int ret; olen = sizeof(i); ret = getsockopt(fd, SOL_MPTCP, MPTCP_INFO, &i, &olen); if (ret < 0) die_perror("getsockopt MPTCP_INFO"); s->pkt_stats_avail = olen >= sizeof(i); s->last_sample = i; if (s->mi.mptcpi_write_seq == 0) s->mi = i; assert(s->mi.mptcpi_write_seq + w == i.mptcpi_write_seq); s->mptcpi_rcv_delta = i.mptcpi_rcv_nxt - s->mi.mptcpi_rcv_nxt; } static void do_getsockopt_tcp_info(struct so_state *s, int fd, size_t r, size_t w) { struct my_tcp_info { struct mptcp_subflow_data d; struct tcp_info ti[2]; } ti; int ret, tries = 5; socklen_t olen; do { memset(&ti, 0, sizeof(ti)); ti.d.size_subflow_data = sizeof(struct mptcp_subflow_data); ti.d.size_user = sizeof(struct tcp_info); olen = sizeof(ti); ret = getsockopt(fd, SOL_MPTCP, MPTCP_TCPINFO, &ti, &olen); if (ret < 0) xerror("getsockopt MPTCP_TCPINFO (tries %d, %m)"); assert(olen <= sizeof(ti)); assert(ti.d.size_kernel > 0); assert(ti.d.size_user == MIN(ti.d.size_kernel, sizeof(struct tcp_info))); assert(ti.d.num_subflows == 1); assert(olen > (socklen_t)sizeof(struct mptcp_subflow_data)); olen -= sizeof(struct mptcp_subflow_data); assert(olen == ti.d.size_user); s->tcp_info = ti.ti[0]; if (ti.ti[0].tcpi_bytes_sent == w && ti.ti[0].tcpi_bytes_received == r) goto done; if (r == 0 && ti.ti[0].tcpi_bytes_sent == w && ti.ti[0].tcpi_bytes_received) { s->tcpi_rcv_delta = ti.ti[0].tcpi_bytes_received; goto done; } /* wait and repeat, might be that tx is still ongoing */ sleep(1); } while (tries-- > 0); xerror("tcpi_bytes_sent %" PRIu64 ", want %zu. tcpi_bytes_received %" PRIu64 ", want %zu", ti.ti[0].tcpi_bytes_sent, w, ti.ti[0].tcpi_bytes_received, r); done: do_getsockopt_bogus_sf_data(fd, MPTCP_TCPINFO); } static void do_getsockopt_subflow_addrs(struct so_state *s, int fd) { struct sockaddr_storage remote, local; socklen_t olen, rlen, llen; int ret; struct my_addrs { struct mptcp_subflow_data d; struct mptcp_subflow_addrs addr[2]; } addrs; memset(&addrs, 0, sizeof(addrs)); memset(&local, 0, sizeof(local)); memset(&remote, 0, sizeof(remote)); addrs.d.size_subflow_data = sizeof(struct mptcp_subflow_data); addrs.d.size_user = sizeof(struct mptcp_subflow_addrs); olen = sizeof(addrs); ret = getsockopt(fd, SOL_MPTCP, MPTCP_SUBFLOW_ADDRS, &addrs, &olen); if (ret < 0) die_perror("getsockopt MPTCP_SUBFLOW_ADDRS"); assert(olen <= sizeof(addrs)); assert(addrs.d.size_kernel > 0); assert(addrs.d.size_user == MIN(addrs.d.size_kernel, sizeof(struct mptcp_subflow_addrs))); assert(addrs.d.num_subflows == 1); assert(olen > (socklen_t)sizeof(struct mptcp_subflow_data)); olen -= sizeof(struct mptcp_subflow_data); assert(olen == addrs.d.size_user); llen = sizeof(local); ret = getsockname(fd, (struct sockaddr *)&local, &llen); if (ret < 0) die_perror("getsockname"); rlen = sizeof(remote); ret = getpeername(fd, (struct sockaddr *)&remote, &rlen); if (ret < 0) die_perror("getpeername"); assert(rlen > 0); assert(rlen == llen); assert(remote.ss_family == local.ss_family); assert(memcmp(&local, &addrs.addr[0].ss_local, sizeof(local)) == 0); assert(memcmp(&remote, &addrs.addr[0].ss_remote, sizeof(remote)) == 0); s->addrs = addrs.addr[0]; memset(&addrs, 0, sizeof(addrs)); addrs.d.size_subflow_data = sizeof(struct mptcp_subflow_data); addrs.d.size_user = sizeof(sa_family_t); olen = sizeof(addrs.d) + sizeof(sa_family_t); ret = getsockopt(fd, SOL_MPTCP, MPTCP_SUBFLOW_ADDRS, &addrs, &olen); assert(ret == 0); assert(olen == sizeof(addrs.d) + sizeof(sa_family_t)); assert(addrs.addr[0].sa_family == pf); assert(addrs.addr[0].sa_family == local.ss_family); assert(memcmp(&local, &addrs.addr[0].ss_local, sizeof(local)) != 0); assert(memcmp(&remote, &addrs.addr[0].ss_remote, sizeof(remote)) != 0); do_getsockopt_bogus_sf_data(fd, MPTCP_SUBFLOW_ADDRS); } static void do_getsockopt_mptcp_full_info(struct so_state *s, int fd) { size_t data_size = sizeof(struct mptcp_full_info); struct mptcp_subflow_info sfinfo[2]; struct tcp_info tcp_info[2]; struct mptcp_full_info mfi; socklen_t olen; int ret; memset(&mfi, 0, data_size); memset(tcp_info, 0, sizeof(tcp_info)); memset(sfinfo, 0, sizeof(sfinfo)); mfi.size_tcpinfo_user = sizeof(struct tcp_info); mfi.size_sfinfo_user = sizeof(struct mptcp_subflow_info); mfi.size_arrays_user = 2; mfi.subflow_info = (unsigned long)&sfinfo[0]; mfi.tcp_info = (unsigned long)&tcp_info[0]; olen = data_size; ret = getsockopt(fd, SOL_MPTCP, MPTCP_FULL_INFO, &mfi, &olen); if (ret < 0) { if (errno == EOPNOTSUPP) { perror("MPTCP_FULL_INFO test skipped"); return; } xerror("getsockopt MPTCP_FULL_INFO"); } assert(olen <= data_size); assert(mfi.size_tcpinfo_kernel > 0); assert(mfi.size_tcpinfo_user == MIN(mfi.size_tcpinfo_kernel, sizeof(struct tcp_info))); assert(mfi.size_sfinfo_kernel > 0); assert(mfi.size_sfinfo_user == MIN(mfi.size_sfinfo_kernel, sizeof(struct mptcp_subflow_info))); assert(mfi.num_subflows == 1); /* Tolerate future extension to mptcp_info struct and running newer * test on top of older kernel. * Anyway any kernel supporting MPTCP_FULL_INFO must at least include * the following in mptcp_info. */ assert(olen > (socklen_t)__builtin_offsetof(struct mptcp_full_info, tcp_info)); assert(mfi.mptcp_info.mptcpi_subflows == 0); assert(mfi.mptcp_info.mptcpi_bytes_sent == s->last_sample.mptcpi_bytes_sent); assert(mfi.mptcp_info.mptcpi_bytes_received == s->last_sample.mptcpi_bytes_received); assert(sfinfo[0].id == 1); assert(tcp_info[0].tcpi_bytes_sent == s->tcp_info.tcpi_bytes_sent); assert(tcp_info[0].tcpi_bytes_received == s->tcp_info.tcpi_bytes_received); assert(!memcmp(&sfinfo->addrs, &s->addrs, sizeof(struct mptcp_subflow_addrs))); } static void do_getsockopts(struct so_state *s, int fd, size_t r, size_t w) { do_getsockopt_mptcp_info(s, fd, w); do_getsockopt_tcp_info(s, fd, r, w); do_getsockopt_subflow_addrs(s, fd); if (r) do_getsockopt_mptcp_full_info(s, fd); } static void connect_one_server(int fd, int pipefd) { char buf[4096], buf2[4096]; size_t len, i, total; struct so_state s; bool eof = false; ssize_t ret; memset(&s, 0, sizeof(s)); len = rand() % (sizeof(buf) - 1); if (len < 128) len = 128; for (i = 0; i < len ; i++) { buf[i] = rand() % 26; buf[i] += 'A'; } buf[i] = '\n'; do_getsockopts(&s, fd, 0, 0); /* un-block server */ ret = read(pipefd, buf2, 4); assert(ret == 4); close(pipefd); assert(strncmp(buf2, "xmit", 4) == 0); ret = write(fd, buf, len); if (ret < 0) die_perror("write"); if (ret != (ssize_t)len) xerror("short write"); total = 0; do { ret = read(fd, buf2 + total, sizeof(buf2) - total); if (ret < 0) die_perror("read"); if (ret == 0) { eof = true; break; } total += ret; } while (total < len); if (total != len) xerror("total %lu, len %lu eof %d\n", total, len, eof); if (memcmp(buf, buf2, len)) xerror("data corruption"); if (s.tcpi_rcv_delta) assert(s.tcpi_rcv_delta <= total); do_getsockopts(&s, fd, ret, ret); if (eof) total += 1; /* sequence advances due to FIN */ assert(s.mptcpi_rcv_delta == (uint64_t)total); close(fd); } static void process_one_client(int fd, int pipefd) { ssize_t ret, ret2, ret3; struct so_state s; char buf[4096]; memset(&s, 0, sizeof(s)); do_getsockopts(&s, fd, 0, 0); ret = write(pipefd, "xmit", 4); assert(ret == 4); ret = read(fd, buf, sizeof(buf)); if (ret < 0) die_perror("read"); assert(s.mptcpi_rcv_delta <= (uint64_t)ret); if (s.tcpi_rcv_delta) assert(s.tcpi_rcv_delta == (uint64_t)ret); ret2 = write(fd, buf, ret); if (ret2 < 0) die_perror("write"); /* wait for hangup */ ret3 = read(fd, buf, 1); if (ret3 != 0) xerror("expected EOF, got %lu", ret3); do_getsockopts(&s, fd, ret, ret2); if (s.mptcpi_rcv_delta != (uint64_t)ret + 1) xerror("mptcpi_rcv_delta %" PRIu64 ", expect %" PRIu64, s.mptcpi_rcv_delta, ret + 1, s.mptcpi_rcv_delta - ret); /* be nice when running on top of older kernel */ if (s.pkt_stats_avail) { if (s.last_sample.mptcpi_bytes_sent != ret2) xerror("mptcpi_bytes_sent %" PRIu64 ", expect %" PRIu64, s.last_sample.mptcpi_bytes_sent, ret2, s.last_sample.mptcpi_bytes_sent - ret2); if (s.last_sample.mptcpi_bytes_received != ret) xerror("mptcpi_bytes_received %" PRIu64 ", expect %" PRIu64, s.last_sample.mptcpi_bytes_received, ret, s.last_sample.mptcpi_bytes_received - ret); if (s.last_sample.mptcpi_bytes_acked != ret) xerror("mptcpi_bytes_acked %" PRIu64 ", expect %" PRIu64, s.last_sample.mptcpi_bytes_acked, ret2, s.last_sample.mptcpi_bytes_acked - ret2); } close(fd); } static int xaccept(int s) { int fd = accept(s, NULL, 0); if (fd < 0) die_perror("accept"); return fd; } static int server(int pipefd) { int fd = -1, r; switch (pf) { case AF_INET: fd = sock_listen_mptcp("127.0.0.1", "15432"); break; case AF_INET6: fd = sock_listen_mptcp("::1", "15432"); break; default: xerror("Unknown pf %d\n", pf); break; } r = write(pipefd, "conn", 4); assert(r == 4); alarm(15); r = xaccept(fd); process_one_client(r, pipefd); return 0; } static void test_ip_tos_sockopt(int fd) { uint8_t tos_in, tos_out; socklen_t s; int r; tos_in = rand() & 0xfc; r = setsockopt(fd, SOL_IP, IP_TOS, &tos_in, sizeof(tos_out)); if (r != 0) die_perror("setsockopt IP_TOS"); tos_out = 0; s = sizeof(tos_out); r = getsockopt(fd, SOL_IP, IP_TOS, &tos_out, &s); if (r != 0) die_perror("getsockopt IP_TOS"); if (tos_in != tos_out) xerror("tos %x != %x socklen_t %d\n", tos_in, tos_out, s); if (s != 1) xerror("tos should be 1 byte"); s = 0; r = getsockopt(fd, SOL_IP, IP_TOS, &tos_out, &s); if (r != 0) die_perror("getsockopt IP_TOS 0"); if (s != 0) xerror("expect socklen_t == 0"); s = -1; r = getsockopt(fd, SOL_IP, IP_TOS, &tos_out, &s); if (r != -1 && errno != EINVAL) die_perror("getsockopt IP_TOS did not indicate -EINVAL"); if (s != -1) xerror("expect socklen_t == -1"); } static int client(int pipefd) { int fd = -1; alarm(15); switch (pf) { case AF_INET: fd = sock_connect_mptcp("127.0.0.1", "15432", IPPROTO_MPTCP); break; case AF_INET6: fd = sock_connect_mptcp("::1", "15432", IPPROTO_MPTCP); break; default: xerror("Unknown pf %d\n", pf); } test_ip_tos_sockopt(fd); connect_one_server(fd, pipefd); return 0; } static pid_t xfork(void) { pid_t p = fork(); if (p < 0) die_perror("fork"); return p; } static int rcheck(int wstatus, const char *what) { if (WIFEXITED(wstatus)) { if (WEXITSTATUS(wstatus) == 0) return 0; fprintf(stderr, "%s exited, status=%d\n", what, WEXITSTATUS(wstatus)); return WEXITSTATUS(wstatus); } else if (WIFSIGNALED(wstatus)) { xerror("%s killed by signal %d\n", what, WTERMSIG(wstatus)); } else if (WIFSTOPPED(wstatus)) { xerror("%s stopped by signal %d\n", what, WSTOPSIG(wstatus)); } return 111; } static void init_rng(void) { int fd = open("/dev/urandom", O_RDONLY); if (fd >= 0) { unsigned int foo; ssize_t ret; /* can't fail */ ret = read(fd, &foo, sizeof(foo)); assert(ret == sizeof(foo)); close(fd); srand(foo); } else { srand(time(NULL)); } } int main(int argc, char *argv[]) { int e1, e2, wstatus; pid_t s, c, ret; int pipefds[2]; parse_opts(argc, argv); init_rng(); e1 = pipe(pipefds); if (e1 < 0) die_perror("pipe"); s = xfork(); if (s == 0) return server(pipefds[1]); close(pipefds[1]); /* wait until server bound a socket */ e1 = read(pipefds[0], &e1, 4); assert(e1 == 4); c = xfork(); if (c == 0) return client(pipefds[0]); close(pipefds[0]); ret = waitpid(s, &wstatus, 0); if (ret == -1) die_perror("waitpid"); e1 = rcheck(wstatus, "server"); ret = waitpid(c, &wstatus, 0); if (ret == -1) die_perror("waitpid"); e2 = rcheck(wstatus, "client"); return e1 ? e1 : e2; }
linux-master
tools/testing/selftests/net/mptcp/mptcp_sockopt.c
// SPDX-License-Identifier: GPL-2.0 #define _GNU_SOURCE #include <assert.h> #include <errno.h> #include <fcntl.h> #include <limits.h> #include <string.h> #include <stdarg.h> #include <stdbool.h> #include <stdint.h> #include <inttypes.h> #include <stdio.h> #include <stdlib.h> #include <strings.h> #include <unistd.h> #include <time.h> #include <sys/ioctl.h> #include <sys/socket.h> #include <sys/types.h> #include <sys/wait.h> #include <netdb.h> #include <netinet/in.h> #include <linux/tcp.h> #include <linux/sockios.h> #ifndef IPPROTO_MPTCP #define IPPROTO_MPTCP 262 #endif #ifndef SOL_MPTCP #define SOL_MPTCP 284 #endif static int pf = AF_INET; static int proto_tx = IPPROTO_MPTCP; static int proto_rx = IPPROTO_MPTCP; static void die_perror(const char *msg) { perror(msg); exit(1); } static void die_usage(int r) { fprintf(stderr, "Usage: mptcp_inq [-6] [ -t tcp|mptcp ] [ -r tcp|mptcp]\n"); exit(r); } static void xerror(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); fputc('\n', stderr); exit(1); } static const char *getxinfo_strerr(int err) { if (err == EAI_SYSTEM) return strerror(errno); return gai_strerror(err); } static void xgetaddrinfo(const char *node, const char *service, const struct addrinfo *hints, struct addrinfo **res) { int err = getaddrinfo(node, service, hints, res); if (err) { const char *errstr = getxinfo_strerr(err); fprintf(stderr, "Fatal: getaddrinfo(%s:%s): %s\n", node ? node : "", service ? service : "", errstr); exit(1); } } static int sock_listen_mptcp(const char * const listenaddr, const char * const port) { int sock = -1; struct addrinfo hints = { .ai_protocol = IPPROTO_TCP, .ai_socktype = SOCK_STREAM, .ai_flags = AI_PASSIVE | AI_NUMERICHOST }; hints.ai_family = pf; struct addrinfo *a, *addr; int one = 1; xgetaddrinfo(listenaddr, port, &hints, &addr); hints.ai_family = pf; for (a = addr; a; a = a->ai_next) { sock = socket(a->ai_family, a->ai_socktype, proto_rx); if (sock < 0) continue; if (-1 == setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one))) perror("setsockopt"); if (bind(sock, a->ai_addr, a->ai_addrlen) == 0) break; /* success */ perror("bind"); close(sock); sock = -1; } freeaddrinfo(addr); if (sock < 0) xerror("could not create listen socket"); if (listen(sock, 20)) die_perror("listen"); return sock; } static int sock_connect_mptcp(const char * const remoteaddr, const char * const port, int proto) { struct addrinfo hints = { .ai_protocol = IPPROTO_TCP, .ai_socktype = SOCK_STREAM, }; struct addrinfo *a, *addr; int sock = -1; hints.ai_family = pf; xgetaddrinfo(remoteaddr, port, &hints, &addr); for (a = addr; a; a = a->ai_next) { sock = socket(a->ai_family, a->ai_socktype, proto); if (sock < 0) continue; if (connect(sock, a->ai_addr, a->ai_addrlen) == 0) break; /* success */ die_perror("connect"); } if (sock < 0) xerror("could not create connect socket"); freeaddrinfo(addr); return sock; } static int protostr_to_num(const char *s) { if (strcasecmp(s, "tcp") == 0) return IPPROTO_TCP; if (strcasecmp(s, "mptcp") == 0) return IPPROTO_MPTCP; die_usage(1); return 0; } static void parse_opts(int argc, char **argv) { int c; while ((c = getopt(argc, argv, "h6t:r:")) != -1) { switch (c) { case 'h': die_usage(0); break; case '6': pf = AF_INET6; break; case 't': proto_tx = protostr_to_num(optarg); break; case 'r': proto_rx = protostr_to_num(optarg); break; default: die_usage(1); break; } } } /* wait up to timeout milliseconds */ static void wait_for_ack(int fd, int timeout, size_t total) { int i; for (i = 0; i < timeout; i++) { int nsd, ret, queued = -1; struct timespec req; ret = ioctl(fd, TIOCOUTQ, &queued); if (ret < 0) die_perror("TIOCOUTQ"); ret = ioctl(fd, SIOCOUTQNSD, &nsd); if (ret < 0) die_perror("SIOCOUTQNSD"); if ((size_t)queued > total) xerror("TIOCOUTQ %u, but only %zu expected\n", queued, total); assert(nsd <= queued); if (queued == 0) return; /* wait for peer to ack rx of all data */ req.tv_sec = 0; req.tv_nsec = 1 * 1000 * 1000ul; /* 1ms */ nanosleep(&req, NULL); } xerror("still tx data queued after %u ms\n", timeout); } static void connect_one_server(int fd, int unixfd) { size_t len, i, total, sent; char buf[4096], buf2[4096]; ssize_t ret; len = rand() % (sizeof(buf) - 1); if (len < 128) len = 128; for (i = 0; i < len ; i++) { buf[i] = rand() % 26; buf[i] += 'A'; } buf[i] = '\n'; /* un-block server */ ret = read(unixfd, buf2, 4); assert(ret == 4); assert(strncmp(buf2, "xmit", 4) == 0); ret = write(unixfd, &len, sizeof(len)); assert(ret == (ssize_t)sizeof(len)); ret = write(fd, buf, len); if (ret < 0) die_perror("write"); if (ret != (ssize_t)len) xerror("short write"); ret = read(unixfd, buf2, 4); assert(strncmp(buf2, "huge", 4) == 0); total = rand() % (16 * 1024 * 1024); total += (1 * 1024 * 1024); sent = total; ret = write(unixfd, &total, sizeof(total)); assert(ret == (ssize_t)sizeof(total)); wait_for_ack(fd, 5000, len); while (total > 0) { if (total > sizeof(buf)) len = sizeof(buf); else len = total; ret = write(fd, buf, len); if (ret < 0) die_perror("write"); total -= ret; /* we don't have to care about buf content, only * number of total bytes sent */ } ret = read(unixfd, buf2, 4); assert(ret == 4); assert(strncmp(buf2, "shut", 4) == 0); wait_for_ack(fd, 5000, sent); ret = write(fd, buf, 1); assert(ret == 1); close(fd); ret = write(unixfd, "closed", 6); assert(ret == 6); close(unixfd); } static void get_tcp_inq(struct msghdr *msgh, unsigned int *inqv) { struct cmsghdr *cmsg; for (cmsg = CMSG_FIRSTHDR(msgh); cmsg ; cmsg = CMSG_NXTHDR(msgh, cmsg)) { if (cmsg->cmsg_level == IPPROTO_TCP && cmsg->cmsg_type == TCP_CM_INQ) { memcpy(inqv, CMSG_DATA(cmsg), sizeof(*inqv)); return; } } xerror("could not find TCP_CM_INQ cmsg type"); } static void process_one_client(int fd, int unixfd) { unsigned int tcp_inq; size_t expect_len; char msg_buf[4096]; char buf[4096]; char tmp[16]; struct iovec iov = { .iov_base = buf, .iov_len = 1, }; struct msghdr msg = { .msg_iov = &iov, .msg_iovlen = 1, .msg_control = msg_buf, .msg_controllen = sizeof(msg_buf), }; ssize_t ret, tot; ret = write(unixfd, "xmit", 4); assert(ret == 4); ret = read(unixfd, &expect_len, sizeof(expect_len)); assert(ret == (ssize_t)sizeof(expect_len)); if (expect_len > sizeof(buf)) xerror("expect len %zu exceeds buffer size", expect_len); for (;;) { struct timespec req; unsigned int queued; ret = ioctl(fd, FIONREAD, &queued); if (ret < 0) die_perror("FIONREAD"); if (queued > expect_len) xerror("FIONREAD returned %u, but only %zu expected\n", queued, expect_len); if (queued == expect_len) break; req.tv_sec = 0; req.tv_nsec = 1000 * 1000ul; nanosleep(&req, NULL); } /* read one byte, expect cmsg to return expected - 1 */ ret = recvmsg(fd, &msg, 0); if (ret < 0) die_perror("recvmsg"); if (msg.msg_controllen == 0) xerror("msg_controllen is 0"); get_tcp_inq(&msg, &tcp_inq); assert((size_t)tcp_inq == (expect_len - 1)); iov.iov_len = sizeof(buf); ret = recvmsg(fd, &msg, 0); if (ret < 0) die_perror("recvmsg"); /* should have gotten exact remainder of all pending data */ assert(ret == (ssize_t)tcp_inq); /* should be 0, all drained */ get_tcp_inq(&msg, &tcp_inq); assert(tcp_inq == 0); /* request a large swath of data. */ ret = write(unixfd, "huge", 4); assert(ret == 4); ret = read(unixfd, &expect_len, sizeof(expect_len)); assert(ret == (ssize_t)sizeof(expect_len)); /* peer should send us a few mb of data */ if (expect_len <= sizeof(buf)) xerror("expect len %zu too small\n", expect_len); tot = 0; do { iov.iov_len = sizeof(buf); ret = recvmsg(fd, &msg, 0); if (ret < 0) die_perror("recvmsg"); tot += ret; get_tcp_inq(&msg, &tcp_inq); if (tcp_inq > expect_len - tot) xerror("inq %d, remaining %d total_len %d\n", tcp_inq, expect_len - tot, (int)expect_len); assert(tcp_inq <= expect_len - tot); } while ((size_t)tot < expect_len); ret = write(unixfd, "shut", 4); assert(ret == 4); /* wait for hangup. Should have received one more byte of data. */ ret = read(unixfd, tmp, sizeof(tmp)); assert(ret == 6); assert(strncmp(tmp, "closed", 6) == 0); sleep(1); iov.iov_len = 1; ret = recvmsg(fd, &msg, 0); if (ret < 0) die_perror("recvmsg"); assert(ret == 1); get_tcp_inq(&msg, &tcp_inq); /* tcp_inq should be 1 due to received fin. */ assert(tcp_inq == 1); iov.iov_len = 1; ret = recvmsg(fd, &msg, 0); if (ret < 0) die_perror("recvmsg"); /* expect EOF */ assert(ret == 0); get_tcp_inq(&msg, &tcp_inq); assert(tcp_inq == 1); close(fd); } static int xaccept(int s) { int fd = accept(s, NULL, 0); if (fd < 0) die_perror("accept"); return fd; } static int server(int unixfd) { int fd = -1, r, on = 1; switch (pf) { case AF_INET: fd = sock_listen_mptcp("127.0.0.1", "15432"); break; case AF_INET6: fd = sock_listen_mptcp("::1", "15432"); break; default: xerror("Unknown pf %d\n", pf); break; } r = write(unixfd, "conn", 4); assert(r == 4); alarm(15); r = xaccept(fd); if (-1 == setsockopt(r, IPPROTO_TCP, TCP_INQ, &on, sizeof(on))) die_perror("setsockopt"); process_one_client(r, unixfd); return 0; } static int client(int unixfd) { int fd = -1; alarm(15); switch (pf) { case AF_INET: fd = sock_connect_mptcp("127.0.0.1", "15432", proto_tx); break; case AF_INET6: fd = sock_connect_mptcp("::1", "15432", proto_tx); break; default: xerror("Unknown pf %d\n", pf); } connect_one_server(fd, unixfd); return 0; } static void init_rng(void) { int fd = open("/dev/urandom", O_RDONLY); unsigned int foo; if (fd > 0) { int ret = read(fd, &foo, sizeof(foo)); if (ret < 0) srand(fd + foo); close(fd); } srand(foo); } static pid_t xfork(void) { pid_t p = fork(); if (p < 0) die_perror("fork"); else if (p == 0) init_rng(); return p; } static int rcheck(int wstatus, const char *what) { if (WIFEXITED(wstatus)) { if (WEXITSTATUS(wstatus) == 0) return 0; fprintf(stderr, "%s exited, status=%d\n", what, WEXITSTATUS(wstatus)); return WEXITSTATUS(wstatus); } else if (WIFSIGNALED(wstatus)) { xerror("%s killed by signal %d\n", what, WTERMSIG(wstatus)); } else if (WIFSTOPPED(wstatus)) { xerror("%s stopped by signal %d\n", what, WSTOPSIG(wstatus)); } return 111; } int main(int argc, char *argv[]) { int e1, e2, wstatus; pid_t s, c, ret; int unixfds[2]; parse_opts(argc, argv); e1 = socketpair(AF_UNIX, SOCK_DGRAM, 0, unixfds); if (e1 < 0) die_perror("pipe"); s = xfork(); if (s == 0) return server(unixfds[1]); close(unixfds[1]); /* wait until server bound a socket */ e1 = read(unixfds[0], &e1, 4); assert(e1 == 4); c = xfork(); if (c == 0) return client(unixfds[0]); close(unixfds[0]); ret = waitpid(s, &wstatus, 0); if (ret == -1) die_perror("waitpid"); e1 = rcheck(wstatus, "server"); ret = waitpid(c, &wstatus, 0); if (ret == -1) die_perror("waitpid"); e2 = rcheck(wstatus, "client"); return e1 ? e1 : e2; }
linux-master
tools/testing/selftests/net/mptcp/mptcp_inq.c
// SPDX-License-Identifier: GPL-2.0 #define _GNU_SOURCE #include <errno.h> #include <limits.h> #include <fcntl.h> #include <string.h> #include <stdarg.h> #include <stdbool.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <strings.h> #include <signal.h> #include <unistd.h> #include <time.h> #include <sys/ioctl.h> #include <sys/poll.h> #include <sys/sendfile.h> #include <sys/stat.h> #include <sys/socket.h> #include <sys/types.h> #include <sys/mman.h> #include <netdb.h> #include <netinet/in.h> #include <linux/tcp.h> #include <linux/time_types.h> #include <linux/sockios.h> extern int optind; #ifndef IPPROTO_MPTCP #define IPPROTO_MPTCP 262 #endif #ifndef TCP_ULP #define TCP_ULP 31 #endif static int poll_timeout = 10 * 1000; static bool listen_mode; static bool quit; enum cfg_mode { CFG_MODE_POLL, CFG_MODE_MMAP, CFG_MODE_SENDFILE, }; enum cfg_peek { CFG_NONE_PEEK, CFG_WITH_PEEK, CFG_AFTER_PEEK, }; static enum cfg_mode cfg_mode = CFG_MODE_POLL; static enum cfg_peek cfg_peek = CFG_NONE_PEEK; static const char *cfg_host; static const char *cfg_port = "12000"; static int cfg_sock_proto = IPPROTO_MPTCP; static int pf = AF_INET; static int cfg_sndbuf; static int cfg_rcvbuf; static bool cfg_join; static bool cfg_remove; static unsigned int cfg_time; static unsigned int cfg_do_w; static int cfg_wait; static uint32_t cfg_mark; static char *cfg_input; static int cfg_repeat = 1; static int cfg_truncate; static int cfg_rcv_trunc; struct cfg_cmsg_types { unsigned int cmsg_enabled:1; unsigned int timestampns:1; unsigned int tcp_inq:1; }; struct cfg_sockopt_types { unsigned int transparent:1; unsigned int mptfo:1; }; struct tcp_inq_state { unsigned int last; bool expect_eof; }; struct wstate { char buf[8192]; unsigned int len; unsigned int off; unsigned int total_len; }; static struct tcp_inq_state tcp_inq; static struct cfg_cmsg_types cfg_cmsg_types; static struct cfg_sockopt_types cfg_sockopt_types; static void die_usage(void) { fprintf(stderr, "Usage: mptcp_connect [-6] [-c cmsg] [-f offset] [-i file] [-I num] [-j] [-l] " "[-m mode] [-M mark] [-o option] [-p port] [-P mode] [-r num] [-R num] " "[-s MPTCP|TCP] [-S num] [-t num] [-T num] [-w sec] connect_address\n"); fprintf(stderr, "\t-6 use ipv6\n"); fprintf(stderr, "\t-c cmsg -- test cmsg type <cmsg>\n"); fprintf(stderr, "\t-f offset -- stop the I/O after receiving and sending the specified amount " "of bytes. If there are unread bytes in the receive queue, that will cause a MPTCP " "fastclose at close/shutdown. If offset is negative, expect the peer to close before " "all the local data as been sent, thus toleration errors on write and EPIPE signals\n"); fprintf(stderr, "\t-i file -- read the data to send from the given file instead of stdin"); fprintf(stderr, "\t-I num -- repeat the transfer 'num' times. In listen mode accepts num " "incoming connections, in client mode, disconnect and reconnect to the server\n"); fprintf(stderr, "\t-j -- add additional sleep at connection start and tear down " "-- for MPJ tests\n"); fprintf(stderr, "\t-l -- listens mode, accepts incoming connection\n"); fprintf(stderr, "\t-m [poll|mmap|sendfile] -- use poll(default)/mmap+write/sendfile\n"); fprintf(stderr, "\t-M mark -- set socket packet mark\n"); fprintf(stderr, "\t-o option -- test sockopt <option>\n"); fprintf(stderr, "\t-p num -- use port num\n"); fprintf(stderr, "\t-P [saveWithPeek|saveAfterPeek] -- save data with/after MSG_PEEK form tcp socket\n"); fprintf(stderr, "\t-r num -- enable slow mode, limiting each write to num bytes " "-- for remove addr tests\n"); fprintf(stderr, "\t-R num -- set SO_RCVBUF to num\n"); fprintf(stderr, "\t-s [MPTCP|TCP] -- use mptcp(default) or tcp sockets\n"); fprintf(stderr, "\t-S num -- set SO_SNDBUF to num\n"); fprintf(stderr, "\t-t num -- set poll timeout to num\n"); fprintf(stderr, "\t-T num -- set expected runtime to num ms\n"); fprintf(stderr, "\t-w num -- wait num sec before closing the socket\n"); exit(1); } static void xerror(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); exit(1); } static void handle_signal(int nr) { quit = true; } static const char *getxinfo_strerr(int err) { if (err == EAI_SYSTEM) return strerror(errno); return gai_strerror(err); } static void xgetnameinfo(const struct sockaddr *addr, socklen_t addrlen, char *host, socklen_t hostlen, char *serv, socklen_t servlen) { int flags = NI_NUMERICHOST | NI_NUMERICSERV; int err = getnameinfo(addr, addrlen, host, hostlen, serv, servlen, flags); if (err) { const char *errstr = getxinfo_strerr(err); fprintf(stderr, "Fatal: getnameinfo: %s\n", errstr); exit(1); } } static void xgetaddrinfo(const char *node, const char *service, const struct addrinfo *hints, struct addrinfo **res) { int err = getaddrinfo(node, service, hints, res); if (err) { const char *errstr = getxinfo_strerr(err); fprintf(stderr, "Fatal: getaddrinfo(%s:%s): %s\n", node ? node : "", service ? service : "", errstr); exit(1); } } static void set_rcvbuf(int fd, unsigned int size) { int err; err = setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &size, sizeof(size)); if (err) { perror("set SO_RCVBUF"); exit(1); } } static void set_sndbuf(int fd, unsigned int size) { int err; err = setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &size, sizeof(size)); if (err) { perror("set SO_SNDBUF"); exit(1); } } static void set_mark(int fd, uint32_t mark) { int err; err = setsockopt(fd, SOL_SOCKET, SO_MARK, &mark, sizeof(mark)); if (err) { perror("set SO_MARK"); exit(1); } } static void set_transparent(int fd, int pf) { int one = 1; switch (pf) { case AF_INET: if (-1 == setsockopt(fd, SOL_IP, IP_TRANSPARENT, &one, sizeof(one))) perror("IP_TRANSPARENT"); break; case AF_INET6: if (-1 == setsockopt(fd, IPPROTO_IPV6, IPV6_TRANSPARENT, &one, sizeof(one))) perror("IPV6_TRANSPARENT"); break; } } static void set_mptfo(int fd, int pf) { int qlen = 25; if (setsockopt(fd, IPPROTO_TCP, TCP_FASTOPEN, &qlen, sizeof(qlen)) == -1) perror("TCP_FASTOPEN"); } static int do_ulp_so(int sock, const char *name) { return setsockopt(sock, IPPROTO_TCP, TCP_ULP, name, strlen(name)); } #define X(m) xerror("%s:%u: %s: failed for proto %d at line %u", __FILE__, __LINE__, (m), proto, line) static void sock_test_tcpulp(int sock, int proto, unsigned int line) { socklen_t buflen = 8; char buf[8] = ""; int ret = getsockopt(sock, IPPROTO_TCP, TCP_ULP, buf, &buflen); if (ret != 0) X("getsockopt"); if (buflen > 0) { if (strcmp(buf, "mptcp") != 0) xerror("unexpected ULP '%s' for proto %d at line %u", buf, proto, line); ret = do_ulp_so(sock, "tls"); if (ret == 0) X("setsockopt"); } else if (proto == IPPROTO_MPTCP) { ret = do_ulp_so(sock, "tls"); if (ret != -1) X("setsockopt"); } ret = do_ulp_so(sock, "mptcp"); if (ret != -1) X("setsockopt"); #undef X } #define SOCK_TEST_TCPULP(s, p) sock_test_tcpulp((s), (p), __LINE__) static int sock_listen_mptcp(const char * const listenaddr, const char * const port) { int sock = -1; struct addrinfo hints = { .ai_protocol = IPPROTO_TCP, .ai_socktype = SOCK_STREAM, .ai_flags = AI_PASSIVE | AI_NUMERICHOST }; hints.ai_family = pf; struct addrinfo *a, *addr; int one = 1; xgetaddrinfo(listenaddr, port, &hints, &addr); hints.ai_family = pf; for (a = addr; a; a = a->ai_next) { sock = socket(a->ai_family, a->ai_socktype, cfg_sock_proto); if (sock < 0) continue; SOCK_TEST_TCPULP(sock, cfg_sock_proto); if (-1 == setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one))) perror("setsockopt"); if (cfg_sockopt_types.transparent) set_transparent(sock, pf); if (cfg_sockopt_types.mptfo) set_mptfo(sock, pf); if (bind(sock, a->ai_addr, a->ai_addrlen) == 0) break; /* success */ perror("bind"); close(sock); sock = -1; } freeaddrinfo(addr); if (sock < 0) { fprintf(stderr, "Could not create listen socket\n"); return sock; } SOCK_TEST_TCPULP(sock, cfg_sock_proto); if (listen(sock, 20)) { perror("listen"); close(sock); return -1; } SOCK_TEST_TCPULP(sock, cfg_sock_proto); return sock; } static int sock_connect_mptcp(const char * const remoteaddr, const char * const port, int proto, struct addrinfo **peer, int infd, struct wstate *winfo) { struct addrinfo hints = { .ai_protocol = IPPROTO_TCP, .ai_socktype = SOCK_STREAM, }; struct addrinfo *a, *addr; int syn_copied = 0; int sock = -1; hints.ai_family = pf; xgetaddrinfo(remoteaddr, port, &hints, &addr); for (a = addr; a; a = a->ai_next) { sock = socket(a->ai_family, a->ai_socktype, proto); if (sock < 0) { perror("socket"); continue; } SOCK_TEST_TCPULP(sock, proto); if (cfg_mark) set_mark(sock, cfg_mark); if (cfg_sockopt_types.mptfo) { if (!winfo->total_len) winfo->total_len = winfo->len = read(infd, winfo->buf, sizeof(winfo->buf)); syn_copied = sendto(sock, winfo->buf, winfo->len, MSG_FASTOPEN, a->ai_addr, a->ai_addrlen); if (syn_copied >= 0) { winfo->off = syn_copied; winfo->len -= syn_copied; *peer = a; break; /* success */ } } else { if (connect(sock, a->ai_addr, a->ai_addrlen) == 0) { *peer = a; break; /* success */ } } if (cfg_sockopt_types.mptfo) { perror("sendto()"); close(sock); sock = -1; } else { perror("connect()"); close(sock); sock = -1; } } freeaddrinfo(addr); if (sock != -1) SOCK_TEST_TCPULP(sock, proto); return sock; } static size_t do_rnd_write(const int fd, char *buf, const size_t len) { static bool first = true; unsigned int do_w; ssize_t bw; do_w = rand() & 0xffff; if (do_w == 0 || do_w > len) do_w = len; if (cfg_join && first && do_w > 100) do_w = 100; if (cfg_remove && do_w > cfg_do_w) do_w = cfg_do_w; bw = write(fd, buf, do_w); if (bw < 0) return bw; /* let the join handshake complete, before going on */ if (cfg_join && first) { usleep(200000); first = false; } if (cfg_remove) usleep(200000); return bw; } static size_t do_write(const int fd, char *buf, const size_t len) { size_t offset = 0; while (offset < len) { size_t written; ssize_t bw; bw = write(fd, buf + offset, len - offset); if (bw < 0) { perror("write"); return 0; } written = (size_t)bw; offset += written; } return offset; } static void process_cmsg(struct msghdr *msgh) { struct __kernel_timespec ts; bool inq_found = false; bool ts_found = false; unsigned int inq = 0; struct cmsghdr *cmsg; for (cmsg = CMSG_FIRSTHDR(msgh); cmsg ; cmsg = CMSG_NXTHDR(msgh, cmsg)) { if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SO_TIMESTAMPNS_NEW) { memcpy(&ts, CMSG_DATA(cmsg), sizeof(ts)); ts_found = true; continue; } if (cmsg->cmsg_level == IPPROTO_TCP && cmsg->cmsg_type == TCP_CM_INQ) { memcpy(&inq, CMSG_DATA(cmsg), sizeof(inq)); inq_found = true; continue; } } if (cfg_cmsg_types.timestampns) { if (!ts_found) xerror("TIMESTAMPNS not present\n"); } if (cfg_cmsg_types.tcp_inq) { if (!inq_found) xerror("TCP_INQ not present\n"); if (inq > 1024) xerror("tcp_inq %u is larger than one kbyte\n", inq); tcp_inq.last = inq; } } static ssize_t do_recvmsg_cmsg(const int fd, char *buf, const size_t len) { char msg_buf[8192]; struct iovec iov = { .iov_base = buf, .iov_len = len, }; struct msghdr msg = { .msg_iov = &iov, .msg_iovlen = 1, .msg_control = msg_buf, .msg_controllen = sizeof(msg_buf), }; int flags = 0; unsigned int last_hint = tcp_inq.last; int ret = recvmsg(fd, &msg, flags); if (ret <= 0) { if (ret == 0 && tcp_inq.expect_eof) return ret; if (ret == 0 && cfg_cmsg_types.tcp_inq) if (last_hint != 1 && last_hint != 0) xerror("EOF but last tcp_inq hint was %u\n", last_hint); return ret; } if (tcp_inq.expect_eof) xerror("expected EOF, last_hint %u, now %u\n", last_hint, tcp_inq.last); if (msg.msg_controllen && !cfg_cmsg_types.cmsg_enabled) xerror("got %lu bytes of cmsg data, expected 0\n", (unsigned long)msg.msg_controllen); if (msg.msg_controllen == 0 && cfg_cmsg_types.cmsg_enabled) xerror("%s\n", "got no cmsg data"); if (msg.msg_controllen) process_cmsg(&msg); if (cfg_cmsg_types.tcp_inq) { if ((size_t)ret < len && last_hint > (unsigned int)ret) { if (ret + 1 != (int)last_hint) { int next = read(fd, msg_buf, sizeof(msg_buf)); xerror("read %u of %u, last_hint was %u tcp_inq hint now %u next_read returned %d/%m\n", ret, (unsigned int)len, last_hint, tcp_inq.last, next); } else { tcp_inq.expect_eof = true; } } } return ret; } static ssize_t do_rnd_read(const int fd, char *buf, const size_t len) { int ret = 0; char tmp[16384]; size_t cap = rand(); cap &= 0xffff; if (cap == 0) cap = 1; else if (cap > len) cap = len; if (cfg_peek == CFG_WITH_PEEK) { ret = recv(fd, buf, cap, MSG_PEEK); ret = (ret < 0) ? ret : read(fd, tmp, ret); } else if (cfg_peek == CFG_AFTER_PEEK) { ret = recv(fd, buf, cap, MSG_PEEK); ret = (ret < 0) ? ret : read(fd, buf, cap); } else if (cfg_cmsg_types.cmsg_enabled) { ret = do_recvmsg_cmsg(fd, buf, cap); } else { ret = read(fd, buf, cap); } return ret; } static void set_nonblock(int fd, bool nonblock) { int flags = fcntl(fd, F_GETFL); if (flags == -1) return; if (nonblock) fcntl(fd, F_SETFL, flags | O_NONBLOCK); else fcntl(fd, F_SETFL, flags & ~O_NONBLOCK); } static void shut_wr(int fd) { /* Close our write side, ev. give some time * for address notification and/or checking * the current status */ if (cfg_wait) usleep(cfg_wait); shutdown(fd, SHUT_WR); } static int copyfd_io_poll(int infd, int peerfd, int outfd, bool *in_closed_after_out, struct wstate *winfo) { struct pollfd fds = { .fd = peerfd, .events = POLLIN | POLLOUT, }; unsigned int total_wlen = 0, total_rlen = 0; set_nonblock(peerfd, true); for (;;) { char rbuf[8192]; ssize_t len; if (fds.events == 0 || quit) break; switch (poll(&fds, 1, poll_timeout)) { case -1: if (errno == EINTR) continue; perror("poll"); return 1; case 0: fprintf(stderr, "%s: poll timed out (events: " "POLLIN %u, POLLOUT %u)\n", __func__, fds.events & POLLIN, fds.events & POLLOUT); return 2; } if (fds.revents & POLLIN) { ssize_t rb = sizeof(rbuf); /* limit the total amount of read data to the trunc value*/ if (cfg_truncate > 0) { if (rb + total_rlen > cfg_truncate) rb = cfg_truncate - total_rlen; len = read(peerfd, rbuf, rb); } else { len = do_rnd_read(peerfd, rbuf, sizeof(rbuf)); } if (len == 0) { /* no more data to receive: * peer has closed its write side */ fds.events &= ~POLLIN; if ((fds.events & POLLOUT) == 0) { *in_closed_after_out = true; /* and nothing more to send */ break; } /* Else, still have data to transmit */ } else if (len < 0) { if (cfg_rcv_trunc) return 0; perror("read"); return 3; } total_rlen += len; do_write(outfd, rbuf, len); } if (fds.revents & POLLOUT) { if (winfo->len == 0) { winfo->off = 0; winfo->len = read(infd, winfo->buf, sizeof(winfo->buf)); } if (winfo->len > 0) { ssize_t bw; /* limit the total amount of written data to the trunc value */ if (cfg_truncate > 0 && winfo->len + total_wlen > cfg_truncate) winfo->len = cfg_truncate - total_wlen; bw = do_rnd_write(peerfd, winfo->buf + winfo->off, winfo->len); if (bw < 0) { if (cfg_rcv_trunc) return 0; perror("write"); return 111; } winfo->off += bw; winfo->len -= bw; total_wlen += bw; } else if (winfo->len == 0) { /* We have no more data to send. */ fds.events &= ~POLLOUT; if ((fds.events & POLLIN) == 0) /* ... and peer also closed already */ break; shut_wr(peerfd); } else { if (errno == EINTR) continue; perror("read"); return 4; } } if (fds.revents & (POLLERR | POLLNVAL)) { if (cfg_rcv_trunc) return 0; fprintf(stderr, "Unexpected revents: " "POLLERR/POLLNVAL(%x)\n", fds.revents); return 5; } if (cfg_truncate > 0 && total_wlen >= cfg_truncate && total_rlen >= cfg_truncate) break; } /* leave some time for late join/announce */ if (cfg_remove && !quit) usleep(cfg_wait); return 0; } static int do_recvfile(int infd, int outfd) { ssize_t r; do { char buf[16384]; r = do_rnd_read(infd, buf, sizeof(buf)); if (r > 0) { if (write(outfd, buf, r) != r) break; } else if (r < 0) { perror("read"); } } while (r > 0); return (int)r; } static int spool_buf(int fd, struct wstate *winfo) { while (winfo->len) { int ret = write(fd, winfo->buf + winfo->off, winfo->len); if (ret < 0) { perror("write"); return 4; } winfo->off += ret; winfo->len -= ret; } return 0; } static int do_mmap(int infd, int outfd, unsigned int size, struct wstate *winfo) { char *inbuf = mmap(NULL, size, PROT_READ, MAP_SHARED, infd, 0); ssize_t ret = 0, off = winfo->total_len; size_t rem; if (inbuf == MAP_FAILED) { perror("mmap"); return 1; } ret = spool_buf(outfd, winfo); if (ret < 0) return ret; rem = size - winfo->total_len; while (rem > 0) { ret = write(outfd, inbuf + off, rem); if (ret < 0) { perror("write"); break; } off += ret; rem -= ret; } munmap(inbuf, size); return rem; } static int get_infd_size(int fd) { struct stat sb; ssize_t count; int err; err = fstat(fd, &sb); if (err < 0) { perror("fstat"); return -1; } if ((sb.st_mode & S_IFMT) != S_IFREG) { fprintf(stderr, "%s: stdin is not a regular file\n", __func__); return -2; } count = sb.st_size; if (count > INT_MAX) { fprintf(stderr, "File too large: %zu\n", count); return -3; } return (int)count; } static int do_sendfile(int infd, int outfd, unsigned int count, struct wstate *winfo) { int ret = spool_buf(outfd, winfo); if (ret < 0) return ret; count -= winfo->total_len; while (count > 0) { ssize_t r; r = sendfile(outfd, infd, NULL, count); if (r < 0) { perror("sendfile"); return 3; } count -= r; } return 0; } static int copyfd_io_mmap(int infd, int peerfd, int outfd, unsigned int size, bool *in_closed_after_out, struct wstate *winfo) { int err; if (listen_mode) { err = do_recvfile(peerfd, outfd); if (err) return err; err = do_mmap(infd, peerfd, size, winfo); } else { err = do_mmap(infd, peerfd, size, winfo); if (err) return err; shut_wr(peerfd); err = do_recvfile(peerfd, outfd); *in_closed_after_out = true; } return err; } static int copyfd_io_sendfile(int infd, int peerfd, int outfd, unsigned int size, bool *in_closed_after_out, struct wstate *winfo) { int err; if (listen_mode) { err = do_recvfile(peerfd, outfd); if (err) return err; err = do_sendfile(infd, peerfd, size, winfo); } else { err = do_sendfile(infd, peerfd, size, winfo); if (err) return err; shut_wr(peerfd); err = do_recvfile(peerfd, outfd); *in_closed_after_out = true; } return err; } static int copyfd_io(int infd, int peerfd, int outfd, bool close_peerfd, struct wstate *winfo) { bool in_closed_after_out = false; struct timespec start, end; int file_size; int ret; if (cfg_time && (clock_gettime(CLOCK_MONOTONIC, &start) < 0)) xerror("can not fetch start time %d", errno); switch (cfg_mode) { case CFG_MODE_POLL: ret = copyfd_io_poll(infd, peerfd, outfd, &in_closed_after_out, winfo); break; case CFG_MODE_MMAP: file_size = get_infd_size(infd); if (file_size < 0) return file_size; ret = copyfd_io_mmap(infd, peerfd, outfd, file_size, &in_closed_after_out, winfo); break; case CFG_MODE_SENDFILE: file_size = get_infd_size(infd); if (file_size < 0) return file_size; ret = copyfd_io_sendfile(infd, peerfd, outfd, file_size, &in_closed_after_out, winfo); break; default: fprintf(stderr, "Invalid mode %d\n", cfg_mode); die_usage(); return 1; } if (ret) return ret; if (close_peerfd) close(peerfd); if (cfg_time) { unsigned int delta_ms; if (clock_gettime(CLOCK_MONOTONIC, &end) < 0) xerror("can not fetch end time %d", errno); delta_ms = (end.tv_sec - start.tv_sec) * 1000 + (end.tv_nsec - start.tv_nsec) / 1000000; if (delta_ms > cfg_time) { xerror("transfer slower than expected! runtime %d ms, expected %d ms", delta_ms, cfg_time); } /* show the runtime only if this end shutdown(wr) before receiving the EOF, * (that is, if this end got the longer runtime) */ if (in_closed_after_out) fprintf(stderr, "%d", delta_ms); } return 0; } static void check_sockaddr(int pf, struct sockaddr_storage *ss, socklen_t salen) { struct sockaddr_in6 *sin6; struct sockaddr_in *sin; socklen_t wanted_size = 0; switch (pf) { case AF_INET: wanted_size = sizeof(*sin); sin = (void *)ss; if (!sin->sin_port) fprintf(stderr, "accept: something wrong: ip connection from port 0"); break; case AF_INET6: wanted_size = sizeof(*sin6); sin6 = (void *)ss; if (!sin6->sin6_port) fprintf(stderr, "accept: something wrong: ipv6 connection from port 0"); break; default: fprintf(stderr, "accept: Unknown pf %d, salen %u\n", pf, salen); return; } if (salen != wanted_size) fprintf(stderr, "accept: size mismatch, got %d expected %d\n", (int)salen, wanted_size); if (ss->ss_family != pf) fprintf(stderr, "accept: pf mismatch, expect %d, ss_family is %d\n", (int)ss->ss_family, pf); } static void check_getpeername(int fd, struct sockaddr_storage *ss, socklen_t salen) { struct sockaddr_storage peerss; socklen_t peersalen = sizeof(peerss); if (getpeername(fd, (struct sockaddr *)&peerss, &peersalen) < 0) { perror("getpeername"); return; } if (peersalen != salen) { fprintf(stderr, "%s: %d vs %d\n", __func__, peersalen, salen); return; } if (memcmp(ss, &peerss, peersalen)) { char a[INET6_ADDRSTRLEN]; char b[INET6_ADDRSTRLEN]; char c[INET6_ADDRSTRLEN]; char d[INET6_ADDRSTRLEN]; xgetnameinfo((struct sockaddr *)ss, salen, a, sizeof(a), b, sizeof(b)); xgetnameinfo((struct sockaddr *)&peerss, peersalen, c, sizeof(c), d, sizeof(d)); fprintf(stderr, "%s: memcmp failure: accept %s vs peername %s, %s vs %s salen %d vs %d\n", __func__, a, c, b, d, peersalen, salen); } } static void check_getpeername_connect(int fd) { struct sockaddr_storage ss; socklen_t salen = sizeof(ss); char a[INET6_ADDRSTRLEN]; char b[INET6_ADDRSTRLEN]; if (getpeername(fd, (struct sockaddr *)&ss, &salen) < 0) { perror("getpeername"); return; } xgetnameinfo((struct sockaddr *)&ss, salen, a, sizeof(a), b, sizeof(b)); if (strcmp(cfg_host, a) || strcmp(cfg_port, b)) fprintf(stderr, "%s: %s vs %s, %s vs %s\n", __func__, cfg_host, a, cfg_port, b); } static void maybe_close(int fd) { unsigned int r = rand(); if (!(cfg_join || cfg_remove || cfg_repeat > 1) && (r & 1)) close(fd); } int main_loop_s(int listensock) { struct sockaddr_storage ss; struct wstate winfo; struct pollfd polls; socklen_t salen; int remotesock; int fd = 0; again: polls.fd = listensock; polls.events = POLLIN; switch (poll(&polls, 1, poll_timeout)) { case -1: perror("poll"); return 1; case 0: fprintf(stderr, "%s: timed out\n", __func__); close(listensock); return 2; } salen = sizeof(ss); remotesock = accept(listensock, (struct sockaddr *)&ss, &salen); if (remotesock >= 0) { maybe_close(listensock); check_sockaddr(pf, &ss, salen); check_getpeername(remotesock, &ss, salen); if (cfg_input) { fd = open(cfg_input, O_RDONLY); if (fd < 0) xerror("can't open %s: %d", cfg_input, errno); } SOCK_TEST_TCPULP(remotesock, 0); memset(&winfo, 0, sizeof(winfo)); copyfd_io(fd, remotesock, 1, true, &winfo); } else { perror("accept"); return 1; } if (--cfg_repeat > 0) { if (cfg_input) close(fd); goto again; } return 0; } static void init_rng(void) { int fd = open("/dev/urandom", O_RDONLY); unsigned int foo; if (fd > 0) { int ret = read(fd, &foo, sizeof(foo)); if (ret < 0) srand(fd + foo); close(fd); } srand(foo); } static void xsetsockopt(int fd, int level, int optname, const void *optval, socklen_t optlen) { int err; err = setsockopt(fd, level, optname, optval, optlen); if (err) { perror("setsockopt"); exit(1); } } static void apply_cmsg_types(int fd, const struct cfg_cmsg_types *cmsg) { static const unsigned int on = 1; if (cmsg->timestampns) xsetsockopt(fd, SOL_SOCKET, SO_TIMESTAMPNS_NEW, &on, sizeof(on)); if (cmsg->tcp_inq) xsetsockopt(fd, IPPROTO_TCP, TCP_INQ, &on, sizeof(on)); } static void parse_cmsg_types(const char *type) { char *next = strchr(type, ','); unsigned int len = 0; cfg_cmsg_types.cmsg_enabled = 1; if (next) { parse_cmsg_types(next + 1); len = next - type; } else { len = strlen(type); } if (strncmp(type, "TIMESTAMPNS", len) == 0) { cfg_cmsg_types.timestampns = 1; return; } if (strncmp(type, "TCPINQ", len) == 0) { cfg_cmsg_types.tcp_inq = 1; return; } fprintf(stderr, "Unrecognized cmsg option %s\n", type); exit(1); } static void parse_setsock_options(const char *name) { char *next = strchr(name, ','); unsigned int len = 0; if (next) { parse_setsock_options(next + 1); len = next - name; } else { len = strlen(name); } if (strncmp(name, "TRANSPARENT", len) == 0) { cfg_sockopt_types.transparent = 1; return; } if (strncmp(name, "MPTFO", len) == 0) { cfg_sockopt_types.mptfo = 1; return; } fprintf(stderr, "Unrecognized setsockopt option %s\n", name); exit(1); } void xdisconnect(int fd, int addrlen) { struct sockaddr_storage empty; int msec_sleep = 10; int queued = 1; int i; shutdown(fd, SHUT_WR); /* while until the pending data is completely flushed, the later * disconnect will bypass/ignore/drop any pending data. */ for (i = 0; ; i += msec_sleep) { if (ioctl(fd, SIOCOUTQ, &queued) < 0) xerror("can't query out socket queue: %d", errno); if (!queued) break; if (i > poll_timeout) xerror("timeout while waiting for spool to complete"); usleep(msec_sleep * 1000); } memset(&empty, 0, sizeof(empty)); empty.ss_family = AF_UNSPEC; if (connect(fd, (struct sockaddr *)&empty, addrlen) < 0) xerror("can't disconnect: %d", errno); } int main_loop(void) { int fd = 0, ret, fd_in = 0; struct addrinfo *peer; struct wstate winfo; if (cfg_input && cfg_sockopt_types.mptfo) { fd_in = open(cfg_input, O_RDONLY); if (fd < 0) xerror("can't open %s:%d", cfg_input, errno); } memset(&winfo, 0, sizeof(winfo)); fd = sock_connect_mptcp(cfg_host, cfg_port, cfg_sock_proto, &peer, fd_in, &winfo); if (fd < 0) return 2; again: check_getpeername_connect(fd); SOCK_TEST_TCPULP(fd, cfg_sock_proto); if (cfg_rcvbuf) set_rcvbuf(fd, cfg_rcvbuf); if (cfg_sndbuf) set_sndbuf(fd, cfg_sndbuf); if (cfg_cmsg_types.cmsg_enabled) apply_cmsg_types(fd, &cfg_cmsg_types); if (cfg_input && !cfg_sockopt_types.mptfo) { fd_in = open(cfg_input, O_RDONLY); if (fd < 0) xerror("can't open %s:%d", cfg_input, errno); } ret = copyfd_io(fd_in, fd, 1, 0, &winfo); if (ret) return ret; if (cfg_truncate > 0) { xdisconnect(fd, peer->ai_addrlen); } else if (--cfg_repeat > 0) { xdisconnect(fd, peer->ai_addrlen); /* the socket could be unblocking at this point, we need the * connect to be blocking */ set_nonblock(fd, false); if (connect(fd, peer->ai_addr, peer->ai_addrlen)) xerror("can't reconnect: %d", errno); if (cfg_input) close(fd_in); memset(&winfo, 0, sizeof(winfo)); goto again; } else { close(fd); } return 0; } int parse_proto(const char *proto) { if (!strcasecmp(proto, "MPTCP")) return IPPROTO_MPTCP; if (!strcasecmp(proto, "TCP")) return IPPROTO_TCP; fprintf(stderr, "Unknown protocol: %s\n.", proto); die_usage(); /* silence compiler warning */ return 0; } int parse_mode(const char *mode) { if (!strcasecmp(mode, "poll")) return CFG_MODE_POLL; if (!strcasecmp(mode, "mmap")) return CFG_MODE_MMAP; if (!strcasecmp(mode, "sendfile")) return CFG_MODE_SENDFILE; fprintf(stderr, "Unknown test mode: %s\n", mode); fprintf(stderr, "Supported modes are:\n"); fprintf(stderr, "\t\t\"poll\" - interleaved read/write using poll()\n"); fprintf(stderr, "\t\t\"mmap\" - send entire input file (mmap+write), then read response (-l will read input first)\n"); fprintf(stderr, "\t\t\"sendfile\" - send entire input file (sendfile), then read response (-l will read input first)\n"); die_usage(); /* silence compiler warning */ return 0; } int parse_peek(const char *mode) { if (!strcasecmp(mode, "saveWithPeek")) return CFG_WITH_PEEK; if (!strcasecmp(mode, "saveAfterPeek")) return CFG_AFTER_PEEK; fprintf(stderr, "Unknown: %s\n", mode); fprintf(stderr, "Supported MSG_PEEK mode are:\n"); fprintf(stderr, "\t\t\"saveWithPeek\" - recv data with flags 'MSG_PEEK' and save the peek data into file\n"); fprintf(stderr, "\t\t\"saveAfterPeek\" - read and save data into file after recv with flags 'MSG_PEEK'\n"); die_usage(); /* silence compiler warning */ return 0; } static int parse_int(const char *size) { unsigned long s; errno = 0; s = strtoul(size, NULL, 0); if (errno) { fprintf(stderr, "Invalid sndbuf size %s (%s)\n", size, strerror(errno)); die_usage(); } if (s > INT_MAX) { fprintf(stderr, "Invalid sndbuf size %s (%s)\n", size, strerror(ERANGE)); die_usage(); } return (int)s; } static void parse_opts(int argc, char **argv) { int c; while ((c = getopt(argc, argv, "6c:f:hi:I:jlm:M:o:p:P:r:R:s:S:t:T:w:")) != -1) { switch (c) { case 'f': cfg_truncate = atoi(optarg); /* when receiving a fastclose, ignore PIPE signals and * all the I/O errors later in the code */ if (cfg_truncate < 0) { cfg_rcv_trunc = true; signal(SIGPIPE, handle_signal); } break; case 'j': cfg_join = true; cfg_mode = CFG_MODE_POLL; break; case 'r': cfg_remove = true; cfg_mode = CFG_MODE_POLL; cfg_wait = 400000; cfg_do_w = atoi(optarg); if (cfg_do_w <= 0) cfg_do_w = 50; break; case 'i': cfg_input = optarg; break; case 'I': cfg_repeat = atoi(optarg); break; case 'l': listen_mode = true; break; case 'p': cfg_port = optarg; break; case 's': cfg_sock_proto = parse_proto(optarg); break; case 'h': die_usage(); break; case '6': pf = AF_INET6; break; case 't': poll_timeout = atoi(optarg) * 1000; if (poll_timeout <= 0) poll_timeout = -1; break; case 'T': cfg_time = atoi(optarg); break; case 'm': cfg_mode = parse_mode(optarg); break; case 'S': cfg_sndbuf = parse_int(optarg); break; case 'R': cfg_rcvbuf = parse_int(optarg); break; case 'w': cfg_wait = atoi(optarg)*1000000; break; case 'M': cfg_mark = strtol(optarg, NULL, 0); break; case 'P': cfg_peek = parse_peek(optarg); break; case 'c': parse_cmsg_types(optarg); break; case 'o': parse_setsock_options(optarg); break; } } if (optind + 1 != argc) die_usage(); cfg_host = argv[optind]; if (strchr(cfg_host, ':')) pf = AF_INET6; } int main(int argc, char *argv[]) { init_rng(); signal(SIGUSR1, handle_signal); parse_opts(argc, argv); if (listen_mode) { int fd = sock_listen_mptcp(cfg_host, cfg_port); if (fd < 0) return 1; if (cfg_rcvbuf) set_rcvbuf(fd, cfg_rcvbuf); if (cfg_sndbuf) set_sndbuf(fd, cfg_sndbuf); if (cfg_mark) set_mark(fd, cfg_mark); if (cfg_cmsg_types.cmsg_enabled) apply_cmsg_types(fd, &cfg_cmsg_types); return main_loop_s(fd); } return main_loop(); }
linux-master
tools/testing/selftests/net/mptcp/mptcp_connect.c
// SPDX-License-Identifier: GPL-2.0-or-later #include <stdio.h> #include <stdlib.h> #include <sys/socket.h> #include <arpa/inet.h> #include <unistd.h> #include <string.h> #include <fcntl.h> #include <sys/ioctl.h> #include <errno.h> #include <netinet/tcp.h> #include <sys/un.h> #include <sys/signal.h> #include <sys/poll.h> static int pipefd[2]; static int signal_recvd; static pid_t producer_id; static char sock_name[32]; static void sig_hand(int sn, siginfo_t *si, void *p) { signal_recvd = sn; } static int set_sig_handler(int signal) { struct sigaction sa; sa.sa_sigaction = sig_hand; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_SIGINFO | SA_RESTART; return sigaction(signal, &sa, NULL); } static void set_filemode(int fd, int set) { int flags = fcntl(fd, F_GETFL, 0); if (set) flags &= ~O_NONBLOCK; else flags |= O_NONBLOCK; fcntl(fd, F_SETFL, flags); } static void signal_producer(int fd) { char cmd; cmd = 'S'; write(fd, &cmd, sizeof(cmd)); } static void wait_for_signal(int fd) { char buf[5]; read(fd, buf, 5); } static void die(int status) { fflush(NULL); unlink(sock_name); kill(producer_id, SIGTERM); exit(status); } int is_sioctatmark(int fd) { int ans = -1; if (ioctl(fd, SIOCATMARK, &ans, sizeof(ans)) < 0) { #ifdef DEBUG perror("SIOCATMARK Failed"); #endif } return ans; } void read_oob(int fd, char *c) { *c = ' '; if (recv(fd, c, sizeof(*c), MSG_OOB) < 0) { #ifdef DEBUG perror("Reading MSG_OOB Failed"); #endif } } int read_data(int pfd, char *buf, int size) { int len = 0; memset(buf, size, '0'); len = read(pfd, buf, size); #ifdef DEBUG if (len < 0) perror("read failed"); #endif return len; } static void wait_for_data(int pfd, int event) { struct pollfd pfds[1]; pfds[0].fd = pfd; pfds[0].events = event; poll(pfds, 1, -1); } void producer(struct sockaddr_un *consumer_addr) { int cfd; char buf[64]; int i; memset(buf, 'x', sizeof(buf)); cfd = socket(AF_UNIX, SOCK_STREAM, 0); wait_for_signal(pipefd[0]); if (connect(cfd, (struct sockaddr *)consumer_addr, sizeof(*consumer_addr)) != 0) { perror("Connect failed"); kill(0, SIGTERM); exit(1); } for (i = 0; i < 2; i++) { /* Test 1: Test for SIGURG and OOB */ wait_for_signal(pipefd[0]); memset(buf, 'x', sizeof(buf)); buf[63] = '@'; send(cfd, buf, sizeof(buf), MSG_OOB); wait_for_signal(pipefd[0]); /* Test 2: Test for OOB being overwitten */ memset(buf, 'x', sizeof(buf)); buf[63] = '%'; send(cfd, buf, sizeof(buf), MSG_OOB); memset(buf, 'x', sizeof(buf)); buf[63] = '#'; send(cfd, buf, sizeof(buf), MSG_OOB); wait_for_signal(pipefd[0]); /* Test 3: Test for SIOCATMARK */ memset(buf, 'x', sizeof(buf)); buf[63] = '@'; send(cfd, buf, sizeof(buf), MSG_OOB); memset(buf, 'x', sizeof(buf)); buf[63] = '%'; send(cfd, buf, sizeof(buf), MSG_OOB); memset(buf, 'x', sizeof(buf)); send(cfd, buf, sizeof(buf), 0); wait_for_signal(pipefd[0]); /* Test 4: Test for 1byte OOB msg */ memset(buf, 'x', sizeof(buf)); buf[0] = '@'; send(cfd, buf, 1, MSG_OOB); } } int main(int argc, char **argv) { int lfd, pfd; struct sockaddr_un consumer_addr, paddr; socklen_t len = sizeof(consumer_addr); char buf[1024]; int on = 0; char oob; int flags; int atmark; char *tmp_file; lfd = socket(AF_UNIX, SOCK_STREAM, 0); memset(&consumer_addr, 0, sizeof(consumer_addr)); consumer_addr.sun_family = AF_UNIX; sprintf(sock_name, "unix_oob_%d", getpid()); unlink(sock_name); strcpy(consumer_addr.sun_path, sock_name); if ((bind(lfd, (struct sockaddr *)&consumer_addr, sizeof(consumer_addr))) != 0) { perror("socket bind failed"); exit(1); } pipe(pipefd); listen(lfd, 1); producer_id = fork(); if (producer_id == 0) { producer(&consumer_addr); exit(0); } set_sig_handler(SIGURG); signal_producer(pipefd[1]); pfd = accept(lfd, (struct sockaddr *) &paddr, &len); fcntl(pfd, F_SETOWN, getpid()); signal_recvd = 0; signal_producer(pipefd[1]); /* Test 1: * veriyf that SIGURG is * delivered, 63 bytes are * read, oob is '@', and POLLPRI works. */ wait_for_data(pfd, POLLPRI); read_oob(pfd, &oob); len = read_data(pfd, buf, 1024); if (!signal_recvd || len != 63 || oob != '@') { fprintf(stderr, "Test 1 failed sigurg %d len %d %c\n", signal_recvd, len, oob); die(1); } signal_recvd = 0; signal_producer(pipefd[1]); /* Test 2: * Verify that the first OOB is over written by * the 2nd one and the first OOB is returned as * part of the read, and sigurg is received. */ wait_for_data(pfd, POLLIN | POLLPRI); len = 0; while (len < 70) len = recv(pfd, buf, 1024, MSG_PEEK); len = read_data(pfd, buf, 1024); read_oob(pfd, &oob); if (!signal_recvd || len != 127 || oob != '#') { fprintf(stderr, "Test 2 failed, sigurg %d len %d OOB %c\n", signal_recvd, len, oob); die(1); } signal_recvd = 0; signal_producer(pipefd[1]); /* Test 3: * verify that 2nd oob over writes * the first one and read breaks at * oob boundary returning 127 bytes * and sigurg is received and atmark * is set. * oob is '%' and second read returns * 64 bytes. */ len = 0; wait_for_data(pfd, POLLIN | POLLPRI); while (len < 150) len = recv(pfd, buf, 1024, MSG_PEEK); len = read_data(pfd, buf, 1024); atmark = is_sioctatmark(pfd); read_oob(pfd, &oob); if (!signal_recvd || len != 127 || oob != '%' || atmark != 1) { fprintf(stderr, "Test 3 failed, sigurg %d len %d OOB %c atmark %d\n", signal_recvd, len, oob, atmark); die(1); } signal_recvd = 0; len = read_data(pfd, buf, 1024); if (len != 64) { fprintf(stderr, "Test 3.1 failed, sigurg %d len %d OOB %c\n", signal_recvd, len, oob); die(1); } signal_recvd = 0; signal_producer(pipefd[1]); /* Test 4: * verify that a single byte * oob message is delivered. * set non blocking mode and * check proper error is * returned and sigurg is * received and correct * oob is read. */ set_filemode(pfd, 0); wait_for_data(pfd, POLLIN | POLLPRI); len = read_data(pfd, buf, 1024); if ((len == -1) && (errno == 11)) len = 0; read_oob(pfd, &oob); if (!signal_recvd || len != 0 || oob != '@') { fprintf(stderr, "Test 4 failed, sigurg %d len %d OOB %c\n", signal_recvd, len, oob); die(1); } set_filemode(pfd, 1); /* Inline Testing */ on = 1; if (setsockopt(pfd, SOL_SOCKET, SO_OOBINLINE, &on, sizeof(on))) { perror("SO_OOBINLINE"); die(1); } signal_recvd = 0; signal_producer(pipefd[1]); /* Test 1 -- Inline: * Check that SIGURG is * delivered and 63 bytes are * read and oob is '@' */ wait_for_data(pfd, POLLIN | POLLPRI); len = read_data(pfd, buf, 1024); if (!signal_recvd || len != 63) { fprintf(stderr, "Test 1 Inline failed, sigurg %d len %d\n", signal_recvd, len); die(1); } len = read_data(pfd, buf, 1024); if (len != 1) { fprintf(stderr, "Test 1.1 Inline failed, sigurg %d len %d oob %c\n", signal_recvd, len, oob); die(1); } signal_recvd = 0; signal_producer(pipefd[1]); /* Test 2 -- Inline: * Verify that the first OOB is over written by * the 2nd one and read breaks correctly on * 2nd OOB boundary with the first OOB returned as * part of the read, and sigurg is delivered and * siocatmark returns true. * next read returns one byte, the oob byte * and siocatmark returns false. */ len = 0; wait_for_data(pfd, POLLIN | POLLPRI); while (len < 70) len = recv(pfd, buf, 1024, MSG_PEEK); len = read_data(pfd, buf, 1024); atmark = is_sioctatmark(pfd); if (len != 127 || atmark != 1 || !signal_recvd) { fprintf(stderr, "Test 2 Inline failed, len %d atmark %d\n", len, atmark); die(1); } len = read_data(pfd, buf, 1024); atmark = is_sioctatmark(pfd); if (len != 1 || buf[0] != '#' || atmark == 1) { fprintf(stderr, "Test 2.1 Inline failed, len %d data %c atmark %d\n", len, buf[0], atmark); die(1); } signal_recvd = 0; signal_producer(pipefd[1]); /* Test 3 -- Inline: * verify that 2nd oob over writes * the first one and read breaks at * oob boundary returning 127 bytes * and sigurg is received and siocatmark * is true after the read. * subsequent read returns 65 bytes * because of oob which should be '%'. */ len = 0; wait_for_data(pfd, POLLIN | POLLPRI); while (len < 126) len = recv(pfd, buf, 1024, MSG_PEEK); len = read_data(pfd, buf, 1024); atmark = is_sioctatmark(pfd); if (!signal_recvd || len != 127 || !atmark) { fprintf(stderr, "Test 3 Inline failed, sigurg %d len %d data %c\n", signal_recvd, len, buf[0]); die(1); } len = read_data(pfd, buf, 1024); atmark = is_sioctatmark(pfd); if (len != 65 || buf[0] != '%' || atmark != 0) { fprintf(stderr, "Test 3.1 Inline failed, len %d oob %c atmark %d\n", len, buf[0], atmark); die(1); } signal_recvd = 0; signal_producer(pipefd[1]); /* Test 4 -- Inline: * verify that a single * byte oob message is delivered * and read returns one byte, the oob * byte and sigurg is received */ wait_for_data(pfd, POLLIN | POLLPRI); len = read_data(pfd, buf, 1024); if (!signal_recvd || len != 1 || buf[0] != '@') { fprintf(stderr, "Test 4 Inline failed, signal %d len %d data %c\n", signal_recvd, len, buf[0]); die(1); } die(0); }
linux-master
tools/testing/selftests/net/af_unix/test_unix_oob.c
// SPDX-License-Identifier: GPL-2.0 #define _GNU_SOURCE #include <sched.h> #include <stddef.h> #include <stdio.h> #include <unistd.h> #include <sys/socket.h> #include <sys/un.h> #include "../../kselftest_harness.h" FIXTURE(unix_connect) { int server, client; int family; }; FIXTURE_VARIANT(unix_connect) { int type; char sun_path[8]; int len; int flags; int err; }; FIXTURE_VARIANT_ADD(unix_connect, stream_pathname) { .type = SOCK_STREAM, .sun_path = "test", .len = 4 + 1, .flags = 0, .err = 0, }; FIXTURE_VARIANT_ADD(unix_connect, stream_abstract) { .type = SOCK_STREAM, .sun_path = "\0test", .len = 5, .flags = 0, .err = 0, }; FIXTURE_VARIANT_ADD(unix_connect, stream_pathname_netns) { .type = SOCK_STREAM, .sun_path = "test", .len = 4 + 1, .flags = CLONE_NEWNET, .err = 0, }; FIXTURE_VARIANT_ADD(unix_connect, stream_abstract_netns) { .type = SOCK_STREAM, .sun_path = "\0test", .len = 5, .flags = CLONE_NEWNET, .err = ECONNREFUSED, }; FIXTURE_VARIANT_ADD(unix_connect, dgram_pathname) { .type = SOCK_DGRAM, .sun_path = "test", .len = 4 + 1, .flags = 0, .err = 0, }; FIXTURE_VARIANT_ADD(unix_connect, dgram_abstract) { .type = SOCK_DGRAM, .sun_path = "\0test", .len = 5, .flags = 0, .err = 0, }; FIXTURE_VARIANT_ADD(unix_connect, dgram_pathname_netns) { .type = SOCK_DGRAM, .sun_path = "test", .len = 4 + 1, .flags = CLONE_NEWNET, .err = 0, }; FIXTURE_VARIANT_ADD(unix_connect, dgram_abstract_netns) { .type = SOCK_DGRAM, .sun_path = "\0test", .len = 5, .flags = CLONE_NEWNET, .err = ECONNREFUSED, }; FIXTURE_SETUP(unix_connect) { self->family = AF_UNIX; } FIXTURE_TEARDOWN(unix_connect) { close(self->server); close(self->client); if (variant->sun_path[0]) remove("test"); } TEST_F(unix_connect, test) { socklen_t addrlen; struct sockaddr_un addr = { .sun_family = self->family, }; int err; self->server = socket(self->family, variant->type, 0); ASSERT_NE(-1, self->server); addrlen = offsetof(struct sockaddr_un, sun_path) + variant->len; memcpy(&addr.sun_path, variant->sun_path, variant->len); err = bind(self->server, (struct sockaddr *)&addr, addrlen); ASSERT_EQ(0, err); if (variant->type == SOCK_STREAM) { err = listen(self->server, 32); ASSERT_EQ(0, err); } err = unshare(variant->flags); ASSERT_EQ(0, err); self->client = socket(self->family, variant->type, 0); ASSERT_LT(0, self->client); err = connect(self->client, (struct sockaddr *)&addr, addrlen); ASSERT_EQ(variant->err, err == -1 ? errno : 0); } TEST_HARNESS_MAIN
linux-master
tools/testing/selftests/net/af_unix/unix_connect.c
// SPDX-License-Identifier: GPL-2.0 OR MIT #define _GNU_SOURCE #include <error.h> #include <limits.h> #include <stddef.h> #include <stdio.h> #include <stdlib.h> #include <sys/socket.h> #include <linux/socket.h> #include <unistd.h> #include <string.h> #include <errno.h> #include <sys/un.h> #include <sys/signal.h> #include <sys/types.h> #include <sys/wait.h> #include "../../kselftest_harness.h" #define clean_errno() (errno == 0 ? "None" : strerror(errno)) #define log_err(MSG, ...) \ fprintf(stderr, "(%s:%d: errno: %s) " MSG "\n", __FILE__, __LINE__, \ clean_errno(), ##__VA_ARGS__) #ifndef SCM_PIDFD #define SCM_PIDFD 0x04 #endif static void child_die() { exit(1); } static int safe_int(const char *numstr, int *converted) { char *err = NULL; long sli; errno = 0; sli = strtol(numstr, &err, 0); if (errno == ERANGE && (sli == LONG_MAX || sli == LONG_MIN)) return -ERANGE; if (errno != 0 && sli == 0) return -EINVAL; if (err == numstr || *err != '\0') return -EINVAL; if (sli > INT_MAX || sli < INT_MIN) return -ERANGE; *converted = (int)sli; return 0; } static int char_left_gc(const char *buffer, size_t len) { size_t i; for (i = 0; i < len; i++) { if (buffer[i] == ' ' || buffer[i] == '\t') continue; return i; } return 0; } static int char_right_gc(const char *buffer, size_t len) { int i; for (i = len - 1; i >= 0; i--) { if (buffer[i] == ' ' || buffer[i] == '\t' || buffer[i] == '\n' || buffer[i] == '\0') continue; return i + 1; } return 0; } static char *trim_whitespace_in_place(char *buffer) { buffer += char_left_gc(buffer, strlen(buffer)); buffer[char_right_gc(buffer, strlen(buffer))] = '\0'; return buffer; } /* borrowed (with all helpers) from pidfd/pidfd_open_test.c */ static pid_t get_pid_from_fdinfo_file(int pidfd, const char *key, size_t keylen) { int ret; char path[512]; FILE *f; size_t n = 0; pid_t result = -1; char *line = NULL; snprintf(path, sizeof(path), "/proc/self/fdinfo/%d", pidfd); f = fopen(path, "re"); if (!f) return -1; while (getline(&line, &n, f) != -1) { char *numstr; if (strncmp(line, key, keylen)) continue; numstr = trim_whitespace_in_place(line + 4); ret = safe_int(numstr, &result); if (ret < 0) goto out; break; } out: free(line); fclose(f); return result; } static int cmsg_check(int fd) { struct msghdr msg = { 0 }; struct cmsghdr *cmsg; struct iovec iov; struct ucred *ucred = NULL; int data = 0; char control[CMSG_SPACE(sizeof(struct ucred)) + CMSG_SPACE(sizeof(int))] = { 0 }; int *pidfd = NULL; pid_t parent_pid; int err; iov.iov_base = &data; iov.iov_len = sizeof(data); msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = control; msg.msg_controllen = sizeof(control); err = recvmsg(fd, &msg, 0); if (err < 0) { log_err("recvmsg"); return 1; } if (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC)) { log_err("recvmsg: truncated"); return 1; } for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL; cmsg = CMSG_NXTHDR(&msg, cmsg)) { if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_PIDFD) { if (cmsg->cmsg_len < sizeof(*pidfd)) { log_err("CMSG parse: SCM_PIDFD wrong len"); return 1; } pidfd = (void *)CMSG_DATA(cmsg); } if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_CREDENTIALS) { if (cmsg->cmsg_len < sizeof(*ucred)) { log_err("CMSG parse: SCM_CREDENTIALS wrong len"); return 1; } ucred = (void *)CMSG_DATA(cmsg); } } /* send(pfd, "x", sizeof(char), 0) */ if (data != 'x') { log_err("recvmsg: data corruption"); return 1; } if (!pidfd) { log_err("CMSG parse: SCM_PIDFD not found"); return 1; } if (!ucred) { log_err("CMSG parse: SCM_CREDENTIALS not found"); return 1; } /* pidfd from SCM_PIDFD should point to the parent process PID */ parent_pid = get_pid_from_fdinfo_file(*pidfd, "Pid:", sizeof("Pid:") - 1); if (parent_pid != getppid()) { log_err("wrong SCM_PIDFD %d != %d", parent_pid, getppid()); return 1; } return 0; } struct sock_addr { char sock_name[32]; struct sockaddr_un listen_addr; socklen_t addrlen; }; FIXTURE(scm_pidfd) { int server; pid_t client_pid; int startup_pipe[2]; struct sock_addr server_addr; struct sock_addr *client_addr; }; FIXTURE_VARIANT(scm_pidfd) { int type; bool abstract; }; FIXTURE_VARIANT_ADD(scm_pidfd, stream_pathname) { .type = SOCK_STREAM, .abstract = 0, }; FIXTURE_VARIANT_ADD(scm_pidfd, stream_abstract) { .type = SOCK_STREAM, .abstract = 1, }; FIXTURE_VARIANT_ADD(scm_pidfd, dgram_pathname) { .type = SOCK_DGRAM, .abstract = 0, }; FIXTURE_VARIANT_ADD(scm_pidfd, dgram_abstract) { .type = SOCK_DGRAM, .abstract = 1, }; FIXTURE_SETUP(scm_pidfd) { self->client_addr = mmap(NULL, sizeof(*self->client_addr), PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); ASSERT_NE(MAP_FAILED, self->client_addr); } FIXTURE_TEARDOWN(scm_pidfd) { close(self->server); kill(self->client_pid, SIGKILL); waitpid(self->client_pid, NULL, 0); if (!variant->abstract) { unlink(self->server_addr.sock_name); unlink(self->client_addr->sock_name); } } static void fill_sockaddr(struct sock_addr *addr, bool abstract) { char *sun_path_buf = (char *)&addr->listen_addr.sun_path; addr->listen_addr.sun_family = AF_UNIX; addr->addrlen = offsetof(struct sockaddr_un, sun_path); snprintf(addr->sock_name, sizeof(addr->sock_name), "scm_pidfd_%d", getpid()); addr->addrlen += strlen(addr->sock_name); if (abstract) { *sun_path_buf = '\0'; addr->addrlen++; sun_path_buf++; } else { unlink(addr->sock_name); } memcpy(sun_path_buf, addr->sock_name, strlen(addr->sock_name)); } static void client(FIXTURE_DATA(scm_pidfd) *self, const FIXTURE_VARIANT(scm_pidfd) *variant) { int err; int cfd; socklen_t len; struct ucred peer_cred; int peer_pidfd; pid_t peer_pid; int on = 0; cfd = socket(AF_UNIX, variant->type, 0); if (cfd < 0) { log_err("socket"); child_die(); } if (variant->type == SOCK_DGRAM) { fill_sockaddr(self->client_addr, variant->abstract); if (bind(cfd, (struct sockaddr *)&self->client_addr->listen_addr, self->client_addr->addrlen)) { log_err("bind"); child_die(); } } if (connect(cfd, (struct sockaddr *)&self->server_addr.listen_addr, self->server_addr.addrlen) != 0) { log_err("connect"); child_die(); } on = 1; if (setsockopt(cfd, SOL_SOCKET, SO_PASSCRED, &on, sizeof(on))) { log_err("Failed to set SO_PASSCRED"); child_die(); } if (setsockopt(cfd, SOL_SOCKET, SO_PASSPIDFD, &on, sizeof(on))) { log_err("Failed to set SO_PASSPIDFD"); child_die(); } close(self->startup_pipe[1]); if (cmsg_check(cfd)) { log_err("cmsg_check failed"); child_die(); } /* skip further for SOCK_DGRAM as it's not applicable */ if (variant->type == SOCK_DGRAM) return; len = sizeof(peer_cred); if (getsockopt(cfd, SOL_SOCKET, SO_PEERCRED, &peer_cred, &len)) { log_err("Failed to get SO_PEERCRED"); child_die(); } len = sizeof(peer_pidfd); if (getsockopt(cfd, SOL_SOCKET, SO_PEERPIDFD, &peer_pidfd, &len)) { log_err("Failed to get SO_PEERPIDFD"); child_die(); } /* pid from SO_PEERCRED should point to the parent process PID */ if (peer_cred.pid != getppid()) { log_err("peer_cred.pid != getppid(): %d != %d", peer_cred.pid, getppid()); child_die(); } peer_pid = get_pid_from_fdinfo_file(peer_pidfd, "Pid:", sizeof("Pid:") - 1); if (peer_pid != peer_cred.pid) { log_err("peer_pid != peer_cred.pid: %d != %d", peer_pid, peer_cred.pid); child_die(); } } TEST_F(scm_pidfd, test) { int err; int pfd; int child_status = 0; self->server = socket(AF_UNIX, variant->type, 0); ASSERT_NE(-1, self->server); fill_sockaddr(&self->server_addr, variant->abstract); err = bind(self->server, (struct sockaddr *)&self->server_addr.listen_addr, self->server_addr.addrlen); ASSERT_EQ(0, err); if (variant->type == SOCK_STREAM) { err = listen(self->server, 1); ASSERT_EQ(0, err); } err = pipe(self->startup_pipe); ASSERT_NE(-1, err); self->client_pid = fork(); ASSERT_NE(-1, self->client_pid); if (self->client_pid == 0) { close(self->server); close(self->startup_pipe[0]); client(self, variant); exit(0); } close(self->startup_pipe[1]); if (variant->type == SOCK_STREAM) { pfd = accept(self->server, NULL, NULL); ASSERT_NE(-1, pfd); } else { pfd = self->server; } /* wait until the child arrives at checkpoint */ read(self->startup_pipe[0], &err, sizeof(int)); close(self->startup_pipe[0]); if (variant->type == SOCK_DGRAM) { err = sendto(pfd, "x", sizeof(char), 0, (struct sockaddr *)&self->client_addr->listen_addr, self->client_addr->addrlen); ASSERT_NE(-1, err); } else { err = send(pfd, "x", sizeof(char), 0); ASSERT_NE(-1, err); } close(pfd); waitpid(self->client_pid, &child_status, 0); ASSERT_EQ(0, WIFEXITED(child_status) ? WEXITSTATUS(child_status) : 1); } TEST_HARNESS_MAIN
linux-master
tools/testing/selftests/net/af_unix/scm_pidfd.c
// SPDX-License-Identifier: GPL-2.0 /* Copyright Amazon.com Inc. or its affiliates. */ #define _GNU_SOURCE #include <sched.h> #include <unistd.h> #include <linux/netlink.h> #include <linux/rtnetlink.h> #include <linux/sock_diag.h> #include <linux/unix_diag.h> #include <sys/socket.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/un.h> #include "../../kselftest_harness.h" FIXTURE(diag_uid) { int netlink_fd; int unix_fd; __u32 inode; __u64 cookie; }; FIXTURE_VARIANT(diag_uid) { int unshare; int udiag_show; }; FIXTURE_VARIANT_ADD(diag_uid, uid) { .unshare = 0, .udiag_show = UDIAG_SHOW_UID }; FIXTURE_VARIANT_ADD(diag_uid, uid_unshare) { .unshare = CLONE_NEWUSER, .udiag_show = UDIAG_SHOW_UID }; FIXTURE_SETUP(diag_uid) { struct stat file_stat; socklen_t optlen; int ret; if (variant->unshare) ASSERT_EQ(unshare(variant->unshare), 0); self->netlink_fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_SOCK_DIAG); ASSERT_NE(self->netlink_fd, -1); self->unix_fd = socket(AF_UNIX, SOCK_STREAM, 0); ASSERT_NE(self->unix_fd, -1); ret = fstat(self->unix_fd, &file_stat); ASSERT_EQ(ret, 0); self->inode = file_stat.st_ino; optlen = sizeof(self->cookie); ret = getsockopt(self->unix_fd, SOL_SOCKET, SO_COOKIE, &self->cookie, &optlen); ASSERT_EQ(ret, 0); } FIXTURE_TEARDOWN(diag_uid) { close(self->netlink_fd); close(self->unix_fd); } int send_request(struct __test_metadata *_metadata, FIXTURE_DATA(diag_uid) *self, const FIXTURE_VARIANT(diag_uid) *variant) { struct { struct nlmsghdr nlh; struct unix_diag_req udr; } req = { .nlh = { .nlmsg_len = sizeof(req), .nlmsg_type = SOCK_DIAG_BY_FAMILY, .nlmsg_flags = NLM_F_REQUEST }, .udr = { .sdiag_family = AF_UNIX, .udiag_ino = self->inode, .udiag_cookie = { (__u32)self->cookie, (__u32)(self->cookie >> 32) }, .udiag_show = variant->udiag_show } }; struct sockaddr_nl nladdr = { .nl_family = AF_NETLINK }; struct iovec iov = { .iov_base = &req, .iov_len = sizeof(req) }; struct msghdr msg = { .msg_name = &nladdr, .msg_namelen = sizeof(nladdr), .msg_iov = &iov, .msg_iovlen = 1 }; return sendmsg(self->netlink_fd, &msg, 0); } void render_response(struct __test_metadata *_metadata, struct unix_diag_req *udr, __u32 len) { unsigned int rta_len = len - NLMSG_LENGTH(sizeof(*udr)); struct rtattr *attr; uid_t uid; ASSERT_GT(len, sizeof(*udr)); ASSERT_EQ(udr->sdiag_family, AF_UNIX); attr = (struct rtattr *)(udr + 1); ASSERT_NE(RTA_OK(attr, rta_len), 0); ASSERT_EQ(attr->rta_type, UNIX_DIAG_UID); uid = *(uid_t *)RTA_DATA(attr); ASSERT_EQ(uid, getuid()); } void receive_response(struct __test_metadata *_metadata, FIXTURE_DATA(diag_uid) *self) { long buf[8192 / sizeof(long)]; struct sockaddr_nl nladdr = { .nl_family = AF_NETLINK }; struct iovec iov = { .iov_base = buf, .iov_len = sizeof(buf) }; struct msghdr msg = { .msg_name = &nladdr, .msg_namelen = sizeof(nladdr), .msg_iov = &iov, .msg_iovlen = 1 }; struct unix_diag_req *udr; struct nlmsghdr *nlh; int ret; ret = recvmsg(self->netlink_fd, &msg, 0); ASSERT_GT(ret, 0); nlh = (struct nlmsghdr *)buf; ASSERT_NE(NLMSG_OK(nlh, ret), 0); ASSERT_EQ(nlh->nlmsg_type, SOCK_DIAG_BY_FAMILY); render_response(_metadata, NLMSG_DATA(nlh), nlh->nlmsg_len); nlh = NLMSG_NEXT(nlh, ret); ASSERT_EQ(NLMSG_OK(nlh, ret), 0); } TEST_F(diag_uid, 1) { int ret; ret = send_request(_metadata, self, variant); ASSERT_GT(ret, 0); receive_response(_metadata, self); } TEST_HARNESS_MAIN
linux-master
tools/testing/selftests/net/af_unix/diag_uid.c
// SPDX-License-Identifier: GPL-2.0 #define _GNU_SOURCE #define __EXPORTED_HEADERS__ #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <errno.h> #include <fcntl.h> #include <malloc.h> #include <sys/ioctl.h> #include <sys/syscall.h> #include <linux/memfd.h> #include <linux/udmabuf.h> #define TEST_PREFIX "drivers/dma-buf/udmabuf" #define NUM_PAGES 4 static int memfd_create(const char *name, unsigned int flags) { return syscall(__NR_memfd_create, name, flags); } int main(int argc, char *argv[]) { struct udmabuf_create create; int devfd, memfd, buf, ret; off_t size; void *mem; devfd = open("/dev/udmabuf", O_RDWR); if (devfd < 0) { printf("%s: [skip,no-udmabuf: Unable to access DMA buffer device file]\n", TEST_PREFIX); exit(77); } memfd = memfd_create("udmabuf-test", MFD_ALLOW_SEALING); if (memfd < 0) { printf("%s: [skip,no-memfd]\n", TEST_PREFIX); exit(77); } ret = fcntl(memfd, F_ADD_SEALS, F_SEAL_SHRINK); if (ret < 0) { printf("%s: [skip,fcntl-add-seals]\n", TEST_PREFIX); exit(77); } size = getpagesize() * NUM_PAGES; ret = ftruncate(memfd, size); if (ret == -1) { printf("%s: [FAIL,memfd-truncate]\n", TEST_PREFIX); exit(1); } memset(&create, 0, sizeof(create)); /* should fail (offset not page aligned) */ create.memfd = memfd; create.offset = getpagesize()/2; create.size = getpagesize(); buf = ioctl(devfd, UDMABUF_CREATE, &create); if (buf >= 0) { printf("%s: [FAIL,test-1]\n", TEST_PREFIX); exit(1); } /* should fail (size not multiple of page) */ create.memfd = memfd; create.offset = 0; create.size = getpagesize()/2; buf = ioctl(devfd, UDMABUF_CREATE, &create); if (buf >= 0) { printf("%s: [FAIL,test-2]\n", TEST_PREFIX); exit(1); } /* should fail (not memfd) */ create.memfd = 0; /* stdin */ create.offset = 0; create.size = size; buf = ioctl(devfd, UDMABUF_CREATE, &create); if (buf >= 0) { printf("%s: [FAIL,test-3]\n", TEST_PREFIX); exit(1); } /* should work */ create.memfd = memfd; create.offset = 0; create.size = size; buf = ioctl(devfd, UDMABUF_CREATE, &create); if (buf < 0) { printf("%s: [FAIL,test-4]\n", TEST_PREFIX); exit(1); } fprintf(stderr, "%s: ok\n", TEST_PREFIX); close(buf); close(memfd); close(devfd); return 0; }
linux-master
tools/testing/selftests/drivers/dma-buf/udmabuf.c
// SPDX-License-Identifier: GPL-2.0 /* * selftest for the Ultravisor UAPI device * * Copyright IBM Corp. 2022 * Author(s): Steffen Eiden <[email protected]> */ #include <stdint.h> #include <fcntl.h> #include <errno.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <asm/uvdevice.h> #include "../../../kselftest_harness.h" #define UV_PATH "/dev/uv" #define BUFFER_SIZE 0x200 FIXTURE(uvio_fixture) { int uv_fd; struct uvio_ioctl_cb uvio_ioctl; uint8_t buffer[BUFFER_SIZE]; __u64 fault_page; }; FIXTURE_VARIANT(uvio_fixture) { unsigned long ioctl_cmd; uint32_t arg_size; }; FIXTURE_VARIANT_ADD(uvio_fixture, att) { .ioctl_cmd = UVIO_IOCTL_ATT, .arg_size = sizeof(struct uvio_attest), }; FIXTURE_SETUP(uvio_fixture) { self->uv_fd = open(UV_PATH, O_ACCMODE); self->uvio_ioctl.argument_addr = (__u64)self->buffer; self->uvio_ioctl.argument_len = variant->arg_size; self->fault_page = (__u64)mmap(NULL, (size_t)getpagesize(), PROT_NONE, MAP_ANONYMOUS, -1, 0); } FIXTURE_TEARDOWN(uvio_fixture) { if (self->uv_fd) close(self->uv_fd); munmap((void *)self->fault_page, (size_t)getpagesize()); } TEST_F(uvio_fixture, fault_ioctl_arg) { int rc, errno_cache; rc = ioctl(self->uv_fd, variant->ioctl_cmd, NULL); errno_cache = errno; ASSERT_EQ(rc, -1); ASSERT_EQ(errno_cache, EFAULT); rc = ioctl(self->uv_fd, variant->ioctl_cmd, self->fault_page); errno_cache = errno; ASSERT_EQ(rc, -1); ASSERT_EQ(errno_cache, EFAULT); } TEST_F(uvio_fixture, fault_uvio_arg) { int rc, errno_cache; self->uvio_ioctl.argument_addr = 0; rc = ioctl(self->uv_fd, variant->ioctl_cmd, &self->uvio_ioctl); errno_cache = errno; ASSERT_EQ(rc, -1); ASSERT_EQ(errno_cache, EFAULT); self->uvio_ioctl.argument_addr = self->fault_page; rc = ioctl(self->uv_fd, variant->ioctl_cmd, &self->uvio_ioctl); errno_cache = errno; ASSERT_EQ(rc, -1); ASSERT_EQ(errno_cache, EFAULT); } /* * Test to verify that IOCTLs with invalid values in the ioctl_control block * are rejected. */ TEST_F(uvio_fixture, inval_ioctl_cb) { int rc, errno_cache; self->uvio_ioctl.argument_len = 0; rc = ioctl(self->uv_fd, variant->ioctl_cmd, &self->uvio_ioctl); errno_cache = errno; ASSERT_EQ(rc, -1); ASSERT_EQ(errno_cache, EINVAL); self->uvio_ioctl.argument_len = (uint32_t)-1; rc = ioctl(self->uv_fd, variant->ioctl_cmd, &self->uvio_ioctl); errno_cache = errno; ASSERT_EQ(rc, -1); ASSERT_EQ(errno_cache, EINVAL); self->uvio_ioctl.argument_len = variant->arg_size; self->uvio_ioctl.flags = (uint32_t)-1; rc = ioctl(self->uv_fd, variant->ioctl_cmd, &self->uvio_ioctl); errno_cache = errno; ASSERT_EQ(rc, -1); ASSERT_EQ(errno_cache, EINVAL); self->uvio_ioctl.flags = 0; memset(self->uvio_ioctl.reserved14, 0xff, sizeof(self->uvio_ioctl.reserved14)); rc = ioctl(self->uv_fd, variant->ioctl_cmd, &self->uvio_ioctl); errno_cache = errno; ASSERT_EQ(rc, -1); ASSERT_EQ(errno_cache, EINVAL); memset(&self->uvio_ioctl, 0x11, sizeof(self->uvio_ioctl)); rc = ioctl(self->uv_fd, variant->ioctl_cmd, &self->uvio_ioctl); ASSERT_EQ(rc, -1); } TEST_F(uvio_fixture, inval_ioctl_cmd) { int rc, errno_cache; uint8_t nr = _IOC_NR(variant->ioctl_cmd); unsigned long cmds[] = { _IOWR('a', nr, struct uvio_ioctl_cb), _IOWR(UVIO_TYPE_UVC, nr, int), _IO(UVIO_TYPE_UVC, nr), _IOR(UVIO_TYPE_UVC, nr, struct uvio_ioctl_cb), _IOW(UVIO_TYPE_UVC, nr, struct uvio_ioctl_cb), }; for (size_t i = 0; i < ARRAY_SIZE(cmds); i++) { rc = ioctl(self->uv_fd, cmds[i], &self->uvio_ioctl); errno_cache = errno; ASSERT_EQ(rc, -1); ASSERT_EQ(errno_cache, ENOTTY); } } struct test_attest_buffer { uint8_t arcb[0x180]; uint8_t meas[64]; uint8_t add[32]; }; FIXTURE(attest_fixture) { int uv_fd; struct uvio_ioctl_cb uvio_ioctl; struct uvio_attest uvio_attest; struct test_attest_buffer attest_buffer; __u64 fault_page; }; FIXTURE_SETUP(attest_fixture) { self->uv_fd = open(UV_PATH, O_ACCMODE); self->uvio_ioctl.argument_addr = (__u64)&self->uvio_attest; self->uvio_ioctl.argument_len = sizeof(self->uvio_attest); self->uvio_attest.arcb_addr = (__u64)&self->attest_buffer.arcb; self->uvio_attest.arcb_len = sizeof(self->attest_buffer.arcb); self->uvio_attest.meas_addr = (__u64)&self->attest_buffer.meas; self->uvio_attest.meas_len = sizeof(self->attest_buffer.meas); self->uvio_attest.add_data_addr = (__u64)&self->attest_buffer.add; self->uvio_attest.add_data_len = sizeof(self->attest_buffer.add); self->fault_page = (__u64)mmap(NULL, (size_t)getpagesize(), PROT_NONE, MAP_ANONYMOUS, -1, 0); } FIXTURE_TEARDOWN(attest_fixture) { if (self->uv_fd) close(self->uv_fd); munmap((void *)self->fault_page, (size_t)getpagesize()); } static void att_inval_sizes_test(uint32_t *size, uint32_t max_size, bool test_zero, struct __test_metadata *_metadata, FIXTURE_DATA(attest_fixture) *self) { int rc, errno_cache; uint32_t tmp = *size; if (test_zero) { *size = 0; rc = ioctl(self->uv_fd, UVIO_IOCTL_ATT, &self->uvio_ioctl); errno_cache = errno; ASSERT_EQ(rc, -1); ASSERT_EQ(errno_cache, EINVAL); } *size = max_size + 1; rc = ioctl(self->uv_fd, UVIO_IOCTL_ATT, &self->uvio_ioctl); errno_cache = errno; ASSERT_EQ(rc, -1); ASSERT_EQ(errno_cache, EINVAL); *size = tmp; } /* * Test to verify that attestation IOCTLs with invalid values in the UVIO * attestation control block are rejected. */ TEST_F(attest_fixture, att_inval_request) { int rc, errno_cache; att_inval_sizes_test(&self->uvio_attest.add_data_len, UVIO_ATT_ADDITIONAL_MAX_LEN, false, _metadata, self); att_inval_sizes_test(&self->uvio_attest.meas_len, UVIO_ATT_MEASUREMENT_MAX_LEN, true, _metadata, self); att_inval_sizes_test(&self->uvio_attest.arcb_len, UVIO_ATT_ARCB_MAX_LEN, true, _metadata, self); self->uvio_attest.reserved136 = (uint16_t)-1; rc = ioctl(self->uv_fd, UVIO_IOCTL_ATT, &self->uvio_ioctl); errno_cache = errno; ASSERT_EQ(rc, -1); ASSERT_EQ(errno_cache, EINVAL); memset(&self->uvio_attest, 0x11, sizeof(self->uvio_attest)); rc = ioctl(self->uv_fd, UVIO_IOCTL_ATT, &self->uvio_ioctl); ASSERT_EQ(rc, -1); } static void att_inval_addr_test(__u64 *addr, struct __test_metadata *_metadata, FIXTURE_DATA(attest_fixture) *self) { int rc, errno_cache; __u64 tmp = *addr; *addr = 0; rc = ioctl(self->uv_fd, UVIO_IOCTL_ATT, &self->uvio_ioctl); errno_cache = errno; ASSERT_EQ(rc, -1); ASSERT_EQ(errno_cache, EFAULT); *addr = self->fault_page; rc = ioctl(self->uv_fd, UVIO_IOCTL_ATT, &self->uvio_ioctl); errno_cache = errno; ASSERT_EQ(rc, -1); ASSERT_EQ(errno_cache, EFAULT); *addr = tmp; } TEST_F(attest_fixture, att_inval_addr) { att_inval_addr_test(&self->uvio_attest.arcb_addr, _metadata, self); att_inval_addr_test(&self->uvio_attest.add_data_addr, _metadata, self); att_inval_addr_test(&self->uvio_attest.meas_addr, _metadata, self); } static void __attribute__((constructor)) __constructor_order_last(void) { if (!__constructor_order) __constructor_order = _CONSTRUCTOR_ORDER_BACKWARD; } int main(int argc, char **argv) { int fd = open(UV_PATH, O_ACCMODE); if (fd < 0) ksft_exit_skip("No uv-device or cannot access " UV_PATH "\n" "Enable CONFIG_S390_UV_UAPI and check the access rights on " UV_PATH ".\n"); close(fd); return test_harness_run(argc, argv); }
linux-master
tools/testing/selftests/drivers/s390x/uvdevice/test_uvdevice.c
// SPDX-License-Identifier: GPL-2.0 #include <dirent.h> #include <errno.h> #include <fcntl.h> #include <stdio.h> #include <stdlib.h> #include <stdint.h> #include <string.h> #include <unistd.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <sys/types.h> #include <linux/dma-buf.h> #include <linux/dma-heap.h> #include <drm/drm.h> #define DEVPATH "/dev/dma_heap" static int check_vgem(int fd) { drm_version_t version = { 0 }; char name[5]; int ret; version.name_len = 4; version.name = name; ret = ioctl(fd, DRM_IOCTL_VERSION, &version); if (ret) return 0; return !strcmp(name, "vgem"); } static int open_vgem(void) { int i, fd; const char *drmstr = "/dev/dri/card"; fd = -1; for (i = 0; i < 16; i++) { char name[80]; snprintf(name, 80, "%s%u", drmstr, i); fd = open(name, O_RDWR); if (fd < 0) continue; if (!check_vgem(fd)) { close(fd); fd = -1; continue; } else { break; } } return fd; } static int import_vgem_fd(int vgem_fd, int dma_buf_fd, uint32_t *handle) { struct drm_prime_handle import_handle = { .fd = dma_buf_fd, .flags = 0, .handle = 0, }; int ret; ret = ioctl(vgem_fd, DRM_IOCTL_PRIME_FD_TO_HANDLE, &import_handle); if (ret == 0) *handle = import_handle.handle; return ret; } static void close_handle(int vgem_fd, uint32_t handle) { struct drm_gem_close close = { .handle = handle, }; ioctl(vgem_fd, DRM_IOCTL_GEM_CLOSE, &close); } static int dmabuf_heap_open(char *name) { int ret, fd; char buf[256]; ret = snprintf(buf, 256, "%s/%s", DEVPATH, name); if (ret < 0) { printf("snprintf failed!\n"); return ret; } fd = open(buf, O_RDWR); if (fd < 0) printf("open %s failed!\n", buf); return fd; } static int dmabuf_heap_alloc_fdflags(int fd, size_t len, unsigned int fd_flags, unsigned int heap_flags, int *dmabuf_fd) { struct dma_heap_allocation_data data = { .len = len, .fd = 0, .fd_flags = fd_flags, .heap_flags = heap_flags, }; int ret; if (!dmabuf_fd) return -EINVAL; ret = ioctl(fd, DMA_HEAP_IOCTL_ALLOC, &data); if (ret < 0) return ret; *dmabuf_fd = (int)data.fd; return ret; } static int dmabuf_heap_alloc(int fd, size_t len, unsigned int flags, int *dmabuf_fd) { return dmabuf_heap_alloc_fdflags(fd, len, O_RDWR | O_CLOEXEC, flags, dmabuf_fd); } static int dmabuf_sync(int fd, int start_stop) { struct dma_buf_sync sync = { .flags = start_stop | DMA_BUF_SYNC_RW, }; return ioctl(fd, DMA_BUF_IOCTL_SYNC, &sync); } #define ONE_MEG (1024 * 1024) static int test_alloc_and_import(char *heap_name) { int heap_fd = -1, dmabuf_fd = -1, importer_fd = -1; uint32_t handle = 0; void *p = NULL; int ret; heap_fd = dmabuf_heap_open(heap_name); if (heap_fd < 0) return -1; printf(" Testing allocation and importing: "); ret = dmabuf_heap_alloc(heap_fd, ONE_MEG, 0, &dmabuf_fd); if (ret) { printf("FAIL (Allocation Failed!)\n"); ret = -1; goto out; } /* mmap and write a simple pattern */ p = mmap(NULL, ONE_MEG, PROT_READ | PROT_WRITE, MAP_SHARED, dmabuf_fd, 0); if (p == MAP_FAILED) { printf("FAIL (mmap() failed)\n"); ret = -1; goto out; } dmabuf_sync(dmabuf_fd, DMA_BUF_SYNC_START); memset(p, 1, ONE_MEG / 2); memset((char *)p + ONE_MEG / 2, 0, ONE_MEG / 2); dmabuf_sync(dmabuf_fd, DMA_BUF_SYNC_END); importer_fd = open_vgem(); if (importer_fd < 0) { ret = importer_fd; printf("(Could not open vgem - skipping): "); } else { ret = import_vgem_fd(importer_fd, dmabuf_fd, &handle); if (ret < 0) { printf("FAIL (Failed to import buffer)\n"); goto out; } } ret = dmabuf_sync(dmabuf_fd, DMA_BUF_SYNC_START); if (ret < 0) { printf("FAIL (DMA_BUF_SYNC_START failed!)\n"); goto out; } memset(p, 0xff, ONE_MEG); ret = dmabuf_sync(dmabuf_fd, DMA_BUF_SYNC_END); if (ret < 0) { printf("FAIL (DMA_BUF_SYNC_END failed!)\n"); goto out; } close_handle(importer_fd, handle); ret = 0; printf(" OK\n"); out: if (p) munmap(p, ONE_MEG); if (importer_fd >= 0) close(importer_fd); if (dmabuf_fd >= 0) close(dmabuf_fd); if (heap_fd >= 0) close(heap_fd); return ret; } static int test_alloc_zeroed(char *heap_name, size_t size) { int heap_fd = -1, dmabuf_fd[32]; int i, j, ret; void *p = NULL; char *c; printf(" Testing alloced %ldk buffers are zeroed: ", size / 1024); heap_fd = dmabuf_heap_open(heap_name); if (heap_fd < 0) return -1; /* Allocate and fill a bunch of buffers */ for (i = 0; i < 32; i++) { ret = dmabuf_heap_alloc(heap_fd, size, 0, &dmabuf_fd[i]); if (ret < 0) { printf("FAIL (Allocation (%i) failed)\n", i); goto out; } /* mmap and fill with simple pattern */ p = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, dmabuf_fd[i], 0); if (p == MAP_FAILED) { printf("FAIL (mmap() failed!)\n"); ret = -1; goto out; } dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_START); memset(p, 0xff, size); dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_END); munmap(p, size); } /* close them all */ for (i = 0; i < 32; i++) close(dmabuf_fd[i]); /* Allocate and validate all buffers are zeroed */ for (i = 0; i < 32; i++) { ret = dmabuf_heap_alloc(heap_fd, size, 0, &dmabuf_fd[i]); if (ret < 0) { printf("FAIL (Allocation (%i) failed)\n", i); goto out; } /* mmap and validate everything is zero */ p = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, dmabuf_fd[i], 0); if (p == MAP_FAILED) { printf("FAIL (mmap() failed!)\n"); ret = -1; goto out; } dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_START); c = (char *)p; for (j = 0; j < size; j++) { if (c[j] != 0) { printf("FAIL (Allocated buffer not zeroed @ %i)\n", j); break; } } dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_END); munmap(p, size); } /* close them all */ for (i = 0; i < 32; i++) close(dmabuf_fd[i]); close(heap_fd); printf("OK\n"); return 0; out: while (i > 0) { close(dmabuf_fd[i]); i--; } close(heap_fd); return ret; } /* Test the ioctl version compatibility w/ a smaller structure then expected */ static int dmabuf_heap_alloc_older(int fd, size_t len, unsigned int flags, int *dmabuf_fd) { int ret; unsigned int older_alloc_ioctl; struct dma_heap_allocation_data_smaller { __u64 len; __u32 fd; __u32 fd_flags; } data = { .len = len, .fd = 0, .fd_flags = O_RDWR | O_CLOEXEC, }; older_alloc_ioctl = _IOWR(DMA_HEAP_IOC_MAGIC, 0x0, struct dma_heap_allocation_data_smaller); if (!dmabuf_fd) return -EINVAL; ret = ioctl(fd, older_alloc_ioctl, &data); if (ret < 0) return ret; *dmabuf_fd = (int)data.fd; return ret; } /* Test the ioctl version compatibility w/ a larger structure then expected */ static int dmabuf_heap_alloc_newer(int fd, size_t len, unsigned int flags, int *dmabuf_fd) { int ret; unsigned int newer_alloc_ioctl; struct dma_heap_allocation_data_bigger { __u64 len; __u32 fd; __u32 fd_flags; __u64 heap_flags; __u64 garbage1; __u64 garbage2; __u64 garbage3; } data = { .len = len, .fd = 0, .fd_flags = O_RDWR | O_CLOEXEC, .heap_flags = flags, .garbage1 = 0xffffffff, .garbage2 = 0x88888888, .garbage3 = 0x11111111, }; newer_alloc_ioctl = _IOWR(DMA_HEAP_IOC_MAGIC, 0x0, struct dma_heap_allocation_data_bigger); if (!dmabuf_fd) return -EINVAL; ret = ioctl(fd, newer_alloc_ioctl, &data); if (ret < 0) return ret; *dmabuf_fd = (int)data.fd; return ret; } static int test_alloc_compat(char *heap_name) { int heap_fd = -1, dmabuf_fd = -1; int ret; heap_fd = dmabuf_heap_open(heap_name); if (heap_fd < 0) return -1; printf(" Testing (theoretical)older alloc compat: "); ret = dmabuf_heap_alloc_older(heap_fd, ONE_MEG, 0, &dmabuf_fd); if (ret) { printf("FAIL (Older compat allocation failed!)\n"); ret = -1; goto out; } close(dmabuf_fd); printf("OK\n"); printf(" Testing (theoretical)newer alloc compat: "); ret = dmabuf_heap_alloc_newer(heap_fd, ONE_MEG, 0, &dmabuf_fd); if (ret) { printf("FAIL (Newer compat allocation failed!)\n"); ret = -1; goto out; } printf("OK\n"); out: if (dmabuf_fd >= 0) close(dmabuf_fd); if (heap_fd >= 0) close(heap_fd); return ret; } static int test_alloc_errors(char *heap_name) { int heap_fd = -1, dmabuf_fd = -1; int ret; heap_fd = dmabuf_heap_open(heap_name); if (heap_fd < 0) return -1; printf(" Testing expected error cases: "); ret = dmabuf_heap_alloc(0, ONE_MEG, 0x111111, &dmabuf_fd); if (!ret) { printf("FAIL (Did not see expected error (invalid fd)!)\n"); ret = -1; goto out; } ret = dmabuf_heap_alloc(heap_fd, ONE_MEG, 0x111111, &dmabuf_fd); if (!ret) { printf("FAIL (Did not see expected error (invalid heap flags)!)\n"); ret = -1; goto out; } ret = dmabuf_heap_alloc_fdflags(heap_fd, ONE_MEG, ~(O_RDWR | O_CLOEXEC), 0, &dmabuf_fd); if (!ret) { printf("FAIL (Did not see expected error (invalid fd flags)!)\n"); ret = -1; goto out; } printf("OK\n"); ret = 0; out: if (dmabuf_fd >= 0) close(dmabuf_fd); if (heap_fd >= 0) close(heap_fd); return ret; } int main(void) { DIR *d; struct dirent *dir; int ret = -1; d = opendir(DEVPATH); if (!d) { printf("No %s directory?\n", DEVPATH); return -1; } while ((dir = readdir(d)) != NULL) { if (!strncmp(dir->d_name, ".", 2)) continue; if (!strncmp(dir->d_name, "..", 3)) continue; printf("Testing heap: %s\n", dir->d_name); printf("=======================================\n"); ret = test_alloc_and_import(dir->d_name); if (ret) break; ret = test_alloc_zeroed(dir->d_name, 4 * 1024); if (ret) break; ret = test_alloc_zeroed(dir->d_name, ONE_MEG); if (ret) break; ret = test_alloc_compat(dir->d_name); if (ret) break; ret = test_alloc_errors(dir->d_name); if (ret) break; } closedir(d); return ret; }
linux-master
tools/testing/selftests/dmabuf-heaps/dmabuf-heap.c
// SPDX-License-Identifier: GPL-2.0 int main(void) { return 0; }
linux-master
tools/testing/selftests/landlock/true.c
// SPDX-License-Identifier: GPL-2.0 /* * Landlock tests - Common user space base * * Copyright © 2017-2020 Mickaël Salaün <[email protected]> * Copyright © 2019-2020 ANSSI */ #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <linux/landlock.h> #include <string.h> #include <sys/prctl.h> #include <sys/socket.h> #include <sys/types.h> #include "common.h" #ifndef O_PATH #define O_PATH 010000000 #endif TEST(inconsistent_attr) { const long page_size = sysconf(_SC_PAGESIZE); char *const buf = malloc(page_size + 1); struct landlock_ruleset_attr *const ruleset_attr = (void *)buf; ASSERT_NE(NULL, buf); /* Checks copy_from_user(). */ ASSERT_EQ(-1, landlock_create_ruleset(ruleset_attr, 0, 0)); /* The size if less than sizeof(struct landlock_attr_enforce). */ ASSERT_EQ(EINVAL, errno); ASSERT_EQ(-1, landlock_create_ruleset(ruleset_attr, 1, 0)); ASSERT_EQ(EINVAL, errno); ASSERT_EQ(-1, landlock_create_ruleset(ruleset_attr, 7, 0)); ASSERT_EQ(EINVAL, errno); ASSERT_EQ(-1, landlock_create_ruleset(NULL, 1, 0)); /* The size if less than sizeof(struct landlock_attr_enforce). */ ASSERT_EQ(EFAULT, errno); ASSERT_EQ(-1, landlock_create_ruleset( NULL, sizeof(struct landlock_ruleset_attr), 0)); ASSERT_EQ(EFAULT, errno); ASSERT_EQ(-1, landlock_create_ruleset(ruleset_attr, page_size + 1, 0)); ASSERT_EQ(E2BIG, errno); /* Checks minimal valid attribute size. */ ASSERT_EQ(-1, landlock_create_ruleset(ruleset_attr, 8, 0)); ASSERT_EQ(ENOMSG, errno); ASSERT_EQ(-1, landlock_create_ruleset( ruleset_attr, sizeof(struct landlock_ruleset_attr), 0)); ASSERT_EQ(ENOMSG, errno); ASSERT_EQ(-1, landlock_create_ruleset(ruleset_attr, page_size, 0)); ASSERT_EQ(ENOMSG, errno); /* Checks non-zero value. */ buf[page_size - 2] = '.'; ASSERT_EQ(-1, landlock_create_ruleset(ruleset_attr, page_size, 0)); ASSERT_EQ(E2BIG, errno); ASSERT_EQ(-1, landlock_create_ruleset(ruleset_attr, page_size + 1, 0)); ASSERT_EQ(E2BIG, errno); free(buf); } TEST(abi_version) { const struct landlock_ruleset_attr ruleset_attr = { .handled_access_fs = LANDLOCK_ACCESS_FS_READ_FILE, }; ASSERT_EQ(3, landlock_create_ruleset(NULL, 0, LANDLOCK_CREATE_RULESET_VERSION)); ASSERT_EQ(-1, landlock_create_ruleset(&ruleset_attr, 0, LANDLOCK_CREATE_RULESET_VERSION)); ASSERT_EQ(EINVAL, errno); ASSERT_EQ(-1, landlock_create_ruleset(NULL, sizeof(ruleset_attr), LANDLOCK_CREATE_RULESET_VERSION)); ASSERT_EQ(EINVAL, errno); ASSERT_EQ(-1, landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), LANDLOCK_CREATE_RULESET_VERSION)); ASSERT_EQ(EINVAL, errno); ASSERT_EQ(-1, landlock_create_ruleset(NULL, 0, LANDLOCK_CREATE_RULESET_VERSION | 1 << 31)); ASSERT_EQ(EINVAL, errno); } /* Tests ordering of syscall argument checks. */ TEST(create_ruleset_checks_ordering) { const int last_flag = LANDLOCK_CREATE_RULESET_VERSION; const int invalid_flag = last_flag << 1; int ruleset_fd; const struct landlock_ruleset_attr ruleset_attr = { .handled_access_fs = LANDLOCK_ACCESS_FS_READ_FILE, }; /* Checks priority for invalid flags. */ ASSERT_EQ(-1, landlock_create_ruleset(NULL, 0, invalid_flag)); ASSERT_EQ(EINVAL, errno); ASSERT_EQ(-1, landlock_create_ruleset(&ruleset_attr, 0, invalid_flag)); ASSERT_EQ(EINVAL, errno); ASSERT_EQ(-1, landlock_create_ruleset(NULL, sizeof(ruleset_attr), invalid_flag)); ASSERT_EQ(EINVAL, errno); ASSERT_EQ(-1, landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), invalid_flag)); ASSERT_EQ(EINVAL, errno); /* Checks too big ruleset_attr size. */ ASSERT_EQ(-1, landlock_create_ruleset(&ruleset_attr, -1, 0)); ASSERT_EQ(E2BIG, errno); /* Checks too small ruleset_attr size. */ ASSERT_EQ(-1, landlock_create_ruleset(&ruleset_attr, 0, 0)); ASSERT_EQ(EINVAL, errno); ASSERT_EQ(-1, landlock_create_ruleset(&ruleset_attr, 1, 0)); ASSERT_EQ(EINVAL, errno); /* Checks valid call. */ ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0); ASSERT_LE(0, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); } /* Tests ordering of syscall argument checks. */ TEST(add_rule_checks_ordering) { const struct landlock_ruleset_attr ruleset_attr = { .handled_access_fs = LANDLOCK_ACCESS_FS_EXECUTE, }; struct landlock_path_beneath_attr path_beneath_attr = { .allowed_access = LANDLOCK_ACCESS_FS_EXECUTE, .parent_fd = -1, }; const int ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0); ASSERT_LE(0, ruleset_fd); /* Checks invalid flags. */ ASSERT_EQ(-1, landlock_add_rule(-1, 0, NULL, 1)); ASSERT_EQ(EINVAL, errno); /* Checks invalid ruleset FD. */ ASSERT_EQ(-1, landlock_add_rule(-1, 0, NULL, 0)); ASSERT_EQ(EBADF, errno); /* Checks invalid rule type. */ ASSERT_EQ(-1, landlock_add_rule(ruleset_fd, 0, NULL, 0)); ASSERT_EQ(EINVAL, errno); /* Checks invalid rule attr. */ ASSERT_EQ(-1, landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, NULL, 0)); ASSERT_EQ(EFAULT, errno); /* Checks invalid path_beneath.parent_fd. */ ASSERT_EQ(-1, landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath_attr, 0)); ASSERT_EQ(EBADF, errno); /* Checks valid call. */ path_beneath_attr.parent_fd = open("/tmp", O_PATH | O_NOFOLLOW | O_DIRECTORY | O_CLOEXEC); ASSERT_LE(0, path_beneath_attr.parent_fd); ASSERT_EQ(0, landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath_attr, 0)); ASSERT_EQ(0, close(path_beneath_attr.parent_fd)); ASSERT_EQ(0, close(ruleset_fd)); } /* Tests ordering of syscall argument and permission checks. */ TEST(restrict_self_checks_ordering) { const struct landlock_ruleset_attr ruleset_attr = { .handled_access_fs = LANDLOCK_ACCESS_FS_EXECUTE, }; struct landlock_path_beneath_attr path_beneath_attr = { .allowed_access = LANDLOCK_ACCESS_FS_EXECUTE, .parent_fd = -1, }; const int ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0); ASSERT_LE(0, ruleset_fd); path_beneath_attr.parent_fd = open("/tmp", O_PATH | O_NOFOLLOW | O_DIRECTORY | O_CLOEXEC); ASSERT_LE(0, path_beneath_attr.parent_fd); ASSERT_EQ(0, landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath_attr, 0)); ASSERT_EQ(0, close(path_beneath_attr.parent_fd)); /* Checks unprivileged enforcement without no_new_privs. */ drop_caps(_metadata); ASSERT_EQ(-1, landlock_restrict_self(-1, -1)); ASSERT_EQ(EPERM, errno); ASSERT_EQ(-1, landlock_restrict_self(-1, 0)); ASSERT_EQ(EPERM, errno); ASSERT_EQ(-1, landlock_restrict_self(ruleset_fd, 0)); ASSERT_EQ(EPERM, errno); ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)); /* Checks invalid flags. */ ASSERT_EQ(-1, landlock_restrict_self(-1, -1)); ASSERT_EQ(EINVAL, errno); /* Checks invalid ruleset FD. */ ASSERT_EQ(-1, landlock_restrict_self(-1, 0)); ASSERT_EQ(EBADF, errno); /* Checks valid call. */ ASSERT_EQ(0, landlock_restrict_self(ruleset_fd, 0)); ASSERT_EQ(0, close(ruleset_fd)); } TEST(ruleset_fd_io) { struct landlock_ruleset_attr ruleset_attr = { .handled_access_fs = LANDLOCK_ACCESS_FS_READ_FILE, }; int ruleset_fd; char buf; drop_caps(_metadata); ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0); ASSERT_LE(0, ruleset_fd); ASSERT_EQ(-1, write(ruleset_fd, ".", 1)); ASSERT_EQ(EINVAL, errno); ASSERT_EQ(-1, read(ruleset_fd, &buf, 1)); ASSERT_EQ(EINVAL, errno); ASSERT_EQ(0, close(ruleset_fd)); } /* Tests enforcement of a ruleset FD transferred through a UNIX socket. */ TEST(ruleset_fd_transfer) { struct landlock_ruleset_attr ruleset_attr = { .handled_access_fs = LANDLOCK_ACCESS_FS_READ_DIR, }; struct landlock_path_beneath_attr path_beneath_attr = { .allowed_access = LANDLOCK_ACCESS_FS_READ_DIR, }; int ruleset_fd_tx, dir_fd; int socket_fds[2]; pid_t child; int status; drop_caps(_metadata); /* Creates a test ruleset with a simple rule. */ ruleset_fd_tx = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0); ASSERT_LE(0, ruleset_fd_tx); path_beneath_attr.parent_fd = open("/tmp", O_PATH | O_NOFOLLOW | O_DIRECTORY | O_CLOEXEC); ASSERT_LE(0, path_beneath_attr.parent_fd); ASSERT_EQ(0, landlock_add_rule(ruleset_fd_tx, LANDLOCK_RULE_PATH_BENEATH, &path_beneath_attr, 0)); ASSERT_EQ(0, close(path_beneath_attr.parent_fd)); /* Sends the ruleset FD over a socketpair and then close it. */ ASSERT_EQ(0, socketpair(AF_UNIX, SOCK_STREAM | SOCK_CLOEXEC, 0, socket_fds)); ASSERT_EQ(0, send_fd(socket_fds[0], ruleset_fd_tx)); ASSERT_EQ(0, close(socket_fds[0])); ASSERT_EQ(0, close(ruleset_fd_tx)); child = fork(); ASSERT_LE(0, child); if (child == 0) { const int ruleset_fd_rx = recv_fd(socket_fds[1]); ASSERT_LE(0, ruleset_fd_rx); ASSERT_EQ(0, close(socket_fds[1])); /* Enforces the received ruleset on the child. */ ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)); ASSERT_EQ(0, landlock_restrict_self(ruleset_fd_rx, 0)); ASSERT_EQ(0, close(ruleset_fd_rx)); /* Checks that the ruleset enforcement. */ ASSERT_EQ(-1, open("/", O_RDONLY | O_DIRECTORY | O_CLOEXEC)); ASSERT_EQ(EACCES, errno); dir_fd = open("/tmp", O_RDONLY | O_DIRECTORY | O_CLOEXEC); ASSERT_LE(0, dir_fd); ASSERT_EQ(0, close(dir_fd)); _exit(_metadata->passed ? EXIT_SUCCESS : EXIT_FAILURE); return; } ASSERT_EQ(0, close(socket_fds[1])); /* Checks that the parent is unrestricted. */ dir_fd = open("/", O_RDONLY | O_DIRECTORY | O_CLOEXEC); ASSERT_LE(0, dir_fd); ASSERT_EQ(0, close(dir_fd)); dir_fd = open("/tmp", O_RDONLY | O_DIRECTORY | O_CLOEXEC); ASSERT_LE(0, dir_fd); ASSERT_EQ(0, close(dir_fd)); ASSERT_EQ(child, waitpid(child, &status, 0)); ASSERT_EQ(1, WIFEXITED(status)); ASSERT_EQ(EXIT_SUCCESS, WEXITSTATUS(status)); } TEST_HARNESS_MAIN
linux-master
tools/testing/selftests/landlock/base_test.c
// SPDX-License-Identifier: GPL-2.0 /* * Landlock tests - Ptrace * * Copyright © 2017-2020 Mickaël Salaün <[email protected]> * Copyright © 2019-2020 ANSSI */ #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <linux/landlock.h> #include <signal.h> #include <sys/prctl.h> #include <sys/ptrace.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #include "common.h" /* Copied from security/yama/yama_lsm.c */ #define YAMA_SCOPE_DISABLED 0 #define YAMA_SCOPE_RELATIONAL 1 #define YAMA_SCOPE_CAPABILITY 2 #define YAMA_SCOPE_NO_ATTACH 3 static void create_domain(struct __test_metadata *const _metadata) { int ruleset_fd; struct landlock_ruleset_attr ruleset_attr = { .handled_access_fs = LANDLOCK_ACCESS_FS_MAKE_BLOCK, }; ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0); EXPECT_LE(0, ruleset_fd) { TH_LOG("Failed to create a ruleset: %s", strerror(errno)); } EXPECT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)); EXPECT_EQ(0, landlock_restrict_self(ruleset_fd, 0)); EXPECT_EQ(0, close(ruleset_fd)); } static int test_ptrace_read(const pid_t pid) { static const char path_template[] = "/proc/%d/environ"; char procenv_path[sizeof(path_template) + 10]; int procenv_path_size, fd; procenv_path_size = snprintf(procenv_path, sizeof(procenv_path), path_template, pid); if (procenv_path_size >= sizeof(procenv_path)) return E2BIG; fd = open(procenv_path, O_RDONLY | O_CLOEXEC); if (fd < 0) return errno; /* * Mixing error codes from close(2) and open(2) should not lead to any * (access type) confusion for this test. */ if (close(fd) != 0) return errno; return 0; } static int get_yama_ptrace_scope(void) { int ret; char buf[2] = {}; const int fd = open("/proc/sys/kernel/yama/ptrace_scope", O_RDONLY); if (fd < 0) return 0; if (read(fd, buf, 1) < 0) { close(fd); return -1; } ret = atoi(buf); close(fd); return ret; } /* clang-format off */ FIXTURE(hierarchy) {}; /* clang-format on */ FIXTURE_VARIANT(hierarchy) { const bool domain_both; const bool domain_parent; const bool domain_child; }; /* * Test multiple tracing combinations between a parent process P1 and a child * process P2. * * Yama's scoped ptrace is presumed disabled. If enabled, this optional * restriction is enforced in addition to any Landlock check, which means that * all P2 requests to trace P1 would be denied. */ /* * No domain * * P1-. P1 -> P2 : allow * \ P2 -> P1 : allow * 'P2 */ /* clang-format off */ FIXTURE_VARIANT_ADD(hierarchy, allow_without_domain) { /* clang-format on */ .domain_both = false, .domain_parent = false, .domain_child = false, }; /* * Child domain * * P1--. P1 -> P2 : allow * \ P2 -> P1 : deny * .'-----. * | P2 | * '------' */ /* clang-format off */ FIXTURE_VARIANT_ADD(hierarchy, allow_with_one_domain) { /* clang-format on */ .domain_both = false, .domain_parent = false, .domain_child = true, }; /* * Parent domain * .------. * | P1 --. P1 -> P2 : deny * '------' \ P2 -> P1 : allow * ' * P2 */ /* clang-format off */ FIXTURE_VARIANT_ADD(hierarchy, deny_with_parent_domain) { /* clang-format on */ .domain_both = false, .domain_parent = true, .domain_child = false, }; /* * Parent + child domain (siblings) * .------. * | P1 ---. P1 -> P2 : deny * '------' \ P2 -> P1 : deny * .---'--. * | P2 | * '------' */ /* clang-format off */ FIXTURE_VARIANT_ADD(hierarchy, deny_with_sibling_domain) { /* clang-format on */ .domain_both = false, .domain_parent = true, .domain_child = true, }; /* * Same domain (inherited) * .-------------. * | P1----. | P1 -> P2 : allow * | \ | P2 -> P1 : allow * | ' | * | P2 | * '-------------' */ /* clang-format off */ FIXTURE_VARIANT_ADD(hierarchy, allow_sibling_domain) { /* clang-format on */ .domain_both = true, .domain_parent = false, .domain_child = false, }; /* * Inherited + child domain * .-----------------. * | P1----. | P1 -> P2 : allow * | \ | P2 -> P1 : deny * | .-'----. | * | | P2 | | * | '------' | * '-----------------' */ /* clang-format off */ FIXTURE_VARIANT_ADD(hierarchy, allow_with_nested_domain) { /* clang-format on */ .domain_both = true, .domain_parent = false, .domain_child = true, }; /* * Inherited + parent domain * .-----------------. * |.------. | P1 -> P2 : deny * || P1 ----. | P2 -> P1 : allow * |'------' \ | * | ' | * | P2 | * '-----------------' */ /* clang-format off */ FIXTURE_VARIANT_ADD(hierarchy, deny_with_nested_and_parent_domain) { /* clang-format on */ .domain_both = true, .domain_parent = true, .domain_child = false, }; /* * Inherited + parent and child domain (siblings) * .-----------------. * | .------. | P1 -> P2 : deny * | | P1 . | P2 -> P1 : deny * | '------'\ | * | \ | * | .--'---. | * | | P2 | | * | '------' | * '-----------------' */ /* clang-format off */ FIXTURE_VARIANT_ADD(hierarchy, deny_with_forked_domain) { /* clang-format on */ .domain_both = true, .domain_parent = true, .domain_child = true, }; FIXTURE_SETUP(hierarchy) { } FIXTURE_TEARDOWN(hierarchy) { } /* Test PTRACE_TRACEME and PTRACE_ATTACH for parent and child. */ TEST_F(hierarchy, trace) { pid_t child, parent; int status, err_proc_read; int pipe_child[2], pipe_parent[2]; int yama_ptrace_scope; char buf_parent; long ret; bool can_read_child, can_trace_child, can_read_parent, can_trace_parent; yama_ptrace_scope = get_yama_ptrace_scope(); ASSERT_LE(0, yama_ptrace_scope); if (yama_ptrace_scope > YAMA_SCOPE_DISABLED) TH_LOG("Incomplete tests due to Yama restrictions (scope %d)", yama_ptrace_scope); /* * can_read_child is true if a parent process can read its child * process, which is only the case when the parent process is not * isolated from the child with a dedicated Landlock domain. */ can_read_child = !variant->domain_parent; /* * can_trace_child is true if a parent process can trace its child * process. This depends on two conditions: * - The parent process is not isolated from the child with a dedicated * Landlock domain. * - Yama allows tracing children (up to YAMA_SCOPE_RELATIONAL). */ can_trace_child = can_read_child && yama_ptrace_scope <= YAMA_SCOPE_RELATIONAL; /* * can_read_parent is true if a child process can read its parent * process, which is only the case when the child process is not * isolated from the parent with a dedicated Landlock domain. */ can_read_parent = !variant->domain_child; /* * can_trace_parent is true if a child process can trace its parent * process. This depends on two conditions: * - The child process is not isolated from the parent with a dedicated * Landlock domain. * - Yama is disabled (YAMA_SCOPE_DISABLED). */ can_trace_parent = can_read_parent && yama_ptrace_scope <= YAMA_SCOPE_DISABLED; /* * Removes all effective and permitted capabilities to not interfere * with cap_ptrace_access_check() in case of PTRACE_MODE_FSCREDS. */ drop_caps(_metadata); parent = getpid(); ASSERT_EQ(0, pipe2(pipe_child, O_CLOEXEC)); ASSERT_EQ(0, pipe2(pipe_parent, O_CLOEXEC)); if (variant->domain_both) { create_domain(_metadata); if (!_metadata->passed) /* Aborts before forking. */ return; } child = fork(); ASSERT_LE(0, child); if (child == 0) { char buf_child; ASSERT_EQ(0, close(pipe_parent[1])); ASSERT_EQ(0, close(pipe_child[0])); if (variant->domain_child) create_domain(_metadata); /* Waits for the parent to be in a domain, if any. */ ASSERT_EQ(1, read(pipe_parent[0], &buf_child, 1)); /* Tests PTRACE_MODE_READ on the parent. */ err_proc_read = test_ptrace_read(parent); if (can_read_parent) { EXPECT_EQ(0, err_proc_read); } else { EXPECT_EQ(EACCES, err_proc_read); } /* Tests PTRACE_ATTACH on the parent. */ ret = ptrace(PTRACE_ATTACH, parent, NULL, 0); if (can_trace_parent) { EXPECT_EQ(0, ret); } else { EXPECT_EQ(-1, ret); EXPECT_EQ(EPERM, errno); } if (ret == 0) { ASSERT_EQ(parent, waitpid(parent, &status, 0)); ASSERT_EQ(1, WIFSTOPPED(status)); ASSERT_EQ(0, ptrace(PTRACE_DETACH, parent, NULL, 0)); } /* Tests child PTRACE_TRACEME. */ ret = ptrace(PTRACE_TRACEME); if (can_trace_child) { EXPECT_EQ(0, ret); } else { EXPECT_EQ(-1, ret); EXPECT_EQ(EPERM, errno); } /* * Signals that the PTRACE_ATTACH test is done and the * PTRACE_TRACEME test is ongoing. */ ASSERT_EQ(1, write(pipe_child[1], ".", 1)); if (can_trace_child) { ASSERT_EQ(0, raise(SIGSTOP)); } /* Waits for the parent PTRACE_ATTACH test. */ ASSERT_EQ(1, read(pipe_parent[0], &buf_child, 1)); _exit(_metadata->passed ? EXIT_SUCCESS : EXIT_FAILURE); return; } ASSERT_EQ(0, close(pipe_child[1])); ASSERT_EQ(0, close(pipe_parent[0])); if (variant->domain_parent) create_domain(_metadata); /* Signals that the parent is in a domain, if any. */ ASSERT_EQ(1, write(pipe_parent[1], ".", 1)); /* * Waits for the child to test PTRACE_ATTACH on the parent and start * testing PTRACE_TRACEME. */ ASSERT_EQ(1, read(pipe_child[0], &buf_parent, 1)); /* Tests child PTRACE_TRACEME. */ if (can_trace_child) { ASSERT_EQ(child, waitpid(child, &status, 0)); ASSERT_EQ(1, WIFSTOPPED(status)); ASSERT_EQ(0, ptrace(PTRACE_DETACH, child, NULL, 0)); } else { /* The child should not be traced by the parent. */ EXPECT_EQ(-1, ptrace(PTRACE_DETACH, child, NULL, 0)); EXPECT_EQ(ESRCH, errno); } /* Tests PTRACE_MODE_READ on the child. */ err_proc_read = test_ptrace_read(child); if (can_read_child) { EXPECT_EQ(0, err_proc_read); } else { EXPECT_EQ(EACCES, err_proc_read); } /* Tests PTRACE_ATTACH on the child. */ ret = ptrace(PTRACE_ATTACH, child, NULL, 0); if (can_trace_child) { EXPECT_EQ(0, ret); } else { EXPECT_EQ(-1, ret); EXPECT_EQ(EPERM, errno); } if (ret == 0) { ASSERT_EQ(child, waitpid(child, &status, 0)); ASSERT_EQ(1, WIFSTOPPED(status)); ASSERT_EQ(0, ptrace(PTRACE_DETACH, child, NULL, 0)); } /* Signals that the parent PTRACE_ATTACH test is done. */ ASSERT_EQ(1, write(pipe_parent[1], ".", 1)); ASSERT_EQ(child, waitpid(child, &status, 0)); if (WIFSIGNALED(status) || !WIFEXITED(status) || WEXITSTATUS(status) != EXIT_SUCCESS) _metadata->passed = 0; } TEST_HARNESS_MAIN
linux-master
tools/testing/selftests/landlock/ptrace_test.c
// SPDX-License-Identifier: GPL-2.0 /* * Landlock tests - Filesystem * * Copyright © 2017-2020 Mickaël Salaün <[email protected]> * Copyright © 2020 ANSSI * Copyright © 2020-2022 Microsoft Corporation */ #define _GNU_SOURCE #include <fcntl.h> #include <linux/landlock.h> #include <linux/magic.h> #include <sched.h> #include <stdio.h> #include <string.h> #include <sys/capability.h> #include <sys/mount.h> #include <sys/prctl.h> #include <sys/sendfile.h> #include <sys/stat.h> #include <sys/sysmacros.h> #include <sys/vfs.h> #include <unistd.h> #include "common.h" #ifndef renameat2 int renameat2(int olddirfd, const char *oldpath, int newdirfd, const char *newpath, unsigned int flags) { return syscall(__NR_renameat2, olddirfd, oldpath, newdirfd, newpath, flags); } #endif #ifndef RENAME_EXCHANGE #define RENAME_EXCHANGE (1 << 1) #endif #define TMP_DIR "tmp" #define BINARY_PATH "./true" /* Paths (sibling number and depth) */ static const char dir_s1d1[] = TMP_DIR "/s1d1"; static const char file1_s1d1[] = TMP_DIR "/s1d1/f1"; static const char file2_s1d1[] = TMP_DIR "/s1d1/f2"; static const char dir_s1d2[] = TMP_DIR "/s1d1/s1d2"; static const char file1_s1d2[] = TMP_DIR "/s1d1/s1d2/f1"; static const char file2_s1d2[] = TMP_DIR "/s1d1/s1d2/f2"; static const char dir_s1d3[] = TMP_DIR "/s1d1/s1d2/s1d3"; static const char file1_s1d3[] = TMP_DIR "/s1d1/s1d2/s1d3/f1"; static const char file2_s1d3[] = TMP_DIR "/s1d1/s1d2/s1d3/f2"; static const char dir_s2d1[] = TMP_DIR "/s2d1"; static const char file1_s2d1[] = TMP_DIR "/s2d1/f1"; static const char dir_s2d2[] = TMP_DIR "/s2d1/s2d2"; static const char file1_s2d2[] = TMP_DIR "/s2d1/s2d2/f1"; static const char dir_s2d3[] = TMP_DIR "/s2d1/s2d2/s2d3"; static const char file1_s2d3[] = TMP_DIR "/s2d1/s2d2/s2d3/f1"; static const char file2_s2d3[] = TMP_DIR "/s2d1/s2d2/s2d3/f2"; static const char dir_s3d1[] = TMP_DIR "/s3d1"; static const char file1_s3d1[] = TMP_DIR "/s3d1/f1"; /* dir_s3d2 is a mount point. */ static const char dir_s3d2[] = TMP_DIR "/s3d1/s3d2"; static const char dir_s3d3[] = TMP_DIR "/s3d1/s3d2/s3d3"; /* * layout1 hierarchy: * * tmp * ├── s1d1 * │   ├── f1 * │   ├── f2 * │   └── s1d2 * │   ├── f1 * │   ├── f2 * │   └── s1d3 * │   ├── f1 * │   └── f2 * ├── s2d1 * │   ├── f1 * │   └── s2d2 * │   ├── f1 * │   └── s2d3 * │   ├── f1 * │   └── f2 * └── s3d1 *    ├── f1 * └── s3d2 * └── s3d3 */ static bool fgrep(FILE *const inf, const char *const str) { char line[32]; const int slen = strlen(str); while (!feof(inf)) { if (!fgets(line, sizeof(line), inf)) break; if (strncmp(line, str, slen)) continue; return true; } return false; } static bool supports_filesystem(const char *const filesystem) { char str[32]; int len; bool res = true; FILE *const inf = fopen("/proc/filesystems", "r"); /* * Consider that the filesystem is supported if we cannot get the * supported ones. */ if (!inf) return true; /* filesystem can be null for bind mounts. */ if (!filesystem) goto out; len = snprintf(str, sizeof(str), "nodev\t%s\n", filesystem); if (len >= sizeof(str)) /* Ignores too-long filesystem names. */ goto out; res = fgrep(inf, str); out: fclose(inf); return res; } static bool cwd_matches_fs(unsigned int fs_magic) { struct statfs statfs_buf; if (!fs_magic) return true; if (statfs(".", &statfs_buf)) return true; return statfs_buf.f_type == fs_magic; } static void mkdir_parents(struct __test_metadata *const _metadata, const char *const path) { char *walker; const char *parent; int i, err; ASSERT_NE(path[0], '\0'); walker = strdup(path); ASSERT_NE(NULL, walker); parent = walker; for (i = 1; walker[i]; i++) { if (walker[i] != '/') continue; walker[i] = '\0'; err = mkdir(parent, 0700); ASSERT_FALSE(err && errno != EEXIST) { TH_LOG("Failed to create directory \"%s\": %s", parent, strerror(errno)); } walker[i] = '/'; } free(walker); } static void create_directory(struct __test_metadata *const _metadata, const char *const path) { mkdir_parents(_metadata, path); ASSERT_EQ(0, mkdir(path, 0700)) { TH_LOG("Failed to create directory \"%s\": %s", path, strerror(errno)); } } static void create_file(struct __test_metadata *const _metadata, const char *const path) { mkdir_parents(_metadata, path); ASSERT_EQ(0, mknod(path, S_IFREG | 0700, 0)) { TH_LOG("Failed to create file \"%s\": %s", path, strerror(errno)); } } static int remove_path(const char *const path) { char *walker; int i, ret, err = 0; walker = strdup(path); if (!walker) { err = ENOMEM; goto out; } if (unlink(path) && rmdir(path)) { if (errno != ENOENT && errno != ENOTDIR) err = errno; goto out; } for (i = strlen(walker); i > 0; i--) { if (walker[i] != '/') continue; walker[i] = '\0'; ret = rmdir(walker); if (ret) { if (errno != ENOTEMPTY && errno != EBUSY) err = errno; goto out; } if (strcmp(walker, TMP_DIR) == 0) goto out; } out: free(walker); return err; } struct mnt_opt { const char *const source; const char *const type; const unsigned long flags; const char *const data; }; const struct mnt_opt mnt_tmp = { .type = "tmpfs", .data = "size=4m,mode=700", }; static int mount_opt(const struct mnt_opt *const mnt, const char *const target) { return mount(mnt->source ?: mnt->type, target, mnt->type, mnt->flags, mnt->data); } static void prepare_layout_opt(struct __test_metadata *const _metadata, const struct mnt_opt *const mnt) { disable_caps(_metadata); umask(0077); create_directory(_metadata, TMP_DIR); /* * Do not pollute the rest of the system: creates a private mount point * for tests relying on pivot_root(2) and move_mount(2). */ set_cap(_metadata, CAP_SYS_ADMIN); ASSERT_EQ(0, unshare(CLONE_NEWNS | CLONE_NEWCGROUP)); ASSERT_EQ(0, mount_opt(mnt, TMP_DIR)) { TH_LOG("Failed to mount the %s filesystem: %s", mnt->type, strerror(errno)); /* * FIXTURE_TEARDOWN() is not called when FIXTURE_SETUP() * failed, so we need to explicitly do a minimal cleanup to * avoid cascading errors with other tests that don't depend on * the same filesystem. */ remove_path(TMP_DIR); } ASSERT_EQ(0, mount(NULL, TMP_DIR, NULL, MS_PRIVATE | MS_REC, NULL)); clear_cap(_metadata, CAP_SYS_ADMIN); } static void prepare_layout(struct __test_metadata *const _metadata) { prepare_layout_opt(_metadata, &mnt_tmp); } static void cleanup_layout(struct __test_metadata *const _metadata) { set_cap(_metadata, CAP_SYS_ADMIN); EXPECT_EQ(0, umount(TMP_DIR)); clear_cap(_metadata, CAP_SYS_ADMIN); EXPECT_EQ(0, remove_path(TMP_DIR)); } /* clang-format off */ FIXTURE(layout0) {}; /* clang-format on */ FIXTURE_SETUP(layout0) { prepare_layout(_metadata); } FIXTURE_TEARDOWN(layout0) { cleanup_layout(_metadata); } static void create_layout1(struct __test_metadata *const _metadata) { create_file(_metadata, file1_s1d1); create_file(_metadata, file1_s1d2); create_file(_metadata, file1_s1d3); create_file(_metadata, file2_s1d1); create_file(_metadata, file2_s1d2); create_file(_metadata, file2_s1d3); create_file(_metadata, file1_s2d1); create_file(_metadata, file1_s2d2); create_file(_metadata, file1_s2d3); create_file(_metadata, file2_s2d3); create_file(_metadata, file1_s3d1); create_directory(_metadata, dir_s3d2); set_cap(_metadata, CAP_SYS_ADMIN); ASSERT_EQ(0, mount_opt(&mnt_tmp, dir_s3d2)); clear_cap(_metadata, CAP_SYS_ADMIN); ASSERT_EQ(0, mkdir(dir_s3d3, 0700)); } static void remove_layout1(struct __test_metadata *const _metadata) { EXPECT_EQ(0, remove_path(file2_s1d3)); EXPECT_EQ(0, remove_path(file2_s1d2)); EXPECT_EQ(0, remove_path(file2_s1d1)); EXPECT_EQ(0, remove_path(file1_s1d3)); EXPECT_EQ(0, remove_path(file1_s1d2)); EXPECT_EQ(0, remove_path(file1_s1d1)); EXPECT_EQ(0, remove_path(dir_s1d3)); EXPECT_EQ(0, remove_path(file2_s2d3)); EXPECT_EQ(0, remove_path(file1_s2d3)); EXPECT_EQ(0, remove_path(file1_s2d2)); EXPECT_EQ(0, remove_path(file1_s2d1)); EXPECT_EQ(0, remove_path(dir_s2d2)); EXPECT_EQ(0, remove_path(file1_s3d1)); EXPECT_EQ(0, remove_path(dir_s3d3)); set_cap(_metadata, CAP_SYS_ADMIN); umount(dir_s3d2); clear_cap(_metadata, CAP_SYS_ADMIN); EXPECT_EQ(0, remove_path(dir_s3d2)); } /* clang-format off */ FIXTURE(layout1) {}; /* clang-format on */ FIXTURE_SETUP(layout1) { prepare_layout(_metadata); create_layout1(_metadata); } FIXTURE_TEARDOWN(layout1) { remove_layout1(_metadata); cleanup_layout(_metadata); } /* * This helper enables to use the ASSERT_* macros and print the line number * pointing to the test caller. */ static int test_open_rel(const int dirfd, const char *const path, const int flags) { int fd; /* Works with file and directories. */ fd = openat(dirfd, path, flags | O_CLOEXEC); if (fd < 0) return errno; /* * Mixing error codes from close(2) and open(2) should not lead to any * (access type) confusion for this test. */ if (close(fd) != 0) return errno; return 0; } static int test_open(const char *const path, const int flags) { return test_open_rel(AT_FDCWD, path, flags); } TEST_F_FORK(layout1, no_restriction) { ASSERT_EQ(0, test_open(dir_s1d1, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s1d1, O_RDONLY)); ASSERT_EQ(0, test_open(file2_s1d1, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s1d2, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s1d2, O_RDONLY)); ASSERT_EQ(0, test_open(file2_s1d2, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s1d3, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s1d3, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s2d1, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s2d1, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s2d2, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s2d2, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s2d3, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s2d3, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s3d1, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s3d2, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s3d3, O_RDONLY)); } TEST_F_FORK(layout1, inval) { struct landlock_path_beneath_attr path_beneath = { .allowed_access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, .parent_fd = -1, }; struct landlock_ruleset_attr ruleset_attr = { .handled_access_fs = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, }; int ruleset_fd; path_beneath.parent_fd = open(dir_s1d2, O_PATH | O_DIRECTORY | O_CLOEXEC); ASSERT_LE(0, path_beneath.parent_fd); ruleset_fd = open(dir_s1d1, O_PATH | O_DIRECTORY | O_CLOEXEC); ASSERT_LE(0, ruleset_fd); ASSERT_EQ(-1, landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0)); /* Returns EBADF because ruleset_fd is not a landlock-ruleset FD. */ ASSERT_EQ(EBADF, errno); ASSERT_EQ(0, close(ruleset_fd)); ruleset_fd = open(dir_s1d1, O_DIRECTORY | O_CLOEXEC); ASSERT_LE(0, ruleset_fd); ASSERT_EQ(-1, landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0)); /* Returns EBADFD because ruleset_fd is not a valid ruleset. */ ASSERT_EQ(EBADFD, errno); ASSERT_EQ(0, close(ruleset_fd)); /* Gets a real ruleset. */ ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0); ASSERT_LE(0, ruleset_fd); ASSERT_EQ(0, landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0)); ASSERT_EQ(0, close(path_beneath.parent_fd)); /* Tests without O_PATH. */ path_beneath.parent_fd = open(dir_s1d2, O_DIRECTORY | O_CLOEXEC); ASSERT_LE(0, path_beneath.parent_fd); ASSERT_EQ(0, landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0)); ASSERT_EQ(0, close(path_beneath.parent_fd)); /* Tests with a ruleset FD. */ path_beneath.parent_fd = ruleset_fd; ASSERT_EQ(-1, landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0)); ASSERT_EQ(EBADFD, errno); /* Checks unhandled allowed_access. */ path_beneath.parent_fd = open(dir_s1d2, O_PATH | O_DIRECTORY | O_CLOEXEC); ASSERT_LE(0, path_beneath.parent_fd); /* Test with legitimate values. */ path_beneath.allowed_access |= LANDLOCK_ACCESS_FS_EXECUTE; ASSERT_EQ(-1, landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0)); ASSERT_EQ(EINVAL, errno); path_beneath.allowed_access &= ~LANDLOCK_ACCESS_FS_EXECUTE; /* Tests with denied-by-default access right. */ path_beneath.allowed_access |= LANDLOCK_ACCESS_FS_REFER; ASSERT_EQ(-1, landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0)); ASSERT_EQ(EINVAL, errno); path_beneath.allowed_access &= ~LANDLOCK_ACCESS_FS_REFER; /* Test with unknown (64-bits) value. */ path_beneath.allowed_access |= (1ULL << 60); ASSERT_EQ(-1, landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0)); ASSERT_EQ(EINVAL, errno); path_beneath.allowed_access &= ~(1ULL << 60); /* Test with no access. */ path_beneath.allowed_access = 0; ASSERT_EQ(-1, landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0)); ASSERT_EQ(ENOMSG, errno); path_beneath.allowed_access &= ~(1ULL << 60); ASSERT_EQ(0, close(path_beneath.parent_fd)); /* Enforces the ruleset. */ ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)); ASSERT_EQ(0, landlock_restrict_self(ruleset_fd, 0)); ASSERT_EQ(0, close(ruleset_fd)); } /* clang-format off */ #define ACCESS_FILE ( \ LANDLOCK_ACCESS_FS_EXECUTE | \ LANDLOCK_ACCESS_FS_WRITE_FILE | \ LANDLOCK_ACCESS_FS_READ_FILE | \ LANDLOCK_ACCESS_FS_TRUNCATE) #define ACCESS_LAST LANDLOCK_ACCESS_FS_TRUNCATE #define ACCESS_ALL ( \ ACCESS_FILE | \ LANDLOCK_ACCESS_FS_READ_DIR | \ LANDLOCK_ACCESS_FS_REMOVE_DIR | \ LANDLOCK_ACCESS_FS_REMOVE_FILE | \ LANDLOCK_ACCESS_FS_MAKE_CHAR | \ LANDLOCK_ACCESS_FS_MAKE_DIR | \ LANDLOCK_ACCESS_FS_MAKE_REG | \ LANDLOCK_ACCESS_FS_MAKE_SOCK | \ LANDLOCK_ACCESS_FS_MAKE_FIFO | \ LANDLOCK_ACCESS_FS_MAKE_BLOCK | \ LANDLOCK_ACCESS_FS_MAKE_SYM | \ LANDLOCK_ACCESS_FS_REFER) /* clang-format on */ TEST_F_FORK(layout1, file_and_dir_access_rights) { __u64 access; int err; struct landlock_path_beneath_attr path_beneath_file = {}, path_beneath_dir = {}; struct landlock_ruleset_attr ruleset_attr = { .handled_access_fs = ACCESS_ALL, }; const int ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0); ASSERT_LE(0, ruleset_fd); /* Tests access rights for files. */ path_beneath_file.parent_fd = open(file1_s1d2, O_PATH | O_CLOEXEC); ASSERT_LE(0, path_beneath_file.parent_fd); /* Tests access rights for directories. */ path_beneath_dir.parent_fd = open(dir_s1d2, O_PATH | O_DIRECTORY | O_CLOEXEC); ASSERT_LE(0, path_beneath_dir.parent_fd); for (access = 1; access <= ACCESS_LAST; access <<= 1) { path_beneath_dir.allowed_access = access; ASSERT_EQ(0, landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath_dir, 0)); path_beneath_file.allowed_access = access; err = landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath_file, 0); if (access & ACCESS_FILE) { ASSERT_EQ(0, err); } else { ASSERT_EQ(-1, err); ASSERT_EQ(EINVAL, errno); } } ASSERT_EQ(0, close(path_beneath_file.parent_fd)); ASSERT_EQ(0, close(path_beneath_dir.parent_fd)); ASSERT_EQ(0, close(ruleset_fd)); } TEST_F_FORK(layout0, unknown_access_rights) { __u64 access_mask; for (access_mask = 1ULL << 63; access_mask != ACCESS_LAST; access_mask >>= 1) { struct landlock_ruleset_attr ruleset_attr = { .handled_access_fs = access_mask, }; ASSERT_EQ(-1, landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0)); ASSERT_EQ(EINVAL, errno); } } static void add_path_beneath(struct __test_metadata *const _metadata, const int ruleset_fd, const __u64 allowed_access, const char *const path) { struct landlock_path_beneath_attr path_beneath = { .allowed_access = allowed_access, }; path_beneath.parent_fd = open(path, O_PATH | O_CLOEXEC); ASSERT_LE(0, path_beneath.parent_fd) { TH_LOG("Failed to open directory \"%s\": %s", path, strerror(errno)); } ASSERT_EQ(0, landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0)) { TH_LOG("Failed to update the ruleset with \"%s\": %s", path, strerror(errno)); } ASSERT_EQ(0, close(path_beneath.parent_fd)); } struct rule { const char *path; __u64 access; }; /* clang-format off */ #define ACCESS_RO ( \ LANDLOCK_ACCESS_FS_READ_FILE | \ LANDLOCK_ACCESS_FS_READ_DIR) #define ACCESS_RW ( \ ACCESS_RO | \ LANDLOCK_ACCESS_FS_WRITE_FILE) /* clang-format on */ static int create_ruleset(struct __test_metadata *const _metadata, const __u64 handled_access_fs, const struct rule rules[]) { int ruleset_fd, i; struct landlock_ruleset_attr ruleset_attr = { .handled_access_fs = handled_access_fs, }; ASSERT_NE(NULL, rules) { TH_LOG("No rule list"); } ASSERT_NE(NULL, rules[0].path) { TH_LOG("Empty rule list"); } ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0); ASSERT_LE(0, ruleset_fd) { TH_LOG("Failed to create a ruleset: %s", strerror(errno)); } for (i = 0; rules[i].path; i++) { add_path_beneath(_metadata, ruleset_fd, rules[i].access, rules[i].path); } return ruleset_fd; } static void enforce_ruleset(struct __test_metadata *const _metadata, const int ruleset_fd) { ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)); ASSERT_EQ(0, landlock_restrict_self(ruleset_fd, 0)) { TH_LOG("Failed to enforce ruleset: %s", strerror(errno)); } } TEST_F_FORK(layout0, proc_nsfs) { const struct rule rules[] = { { .path = "/dev/null", .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, }, {}, }; struct landlock_path_beneath_attr path_beneath; const int ruleset_fd = create_ruleset( _metadata, rules[0].access | LANDLOCK_ACCESS_FS_READ_DIR, rules); ASSERT_LE(0, ruleset_fd); ASSERT_EQ(0, test_open("/proc/self/ns/mnt", O_RDONLY)); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(EACCES, test_open("/", O_RDONLY)); ASSERT_EQ(EACCES, test_open("/dev", O_RDONLY)); ASSERT_EQ(0, test_open("/dev/null", O_RDONLY)); ASSERT_EQ(EACCES, test_open("/dev/full", O_RDONLY)); ASSERT_EQ(EACCES, test_open("/proc", O_RDONLY)); ASSERT_EQ(EACCES, test_open("/proc/self", O_RDONLY)); ASSERT_EQ(EACCES, test_open("/proc/self/ns", O_RDONLY)); /* * Because nsfs is an internal filesystem, /proc/self/ns/mnt is a * disconnected path. Such path cannot be identified and must then be * allowed. */ ASSERT_EQ(0, test_open("/proc/self/ns/mnt", O_RDONLY)); /* * Checks that it is not possible to add nsfs-like filesystem * references to a ruleset. */ path_beneath.allowed_access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, path_beneath.parent_fd = open("/proc/self/ns/mnt", O_PATH | O_CLOEXEC); ASSERT_LE(0, path_beneath.parent_fd); ASSERT_EQ(-1, landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0)); ASSERT_EQ(EBADFD, errno); ASSERT_EQ(0, close(path_beneath.parent_fd)); } TEST_F_FORK(layout0, unpriv) { const struct rule rules[] = { { .path = TMP_DIR, .access = ACCESS_RO, }, {}, }; int ruleset_fd; drop_caps(_metadata); ruleset_fd = create_ruleset(_metadata, ACCESS_RO, rules); ASSERT_LE(0, ruleset_fd); ASSERT_EQ(-1, landlock_restrict_self(ruleset_fd, 0)); ASSERT_EQ(EPERM, errno); /* enforce_ruleset() calls prctl(no_new_privs). */ enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); } TEST_F_FORK(layout1, effective_access) { const struct rule rules[] = { { .path = dir_s1d2, .access = ACCESS_RO, }, { .path = file1_s2d2, .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, ACCESS_RW, rules); char buf; int reg_fd; ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Tests on a directory (with or without O_PATH). */ ASSERT_EQ(EACCES, test_open("/", O_RDONLY)); ASSERT_EQ(0, test_open("/", O_RDONLY | O_PATH)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s1d1, O_RDONLY | O_PATH)); ASSERT_EQ(EACCES, test_open(file1_s1d1, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s1d1, O_RDONLY | O_PATH)); ASSERT_EQ(0, test_open(dir_s1d2, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s1d2, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s1d3, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s1d3, O_RDONLY)); /* Tests on a file (with or without O_PATH). */ ASSERT_EQ(EACCES, test_open(dir_s2d2, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s2d2, O_RDONLY | O_PATH)); ASSERT_EQ(0, test_open(file1_s2d2, O_RDONLY)); /* Checks effective read and write actions. */ reg_fd = open(file1_s2d2, O_RDWR | O_CLOEXEC); ASSERT_LE(0, reg_fd); ASSERT_EQ(1, write(reg_fd, ".", 1)); ASSERT_LE(0, lseek(reg_fd, 0, SEEK_SET)); ASSERT_EQ(1, read(reg_fd, &buf, 1)); ASSERT_EQ('.', buf); ASSERT_EQ(0, close(reg_fd)); /* Just in case, double-checks effective actions. */ reg_fd = open(file1_s2d2, O_RDONLY | O_CLOEXEC); ASSERT_LE(0, reg_fd); ASSERT_EQ(-1, write(reg_fd, &buf, 1)); ASSERT_EQ(EBADF, errno); ASSERT_EQ(0, close(reg_fd)); } TEST_F_FORK(layout1, unhandled_access) { const struct rule rules[] = { { .path = dir_s1d2, .access = ACCESS_RO, }, {}, }; /* Here, we only handle read accesses, not write accesses. */ const int ruleset_fd = create_ruleset(_metadata, ACCESS_RO, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* * Because the policy does not handle LANDLOCK_ACCESS_FS_WRITE_FILE, * opening for write-only should be allowed, but not read-write. */ ASSERT_EQ(0, test_open(file1_s1d1, O_WRONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d1, O_RDWR)); ASSERT_EQ(0, test_open(file1_s1d2, O_WRONLY)); ASSERT_EQ(0, test_open(file1_s1d2, O_RDWR)); } TEST_F_FORK(layout1, ruleset_overlap) { const struct rule rules[] = { /* These rules should be ORed among them. */ { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, }, { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_READ_DIR, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, ACCESS_RW, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks s1d1 hierarchy. */ ASSERT_EQ(EACCES, test_open(file1_s1d1, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d1, O_WRONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d1, O_RDWR)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY | O_DIRECTORY)); /* Checks s1d2 hierarchy. */ ASSERT_EQ(0, test_open(file1_s1d2, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s1d2, O_WRONLY)); ASSERT_EQ(0, test_open(file1_s1d2, O_RDWR)); ASSERT_EQ(0, test_open(dir_s1d2, O_RDONLY | O_DIRECTORY)); /* Checks s1d3 hierarchy. */ ASSERT_EQ(0, test_open(file1_s1d3, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s1d3, O_WRONLY)); ASSERT_EQ(0, test_open(file1_s1d3, O_RDWR)); ASSERT_EQ(0, test_open(dir_s1d3, O_RDONLY | O_DIRECTORY)); } TEST_F_FORK(layout1, layer_rule_unions) { const struct rule layer1[] = { { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, /* dir_s1d3 should allow READ_FILE and WRITE_FILE (O_RDWR). */ { .path = dir_s1d3, .access = LANDLOCK_ACCESS_FS_WRITE_FILE, }, {}, }; const struct rule layer2[] = { /* Doesn't change anything from layer1. */ { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, }, {}, }; const struct rule layer3[] = { /* Only allows write (but not read) to dir_s1d3. */ { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_WRITE_FILE, }, {}, }; int ruleset_fd = create_ruleset(_metadata, ACCESS_RW, layer1); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks s1d1 hierarchy with layer1. */ ASSERT_EQ(EACCES, test_open(file1_s1d1, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d1, O_WRONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d1, O_RDWR)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY | O_DIRECTORY)); /* Checks s1d2 hierarchy with layer1. */ ASSERT_EQ(0, test_open(file1_s1d2, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d2, O_WRONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d2, O_RDWR)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY | O_DIRECTORY)); /* Checks s1d3 hierarchy with layer1. */ ASSERT_EQ(0, test_open(file1_s1d3, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s1d3, O_WRONLY)); /* dir_s1d3 should allow READ_FILE and WRITE_FILE (O_RDWR). */ ASSERT_EQ(0, test_open(file1_s1d3, O_RDWR)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY | O_DIRECTORY)); /* Doesn't change anything from layer1. */ ruleset_fd = create_ruleset(_metadata, ACCESS_RW, layer2); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks s1d1 hierarchy with layer2. */ ASSERT_EQ(EACCES, test_open(file1_s1d1, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d1, O_WRONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d1, O_RDWR)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY | O_DIRECTORY)); /* Checks s1d2 hierarchy with layer2. */ ASSERT_EQ(0, test_open(file1_s1d2, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d2, O_WRONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d2, O_RDWR)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY | O_DIRECTORY)); /* Checks s1d3 hierarchy with layer2. */ ASSERT_EQ(0, test_open(file1_s1d3, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s1d3, O_WRONLY)); /* dir_s1d3 should allow READ_FILE and WRITE_FILE (O_RDWR). */ ASSERT_EQ(0, test_open(file1_s1d3, O_RDWR)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY | O_DIRECTORY)); /* Only allows write (but not read) to dir_s1d3. */ ruleset_fd = create_ruleset(_metadata, ACCESS_RW, layer3); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks s1d1 hierarchy with layer3. */ ASSERT_EQ(EACCES, test_open(file1_s1d1, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d1, O_WRONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d1, O_RDWR)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY | O_DIRECTORY)); /* Checks s1d2 hierarchy with layer3. */ ASSERT_EQ(EACCES, test_open(file1_s1d2, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d2, O_WRONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d2, O_RDWR)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY | O_DIRECTORY)); /* Checks s1d3 hierarchy with layer3. */ ASSERT_EQ(EACCES, test_open(file1_s1d3, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s1d3, O_WRONLY)); /* dir_s1d3 should now deny READ_FILE and WRITE_FILE (O_RDWR). */ ASSERT_EQ(EACCES, test_open(file1_s1d3, O_RDWR)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY | O_DIRECTORY)); } TEST_F_FORK(layout1, non_overlapping_accesses) { const struct rule layer1[] = { { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_MAKE_REG, }, {}, }; const struct rule layer2[] = { { .path = dir_s1d3, .access = LANDLOCK_ACCESS_FS_REMOVE_FILE, }, {}, }; int ruleset_fd; ASSERT_EQ(0, unlink(file1_s1d1)); ASSERT_EQ(0, unlink(file1_s1d2)); ruleset_fd = create_ruleset(_metadata, LANDLOCK_ACCESS_FS_MAKE_REG, layer1); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); ASSERT_EQ(-1, mknod(file1_s1d1, S_IFREG | 0700, 0)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(0, mknod(file1_s1d2, S_IFREG | 0700, 0)); ASSERT_EQ(0, unlink(file1_s1d2)); ruleset_fd = create_ruleset(_metadata, LANDLOCK_ACCESS_FS_REMOVE_FILE, layer2); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Unchanged accesses for file creation. */ ASSERT_EQ(-1, mknod(file1_s1d1, S_IFREG | 0700, 0)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(0, mknod(file1_s1d2, S_IFREG | 0700, 0)); /* Checks file removing. */ ASSERT_EQ(-1, unlink(file1_s1d2)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(0, unlink(file1_s1d3)); } TEST_F_FORK(layout1, interleaved_masked_accesses) { /* * Checks overly restrictive rules: * layer 1: allows R s1d1/s1d2/s1d3/file1 * layer 2: allows RW s1d1/s1d2/s1d3 * allows W s1d1/s1d2 * denies R s1d1/s1d2 * layer 3: allows R s1d1 * layer 4: allows R s1d1/s1d2 * denies W s1d1/s1d2 * layer 5: allows R s1d1/s1d2 * layer 6: allows X ---- * layer 7: allows W s1d1/s1d2 * denies R s1d1/s1d2 */ const struct rule layer1_read[] = { /* Allows read access to file1_s1d3 with the first layer. */ { .path = file1_s1d3, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, {}, }; /* First rule with write restrictions. */ const struct rule layer2_read_write[] = { /* Start by granting read-write access via its parent directory... */ { .path = dir_s1d3, .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, }, /* ...but also denies read access via its grandparent directory. */ { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_WRITE_FILE, }, {}, }; const struct rule layer3_read[] = { /* Allows read access via its great-grandparent directory. */ { .path = dir_s1d1, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, {}, }; const struct rule layer4_read_write[] = { /* * Try to confuse the deny access by denying write (but not * read) access via its grandparent directory. */ { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, {}, }; const struct rule layer5_read[] = { /* * Try to override layer2's deny read access by explicitly * allowing read access via file1_s1d3's grandparent. */ { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, {}, }; const struct rule layer6_execute[] = { /* * Restricts an unrelated file hierarchy with a new access * (non-overlapping) type. */ { .path = dir_s2d1, .access = LANDLOCK_ACCESS_FS_EXECUTE, }, {}, }; const struct rule layer7_read_write[] = { /* * Finally, denies read access to file1_s1d3 via its * grandparent. */ { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_WRITE_FILE, }, {}, }; int ruleset_fd; ruleset_fd = create_ruleset(_metadata, LANDLOCK_ACCESS_FS_READ_FILE, layer1_read); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks that read access is granted for file1_s1d3 with layer 1. */ ASSERT_EQ(0, test_open(file1_s1d3, O_RDWR)); ASSERT_EQ(EACCES, test_open(file2_s1d3, O_RDONLY)); ASSERT_EQ(0, test_open(file2_s1d3, O_WRONLY)); ruleset_fd = create_ruleset(_metadata, LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, layer2_read_write); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks that previous access rights are unchanged with layer 2. */ ASSERT_EQ(0, test_open(file1_s1d3, O_RDWR)); ASSERT_EQ(EACCES, test_open(file2_s1d3, O_RDONLY)); ASSERT_EQ(0, test_open(file2_s1d3, O_WRONLY)); ruleset_fd = create_ruleset(_metadata, LANDLOCK_ACCESS_FS_READ_FILE, layer3_read); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks that previous access rights are unchanged with layer 3. */ ASSERT_EQ(0, test_open(file1_s1d3, O_RDWR)); ASSERT_EQ(EACCES, test_open(file2_s1d3, O_RDONLY)); ASSERT_EQ(0, test_open(file2_s1d3, O_WRONLY)); /* This time, denies write access for the file hierarchy. */ ruleset_fd = create_ruleset(_metadata, LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, layer4_read_write); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* * Checks that the only change with layer 4 is that write access is * denied. */ ASSERT_EQ(0, test_open(file1_s1d3, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d3, O_WRONLY)); ASSERT_EQ(EACCES, test_open(file2_s1d3, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file2_s1d3, O_WRONLY)); ruleset_fd = create_ruleset(_metadata, LANDLOCK_ACCESS_FS_READ_FILE, layer5_read); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks that previous access rights are unchanged with layer 5. */ ASSERT_EQ(0, test_open(file1_s1d3, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d3, O_WRONLY)); ASSERT_EQ(EACCES, test_open(file2_s1d3, O_WRONLY)); ASSERT_EQ(EACCES, test_open(file2_s1d3, O_RDONLY)); ruleset_fd = create_ruleset(_metadata, LANDLOCK_ACCESS_FS_EXECUTE, layer6_execute); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks that previous access rights are unchanged with layer 6. */ ASSERT_EQ(0, test_open(file1_s1d3, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d3, O_WRONLY)); ASSERT_EQ(EACCES, test_open(file2_s1d3, O_WRONLY)); ASSERT_EQ(EACCES, test_open(file2_s1d3, O_RDONLY)); ruleset_fd = create_ruleset(_metadata, LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, layer7_read_write); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks read access is now denied with layer 7. */ ASSERT_EQ(EACCES, test_open(file1_s1d3, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d3, O_WRONLY)); ASSERT_EQ(EACCES, test_open(file2_s1d3, O_WRONLY)); ASSERT_EQ(EACCES, test_open(file2_s1d3, O_RDONLY)); } TEST_F_FORK(layout1, inherit_subset) { const struct rule rules[] = { { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_READ_DIR, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, ACCESS_RW, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(EACCES, test_open(file1_s1d1, O_WRONLY)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY | O_DIRECTORY)); /* Write access is forbidden. */ ASSERT_EQ(EACCES, test_open(file1_s1d2, O_WRONLY)); /* Readdir access is allowed. */ ASSERT_EQ(0, test_open(dir_s1d2, O_RDONLY | O_DIRECTORY)); /* Write access is forbidden. */ ASSERT_EQ(EACCES, test_open(file1_s1d3, O_WRONLY)); /* Readdir access is allowed. */ ASSERT_EQ(0, test_open(dir_s1d3, O_RDONLY | O_DIRECTORY)); /* * Tests shared rule extension: the following rules should not grant * any new access, only remove some. Once enforced, these rules are * ANDed with the previous ones. */ add_path_beneath(_metadata, ruleset_fd, LANDLOCK_ACCESS_FS_WRITE_FILE, dir_s1d2); /* * According to ruleset_fd, dir_s1d2 should now have the * LANDLOCK_ACCESS_FS_READ_FILE and LANDLOCK_ACCESS_FS_WRITE_FILE * access rights (even if this directory is opened a second time). * However, when enforcing this updated ruleset, the ruleset tied to * the current process (i.e. its domain) will still only have the * dir_s1d2 with LANDLOCK_ACCESS_FS_READ_FILE and * LANDLOCK_ACCESS_FS_READ_DIR accesses, but * LANDLOCK_ACCESS_FS_WRITE_FILE must not be allowed because it would * be a privilege escalation. */ enforce_ruleset(_metadata, ruleset_fd); /* Same tests and results as above. */ ASSERT_EQ(EACCES, test_open(file1_s1d1, O_WRONLY)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY | O_DIRECTORY)); /* It is still forbidden to write in file1_s1d2. */ ASSERT_EQ(EACCES, test_open(file1_s1d2, O_WRONLY)); /* Readdir access is still allowed. */ ASSERT_EQ(0, test_open(dir_s1d2, O_RDONLY | O_DIRECTORY)); /* It is still forbidden to write in file1_s1d3. */ ASSERT_EQ(EACCES, test_open(file1_s1d3, O_WRONLY)); /* Readdir access is still allowed. */ ASSERT_EQ(0, test_open(dir_s1d3, O_RDONLY | O_DIRECTORY)); /* * Try to get more privileges by adding new access rights to the parent * directory: dir_s1d1. */ add_path_beneath(_metadata, ruleset_fd, ACCESS_RW, dir_s1d1); enforce_ruleset(_metadata, ruleset_fd); /* Same tests and results as above. */ ASSERT_EQ(EACCES, test_open(file1_s1d1, O_WRONLY)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY | O_DIRECTORY)); /* It is still forbidden to write in file1_s1d2. */ ASSERT_EQ(EACCES, test_open(file1_s1d2, O_WRONLY)); /* Readdir access is still allowed. */ ASSERT_EQ(0, test_open(dir_s1d2, O_RDONLY | O_DIRECTORY)); /* It is still forbidden to write in file1_s1d3. */ ASSERT_EQ(EACCES, test_open(file1_s1d3, O_WRONLY)); /* Readdir access is still allowed. */ ASSERT_EQ(0, test_open(dir_s1d3, O_RDONLY | O_DIRECTORY)); /* * Now, dir_s1d3 get a new rule tied to it, only allowing * LANDLOCK_ACCESS_FS_WRITE_FILE. The (kernel internal) difference is * that there was no rule tied to it before. */ add_path_beneath(_metadata, ruleset_fd, LANDLOCK_ACCESS_FS_WRITE_FILE, dir_s1d3); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* * Same tests and results as above, except for open(dir_s1d3) which is * now denied because the new rule mask the rule previously inherited * from dir_s1d2. */ /* Same tests and results as above. */ ASSERT_EQ(EACCES, test_open(file1_s1d1, O_WRONLY)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY | O_DIRECTORY)); /* It is still forbidden to write in file1_s1d2. */ ASSERT_EQ(EACCES, test_open(file1_s1d2, O_WRONLY)); /* Readdir access is still allowed. */ ASSERT_EQ(0, test_open(dir_s1d2, O_RDONLY | O_DIRECTORY)); /* It is still forbidden to write in file1_s1d3. */ ASSERT_EQ(EACCES, test_open(file1_s1d3, O_WRONLY)); /* * Readdir of dir_s1d3 is still allowed because of the OR policy inside * the same layer. */ ASSERT_EQ(0, test_open(dir_s1d3, O_RDONLY | O_DIRECTORY)); } TEST_F_FORK(layout1, inherit_superset) { const struct rule rules[] = { { .path = dir_s1d3, .access = ACCESS_RO, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, ACCESS_RW, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); /* Readdir access is denied for dir_s1d2. */ ASSERT_EQ(EACCES, test_open(dir_s1d2, O_RDONLY | O_DIRECTORY)); /* Readdir access is allowed for dir_s1d3. */ ASSERT_EQ(0, test_open(dir_s1d3, O_RDONLY | O_DIRECTORY)); /* File access is allowed for file1_s1d3. */ ASSERT_EQ(0, test_open(file1_s1d3, O_RDONLY)); /* Now dir_s1d2, parent of dir_s1d3, gets a new rule tied to it. */ add_path_beneath(_metadata, ruleset_fd, LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_READ_DIR, dir_s1d2); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Readdir access is still denied for dir_s1d2. */ ASSERT_EQ(EACCES, test_open(dir_s1d2, O_RDONLY | O_DIRECTORY)); /* Readdir access is still allowed for dir_s1d3. */ ASSERT_EQ(0, test_open(dir_s1d3, O_RDONLY | O_DIRECTORY)); /* File access is still allowed for file1_s1d3. */ ASSERT_EQ(0, test_open(file1_s1d3, O_RDONLY)); } TEST_F_FORK(layout0, max_layers) { int i, err; const struct rule rules[] = { { .path = TMP_DIR, .access = ACCESS_RO, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, ACCESS_RW, rules); ASSERT_LE(0, ruleset_fd); for (i = 0; i < 16; i++) enforce_ruleset(_metadata, ruleset_fd); for (i = 0; i < 2; i++) { err = landlock_restrict_self(ruleset_fd, 0); ASSERT_EQ(-1, err); ASSERT_EQ(E2BIG, errno); } ASSERT_EQ(0, close(ruleset_fd)); } TEST_F_FORK(layout1, empty_or_same_ruleset) { struct landlock_ruleset_attr ruleset_attr = {}; int ruleset_fd; /* Tests empty handled_access_fs. */ ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0); ASSERT_LE(-1, ruleset_fd); ASSERT_EQ(ENOMSG, errno); /* Enforces policy which deny read access to all files. */ ruleset_attr.handled_access_fs = LANDLOCK_ACCESS_FS_READ_FILE; ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(EACCES, test_open(file1_s1d1, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s1d1, O_RDONLY)); /* Nests a policy which deny read access to all directories. */ ruleset_attr.handled_access_fs = LANDLOCK_ACCESS_FS_READ_DIR; ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(EACCES, test_open(file1_s1d1, O_RDONLY)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY)); /* Enforces a second time with the same ruleset. */ enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); } TEST_F_FORK(layout1, rule_on_mountpoint) { const struct rule rules[] = { { .path = dir_s1d1, .access = ACCESS_RO, }, { /* dir_s3d2 is a mount point. */ .path = dir_s3d2, .access = ACCESS_RO, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, ACCESS_RW, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); ASSERT_EQ(0, test_open(dir_s1d1, O_RDONLY)); ASSERT_EQ(EACCES, test_open(dir_s2d1, O_RDONLY)); ASSERT_EQ(EACCES, test_open(dir_s3d1, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s3d2, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s3d3, O_RDONLY)); } TEST_F_FORK(layout1, rule_over_mountpoint) { const struct rule rules[] = { { .path = dir_s1d1, .access = ACCESS_RO, }, { /* dir_s3d2 is a mount point. */ .path = dir_s3d1, .access = ACCESS_RO, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, ACCESS_RW, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); ASSERT_EQ(0, test_open(dir_s1d1, O_RDONLY)); ASSERT_EQ(EACCES, test_open(dir_s2d1, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s3d1, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s3d2, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s3d3, O_RDONLY)); } /* * This test verifies that we can apply a landlock rule on the root directory * (which might require special handling). */ TEST_F_FORK(layout1, rule_over_root_allow_then_deny) { struct rule rules[] = { { .path = "/", .access = ACCESS_RO, }, {}, }; int ruleset_fd = create_ruleset(_metadata, ACCESS_RW, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks allowed access. */ ASSERT_EQ(0, test_open("/", O_RDONLY)); ASSERT_EQ(0, test_open(dir_s1d1, O_RDONLY)); rules[0].access = LANDLOCK_ACCESS_FS_READ_FILE; ruleset_fd = create_ruleset(_metadata, ACCESS_RW, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks denied access (on a directory). */ ASSERT_EQ(EACCES, test_open("/", O_RDONLY)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY)); } TEST_F_FORK(layout1, rule_over_root_deny) { const struct rule rules[] = { { .path = "/", .access = LANDLOCK_ACCESS_FS_READ_FILE, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, ACCESS_RW, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks denied access (on a directory). */ ASSERT_EQ(EACCES, test_open("/", O_RDONLY)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY)); } TEST_F_FORK(layout1, rule_inside_mount_ns) { const struct rule rules[] = { { .path = "s3d3", .access = ACCESS_RO, }, {}, }; int ruleset_fd; set_cap(_metadata, CAP_SYS_ADMIN); ASSERT_EQ(0, syscall(__NR_pivot_root, dir_s3d2, dir_s3d3)) { TH_LOG("Failed to pivot root: %s", strerror(errno)); }; ASSERT_EQ(0, chdir("/")); clear_cap(_metadata, CAP_SYS_ADMIN); ruleset_fd = create_ruleset(_metadata, ACCESS_RW, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); ASSERT_EQ(0, test_open("s3d3", O_RDONLY)); ASSERT_EQ(EACCES, test_open("/", O_RDONLY)); } TEST_F_FORK(layout1, mount_and_pivot) { const struct rule rules[] = { { .path = dir_s3d2, .access = ACCESS_RO, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, ACCESS_RW, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); set_cap(_metadata, CAP_SYS_ADMIN); ASSERT_EQ(-1, mount(NULL, dir_s3d2, NULL, MS_RDONLY, NULL)); ASSERT_EQ(EPERM, errno); ASSERT_EQ(-1, syscall(__NR_pivot_root, dir_s3d2, dir_s3d3)); ASSERT_EQ(EPERM, errno); clear_cap(_metadata, CAP_SYS_ADMIN); } TEST_F_FORK(layout1, move_mount) { const struct rule rules[] = { { .path = dir_s3d2, .access = ACCESS_RO, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, ACCESS_RW, rules); ASSERT_LE(0, ruleset_fd); set_cap(_metadata, CAP_SYS_ADMIN); ASSERT_EQ(0, syscall(__NR_move_mount, AT_FDCWD, dir_s3d2, AT_FDCWD, dir_s1d2, 0)) { TH_LOG("Failed to move mount: %s", strerror(errno)); } ASSERT_EQ(0, syscall(__NR_move_mount, AT_FDCWD, dir_s1d2, AT_FDCWD, dir_s3d2, 0)); clear_cap(_metadata, CAP_SYS_ADMIN); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); set_cap(_metadata, CAP_SYS_ADMIN); ASSERT_EQ(-1, syscall(__NR_move_mount, AT_FDCWD, dir_s3d2, AT_FDCWD, dir_s1d2, 0)); ASSERT_EQ(EPERM, errno); clear_cap(_metadata, CAP_SYS_ADMIN); } TEST_F_FORK(layout1, release_inodes) { const struct rule rules[] = { { .path = dir_s1d1, .access = ACCESS_RO, }, { .path = dir_s3d2, .access = ACCESS_RO, }, { .path = dir_s3d3, .access = ACCESS_RO, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, ACCESS_RW, rules); ASSERT_LE(0, ruleset_fd); /* Unmount a file hierarchy while it is being used by a ruleset. */ set_cap(_metadata, CAP_SYS_ADMIN); ASSERT_EQ(0, umount(dir_s3d2)); clear_cap(_metadata, CAP_SYS_ADMIN); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); ASSERT_EQ(0, test_open(file1_s1d1, O_RDONLY)); ASSERT_EQ(EACCES, test_open(dir_s3d2, O_RDONLY)); /* This dir_s3d3 would not be allowed and does not exist anyway. */ ASSERT_EQ(ENOENT, test_open(dir_s3d3, O_RDONLY)); } enum relative_access { REL_OPEN, REL_CHDIR, REL_CHROOT_ONLY, REL_CHROOT_CHDIR, }; static void test_relative_path(struct __test_metadata *const _metadata, const enum relative_access rel) { /* * Common layer to check that chroot doesn't ignore it (i.e. a chroot * is not a disconnected root directory). */ const struct rule layer1_base[] = { { .path = TMP_DIR, .access = ACCESS_RO, }, {}, }; const struct rule layer2_subs[] = { { .path = dir_s1d2, .access = ACCESS_RO, }, { .path = dir_s2d2, .access = ACCESS_RO, }, {}, }; int dirfd, ruleset_fd; ruleset_fd = create_ruleset(_metadata, ACCESS_RW, layer1_base); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); ruleset_fd = create_ruleset(_metadata, ACCESS_RW, layer2_subs); ASSERT_LE(0, ruleset_fd); switch (rel) { case REL_OPEN: case REL_CHDIR: break; case REL_CHROOT_ONLY: ASSERT_EQ(0, chdir(dir_s2d2)); break; case REL_CHROOT_CHDIR: ASSERT_EQ(0, chdir(dir_s1d2)); break; default: ASSERT_TRUE(false); return; } set_cap(_metadata, CAP_SYS_CHROOT); enforce_ruleset(_metadata, ruleset_fd); switch (rel) { case REL_OPEN: dirfd = open(dir_s1d2, O_DIRECTORY); ASSERT_LE(0, dirfd); break; case REL_CHDIR: ASSERT_EQ(0, chdir(dir_s1d2)); dirfd = AT_FDCWD; break; case REL_CHROOT_ONLY: /* Do chroot into dir_s1d2 (relative to dir_s2d2). */ ASSERT_EQ(0, chroot("../../s1d1/s1d2")) { TH_LOG("Failed to chroot: %s", strerror(errno)); } dirfd = AT_FDCWD; break; case REL_CHROOT_CHDIR: /* Do chroot into dir_s1d2. */ ASSERT_EQ(0, chroot(".")) { TH_LOG("Failed to chroot: %s", strerror(errno)); } dirfd = AT_FDCWD; break; } ASSERT_EQ((rel == REL_CHROOT_CHDIR) ? 0 : EACCES, test_open_rel(dirfd, "..", O_RDONLY)); ASSERT_EQ(0, test_open_rel(dirfd, ".", O_RDONLY)); if (rel == REL_CHROOT_ONLY) { /* The current directory is dir_s2d2. */ ASSERT_EQ(0, test_open_rel(dirfd, "./s2d3", O_RDONLY)); } else { /* The current directory is dir_s1d2. */ ASSERT_EQ(0, test_open_rel(dirfd, "./s1d3", O_RDONLY)); } if (rel == REL_CHROOT_ONLY || rel == REL_CHROOT_CHDIR) { /* Checks the root dir_s1d2. */ ASSERT_EQ(0, test_open_rel(dirfd, "/..", O_RDONLY)); ASSERT_EQ(0, test_open_rel(dirfd, "/", O_RDONLY)); ASSERT_EQ(0, test_open_rel(dirfd, "/f1", O_RDONLY)); ASSERT_EQ(0, test_open_rel(dirfd, "/s1d3", O_RDONLY)); } if (rel != REL_CHROOT_CHDIR) { ASSERT_EQ(EACCES, test_open_rel(dirfd, "../../s1d1", O_RDONLY)); ASSERT_EQ(0, test_open_rel(dirfd, "../../s1d1/s1d2", O_RDONLY)); ASSERT_EQ(0, test_open_rel(dirfd, "../../s1d1/s1d2/s1d3", O_RDONLY)); ASSERT_EQ(EACCES, test_open_rel(dirfd, "../../s2d1", O_RDONLY)); ASSERT_EQ(0, test_open_rel(dirfd, "../../s2d1/s2d2", O_RDONLY)); ASSERT_EQ(0, test_open_rel(dirfd, "../../s2d1/s2d2/s2d3", O_RDONLY)); } if (rel == REL_OPEN) ASSERT_EQ(0, close(dirfd)); ASSERT_EQ(0, close(ruleset_fd)); } TEST_F_FORK(layout1, relative_open) { test_relative_path(_metadata, REL_OPEN); } TEST_F_FORK(layout1, relative_chdir) { test_relative_path(_metadata, REL_CHDIR); } TEST_F_FORK(layout1, relative_chroot_only) { test_relative_path(_metadata, REL_CHROOT_ONLY); } TEST_F_FORK(layout1, relative_chroot_chdir) { test_relative_path(_metadata, REL_CHROOT_CHDIR); } static void copy_binary(struct __test_metadata *const _metadata, const char *const dst_path) { int dst_fd, src_fd; struct stat statbuf; dst_fd = open(dst_path, O_WRONLY | O_TRUNC | O_CLOEXEC); ASSERT_LE(0, dst_fd) { TH_LOG("Failed to open \"%s\": %s", dst_path, strerror(errno)); } src_fd = open(BINARY_PATH, O_RDONLY | O_CLOEXEC); ASSERT_LE(0, src_fd) { TH_LOG("Failed to open \"" BINARY_PATH "\": %s", strerror(errno)); } ASSERT_EQ(0, fstat(src_fd, &statbuf)); ASSERT_EQ(statbuf.st_size, sendfile(dst_fd, src_fd, 0, statbuf.st_size)); ASSERT_EQ(0, close(src_fd)); ASSERT_EQ(0, close(dst_fd)); } static void test_execute(struct __test_metadata *const _metadata, const int err, const char *const path) { int status; char *const argv[] = { (char *)path, NULL }; const pid_t child = fork(); ASSERT_LE(0, child); if (child == 0) { ASSERT_EQ(err ? -1 : 0, execve(path, argv, NULL)) { TH_LOG("Failed to execute \"%s\": %s", path, strerror(errno)); }; ASSERT_EQ(err, errno); _exit(_metadata->passed ? 2 : 1); return; } ASSERT_EQ(child, waitpid(child, &status, 0)); ASSERT_EQ(1, WIFEXITED(status)); ASSERT_EQ(err ? 2 : 0, WEXITSTATUS(status)) { TH_LOG("Unexpected return code for \"%s\": %s", path, strerror(errno)); }; } TEST_F_FORK(layout1, execute) { const struct rule rules[] = { { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_EXECUTE, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, rules[0].access, rules); ASSERT_LE(0, ruleset_fd); copy_binary(_metadata, file1_s1d1); copy_binary(_metadata, file1_s1d2); copy_binary(_metadata, file1_s1d3); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); ASSERT_EQ(0, test_open(dir_s1d1, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s1d1, O_RDONLY)); test_execute(_metadata, EACCES, file1_s1d1); ASSERT_EQ(0, test_open(dir_s1d2, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s1d2, O_RDONLY)); test_execute(_metadata, 0, file1_s1d2); ASSERT_EQ(0, test_open(dir_s1d3, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s1d3, O_RDONLY)); test_execute(_metadata, 0, file1_s1d3); } TEST_F_FORK(layout1, link) { const struct rule layer1[] = { { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_MAKE_REG, }, {}, }; const struct rule layer2[] = { { .path = dir_s1d3, .access = LANDLOCK_ACCESS_FS_REMOVE_FILE, }, {}, }; int ruleset_fd = create_ruleset(_metadata, layer1[0].access, layer1); ASSERT_LE(0, ruleset_fd); ASSERT_EQ(0, unlink(file1_s1d1)); ASSERT_EQ(0, unlink(file1_s1d2)); ASSERT_EQ(0, unlink(file1_s1d3)); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); ASSERT_EQ(-1, link(file2_s1d1, file1_s1d1)); ASSERT_EQ(EACCES, errno); /* Denies linking because of reparenting. */ ASSERT_EQ(-1, link(file1_s2d1, file1_s1d2)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(-1, link(file2_s1d2, file1_s1d3)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(-1, link(file2_s1d3, file1_s1d2)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(0, link(file2_s1d2, file1_s1d2)); ASSERT_EQ(0, link(file2_s1d3, file1_s1d3)); /* Prepares for next unlinks. */ ASSERT_EQ(0, unlink(file2_s1d2)); ASSERT_EQ(0, unlink(file2_s1d3)); ruleset_fd = create_ruleset(_metadata, layer2[0].access, layer2); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks that linkind doesn't require the ability to delete a file. */ ASSERT_EQ(0, link(file1_s1d2, file2_s1d2)); ASSERT_EQ(0, link(file1_s1d3, file2_s1d3)); } static int test_rename(const char *const oldpath, const char *const newpath) { if (rename(oldpath, newpath)) return errno; return 0; } static int test_exchange(const char *const oldpath, const char *const newpath) { if (renameat2(AT_FDCWD, oldpath, AT_FDCWD, newpath, RENAME_EXCHANGE)) return errno; return 0; } TEST_F_FORK(layout1, rename_file) { const struct rule rules[] = { { .path = dir_s1d3, .access = LANDLOCK_ACCESS_FS_REMOVE_FILE, }, { .path = dir_s2d2, .access = LANDLOCK_ACCESS_FS_REMOVE_FILE, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, rules[0].access, rules); ASSERT_LE(0, ruleset_fd); ASSERT_EQ(0, unlink(file1_s1d2)); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* * Tries to replace a file, from a directory that allows file removal, * but to a different directory (which also allows file removal). */ ASSERT_EQ(-1, rename(file1_s2d3, file1_s1d3)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s2d3, AT_FDCWD, file1_s1d3, RENAME_EXCHANGE)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s2d3, AT_FDCWD, dir_s1d3, RENAME_EXCHANGE)); ASSERT_EQ(EXDEV, errno); /* * Tries to replace a file, from a directory that denies file removal, * to a different directory (which allows file removal). */ ASSERT_EQ(-1, rename(file1_s2d1, file1_s1d3)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s2d1, AT_FDCWD, file1_s1d3, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, dir_s2d2, AT_FDCWD, file1_s1d3, RENAME_EXCHANGE)); ASSERT_EQ(EXDEV, errno); /* Exchanges files and directories that partially allow removal. */ ASSERT_EQ(-1, renameat2(AT_FDCWD, dir_s2d2, AT_FDCWD, file1_s2d1, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); /* Checks that file1_s2d1 cannot be removed (instead of ENOTDIR). */ ASSERT_EQ(-1, rename(dir_s2d2, file1_s2d1)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s2d1, AT_FDCWD, dir_s2d2, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); /* Checks that file1_s1d1 cannot be removed (instead of EISDIR). */ ASSERT_EQ(-1, rename(file1_s1d1, dir_s1d2)); ASSERT_EQ(EACCES, errno); /* Renames files with different parents. */ ASSERT_EQ(-1, rename(file1_s2d2, file1_s1d2)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(0, unlink(file1_s1d3)); ASSERT_EQ(-1, rename(file1_s2d1, file1_s1d3)); ASSERT_EQ(EACCES, errno); /* Exchanges and renames files with same parent. */ ASSERT_EQ(0, renameat2(AT_FDCWD, file2_s2d3, AT_FDCWD, file1_s2d3, RENAME_EXCHANGE)); ASSERT_EQ(0, rename(file2_s2d3, file1_s2d3)); /* Exchanges files and directories with same parent, twice. */ ASSERT_EQ(0, renameat2(AT_FDCWD, file1_s2d2, AT_FDCWD, dir_s2d3, RENAME_EXCHANGE)); ASSERT_EQ(0, renameat2(AT_FDCWD, file1_s2d2, AT_FDCWD, dir_s2d3, RENAME_EXCHANGE)); } TEST_F_FORK(layout1, rename_dir) { const struct rule rules[] = { { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_REMOVE_DIR, }, { .path = dir_s2d1, .access = LANDLOCK_ACCESS_FS_REMOVE_DIR, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, rules[0].access, rules); ASSERT_LE(0, ruleset_fd); /* Empties dir_s1d3 to allow renaming. */ ASSERT_EQ(0, unlink(file1_s1d3)); ASSERT_EQ(0, unlink(file2_s1d3)); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Exchanges and renames directory to a different parent. */ ASSERT_EQ(-1, renameat2(AT_FDCWD, dir_s2d3, AT_FDCWD, dir_s1d3, RENAME_EXCHANGE)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(-1, rename(dir_s2d3, dir_s1d3)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s2d2, AT_FDCWD, dir_s1d3, RENAME_EXCHANGE)); ASSERT_EQ(EXDEV, errno); /* * Exchanges directory to the same parent, which doesn't allow * directory removal. */ ASSERT_EQ(-1, renameat2(AT_FDCWD, dir_s1d1, AT_FDCWD, dir_s2d1, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); /* Checks that dir_s1d2 cannot be removed (instead of ENOTDIR). */ ASSERT_EQ(-1, rename(dir_s1d2, file1_s1d1)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s1d1, AT_FDCWD, dir_s1d2, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); /* Checks that dir_s1d2 cannot be removed (instead of EISDIR). */ ASSERT_EQ(-1, rename(file1_s1d1, dir_s1d2)); ASSERT_EQ(EACCES, errno); /* * Exchanges and renames directory to the same parent, which allows * directory removal. */ ASSERT_EQ(0, renameat2(AT_FDCWD, dir_s1d3, AT_FDCWD, file1_s1d2, RENAME_EXCHANGE)); ASSERT_EQ(0, unlink(dir_s1d3)); ASSERT_EQ(0, mkdir(dir_s1d3, 0700)); ASSERT_EQ(0, rename(file1_s1d2, dir_s1d3)); ASSERT_EQ(0, rmdir(dir_s1d3)); } TEST_F_FORK(layout1, reparent_refer) { const struct rule layer1[] = { { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_REFER, }, { .path = dir_s2d2, .access = LANDLOCK_ACCESS_FS_REFER, }, {}, }; int ruleset_fd = create_ruleset(_metadata, LANDLOCK_ACCESS_FS_REFER, layer1); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); ASSERT_EQ(-1, rename(dir_s1d2, dir_s2d1)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(-1, rename(dir_s1d2, dir_s2d2)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(-1, rename(dir_s1d2, dir_s2d3)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(-1, rename(dir_s1d3, dir_s2d1)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(-1, rename(dir_s1d3, dir_s2d2)); ASSERT_EQ(EXDEV, errno); /* * Moving should only be allowed when the source and the destination * parent directory have REFER. */ ASSERT_EQ(-1, rename(dir_s1d3, dir_s2d3)); ASSERT_EQ(ENOTEMPTY, errno); ASSERT_EQ(0, unlink(file1_s2d3)); ASSERT_EQ(0, unlink(file2_s2d3)); ASSERT_EQ(0, rename(dir_s1d3, dir_s2d3)); } /* Checks renames beneath dir_s1d1. */ static void refer_denied_by_default(struct __test_metadata *const _metadata, const struct rule layer1[], const int layer1_err, const struct rule layer2[]) { int ruleset_fd; ASSERT_EQ(0, unlink(file1_s1d2)); ruleset_fd = create_ruleset(_metadata, layer1[0].access, layer1); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* * If the first layer handles LANDLOCK_ACCESS_FS_REFER (according to * layer1_err), then it allows some different-parent renames and links. */ ASSERT_EQ(layer1_err, test_rename(file1_s1d1, file1_s1d2)); if (layer1_err == 0) ASSERT_EQ(layer1_err, test_rename(file1_s1d2, file1_s1d1)); ASSERT_EQ(layer1_err, test_exchange(file2_s1d1, file2_s1d2)); ASSERT_EQ(layer1_err, test_exchange(file2_s1d2, file2_s1d1)); ruleset_fd = create_ruleset(_metadata, layer2[0].access, layer2); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* * Now, either the first or the second layer does not handle * LANDLOCK_ACCESS_FS_REFER, which means that any different-parent * renames and links are denied, thus making the layer handling * LANDLOCK_ACCESS_FS_REFER null and void. */ ASSERT_EQ(EXDEV, test_rename(file1_s1d1, file1_s1d2)); ASSERT_EQ(EXDEV, test_exchange(file2_s1d1, file2_s1d2)); ASSERT_EQ(EXDEV, test_exchange(file2_s1d2, file2_s1d1)); } const struct rule layer_dir_s1d1_refer[] = { { .path = dir_s1d1, .access = LANDLOCK_ACCESS_FS_REFER, }, {}, }; const struct rule layer_dir_s1d1_execute[] = { { /* Matches a parent directory. */ .path = dir_s1d1, .access = LANDLOCK_ACCESS_FS_EXECUTE, }, {}, }; const struct rule layer_dir_s2d1_execute[] = { { /* Does not match a parent directory. */ .path = dir_s2d1, .access = LANDLOCK_ACCESS_FS_EXECUTE, }, {}, }; /* * Tests precedence over renames: denied by default for different parent * directories, *with* a rule matching a parent directory, but not directly * denying access (with MAKE_REG nor REMOVE). */ TEST_F_FORK(layout1, refer_denied_by_default1) { refer_denied_by_default(_metadata, layer_dir_s1d1_refer, 0, layer_dir_s1d1_execute); } /* * Same test but this time turning around the ABI version order: the first * layer does not handle LANDLOCK_ACCESS_FS_REFER. */ TEST_F_FORK(layout1, refer_denied_by_default2) { refer_denied_by_default(_metadata, layer_dir_s1d1_execute, EXDEV, layer_dir_s1d1_refer); } /* * Tests precedence over renames: denied by default for different parent * directories, *without* a rule matching a parent directory, but not directly * denying access (with MAKE_REG nor REMOVE). */ TEST_F_FORK(layout1, refer_denied_by_default3) { refer_denied_by_default(_metadata, layer_dir_s1d1_refer, 0, layer_dir_s2d1_execute); } /* * Same test but this time turning around the ABI version order: the first * layer does not handle LANDLOCK_ACCESS_FS_REFER. */ TEST_F_FORK(layout1, refer_denied_by_default4) { refer_denied_by_default(_metadata, layer_dir_s2d1_execute, EXDEV, layer_dir_s1d1_refer); } TEST_F_FORK(layout1, reparent_link) { const struct rule layer1[] = { { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_MAKE_REG, }, { .path = dir_s1d3, .access = LANDLOCK_ACCESS_FS_REFER, }, { .path = dir_s2d2, .access = LANDLOCK_ACCESS_FS_REFER, }, { .path = dir_s2d3, .access = LANDLOCK_ACCESS_FS_MAKE_REG, }, {}, }; const int ruleset_fd = create_ruleset( _metadata, LANDLOCK_ACCESS_FS_MAKE_REG | LANDLOCK_ACCESS_FS_REFER, layer1); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); ASSERT_EQ(0, unlink(file1_s1d1)); ASSERT_EQ(0, unlink(file1_s1d2)); ASSERT_EQ(0, unlink(file1_s1d3)); /* Denies linking because of missing MAKE_REG. */ ASSERT_EQ(-1, link(file2_s1d1, file1_s1d1)); ASSERT_EQ(EACCES, errno); /* Denies linking because of missing source and destination REFER. */ ASSERT_EQ(-1, link(file1_s2d1, file1_s1d2)); ASSERT_EQ(EXDEV, errno); /* Denies linking because of missing source REFER. */ ASSERT_EQ(-1, link(file1_s2d1, file1_s1d3)); ASSERT_EQ(EXDEV, errno); /* Denies linking because of missing MAKE_REG. */ ASSERT_EQ(-1, link(file1_s2d2, file1_s1d1)); ASSERT_EQ(EACCES, errno); /* Denies linking because of missing destination REFER. */ ASSERT_EQ(-1, link(file1_s2d2, file1_s1d2)); ASSERT_EQ(EXDEV, errno); /* Allows linking because of REFER and MAKE_REG. */ ASSERT_EQ(0, link(file1_s2d2, file1_s1d3)); ASSERT_EQ(0, unlink(file1_s2d2)); /* Reverse linking denied because of missing MAKE_REG. */ ASSERT_EQ(-1, link(file1_s1d3, file1_s2d2)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(0, unlink(file1_s2d3)); /* Checks reverse linking. */ ASSERT_EQ(0, link(file1_s1d3, file1_s2d3)); ASSERT_EQ(0, unlink(file1_s1d3)); /* * This is OK for a file link, but it should not be allowed for a * directory rename (because of the superset of access rights. */ ASSERT_EQ(0, link(file1_s2d3, file1_s1d3)); ASSERT_EQ(0, unlink(file1_s1d3)); ASSERT_EQ(-1, link(file2_s1d2, file1_s1d3)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(-1, link(file2_s1d3, file1_s1d2)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(0, link(file2_s1d2, file1_s1d2)); ASSERT_EQ(0, link(file2_s1d3, file1_s1d3)); } TEST_F_FORK(layout1, reparent_rename) { /* Same rules as for reparent_link. */ const struct rule layer1[] = { { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_MAKE_REG, }, { .path = dir_s1d3, .access = LANDLOCK_ACCESS_FS_REFER, }, { .path = dir_s2d2, .access = LANDLOCK_ACCESS_FS_REFER, }, { .path = dir_s2d3, .access = LANDLOCK_ACCESS_FS_MAKE_REG, }, {}, }; const int ruleset_fd = create_ruleset( _metadata, LANDLOCK_ACCESS_FS_MAKE_REG | LANDLOCK_ACCESS_FS_REFER, layer1); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); ASSERT_EQ(0, unlink(file1_s1d2)); ASSERT_EQ(0, unlink(file1_s1d3)); /* Denies renaming because of missing MAKE_REG. */ ASSERT_EQ(-1, renameat2(AT_FDCWD, file2_s1d1, AT_FDCWD, file1_s1d1, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s1d1, AT_FDCWD, file2_s1d1, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(0, unlink(file1_s1d1)); ASSERT_EQ(-1, rename(file2_s1d1, file1_s1d1)); ASSERT_EQ(EACCES, errno); /* Even denies same file exchange. */ ASSERT_EQ(-1, renameat2(AT_FDCWD, file2_s1d1, AT_FDCWD, file2_s1d1, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); /* Denies renaming because of missing source and destination REFER. */ ASSERT_EQ(-1, rename(file1_s2d1, file1_s1d2)); ASSERT_EQ(EXDEV, errno); /* * Denies renaming because of missing MAKE_REG, source and destination * REFER. */ ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s2d1, AT_FDCWD, file2_s1d1, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, file2_s1d1, AT_FDCWD, file1_s2d1, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); /* Denies renaming because of missing source REFER. */ ASSERT_EQ(-1, rename(file1_s2d1, file1_s1d3)); ASSERT_EQ(EXDEV, errno); /* Denies renaming because of missing MAKE_REG. */ ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s2d1, AT_FDCWD, file2_s1d3, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); /* Denies renaming because of missing MAKE_REG. */ ASSERT_EQ(-1, rename(file1_s2d2, file1_s1d1)); ASSERT_EQ(EACCES, errno); /* Denies renaming because of missing destination REFER*/ ASSERT_EQ(-1, rename(file1_s2d2, file1_s1d2)); ASSERT_EQ(EXDEV, errno); /* Denies exchange because of one missing MAKE_REG. */ ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s2d2, AT_FDCWD, file2_s1d3, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); /* Allows renaming because of REFER and MAKE_REG. */ ASSERT_EQ(0, rename(file1_s2d2, file1_s1d3)); /* Reverse renaming denied because of missing MAKE_REG. */ ASSERT_EQ(-1, rename(file1_s1d3, file1_s2d2)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(0, unlink(file1_s2d3)); ASSERT_EQ(0, rename(file1_s1d3, file1_s2d3)); /* Tests reverse renaming. */ ASSERT_EQ(0, rename(file1_s2d3, file1_s1d3)); ASSERT_EQ(0, renameat2(AT_FDCWD, file2_s2d3, AT_FDCWD, file1_s1d3, RENAME_EXCHANGE)); ASSERT_EQ(0, rename(file1_s1d3, file1_s2d3)); /* * This is OK for a file rename, but it should not be allowed for a * directory rename (because of the superset of access rights). */ ASSERT_EQ(0, rename(file1_s2d3, file1_s1d3)); ASSERT_EQ(0, rename(file1_s1d3, file1_s2d3)); /* * Tests superset restrictions applied to directories. Not only the * dir_s2d3's parent (dir_s2d2) should be taken into account but also * access rights tied to dir_s2d3. dir_s2d2 is missing one access right * compared to dir_s1d3/file1_s1d3 (MAKE_REG) but it is provided * directly by the moved dir_s2d3. */ ASSERT_EQ(0, rename(dir_s2d3, file1_s1d3)); ASSERT_EQ(0, rename(file1_s1d3, dir_s2d3)); /* * The first rename is allowed but not the exchange because dir_s1d3's * parent (dir_s1d2) doesn't have REFER. */ ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s2d3, AT_FDCWD, dir_s1d3, RENAME_EXCHANGE)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, dir_s1d3, AT_FDCWD, file1_s2d3, RENAME_EXCHANGE)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(-1, rename(file1_s2d3, dir_s1d3)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(-1, rename(file2_s1d2, file1_s1d3)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(-1, rename(file2_s1d3, file1_s1d2)); ASSERT_EQ(EXDEV, errno); /* Renaming in the same directory is always allowed. */ ASSERT_EQ(0, rename(file2_s1d2, file1_s1d2)); ASSERT_EQ(0, rename(file2_s1d3, file1_s1d3)); ASSERT_EQ(0, unlink(file1_s1d2)); /* Denies because of missing source MAKE_REG and destination REFER. */ ASSERT_EQ(-1, rename(dir_s2d3, file1_s1d2)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(0, unlink(file1_s1d3)); /* Denies because of missing source MAKE_REG and REFER. */ ASSERT_EQ(-1, rename(dir_s2d2, file1_s1d3)); ASSERT_EQ(EXDEV, errno); } static void reparent_exdev_layers_enforce1(struct __test_metadata *const _metadata) { const struct rule layer1[] = { { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_REFER, }, { /* Interesting for the layer2 tests. */ .path = dir_s1d3, .access = LANDLOCK_ACCESS_FS_MAKE_REG, }, { .path = dir_s2d2, .access = LANDLOCK_ACCESS_FS_REFER, }, { .path = dir_s2d3, .access = LANDLOCK_ACCESS_FS_MAKE_REG, }, {}, }; const int ruleset_fd = create_ruleset( _metadata, LANDLOCK_ACCESS_FS_MAKE_REG | LANDLOCK_ACCESS_FS_REFER, layer1); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); } static void reparent_exdev_layers_enforce2(struct __test_metadata *const _metadata) { const struct rule layer2[] = { { .path = dir_s2d3, .access = LANDLOCK_ACCESS_FS_MAKE_DIR, }, {}, }; /* * Same checks as before but with a second layer and a new MAKE_DIR * rule (and no explicit handling of REFER). */ const int ruleset_fd = create_ruleset(_metadata, LANDLOCK_ACCESS_FS_MAKE_DIR, layer2); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); } TEST_F_FORK(layout1, reparent_exdev_layers_rename1) { ASSERT_EQ(0, unlink(file1_s2d2)); ASSERT_EQ(0, unlink(file1_s2d3)); reparent_exdev_layers_enforce1(_metadata); /* * Moving the dir_s1d3 directory below dir_s2d2 is allowed by Landlock * because it doesn't inherit new access rights. */ ASSERT_EQ(0, rename(dir_s1d3, file1_s2d2)); ASSERT_EQ(0, rename(file1_s2d2, dir_s1d3)); /* * Moving the dir_s1d3 directory below dir_s2d3 is allowed, even if it * gets a new inherited access rights (MAKE_REG), because MAKE_REG is * already allowed for dir_s1d3. */ ASSERT_EQ(0, rename(dir_s1d3, file1_s2d3)); ASSERT_EQ(0, rename(file1_s2d3, dir_s1d3)); /* * However, moving the file1_s1d3 file below dir_s2d3 is allowed * because it cannot inherit MAKE_REG right (which is dedicated to * directories). */ ASSERT_EQ(0, rename(file1_s1d3, file1_s2d3)); reparent_exdev_layers_enforce2(_metadata); /* * Moving the dir_s1d3 directory below dir_s2d2 is now denied because * MAKE_DIR is not tied to dir_s2d2. */ ASSERT_EQ(-1, rename(dir_s1d3, file1_s2d2)); ASSERT_EQ(EACCES, errno); /* * Moving the dir_s1d3 directory below dir_s2d3 is forbidden because it * would grants MAKE_REG and MAKE_DIR rights to it. */ ASSERT_EQ(-1, rename(dir_s1d3, file1_s2d3)); ASSERT_EQ(EXDEV, errno); /* * Moving the file2_s1d3 file below dir_s2d3 is denied because the * second layer does not handle REFER, which is always denied by * default. */ ASSERT_EQ(-1, rename(file2_s1d3, file1_s2d3)); ASSERT_EQ(EXDEV, errno); } TEST_F_FORK(layout1, reparent_exdev_layers_rename2) { reparent_exdev_layers_enforce1(_metadata); /* Checks EACCES predominance over EXDEV. */ ASSERT_EQ(-1, rename(file1_s1d1, file1_s2d2)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, rename(file1_s1d2, file1_s2d2)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, rename(file1_s1d1, file1_s2d3)); ASSERT_EQ(EXDEV, errno); /* Modify layout! */ ASSERT_EQ(0, rename(file1_s1d2, file1_s2d3)); /* Without REFER source. */ ASSERT_EQ(-1, rename(dir_s1d1, file1_s2d2)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(-1, rename(dir_s1d2, file1_s2d2)); ASSERT_EQ(EXDEV, errno); reparent_exdev_layers_enforce2(_metadata); /* Checks EACCES predominance over EXDEV. */ ASSERT_EQ(-1, rename(file1_s1d1, file1_s2d2)); ASSERT_EQ(EACCES, errno); /* Checks with actual file2_s1d2. */ ASSERT_EQ(-1, rename(file2_s1d2, file1_s2d2)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, rename(file1_s1d1, file1_s2d3)); ASSERT_EQ(EXDEV, errno); /* * Modifying the layout is now denied because the second layer does not * handle REFER, which is always denied by default. */ ASSERT_EQ(-1, rename(file2_s1d2, file1_s2d3)); ASSERT_EQ(EXDEV, errno); /* Without REFER source, EACCES wins over EXDEV. */ ASSERT_EQ(-1, rename(dir_s1d1, file1_s2d2)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, rename(dir_s1d2, file1_s2d2)); ASSERT_EQ(EACCES, errno); } TEST_F_FORK(layout1, reparent_exdev_layers_exchange1) { const char *const dir_file1_s1d2 = file1_s1d2, *const dir_file2_s2d3 = file2_s2d3; ASSERT_EQ(0, unlink(file1_s1d2)); ASSERT_EQ(0, mkdir(file1_s1d2, 0700)); ASSERT_EQ(0, unlink(file2_s2d3)); ASSERT_EQ(0, mkdir(file2_s2d3, 0700)); reparent_exdev_layers_enforce1(_metadata); /* Error predominance with file exchange: returns EXDEV and EACCES. */ ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s1d1, AT_FDCWD, file1_s2d3, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s2d3, AT_FDCWD, file1_s1d1, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); /* * Checks with directories which creation could be allowed, but denied * because of access rights that would be inherited. */ ASSERT_EQ(-1, renameat2(AT_FDCWD, dir_file1_s1d2, AT_FDCWD, dir_file2_s2d3, RENAME_EXCHANGE)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, dir_file2_s2d3, AT_FDCWD, dir_file1_s1d2, RENAME_EXCHANGE)); ASSERT_EQ(EXDEV, errno); /* Checks with same access rights. */ ASSERT_EQ(0, renameat2(AT_FDCWD, dir_s1d3, AT_FDCWD, dir_s2d3, RENAME_EXCHANGE)); ASSERT_EQ(0, renameat2(AT_FDCWD, dir_s2d3, AT_FDCWD, dir_s1d3, RENAME_EXCHANGE)); /* Checks with different (child-only) access rights. */ ASSERT_EQ(0, renameat2(AT_FDCWD, dir_s2d3, AT_FDCWD, dir_file1_s1d2, RENAME_EXCHANGE)); ASSERT_EQ(0, renameat2(AT_FDCWD, dir_file1_s1d2, AT_FDCWD, dir_s2d3, RENAME_EXCHANGE)); /* * Checks that exchange between file and directory are consistent. * * Moving a file (file1_s2d2) to a directory which only grants more * directory-related access rights is allowed, and at the same time * moving a directory (dir_file2_s2d3) to another directory which * grants less access rights is allowed too. * * See layout1.reparent_exdev_layers_exchange3 for inverted arguments. */ ASSERT_EQ(0, renameat2(AT_FDCWD, file1_s2d2, AT_FDCWD, dir_file2_s2d3, RENAME_EXCHANGE)); /* * However, moving back the directory is denied because it would get * more access rights than the current state and because file creation * is forbidden (in dir_s2d2). */ ASSERT_EQ(-1, renameat2(AT_FDCWD, dir_file2_s2d3, AT_FDCWD, file1_s2d2, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s2d2, AT_FDCWD, dir_file2_s2d3, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); reparent_exdev_layers_enforce2(_metadata); /* Error predominance with file exchange: returns EXDEV and EACCES. */ ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s1d1, AT_FDCWD, file1_s2d3, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s2d3, AT_FDCWD, file1_s1d1, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); /* Checks with directories which creation is now denied. */ ASSERT_EQ(-1, renameat2(AT_FDCWD, dir_file1_s1d2, AT_FDCWD, dir_file2_s2d3, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, dir_file2_s2d3, AT_FDCWD, dir_file1_s1d2, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); /* Checks with different (child-only) access rights. */ ASSERT_EQ(-1, renameat2(AT_FDCWD, dir_s1d3, AT_FDCWD, dir_s2d3, RENAME_EXCHANGE)); /* Denied because of MAKE_DIR. */ ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, dir_s2d3, AT_FDCWD, dir_s1d3, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); /* Checks with different (child-only) access rights. */ ASSERT_EQ(-1, renameat2(AT_FDCWD, dir_s2d3, AT_FDCWD, dir_file1_s1d2, RENAME_EXCHANGE)); /* Denied because of MAKE_DIR. */ ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, dir_file1_s1d2, AT_FDCWD, dir_s2d3, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); /* See layout1.reparent_exdev_layers_exchange2 for complement. */ } TEST_F_FORK(layout1, reparent_exdev_layers_exchange2) { const char *const dir_file2_s2d3 = file2_s2d3; ASSERT_EQ(0, unlink(file2_s2d3)); ASSERT_EQ(0, mkdir(file2_s2d3, 0700)); reparent_exdev_layers_enforce1(_metadata); reparent_exdev_layers_enforce2(_metadata); /* Checks that exchange between file and directory are consistent. */ ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s2d2, AT_FDCWD, dir_file2_s2d3, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, dir_file2_s2d3, AT_FDCWD, file1_s2d2, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); } TEST_F_FORK(layout1, reparent_exdev_layers_exchange3) { const char *const dir_file2_s2d3 = file2_s2d3; ASSERT_EQ(0, unlink(file2_s2d3)); ASSERT_EQ(0, mkdir(file2_s2d3, 0700)); reparent_exdev_layers_enforce1(_metadata); /* * Checks that exchange between file and directory are consistent, * including with inverted arguments (see * layout1.reparent_exdev_layers_exchange1). */ ASSERT_EQ(0, renameat2(AT_FDCWD, dir_file2_s2d3, AT_FDCWD, file1_s2d2, RENAME_EXCHANGE)); ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s2d2, AT_FDCWD, dir_file2_s2d3, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, dir_file2_s2d3, AT_FDCWD, file1_s2d2, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); } TEST_F_FORK(layout1, reparent_remove) { const struct rule layer1[] = { { .path = dir_s1d1, .access = LANDLOCK_ACCESS_FS_REFER | LANDLOCK_ACCESS_FS_REMOVE_DIR, }, { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_REMOVE_FILE, }, { .path = dir_s2d1, .access = LANDLOCK_ACCESS_FS_REFER | LANDLOCK_ACCESS_FS_REMOVE_FILE, }, {}, }; const int ruleset_fd = create_ruleset( _metadata, LANDLOCK_ACCESS_FS_REFER | LANDLOCK_ACCESS_FS_REMOVE_DIR | LANDLOCK_ACCESS_FS_REMOVE_FILE, layer1); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Access denied because of wrong/swapped remove file/dir. */ ASSERT_EQ(-1, rename(file1_s1d1, dir_s2d2)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, rename(dir_s2d2, file1_s1d1)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s1d1, AT_FDCWD, dir_s2d2, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s1d1, AT_FDCWD, dir_s2d3, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); /* Access allowed thanks to the matching rights. */ ASSERT_EQ(-1, rename(file1_s2d1, dir_s1d2)); ASSERT_EQ(EISDIR, errno); ASSERT_EQ(-1, rename(dir_s1d2, file1_s2d1)); ASSERT_EQ(ENOTDIR, errno); ASSERT_EQ(-1, rename(dir_s1d3, file1_s2d1)); ASSERT_EQ(ENOTDIR, errno); ASSERT_EQ(0, unlink(file1_s2d1)); ASSERT_EQ(0, unlink(file1_s1d3)); ASSERT_EQ(0, unlink(file2_s1d3)); ASSERT_EQ(0, rename(dir_s1d3, file1_s2d1)); /* Effectively removes a file and a directory by exchanging them. */ ASSERT_EQ(0, mkdir(dir_s1d3, 0700)); ASSERT_EQ(0, renameat2(AT_FDCWD, file1_s2d2, AT_FDCWD, dir_s1d3, RENAME_EXCHANGE)); ASSERT_EQ(-1, renameat2(AT_FDCWD, file1_s2d2, AT_FDCWD, dir_s1d3, RENAME_EXCHANGE)); ASSERT_EQ(EACCES, errno); } TEST_F_FORK(layout1, reparent_dom_superset) { const struct rule layer1[] = { { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_REFER, }, { .path = file1_s1d2, .access = LANDLOCK_ACCESS_FS_EXECUTE, }, { .path = dir_s1d3, .access = LANDLOCK_ACCESS_FS_MAKE_SOCK | LANDLOCK_ACCESS_FS_EXECUTE, }, { .path = dir_s2d2, .access = LANDLOCK_ACCESS_FS_REFER | LANDLOCK_ACCESS_FS_EXECUTE | LANDLOCK_ACCESS_FS_MAKE_SOCK, }, { .path = dir_s2d3, .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_MAKE_FIFO, }, {}, }; int ruleset_fd = create_ruleset(_metadata, LANDLOCK_ACCESS_FS_REFER | LANDLOCK_ACCESS_FS_EXECUTE | LANDLOCK_ACCESS_FS_MAKE_SOCK | LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_MAKE_FIFO, layer1); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); ASSERT_EQ(-1, rename(file1_s1d2, file1_s2d1)); ASSERT_EQ(EXDEV, errno); /* * Moving file1_s1d2 beneath dir_s2d3 would grant it the READ_FILE * access right. */ ASSERT_EQ(-1, rename(file1_s1d2, file1_s2d3)); ASSERT_EQ(EXDEV, errno); /* * Moving file1_s1d2 should be allowed even if dir_s2d2 grants a * superset of access rights compared to dir_s1d2, because file1_s1d2 * already has these access rights anyway. */ ASSERT_EQ(0, rename(file1_s1d2, file1_s2d2)); ASSERT_EQ(0, rename(file1_s2d2, file1_s1d2)); ASSERT_EQ(-1, rename(dir_s1d3, file1_s2d1)); ASSERT_EQ(EXDEV, errno); /* * Moving dir_s1d3 beneath dir_s2d3 would grant it the MAKE_FIFO access * right. */ ASSERT_EQ(-1, rename(dir_s1d3, file1_s2d3)); ASSERT_EQ(EXDEV, errno); /* * Moving dir_s1d3 should be allowed even if dir_s2d2 grants a superset * of access rights compared to dir_s1d2, because dir_s1d3 already has * these access rights anyway. */ ASSERT_EQ(0, rename(dir_s1d3, file1_s2d2)); ASSERT_EQ(0, rename(file1_s2d2, dir_s1d3)); /* * Moving file1_s2d3 beneath dir_s1d2 is allowed, but moving it back * will be denied because the new inherited access rights from dir_s1d2 * will be less than the destination (original) dir_s2d3. This is a * sinkhole scenario where we cannot move back files or directories. */ ASSERT_EQ(0, rename(file1_s2d3, file2_s1d2)); ASSERT_EQ(-1, rename(file2_s1d2, file1_s2d3)); ASSERT_EQ(EXDEV, errno); ASSERT_EQ(0, unlink(file2_s1d2)); ASSERT_EQ(0, unlink(file2_s2d3)); /* * Checks similar directory one-way move: dir_s2d3 loses EXECUTE and * MAKE_SOCK which were inherited from dir_s1d3. */ ASSERT_EQ(0, rename(dir_s2d3, file2_s1d2)); ASSERT_EQ(-1, rename(file2_s1d2, dir_s2d3)); ASSERT_EQ(EXDEV, errno); } TEST_F_FORK(layout1, remove_dir) { const struct rule rules[] = { { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_REMOVE_DIR, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, rules[0].access, rules); ASSERT_LE(0, ruleset_fd); ASSERT_EQ(0, unlink(file1_s1d1)); ASSERT_EQ(0, unlink(file1_s1d2)); ASSERT_EQ(0, unlink(file1_s1d3)); ASSERT_EQ(0, unlink(file2_s1d3)); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); ASSERT_EQ(0, rmdir(dir_s1d3)); ASSERT_EQ(0, mkdir(dir_s1d3, 0700)); ASSERT_EQ(0, unlinkat(AT_FDCWD, dir_s1d3, AT_REMOVEDIR)); /* dir_s1d2 itself cannot be removed. */ ASSERT_EQ(-1, rmdir(dir_s1d2)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, unlinkat(AT_FDCWD, dir_s1d2, AT_REMOVEDIR)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, rmdir(dir_s1d1)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, unlinkat(AT_FDCWD, dir_s1d1, AT_REMOVEDIR)); ASSERT_EQ(EACCES, errno); } TEST_F_FORK(layout1, remove_file) { const struct rule rules[] = { { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_REMOVE_FILE, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, rules[0].access, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); ASSERT_EQ(-1, unlink(file1_s1d1)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, unlinkat(AT_FDCWD, file1_s1d1, 0)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(0, unlink(file1_s1d2)); ASSERT_EQ(0, unlinkat(AT_FDCWD, file1_s1d3, 0)); } static void test_make_file(struct __test_metadata *const _metadata, const __u64 access, const mode_t mode, const dev_t dev) { const struct rule rules[] = { { .path = dir_s1d2, .access = access, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, access, rules); ASSERT_LE(0, ruleset_fd); ASSERT_EQ(0, unlink(file1_s1d1)); ASSERT_EQ(0, unlink(file2_s1d1)); ASSERT_EQ(0, mknod(file2_s1d1, mode | 0400, dev)) { TH_LOG("Failed to make file \"%s\": %s", file2_s1d1, strerror(errno)); }; ASSERT_EQ(0, unlink(file1_s1d2)); ASSERT_EQ(0, unlink(file2_s1d2)); ASSERT_EQ(0, unlink(file1_s1d3)); ASSERT_EQ(0, unlink(file2_s1d3)); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); ASSERT_EQ(-1, mknod(file1_s1d1, mode | 0400, dev)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, link(file2_s1d1, file1_s1d1)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, rename(file2_s1d1, file1_s1d1)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(0, mknod(file1_s1d2, mode | 0400, dev)) { TH_LOG("Failed to make file \"%s\": %s", file1_s1d2, strerror(errno)); }; ASSERT_EQ(0, link(file1_s1d2, file2_s1d2)); ASSERT_EQ(0, unlink(file2_s1d2)); ASSERT_EQ(0, rename(file1_s1d2, file2_s1d2)); ASSERT_EQ(0, mknod(file1_s1d3, mode | 0400, dev)); ASSERT_EQ(0, link(file1_s1d3, file2_s1d3)); ASSERT_EQ(0, unlink(file2_s1d3)); ASSERT_EQ(0, rename(file1_s1d3, file2_s1d3)); } TEST_F_FORK(layout1, make_char) { /* Creates a /dev/null device. */ set_cap(_metadata, CAP_MKNOD); test_make_file(_metadata, LANDLOCK_ACCESS_FS_MAKE_CHAR, S_IFCHR, makedev(1, 3)); } TEST_F_FORK(layout1, make_block) { /* Creates a /dev/loop0 device. */ set_cap(_metadata, CAP_MKNOD); test_make_file(_metadata, LANDLOCK_ACCESS_FS_MAKE_BLOCK, S_IFBLK, makedev(7, 0)); } TEST_F_FORK(layout1, make_reg_1) { test_make_file(_metadata, LANDLOCK_ACCESS_FS_MAKE_REG, S_IFREG, 0); } TEST_F_FORK(layout1, make_reg_2) { test_make_file(_metadata, LANDLOCK_ACCESS_FS_MAKE_REG, 0, 0); } TEST_F_FORK(layout1, make_sock) { test_make_file(_metadata, LANDLOCK_ACCESS_FS_MAKE_SOCK, S_IFSOCK, 0); } TEST_F_FORK(layout1, make_fifo) { test_make_file(_metadata, LANDLOCK_ACCESS_FS_MAKE_FIFO, S_IFIFO, 0); } TEST_F_FORK(layout1, make_sym) { const struct rule rules[] = { { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_MAKE_SYM, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, rules[0].access, rules); ASSERT_LE(0, ruleset_fd); ASSERT_EQ(0, unlink(file1_s1d1)); ASSERT_EQ(0, unlink(file2_s1d1)); ASSERT_EQ(0, symlink("none", file2_s1d1)); ASSERT_EQ(0, unlink(file1_s1d2)); ASSERT_EQ(0, unlink(file2_s1d2)); ASSERT_EQ(0, unlink(file1_s1d3)); ASSERT_EQ(0, unlink(file2_s1d3)); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); ASSERT_EQ(-1, symlink("none", file1_s1d1)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, link(file2_s1d1, file1_s1d1)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(-1, rename(file2_s1d1, file1_s1d1)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(0, symlink("none", file1_s1d2)); ASSERT_EQ(0, link(file1_s1d2, file2_s1d2)); ASSERT_EQ(0, unlink(file2_s1d2)); ASSERT_EQ(0, rename(file1_s1d2, file2_s1d2)); ASSERT_EQ(0, symlink("none", file1_s1d3)); ASSERT_EQ(0, link(file1_s1d3, file2_s1d3)); ASSERT_EQ(0, unlink(file2_s1d3)); ASSERT_EQ(0, rename(file1_s1d3, file2_s1d3)); } TEST_F_FORK(layout1, make_dir) { const struct rule rules[] = { { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_MAKE_DIR, }, {}, }; const int ruleset_fd = create_ruleset(_metadata, rules[0].access, rules); ASSERT_LE(0, ruleset_fd); ASSERT_EQ(0, unlink(file1_s1d1)); ASSERT_EQ(0, unlink(file1_s1d2)); ASSERT_EQ(0, unlink(file1_s1d3)); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Uses file_* as directory names. */ ASSERT_EQ(-1, mkdir(file1_s1d1, 0700)); ASSERT_EQ(EACCES, errno); ASSERT_EQ(0, mkdir(file1_s1d2, 0700)); ASSERT_EQ(0, mkdir(file1_s1d3, 0700)); } static int open_proc_fd(struct __test_metadata *const _metadata, const int fd, const int open_flags) { static const char path_template[] = "/proc/self/fd/%d"; char procfd_path[sizeof(path_template) + 10]; const int procfd_path_size = snprintf(procfd_path, sizeof(procfd_path), path_template, fd); ASSERT_LT(procfd_path_size, sizeof(procfd_path)); return open(procfd_path, open_flags); } TEST_F_FORK(layout1, proc_unlinked_file) { const struct rule rules[] = { { .path = file1_s1d2, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, {}, }; int reg_fd, proc_fd; const int ruleset_fd = create_ruleset( _metadata, LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); ASSERT_EQ(EACCES, test_open(file1_s1d2, O_RDWR)); ASSERT_EQ(0, test_open(file1_s1d2, O_RDONLY)); reg_fd = open(file1_s1d2, O_RDONLY | O_CLOEXEC); ASSERT_LE(0, reg_fd); ASSERT_EQ(0, unlink(file1_s1d2)); proc_fd = open_proc_fd(_metadata, reg_fd, O_RDONLY | O_CLOEXEC); ASSERT_LE(0, proc_fd); ASSERT_EQ(0, close(proc_fd)); proc_fd = open_proc_fd(_metadata, reg_fd, O_RDWR | O_CLOEXEC); ASSERT_EQ(-1, proc_fd) { TH_LOG("Successfully opened /proc/self/fd/%d: %s", reg_fd, strerror(errno)); } ASSERT_EQ(EACCES, errno); ASSERT_EQ(0, close(reg_fd)); } TEST_F_FORK(layout1, proc_pipe) { int proc_fd; int pipe_fds[2]; char buf = '\0'; const struct rule rules[] = { { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, }, {}, }; /* Limits read and write access to files tied to the filesystem. */ const int ruleset_fd = create_ruleset(_metadata, rules[0].access, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks enforcement for normal files. */ ASSERT_EQ(0, test_open(file1_s1d2, O_RDWR)); ASSERT_EQ(EACCES, test_open(file1_s1d1, O_RDWR)); /* Checks access to pipes through FD. */ ASSERT_EQ(0, pipe2(pipe_fds, O_CLOEXEC)); ASSERT_EQ(1, write(pipe_fds[1], ".", 1)) { TH_LOG("Failed to write in pipe: %s", strerror(errno)); } ASSERT_EQ(1, read(pipe_fds[0], &buf, 1)); ASSERT_EQ('.', buf); /* Checks write access to pipe through /proc/self/fd . */ proc_fd = open_proc_fd(_metadata, pipe_fds[1], O_WRONLY | O_CLOEXEC); ASSERT_LE(0, proc_fd); ASSERT_EQ(1, write(proc_fd, ".", 1)) { TH_LOG("Failed to write through /proc/self/fd/%d: %s", pipe_fds[1], strerror(errno)); } ASSERT_EQ(0, close(proc_fd)); /* Checks read access to pipe through /proc/self/fd . */ proc_fd = open_proc_fd(_metadata, pipe_fds[0], O_RDONLY | O_CLOEXEC); ASSERT_LE(0, proc_fd); buf = '\0'; ASSERT_EQ(1, read(proc_fd, &buf, 1)) { TH_LOG("Failed to read through /proc/self/fd/%d: %s", pipe_fds[1], strerror(errno)); } ASSERT_EQ(0, close(proc_fd)); ASSERT_EQ(0, close(pipe_fds[0])); ASSERT_EQ(0, close(pipe_fds[1])); } /* Invokes truncate(2) and returns its errno or 0. */ static int test_truncate(const char *const path) { if (truncate(path, 10) < 0) return errno; return 0; } /* * Invokes creat(2) and returns its errno or 0. * Closes the opened file descriptor on success. */ static int test_creat(const char *const path) { int fd = creat(path, 0600); if (fd < 0) return errno; /* * Mixing error codes from close(2) and creat(2) should not lead to any * (access type) confusion for this test. */ if (close(fd) < 0) return errno; return 0; } /* * Exercises file truncation when it's not restricted, * as it was the case before LANDLOCK_ACCESS_FS_TRUNCATE existed. */ TEST_F_FORK(layout1, truncate_unhandled) { const char *const file_r = file1_s1d1; const char *const file_w = file2_s1d1; const char *const file_none = file1_s1d2; const struct rule rules[] = { { .path = file_r, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, { .path = file_w, .access = LANDLOCK_ACCESS_FS_WRITE_FILE, }, /* Implicitly: No rights for file_none. */ {}, }; const __u64 handled = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE; int ruleset_fd; /* Enable Landlock. */ ruleset_fd = create_ruleset(_metadata, handled, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* * Checks read right: truncate and open with O_TRUNC work, unless the * file is attempted to be opened for writing. */ EXPECT_EQ(0, test_truncate(file_r)); EXPECT_EQ(0, test_open(file_r, O_RDONLY | O_TRUNC)); EXPECT_EQ(EACCES, test_open(file_r, O_WRONLY | O_TRUNC)); EXPECT_EQ(EACCES, test_creat(file_r)); /* * Checks write right: truncate and open with O_TRUNC work, unless the * file is attempted to be opened for reading. */ EXPECT_EQ(0, test_truncate(file_w)); EXPECT_EQ(EACCES, test_open(file_w, O_RDONLY | O_TRUNC)); EXPECT_EQ(0, test_open(file_w, O_WRONLY | O_TRUNC)); EXPECT_EQ(0, test_creat(file_w)); /* * Checks "no rights" case: truncate works but all open attempts fail, * including creat. */ EXPECT_EQ(0, test_truncate(file_none)); EXPECT_EQ(EACCES, test_open(file_none, O_RDONLY | O_TRUNC)); EXPECT_EQ(EACCES, test_open(file_none, O_WRONLY | O_TRUNC)); EXPECT_EQ(EACCES, test_creat(file_none)); } TEST_F_FORK(layout1, truncate) { const char *const file_rwt = file1_s1d1; const char *const file_rw = file2_s1d1; const char *const file_rt = file1_s1d2; const char *const file_t = file2_s1d2; const char *const file_none = file1_s1d3; const char *const dir_t = dir_s2d1; const char *const file_in_dir_t = file1_s2d1; const char *const dir_w = dir_s3d1; const char *const file_in_dir_w = file1_s3d1; const struct rule rules[] = { { .path = file_rwt, .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE | LANDLOCK_ACCESS_FS_TRUNCATE, }, { .path = file_rw, .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, }, { .path = file_rt, .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_TRUNCATE, }, { .path = file_t, .access = LANDLOCK_ACCESS_FS_TRUNCATE, }, /* Implicitly: No access rights for file_none. */ { .path = dir_t, .access = LANDLOCK_ACCESS_FS_TRUNCATE, }, { .path = dir_w, .access = LANDLOCK_ACCESS_FS_WRITE_FILE, }, {}, }; const __u64 handled = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE | LANDLOCK_ACCESS_FS_TRUNCATE; int ruleset_fd; /* Enable Landlock. */ ruleset_fd = create_ruleset(_metadata, handled, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks read, write and truncate rights: truncation works. */ EXPECT_EQ(0, test_truncate(file_rwt)); EXPECT_EQ(0, test_open(file_rwt, O_RDONLY | O_TRUNC)); EXPECT_EQ(0, test_open(file_rwt, O_WRONLY | O_TRUNC)); /* Checks read and write rights: no truncate variant works. */ EXPECT_EQ(EACCES, test_truncate(file_rw)); EXPECT_EQ(EACCES, test_open(file_rw, O_RDONLY | O_TRUNC)); EXPECT_EQ(EACCES, test_open(file_rw, O_WRONLY | O_TRUNC)); /* * Checks read and truncate rights: truncation works. * * Note: Files can get truncated using open() even with O_RDONLY. */ EXPECT_EQ(0, test_truncate(file_rt)); EXPECT_EQ(0, test_open(file_rt, O_RDONLY | O_TRUNC)); EXPECT_EQ(EACCES, test_open(file_rt, O_WRONLY | O_TRUNC)); /* Checks truncate right: truncate works, but can't open file. */ EXPECT_EQ(0, test_truncate(file_t)); EXPECT_EQ(EACCES, test_open(file_t, O_RDONLY | O_TRUNC)); EXPECT_EQ(EACCES, test_open(file_t, O_WRONLY | O_TRUNC)); /* Checks "no rights" case: No form of truncation works. */ EXPECT_EQ(EACCES, test_truncate(file_none)); EXPECT_EQ(EACCES, test_open(file_none, O_RDONLY | O_TRUNC)); EXPECT_EQ(EACCES, test_open(file_none, O_WRONLY | O_TRUNC)); /* * Checks truncate right on directory: truncate works on contained * files. */ EXPECT_EQ(0, test_truncate(file_in_dir_t)); EXPECT_EQ(EACCES, test_open(file_in_dir_t, O_RDONLY | O_TRUNC)); EXPECT_EQ(EACCES, test_open(file_in_dir_t, O_WRONLY | O_TRUNC)); /* * Checks creat in dir_w: This requires the truncate right when * overwriting an existing file, but does not require it when the file * is new. */ EXPECT_EQ(EACCES, test_creat(file_in_dir_w)); ASSERT_EQ(0, unlink(file_in_dir_w)); EXPECT_EQ(0, test_creat(file_in_dir_w)); } /* Invokes ftruncate(2) and returns its errno or 0. */ static int test_ftruncate(int fd) { if (ftruncate(fd, 10) < 0) return errno; return 0; } TEST_F_FORK(layout1, ftruncate) { /* * This test opens a new file descriptor at different stages of * Landlock restriction: * * without restriction: ftruncate works * something else but truncate restricted: ftruncate works * truncate restricted and permitted: ftruncate works * truncate restricted and not permitted: ftruncate fails * * Whether this works or not is expected to depend on the time when the * FD was opened, not to depend on the time when ftruncate() was * called. */ const char *const path = file1_s1d1; const __u64 handled1 = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE; const struct rule layer1[] = { { .path = path, .access = LANDLOCK_ACCESS_FS_WRITE_FILE, }, {}, }; const __u64 handled2 = LANDLOCK_ACCESS_FS_TRUNCATE; const struct rule layer2[] = { { .path = path, .access = LANDLOCK_ACCESS_FS_TRUNCATE, }, {}, }; const __u64 handled3 = LANDLOCK_ACCESS_FS_TRUNCATE | LANDLOCK_ACCESS_FS_WRITE_FILE; const struct rule layer3[] = { { .path = path, .access = LANDLOCK_ACCESS_FS_WRITE_FILE, }, {}, }; int fd_layer0, fd_layer1, fd_layer2, fd_layer3, ruleset_fd; fd_layer0 = open(path, O_WRONLY); EXPECT_EQ(0, test_ftruncate(fd_layer0)); ruleset_fd = create_ruleset(_metadata, handled1, layer1); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); fd_layer1 = open(path, O_WRONLY); EXPECT_EQ(0, test_ftruncate(fd_layer0)); EXPECT_EQ(0, test_ftruncate(fd_layer1)); ruleset_fd = create_ruleset(_metadata, handled2, layer2); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); fd_layer2 = open(path, O_WRONLY); EXPECT_EQ(0, test_ftruncate(fd_layer0)); EXPECT_EQ(0, test_ftruncate(fd_layer1)); EXPECT_EQ(0, test_ftruncate(fd_layer2)); ruleset_fd = create_ruleset(_metadata, handled3, layer3); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); fd_layer3 = open(path, O_WRONLY); EXPECT_EQ(0, test_ftruncate(fd_layer0)); EXPECT_EQ(0, test_ftruncate(fd_layer1)); EXPECT_EQ(0, test_ftruncate(fd_layer2)); EXPECT_EQ(EACCES, test_ftruncate(fd_layer3)); ASSERT_EQ(0, close(fd_layer0)); ASSERT_EQ(0, close(fd_layer1)); ASSERT_EQ(0, close(fd_layer2)); ASSERT_EQ(0, close(fd_layer3)); } /* clang-format off */ FIXTURE(ftruncate) {}; /* clang-format on */ FIXTURE_SETUP(ftruncate) { prepare_layout(_metadata); create_file(_metadata, file1_s1d1); } FIXTURE_TEARDOWN(ftruncate) { EXPECT_EQ(0, remove_path(file1_s1d1)); cleanup_layout(_metadata); } FIXTURE_VARIANT(ftruncate) { const __u64 handled; const __u64 permitted; const int expected_open_result; const int expected_ftruncate_result; }; /* clang-format off */ FIXTURE_VARIANT_ADD(ftruncate, w_w) { /* clang-format on */ .handled = LANDLOCK_ACCESS_FS_WRITE_FILE, .permitted = LANDLOCK_ACCESS_FS_WRITE_FILE, .expected_open_result = 0, .expected_ftruncate_result = 0, }; /* clang-format off */ FIXTURE_VARIANT_ADD(ftruncate, t_t) { /* clang-format on */ .handled = LANDLOCK_ACCESS_FS_TRUNCATE, .permitted = LANDLOCK_ACCESS_FS_TRUNCATE, .expected_open_result = 0, .expected_ftruncate_result = 0, }; /* clang-format off */ FIXTURE_VARIANT_ADD(ftruncate, wt_w) { /* clang-format on */ .handled = LANDLOCK_ACCESS_FS_WRITE_FILE | LANDLOCK_ACCESS_FS_TRUNCATE, .permitted = LANDLOCK_ACCESS_FS_WRITE_FILE, .expected_open_result = 0, .expected_ftruncate_result = EACCES, }; /* clang-format off */ FIXTURE_VARIANT_ADD(ftruncate, wt_wt) { /* clang-format on */ .handled = LANDLOCK_ACCESS_FS_WRITE_FILE | LANDLOCK_ACCESS_FS_TRUNCATE, .permitted = LANDLOCK_ACCESS_FS_WRITE_FILE | LANDLOCK_ACCESS_FS_TRUNCATE, .expected_open_result = 0, .expected_ftruncate_result = 0, }; /* clang-format off */ FIXTURE_VARIANT_ADD(ftruncate, wt_t) { /* clang-format on */ .handled = LANDLOCK_ACCESS_FS_WRITE_FILE | LANDLOCK_ACCESS_FS_TRUNCATE, .permitted = LANDLOCK_ACCESS_FS_TRUNCATE, .expected_open_result = EACCES, }; TEST_F_FORK(ftruncate, open_and_ftruncate) { const char *const path = file1_s1d1; const struct rule rules[] = { { .path = path, .access = variant->permitted, }, {}, }; int fd, ruleset_fd; /* Enable Landlock. */ ruleset_fd = create_ruleset(_metadata, variant->handled, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); fd = open(path, O_WRONLY); EXPECT_EQ(variant->expected_open_result, (fd < 0 ? errno : 0)); if (fd >= 0) { EXPECT_EQ(variant->expected_ftruncate_result, test_ftruncate(fd)); ASSERT_EQ(0, close(fd)); } } TEST_F_FORK(ftruncate, open_and_ftruncate_in_different_processes) { int child, fd, status; int socket_fds[2]; ASSERT_EQ(0, socketpair(AF_UNIX, SOCK_STREAM | SOCK_CLOEXEC, 0, socket_fds)); child = fork(); ASSERT_LE(0, child); if (child == 0) { /* * Enables Landlock in the child process, open a file descriptor * where truncation is forbidden and send it to the * non-landlocked parent process. */ const char *const path = file1_s1d1; const struct rule rules[] = { { .path = path, .access = variant->permitted, }, {}, }; int fd, ruleset_fd; ruleset_fd = create_ruleset(_metadata, variant->handled, rules); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); fd = open(path, O_WRONLY); ASSERT_EQ(variant->expected_open_result, (fd < 0 ? errno : 0)); if (fd >= 0) { ASSERT_EQ(0, send_fd(socket_fds[0], fd)); ASSERT_EQ(0, close(fd)); } ASSERT_EQ(0, close(socket_fds[0])); _exit(_metadata->passed ? EXIT_SUCCESS : EXIT_FAILURE); return; } if (variant->expected_open_result == 0) { fd = recv_fd(socket_fds[1]); ASSERT_LE(0, fd); EXPECT_EQ(variant->expected_ftruncate_result, test_ftruncate(fd)); ASSERT_EQ(0, close(fd)); } ASSERT_EQ(child, waitpid(child, &status, 0)); ASSERT_EQ(1, WIFEXITED(status)); ASSERT_EQ(EXIT_SUCCESS, WEXITSTATUS(status)); ASSERT_EQ(0, close(socket_fds[0])); ASSERT_EQ(0, close(socket_fds[1])); } TEST(memfd_ftruncate) { int fd; fd = memfd_create("name", MFD_CLOEXEC); ASSERT_LE(0, fd); /* * Checks that ftruncate is permitted on file descriptors that are * created in ways other than open(2). */ EXPECT_EQ(0, test_ftruncate(fd)); ASSERT_EQ(0, close(fd)); } /* clang-format off */ FIXTURE(layout1_bind) {}; /* clang-format on */ FIXTURE_SETUP(layout1_bind) { prepare_layout(_metadata); create_layout1(_metadata); set_cap(_metadata, CAP_SYS_ADMIN); ASSERT_EQ(0, mount(dir_s1d2, dir_s2d2, NULL, MS_BIND, NULL)); clear_cap(_metadata, CAP_SYS_ADMIN); } FIXTURE_TEARDOWN(layout1_bind) { set_cap(_metadata, CAP_SYS_ADMIN); EXPECT_EQ(0, umount(dir_s2d2)); clear_cap(_metadata, CAP_SYS_ADMIN); remove_layout1(_metadata); cleanup_layout(_metadata); } static const char bind_dir_s1d3[] = TMP_DIR "/s2d1/s2d2/s1d3"; static const char bind_file1_s1d3[] = TMP_DIR "/s2d1/s2d2/s1d3/f1"; /* * layout1_bind hierarchy: * * tmp * ├── s1d1 * │   ├── f1 * │   ├── f2 * │   └── s1d2 * │   ├── f1 * │   ├── f2 * │   └── s1d3 * │   ├── f1 * │   └── f2 * ├── s2d1 * │   ├── f1 * │   └── s2d2 * │   ├── f1 * │   ├── f2 * │   └── s1d3 * │   ├── f1 * │   └── f2 * └── s3d1 * └── s3d2 * └── s3d3 */ TEST_F_FORK(layout1_bind, no_restriction) { ASSERT_EQ(0, test_open(dir_s1d1, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s1d1, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s1d2, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s1d2, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s1d3, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s1d3, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s2d1, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s2d1, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s2d2, O_RDONLY)); ASSERT_EQ(0, test_open(file1_s2d2, O_RDONLY)); ASSERT_EQ(ENOENT, test_open(dir_s2d3, O_RDONLY)); ASSERT_EQ(ENOENT, test_open(file1_s2d3, O_RDONLY)); ASSERT_EQ(0, test_open(bind_dir_s1d3, O_RDONLY)); ASSERT_EQ(0, test_open(bind_file1_s1d3, O_RDONLY)); ASSERT_EQ(0, test_open(dir_s3d1, O_RDONLY)); } TEST_F_FORK(layout1_bind, same_content_same_file) { /* * Sets access right on parent directories of both source and * destination mount points. */ const struct rule layer1_parent[] = { { .path = dir_s1d1, .access = ACCESS_RO, }, { .path = dir_s2d1, .access = ACCESS_RW, }, {}, }; /* * Sets access rights on the same bind-mounted directories. The result * should be ACCESS_RW for both directories, but not both hierarchies * because of the first layer. */ const struct rule layer2_mount_point[] = { { .path = dir_s1d2, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, { .path = dir_s2d2, .access = ACCESS_RW, }, {}, }; /* Only allow read-access to the s1d3 hierarchies. */ const struct rule layer3_source[] = { { .path = dir_s1d3, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, {}, }; /* Removes all access rights. */ const struct rule layer4_destination[] = { { .path = bind_file1_s1d3, .access = LANDLOCK_ACCESS_FS_WRITE_FILE, }, {}, }; int ruleset_fd; /* Sets rules for the parent directories. */ ruleset_fd = create_ruleset(_metadata, ACCESS_RW, layer1_parent); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks source hierarchy. */ ASSERT_EQ(0, test_open(file1_s1d1, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d1, O_WRONLY)); ASSERT_EQ(0, test_open(dir_s1d1, O_RDONLY | O_DIRECTORY)); ASSERT_EQ(0, test_open(file1_s1d2, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d2, O_WRONLY)); ASSERT_EQ(0, test_open(dir_s1d2, O_RDONLY | O_DIRECTORY)); /* Checks destination hierarchy. */ ASSERT_EQ(0, test_open(file1_s2d1, O_RDWR)); ASSERT_EQ(0, test_open(dir_s2d1, O_RDONLY | O_DIRECTORY)); ASSERT_EQ(0, test_open(file1_s2d2, O_RDWR)); ASSERT_EQ(0, test_open(dir_s2d2, O_RDONLY | O_DIRECTORY)); /* Sets rules for the mount points. */ ruleset_fd = create_ruleset(_metadata, ACCESS_RW, layer2_mount_point); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks source hierarchy. */ ASSERT_EQ(EACCES, test_open(file1_s1d1, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d1, O_WRONLY)); ASSERT_EQ(EACCES, test_open(dir_s1d1, O_RDONLY | O_DIRECTORY)); ASSERT_EQ(0, test_open(file1_s1d2, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d2, O_WRONLY)); ASSERT_EQ(0, test_open(dir_s1d2, O_RDONLY | O_DIRECTORY)); /* Checks destination hierarchy. */ ASSERT_EQ(EACCES, test_open(file1_s2d1, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s2d1, O_WRONLY)); ASSERT_EQ(EACCES, test_open(dir_s2d1, O_RDONLY | O_DIRECTORY)); ASSERT_EQ(0, test_open(file1_s2d2, O_RDWR)); ASSERT_EQ(0, test_open(dir_s2d2, O_RDONLY | O_DIRECTORY)); ASSERT_EQ(0, test_open(bind_dir_s1d3, O_RDONLY | O_DIRECTORY)); /* Sets a (shared) rule only on the source. */ ruleset_fd = create_ruleset(_metadata, ACCESS_RW, layer3_source); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks source hierarchy. */ ASSERT_EQ(EACCES, test_open(file1_s1d2, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d2, O_WRONLY)); ASSERT_EQ(EACCES, test_open(dir_s1d2, O_RDONLY | O_DIRECTORY)); ASSERT_EQ(0, test_open(file1_s1d3, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d3, O_WRONLY)); ASSERT_EQ(EACCES, test_open(dir_s1d3, O_RDONLY | O_DIRECTORY)); /* Checks destination hierarchy. */ ASSERT_EQ(EACCES, test_open(file1_s2d2, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s2d2, O_WRONLY)); ASSERT_EQ(EACCES, test_open(dir_s2d2, O_RDONLY | O_DIRECTORY)); ASSERT_EQ(0, test_open(bind_file1_s1d3, O_RDONLY)); ASSERT_EQ(EACCES, test_open(bind_file1_s1d3, O_WRONLY)); ASSERT_EQ(EACCES, test_open(bind_dir_s1d3, O_RDONLY | O_DIRECTORY)); /* Sets a (shared) rule only on the destination. */ ruleset_fd = create_ruleset(_metadata, ACCESS_RW, layer4_destination); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks source hierarchy. */ ASSERT_EQ(EACCES, test_open(file1_s1d3, O_RDONLY)); ASSERT_EQ(EACCES, test_open(file1_s1d3, O_WRONLY)); /* Checks destination hierarchy. */ ASSERT_EQ(EACCES, test_open(bind_file1_s1d3, O_RDONLY)); ASSERT_EQ(EACCES, test_open(bind_file1_s1d3, O_WRONLY)); } TEST_F_FORK(layout1_bind, reparent_cross_mount) { const struct rule layer1[] = { { /* dir_s2d1 is beneath the dir_s2d2 mount point. */ .path = dir_s2d1, .access = LANDLOCK_ACCESS_FS_REFER, }, { .path = bind_dir_s1d3, .access = LANDLOCK_ACCESS_FS_EXECUTE, }, {}, }; int ruleset_fd = create_ruleset( _metadata, LANDLOCK_ACCESS_FS_REFER | LANDLOCK_ACCESS_FS_EXECUTE, layer1); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks basic denied move. */ ASSERT_EQ(-1, rename(file1_s1d1, file1_s1d2)); ASSERT_EQ(EXDEV, errno); /* Checks real cross-mount move (Landlock is not involved). */ ASSERT_EQ(-1, rename(file1_s2d1, file1_s2d2)); ASSERT_EQ(EXDEV, errno); /* Checks move that will give more accesses. */ ASSERT_EQ(-1, rename(file1_s2d2, bind_file1_s1d3)); ASSERT_EQ(EXDEV, errno); /* Checks legitimate downgrade move. */ ASSERT_EQ(0, rename(bind_file1_s1d3, file1_s2d2)); } #define LOWER_BASE TMP_DIR "/lower" #define LOWER_DATA LOWER_BASE "/data" static const char lower_fl1[] = LOWER_DATA "/fl1"; static const char lower_dl1[] = LOWER_DATA "/dl1"; static const char lower_dl1_fl2[] = LOWER_DATA "/dl1/fl2"; static const char lower_fo1[] = LOWER_DATA "/fo1"; static const char lower_do1[] = LOWER_DATA "/do1"; static const char lower_do1_fo2[] = LOWER_DATA "/do1/fo2"; static const char lower_do1_fl3[] = LOWER_DATA "/do1/fl3"; static const char (*lower_base_files[])[] = { &lower_fl1, &lower_fo1, NULL, }; static const char (*lower_base_directories[])[] = { &lower_dl1, &lower_do1, NULL, }; static const char (*lower_sub_files[])[] = { &lower_dl1_fl2, &lower_do1_fo2, &lower_do1_fl3, NULL, }; #define UPPER_BASE TMP_DIR "/upper" #define UPPER_DATA UPPER_BASE "/data" #define UPPER_WORK UPPER_BASE "/work" static const char upper_fu1[] = UPPER_DATA "/fu1"; static const char upper_du1[] = UPPER_DATA "/du1"; static const char upper_du1_fu2[] = UPPER_DATA "/du1/fu2"; static const char upper_fo1[] = UPPER_DATA "/fo1"; static const char upper_do1[] = UPPER_DATA "/do1"; static const char upper_do1_fo2[] = UPPER_DATA "/do1/fo2"; static const char upper_do1_fu3[] = UPPER_DATA "/do1/fu3"; static const char (*upper_base_files[])[] = { &upper_fu1, &upper_fo1, NULL, }; static const char (*upper_base_directories[])[] = { &upper_du1, &upper_do1, NULL, }; static const char (*upper_sub_files[])[] = { &upper_du1_fu2, &upper_do1_fo2, &upper_do1_fu3, NULL, }; #define MERGE_BASE TMP_DIR "/merge" #define MERGE_DATA MERGE_BASE "/data" static const char merge_fl1[] = MERGE_DATA "/fl1"; static const char merge_dl1[] = MERGE_DATA "/dl1"; static const char merge_dl1_fl2[] = MERGE_DATA "/dl1/fl2"; static const char merge_fu1[] = MERGE_DATA "/fu1"; static const char merge_du1[] = MERGE_DATA "/du1"; static const char merge_du1_fu2[] = MERGE_DATA "/du1/fu2"; static const char merge_fo1[] = MERGE_DATA "/fo1"; static const char merge_do1[] = MERGE_DATA "/do1"; static const char merge_do1_fo2[] = MERGE_DATA "/do1/fo2"; static const char merge_do1_fl3[] = MERGE_DATA "/do1/fl3"; static const char merge_do1_fu3[] = MERGE_DATA "/do1/fu3"; static const char (*merge_base_files[])[] = { &merge_fl1, &merge_fu1, &merge_fo1, NULL, }; static const char (*merge_base_directories[])[] = { &merge_dl1, &merge_du1, &merge_do1, NULL, }; static const char (*merge_sub_files[])[] = { &merge_dl1_fl2, &merge_du1_fu2, &merge_do1_fo2, &merge_do1_fl3, &merge_do1_fu3, NULL, }; /* * layout2_overlay hierarchy: * * tmp * ├── lower * │   └── data * │   ├── dl1 * │   │   └── fl2 * │   ├── do1 * │   │   ├── fl3 * │   │   └── fo2 * │   ├── fl1 * │   └── fo1 * ├── merge * │   └── data * │   ├── dl1 * │   │   └── fl2 * │   ├── do1 * │   │   ├── fl3 * │   │   ├── fo2 * │   │   └── fu3 * │   ├── du1 * │   │   └── fu2 * │   ├── fl1 * │   ├── fo1 * │   └── fu1 * └── upper * ├── data * │   ├── do1 * │   │   ├── fo2 * │   │   └── fu3 * │   ├── du1 * │   │   └── fu2 * │   ├── fo1 * │   └── fu1 * └── work * └── work */ FIXTURE(layout2_overlay) { bool skip_test; }; FIXTURE_SETUP(layout2_overlay) { if (!supports_filesystem("overlay")) { self->skip_test = true; SKIP(return, "overlayfs is not supported (setup)"); } prepare_layout(_metadata); create_directory(_metadata, LOWER_BASE); set_cap(_metadata, CAP_SYS_ADMIN); /* Creates tmpfs mount points to get deterministic overlayfs. */ ASSERT_EQ(0, mount_opt(&mnt_tmp, LOWER_BASE)); clear_cap(_metadata, CAP_SYS_ADMIN); create_file(_metadata, lower_fl1); create_file(_metadata, lower_dl1_fl2); create_file(_metadata, lower_fo1); create_file(_metadata, lower_do1_fo2); create_file(_metadata, lower_do1_fl3); create_directory(_metadata, UPPER_BASE); set_cap(_metadata, CAP_SYS_ADMIN); ASSERT_EQ(0, mount_opt(&mnt_tmp, UPPER_BASE)); clear_cap(_metadata, CAP_SYS_ADMIN); create_file(_metadata, upper_fu1); create_file(_metadata, upper_du1_fu2); create_file(_metadata, upper_fo1); create_file(_metadata, upper_do1_fo2); create_file(_metadata, upper_do1_fu3); ASSERT_EQ(0, mkdir(UPPER_WORK, 0700)); create_directory(_metadata, MERGE_DATA); set_cap(_metadata, CAP_SYS_ADMIN); set_cap(_metadata, CAP_DAC_OVERRIDE); ASSERT_EQ(0, mount("overlay", MERGE_DATA, "overlay", 0, "lowerdir=" LOWER_DATA ",upperdir=" UPPER_DATA ",workdir=" UPPER_WORK)); clear_cap(_metadata, CAP_DAC_OVERRIDE); clear_cap(_metadata, CAP_SYS_ADMIN); } FIXTURE_TEARDOWN(layout2_overlay) { if (self->skip_test) SKIP(return, "overlayfs is not supported (teardown)"); EXPECT_EQ(0, remove_path(lower_do1_fl3)); EXPECT_EQ(0, remove_path(lower_dl1_fl2)); EXPECT_EQ(0, remove_path(lower_fl1)); EXPECT_EQ(0, remove_path(lower_do1_fo2)); EXPECT_EQ(0, remove_path(lower_fo1)); set_cap(_metadata, CAP_SYS_ADMIN); EXPECT_EQ(0, umount(LOWER_BASE)); clear_cap(_metadata, CAP_SYS_ADMIN); EXPECT_EQ(0, remove_path(LOWER_BASE)); EXPECT_EQ(0, remove_path(upper_do1_fu3)); EXPECT_EQ(0, remove_path(upper_du1_fu2)); EXPECT_EQ(0, remove_path(upper_fu1)); EXPECT_EQ(0, remove_path(upper_do1_fo2)); EXPECT_EQ(0, remove_path(upper_fo1)); EXPECT_EQ(0, remove_path(UPPER_WORK "/work")); set_cap(_metadata, CAP_SYS_ADMIN); EXPECT_EQ(0, umount(UPPER_BASE)); clear_cap(_metadata, CAP_SYS_ADMIN); EXPECT_EQ(0, remove_path(UPPER_BASE)); set_cap(_metadata, CAP_SYS_ADMIN); EXPECT_EQ(0, umount(MERGE_DATA)); clear_cap(_metadata, CAP_SYS_ADMIN); EXPECT_EQ(0, remove_path(MERGE_DATA)); cleanup_layout(_metadata); } TEST_F_FORK(layout2_overlay, no_restriction) { if (self->skip_test) SKIP(return, "overlayfs is not supported (test)"); ASSERT_EQ(0, test_open(lower_fl1, O_RDONLY)); ASSERT_EQ(0, test_open(lower_dl1, O_RDONLY)); ASSERT_EQ(0, test_open(lower_dl1_fl2, O_RDONLY)); ASSERT_EQ(0, test_open(lower_fo1, O_RDONLY)); ASSERT_EQ(0, test_open(lower_do1, O_RDONLY)); ASSERT_EQ(0, test_open(lower_do1_fo2, O_RDONLY)); ASSERT_EQ(0, test_open(lower_do1_fl3, O_RDONLY)); ASSERT_EQ(0, test_open(upper_fu1, O_RDONLY)); ASSERT_EQ(0, test_open(upper_du1, O_RDONLY)); ASSERT_EQ(0, test_open(upper_du1_fu2, O_RDONLY)); ASSERT_EQ(0, test_open(upper_fo1, O_RDONLY)); ASSERT_EQ(0, test_open(upper_do1, O_RDONLY)); ASSERT_EQ(0, test_open(upper_do1_fo2, O_RDONLY)); ASSERT_EQ(0, test_open(upper_do1_fu3, O_RDONLY)); ASSERT_EQ(0, test_open(merge_fl1, O_RDONLY)); ASSERT_EQ(0, test_open(merge_dl1, O_RDONLY)); ASSERT_EQ(0, test_open(merge_dl1_fl2, O_RDONLY)); ASSERT_EQ(0, test_open(merge_fu1, O_RDONLY)); ASSERT_EQ(0, test_open(merge_du1, O_RDONLY)); ASSERT_EQ(0, test_open(merge_du1_fu2, O_RDONLY)); ASSERT_EQ(0, test_open(merge_fo1, O_RDONLY)); ASSERT_EQ(0, test_open(merge_do1, O_RDONLY)); ASSERT_EQ(0, test_open(merge_do1_fo2, O_RDONLY)); ASSERT_EQ(0, test_open(merge_do1_fl3, O_RDONLY)); ASSERT_EQ(0, test_open(merge_do1_fu3, O_RDONLY)); } #define for_each_path(path_list, path_entry, i) \ for (i = 0, path_entry = *path_list[i]; path_list[i]; \ path_entry = *path_list[++i]) TEST_F_FORK(layout2_overlay, same_content_different_file) { /* Sets access right on parent directories of both layers. */ const struct rule layer1_base[] = { { .path = LOWER_BASE, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, { .path = UPPER_BASE, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, { .path = MERGE_BASE, .access = ACCESS_RW, }, {}, }; const struct rule layer2_data[] = { { .path = LOWER_DATA, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, { .path = UPPER_DATA, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, { .path = MERGE_DATA, .access = ACCESS_RW, }, {}, }; /* Sets access right on directories inside both layers. */ const struct rule layer3_subdirs[] = { { .path = lower_dl1, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, { .path = lower_do1, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, { .path = upper_du1, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, { .path = upper_do1, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, { .path = merge_dl1, .access = ACCESS_RW, }, { .path = merge_du1, .access = ACCESS_RW, }, { .path = merge_do1, .access = ACCESS_RW, }, {}, }; /* Tighten access rights to the files. */ const struct rule layer4_files[] = { { .path = lower_dl1_fl2, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, { .path = lower_do1_fo2, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, { .path = lower_do1_fl3, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, { .path = upper_du1_fu2, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, { .path = upper_do1_fo2, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, { .path = upper_do1_fu3, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, { .path = merge_dl1_fl2, .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, }, { .path = merge_du1_fu2, .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, }, { .path = merge_do1_fo2, .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, }, { .path = merge_do1_fl3, .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, }, { .path = merge_do1_fu3, .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, }, {}, }; const struct rule layer5_merge_only[] = { { .path = MERGE_DATA, .access = LANDLOCK_ACCESS_FS_READ_FILE | LANDLOCK_ACCESS_FS_WRITE_FILE, }, {}, }; int ruleset_fd; size_t i; const char *path_entry; if (self->skip_test) SKIP(return, "overlayfs is not supported (test)"); /* Sets rules on base directories (i.e. outside overlay scope). */ ruleset_fd = create_ruleset(_metadata, ACCESS_RW, layer1_base); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks lower layer. */ for_each_path(lower_base_files, path_entry, i) { ASSERT_EQ(0, test_open(path_entry, O_RDONLY)); ASSERT_EQ(EACCES, test_open(path_entry, O_WRONLY)); } for_each_path(lower_base_directories, path_entry, i) { ASSERT_EQ(EACCES, test_open(path_entry, O_RDONLY | O_DIRECTORY)); } for_each_path(lower_sub_files, path_entry, i) { ASSERT_EQ(0, test_open(path_entry, O_RDONLY)); ASSERT_EQ(EACCES, test_open(path_entry, O_WRONLY)); } /* Checks upper layer. */ for_each_path(upper_base_files, path_entry, i) { ASSERT_EQ(0, test_open(path_entry, O_RDONLY)); ASSERT_EQ(EACCES, test_open(path_entry, O_WRONLY)); } for_each_path(upper_base_directories, path_entry, i) { ASSERT_EQ(EACCES, test_open(path_entry, O_RDONLY | O_DIRECTORY)); } for_each_path(upper_sub_files, path_entry, i) { ASSERT_EQ(0, test_open(path_entry, O_RDONLY)); ASSERT_EQ(EACCES, test_open(path_entry, O_WRONLY)); } /* * Checks that access rights are independent from the lower and upper * layers: write access to upper files viewed through the merge point * is still allowed, and write access to lower file viewed (and copied) * through the merge point is still allowed. */ for_each_path(merge_base_files, path_entry, i) { ASSERT_EQ(0, test_open(path_entry, O_RDWR)); } for_each_path(merge_base_directories, path_entry, i) { ASSERT_EQ(0, test_open(path_entry, O_RDONLY | O_DIRECTORY)); } for_each_path(merge_sub_files, path_entry, i) { ASSERT_EQ(0, test_open(path_entry, O_RDWR)); } /* Sets rules on data directories (i.e. inside overlay scope). */ ruleset_fd = create_ruleset(_metadata, ACCESS_RW, layer2_data); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks merge. */ for_each_path(merge_base_files, path_entry, i) { ASSERT_EQ(0, test_open(path_entry, O_RDWR)); } for_each_path(merge_base_directories, path_entry, i) { ASSERT_EQ(0, test_open(path_entry, O_RDONLY | O_DIRECTORY)); } for_each_path(merge_sub_files, path_entry, i) { ASSERT_EQ(0, test_open(path_entry, O_RDWR)); } /* Same checks with tighter rules. */ ruleset_fd = create_ruleset(_metadata, ACCESS_RW, layer3_subdirs); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks changes for lower layer. */ for_each_path(lower_base_files, path_entry, i) { ASSERT_EQ(EACCES, test_open(path_entry, O_RDONLY)); } /* Checks changes for upper layer. */ for_each_path(upper_base_files, path_entry, i) { ASSERT_EQ(EACCES, test_open(path_entry, O_RDONLY)); } /* Checks all merge accesses. */ for_each_path(merge_base_files, path_entry, i) { ASSERT_EQ(EACCES, test_open(path_entry, O_RDWR)); } for_each_path(merge_base_directories, path_entry, i) { ASSERT_EQ(0, test_open(path_entry, O_RDONLY | O_DIRECTORY)); } for_each_path(merge_sub_files, path_entry, i) { ASSERT_EQ(0, test_open(path_entry, O_RDWR)); } /* Sets rules directly on overlayed files. */ ruleset_fd = create_ruleset(_metadata, ACCESS_RW, layer4_files); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks unchanged accesses on lower layer. */ for_each_path(lower_sub_files, path_entry, i) { ASSERT_EQ(0, test_open(path_entry, O_RDONLY)); ASSERT_EQ(EACCES, test_open(path_entry, O_WRONLY)); } /* Checks unchanged accesses on upper layer. */ for_each_path(upper_sub_files, path_entry, i) { ASSERT_EQ(0, test_open(path_entry, O_RDONLY)); ASSERT_EQ(EACCES, test_open(path_entry, O_WRONLY)); } /* Checks all merge accesses. */ for_each_path(merge_base_files, path_entry, i) { ASSERT_EQ(EACCES, test_open(path_entry, O_RDWR)); } for_each_path(merge_base_directories, path_entry, i) { ASSERT_EQ(EACCES, test_open(path_entry, O_RDONLY | O_DIRECTORY)); } for_each_path(merge_sub_files, path_entry, i) { ASSERT_EQ(0, test_open(path_entry, O_RDWR)); } /* Only allowes access to the merge hierarchy. */ ruleset_fd = create_ruleset(_metadata, ACCESS_RW, layer5_merge_only); ASSERT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks new accesses on lower layer. */ for_each_path(lower_sub_files, path_entry, i) { ASSERT_EQ(EACCES, test_open(path_entry, O_RDONLY)); } /* Checks new accesses on upper layer. */ for_each_path(upper_sub_files, path_entry, i) { ASSERT_EQ(EACCES, test_open(path_entry, O_RDONLY)); } /* Checks all merge accesses. */ for_each_path(merge_base_files, path_entry, i) { ASSERT_EQ(EACCES, test_open(path_entry, O_RDWR)); } for_each_path(merge_base_directories, path_entry, i) { ASSERT_EQ(EACCES, test_open(path_entry, O_RDONLY | O_DIRECTORY)); } for_each_path(merge_sub_files, path_entry, i) { ASSERT_EQ(0, test_open(path_entry, O_RDWR)); } } FIXTURE(layout3_fs) { bool has_created_dir; bool has_created_file; char *dir_path; bool skip_test; }; FIXTURE_VARIANT(layout3_fs) { const struct mnt_opt mnt; const char *const file_path; unsigned int cwd_fs_magic; }; /* clang-format off */ FIXTURE_VARIANT_ADD(layout3_fs, tmpfs) { /* clang-format on */ .mnt = mnt_tmp, .file_path = file1_s1d1, }; FIXTURE_VARIANT_ADD(layout3_fs, ramfs) { .mnt = { .type = "ramfs", .data = "mode=700", }, .file_path = TMP_DIR "/dir/file", }; FIXTURE_VARIANT_ADD(layout3_fs, cgroup2) { .mnt = { .type = "cgroup2", }, .file_path = TMP_DIR "/test/cgroup.procs", }; FIXTURE_VARIANT_ADD(layout3_fs, proc) { .mnt = { .type = "proc", }, .file_path = TMP_DIR "/self/status", }; FIXTURE_VARIANT_ADD(layout3_fs, sysfs) { .mnt = { .type = "sysfs", }, .file_path = TMP_DIR "/kernel/notes", }; FIXTURE_VARIANT_ADD(layout3_fs, hostfs) { .mnt = { .source = TMP_DIR, .flags = MS_BIND, }, .file_path = TMP_DIR "/dir/file", .cwd_fs_magic = HOSTFS_SUPER_MAGIC, }; FIXTURE_SETUP(layout3_fs) { struct stat statbuf; const char *slash; size_t dir_len; if (!supports_filesystem(variant->mnt.type) || !cwd_matches_fs(variant->cwd_fs_magic)) { self->skip_test = true; SKIP(return, "this filesystem is not supported (setup)"); } slash = strrchr(variant->file_path, '/'); ASSERT_NE(slash, NULL); dir_len = (size_t)slash - (size_t)variant->file_path; ASSERT_LT(0, dir_len); self->dir_path = malloc(dir_len + 1); self->dir_path[dir_len] = '\0'; strncpy(self->dir_path, variant->file_path, dir_len); prepare_layout_opt(_metadata, &variant->mnt); /* Creates directory when required. */ if (stat(self->dir_path, &statbuf)) { set_cap(_metadata, CAP_DAC_OVERRIDE); EXPECT_EQ(0, mkdir(self->dir_path, 0700)) { TH_LOG("Failed to create directory \"%s\": %s", self->dir_path, strerror(errno)); free(self->dir_path); self->dir_path = NULL; } self->has_created_dir = true; clear_cap(_metadata, CAP_DAC_OVERRIDE); } /* Creates file when required. */ if (stat(variant->file_path, &statbuf)) { int fd; set_cap(_metadata, CAP_DAC_OVERRIDE); fd = creat(variant->file_path, 0600); EXPECT_LE(0, fd) { TH_LOG("Failed to create file \"%s\": %s", variant->file_path, strerror(errno)); } EXPECT_EQ(0, close(fd)); self->has_created_file = true; clear_cap(_metadata, CAP_DAC_OVERRIDE); } } FIXTURE_TEARDOWN(layout3_fs) { if (self->skip_test) SKIP(return, "this filesystem is not supported (teardown)"); if (self->has_created_file) { set_cap(_metadata, CAP_DAC_OVERRIDE); /* * Don't check for error because the file might already * have been removed (cf. release_inode test). */ unlink(variant->file_path); clear_cap(_metadata, CAP_DAC_OVERRIDE); } if (self->has_created_dir) { set_cap(_metadata, CAP_DAC_OVERRIDE); /* * Don't check for error because the directory might already * have been removed (cf. release_inode test). */ rmdir(self->dir_path); clear_cap(_metadata, CAP_DAC_OVERRIDE); } free(self->dir_path); self->dir_path = NULL; cleanup_layout(_metadata); } static void layer3_fs_tag_inode(struct __test_metadata *const _metadata, FIXTURE_DATA(layout3_fs) * self, const FIXTURE_VARIANT(layout3_fs) * variant, const char *const rule_path) { const struct rule layer1_allow_read_file[] = { { .path = rule_path, .access = LANDLOCK_ACCESS_FS_READ_FILE, }, {}, }; const struct landlock_ruleset_attr layer2_deny_everything_attr = { .handled_access_fs = LANDLOCK_ACCESS_FS_READ_FILE, }; const char *const dev_null_path = "/dev/null"; int ruleset_fd; if (self->skip_test) SKIP(return, "this filesystem is not supported (test)"); /* Checks without Landlock. */ EXPECT_EQ(0, test_open(dev_null_path, O_RDONLY | O_CLOEXEC)); EXPECT_EQ(0, test_open(variant->file_path, O_RDONLY | O_CLOEXEC)); ruleset_fd = create_ruleset(_metadata, LANDLOCK_ACCESS_FS_READ_FILE, layer1_allow_read_file); EXPECT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); EXPECT_EQ(0, close(ruleset_fd)); EXPECT_EQ(EACCES, test_open(dev_null_path, O_RDONLY | O_CLOEXEC)); EXPECT_EQ(0, test_open(variant->file_path, O_RDONLY | O_CLOEXEC)); /* Forbids directory reading. */ ruleset_fd = landlock_create_ruleset(&layer2_deny_everything_attr, sizeof(layer2_deny_everything_attr), 0); EXPECT_LE(0, ruleset_fd); enforce_ruleset(_metadata, ruleset_fd); EXPECT_EQ(0, close(ruleset_fd)); /* Checks with Landlock and forbidden access. */ EXPECT_EQ(EACCES, test_open(dev_null_path, O_RDONLY | O_CLOEXEC)); EXPECT_EQ(EACCES, test_open(variant->file_path, O_RDONLY | O_CLOEXEC)); } /* Matrix of tests to check file hierarchy evaluation. */ TEST_F_FORK(layout3_fs, tag_inode_dir_parent) { /* The current directory must not be the root for this test. */ layer3_fs_tag_inode(_metadata, self, variant, "."); } TEST_F_FORK(layout3_fs, tag_inode_dir_mnt) { layer3_fs_tag_inode(_metadata, self, variant, TMP_DIR); } TEST_F_FORK(layout3_fs, tag_inode_dir_child) { layer3_fs_tag_inode(_metadata, self, variant, self->dir_path); } TEST_F_FORK(layout3_fs, tag_inode_file) { layer3_fs_tag_inode(_metadata, self, variant, variant->file_path); } /* Light version of layout1.release_inodes */ TEST_F_FORK(layout3_fs, release_inodes) { const struct rule layer1[] = { { .path = TMP_DIR, .access = LANDLOCK_ACCESS_FS_READ_DIR, }, {}, }; int ruleset_fd; if (self->skip_test) SKIP(return, "this filesystem is not supported (test)"); /* Clean up for the teardown to not fail. */ if (self->has_created_file) EXPECT_EQ(0, remove_path(variant->file_path)); if (self->has_created_dir) /* Don't check for error because of cgroup specificities. */ remove_path(self->dir_path); ruleset_fd = create_ruleset(_metadata, LANDLOCK_ACCESS_FS_READ_DIR, layer1); ASSERT_LE(0, ruleset_fd); /* Unmount the filesystem while it is being used by a ruleset. */ set_cap(_metadata, CAP_SYS_ADMIN); ASSERT_EQ(0, umount(TMP_DIR)); clear_cap(_metadata, CAP_SYS_ADMIN); /* Replaces with a new mount point to simplify FIXTURE_TEARDOWN. */ set_cap(_metadata, CAP_SYS_ADMIN); ASSERT_EQ(0, mount_opt(&mnt_tmp, TMP_DIR)); clear_cap(_metadata, CAP_SYS_ADMIN); enforce_ruleset(_metadata, ruleset_fd); ASSERT_EQ(0, close(ruleset_fd)); /* Checks that access to the new mount point is denied. */ ASSERT_EQ(EACCES, test_open(TMP_DIR, O_RDONLY)); } TEST_HARNESS_MAIN
linux-master
tools/testing/selftests/landlock/fs_test.c
// SPDX-License-Identifier: GPL-2.0 #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <linux/kernel.h> #include <limits.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <syscall.h> #include <unistd.h> #include <sys/resource.h> #include "../kselftest_harness.h" #include "../clone3/clone3_selftests.h" #ifndef __NR_close_range #if defined __alpha__ #define __NR_close_range 546 #elif defined _MIPS_SIM #if _MIPS_SIM == _MIPS_SIM_ABI32 /* o32 */ #define __NR_close_range (436 + 4000) #endif #if _MIPS_SIM == _MIPS_SIM_NABI32 /* n32 */ #define __NR_close_range (436 + 6000) #endif #if _MIPS_SIM == _MIPS_SIM_ABI64 /* n64 */ #define __NR_close_range (436 + 5000) #endif #elif defined __ia64__ #define __NR_close_range (436 + 1024) #else #define __NR_close_range 436 #endif #endif #ifndef CLOSE_RANGE_UNSHARE #define CLOSE_RANGE_UNSHARE (1U << 1) #endif #ifndef CLOSE_RANGE_CLOEXEC #define CLOSE_RANGE_CLOEXEC (1U << 2) #endif static inline int sys_close_range(unsigned int fd, unsigned int max_fd, unsigned int flags) { return syscall(__NR_close_range, fd, max_fd, flags); } TEST(core_close_range) { int i, ret; int open_fds[101]; for (i = 0; i < ARRAY_SIZE(open_fds); i++) { int fd; fd = open("/dev/null", O_RDONLY | O_CLOEXEC); ASSERT_GE(fd, 0) { if (errno == ENOENT) SKIP(return, "Skipping test since /dev/null does not exist"); } open_fds[i] = fd; } EXPECT_EQ(-1, sys_close_range(open_fds[0], open_fds[100], -1)) { if (errno == ENOSYS) SKIP(return, "close_range() syscall not supported"); } EXPECT_EQ(0, sys_close_range(open_fds[0], open_fds[50], 0)); for (i = 0; i <= 50; i++) EXPECT_EQ(-1, fcntl(open_fds[i], F_GETFL)); for (i = 51; i <= 100; i++) EXPECT_GT(fcntl(open_fds[i], F_GETFL), -1); /* create a couple of gaps */ close(57); close(78); close(81); close(82); close(84); close(90); EXPECT_EQ(0, sys_close_range(open_fds[51], open_fds[92], 0)); for (i = 51; i <= 92; i++) EXPECT_EQ(-1, fcntl(open_fds[i], F_GETFL)); for (i = 93; i <= 100; i++) EXPECT_GT(fcntl(open_fds[i], F_GETFL), -1); /* test that the kernel caps and still closes all fds */ EXPECT_EQ(0, sys_close_range(open_fds[93], open_fds[99], 0)); for (i = 93; i <= 99; i++) EXPECT_EQ(-1, fcntl(open_fds[i], F_GETFL)); EXPECT_GT(fcntl(open_fds[i], F_GETFL), -1); EXPECT_EQ(0, sys_close_range(open_fds[100], open_fds[100], 0)); EXPECT_EQ(-1, fcntl(open_fds[100], F_GETFL)); } TEST(close_range_unshare) { int i, ret, status; pid_t pid; int open_fds[101]; struct __clone_args args = { .flags = CLONE_FILES, .exit_signal = SIGCHLD, }; for (i = 0; i < ARRAY_SIZE(open_fds); i++) { int fd; fd = open("/dev/null", O_RDONLY | O_CLOEXEC); ASSERT_GE(fd, 0) { if (errno == ENOENT) SKIP(return, "Skipping test since /dev/null does not exist"); } open_fds[i] = fd; } pid = sys_clone3(&args, sizeof(args)); ASSERT_GE(pid, 0); if (pid == 0) { ret = sys_close_range(open_fds[0], open_fds[50], CLOSE_RANGE_UNSHARE); if (ret) exit(EXIT_FAILURE); for (i = 0; i <= 50; i++) if (fcntl(open_fds[i], F_GETFL) != -1) exit(EXIT_FAILURE); for (i = 51; i <= 100; i++) if (fcntl(open_fds[i], F_GETFL) == -1) exit(EXIT_FAILURE); /* create a couple of gaps */ close(57); close(78); close(81); close(82); close(84); close(90); ret = sys_close_range(open_fds[51], open_fds[92], CLOSE_RANGE_UNSHARE); if (ret) exit(EXIT_FAILURE); for (i = 51; i <= 92; i++) if (fcntl(open_fds[i], F_GETFL) != -1) exit(EXIT_FAILURE); for (i = 93; i <= 100; i++) if (fcntl(open_fds[i], F_GETFL) == -1) exit(EXIT_FAILURE); /* test that the kernel caps and still closes all fds */ ret = sys_close_range(open_fds[93], open_fds[99], CLOSE_RANGE_UNSHARE); if (ret) exit(EXIT_FAILURE); for (i = 93; i <= 99; i++) if (fcntl(open_fds[i], F_GETFL) != -1) exit(EXIT_FAILURE); if (fcntl(open_fds[100], F_GETFL) == -1) exit(EXIT_FAILURE); ret = sys_close_range(open_fds[100], open_fds[100], CLOSE_RANGE_UNSHARE); if (ret) exit(EXIT_FAILURE); if (fcntl(open_fds[100], F_GETFL) != -1) exit(EXIT_FAILURE); exit(EXIT_SUCCESS); } EXPECT_EQ(waitpid(pid, &status, 0), pid); EXPECT_EQ(true, WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); } TEST(close_range_unshare_capped) { int i, ret, status; pid_t pid; int open_fds[101]; struct __clone_args args = { .flags = CLONE_FILES, .exit_signal = SIGCHLD, }; for (i = 0; i < ARRAY_SIZE(open_fds); i++) { int fd; fd = open("/dev/null", O_RDONLY | O_CLOEXEC); ASSERT_GE(fd, 0) { if (errno == ENOENT) SKIP(return, "Skipping test since /dev/null does not exist"); } open_fds[i] = fd; } pid = sys_clone3(&args, sizeof(args)); ASSERT_GE(pid, 0); if (pid == 0) { ret = sys_close_range(open_fds[0], UINT_MAX, CLOSE_RANGE_UNSHARE); if (ret) exit(EXIT_FAILURE); for (i = 0; i <= 100; i++) if (fcntl(open_fds[i], F_GETFL) != -1) exit(EXIT_FAILURE); exit(EXIT_SUCCESS); } EXPECT_EQ(waitpid(pid, &status, 0), pid); EXPECT_EQ(true, WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); } TEST(close_range_cloexec) { int i, ret; int open_fds[101]; struct rlimit rlimit; for (i = 0; i < ARRAY_SIZE(open_fds); i++) { int fd; fd = open("/dev/null", O_RDONLY); ASSERT_GE(fd, 0) { if (errno == ENOENT) SKIP(return, "Skipping test since /dev/null does not exist"); } open_fds[i] = fd; } ret = sys_close_range(1000, 1000, CLOSE_RANGE_CLOEXEC); if (ret < 0) { if (errno == ENOSYS) SKIP(return, "close_range() syscall not supported"); if (errno == EINVAL) SKIP(return, "close_range() doesn't support CLOSE_RANGE_CLOEXEC"); } /* Ensure the FD_CLOEXEC bit is set also with a resource limit in place. */ ASSERT_EQ(0, getrlimit(RLIMIT_NOFILE, &rlimit)); rlimit.rlim_cur = 25; ASSERT_EQ(0, setrlimit(RLIMIT_NOFILE, &rlimit)); /* Set close-on-exec for two ranges: [0-50] and [75-100]. */ ret = sys_close_range(open_fds[0], open_fds[50], CLOSE_RANGE_CLOEXEC); ASSERT_EQ(0, ret); ret = sys_close_range(open_fds[75], open_fds[100], CLOSE_RANGE_CLOEXEC); ASSERT_EQ(0, ret); for (i = 0; i <= 50; i++) { int flags = fcntl(open_fds[i], F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, FD_CLOEXEC); } for (i = 51; i <= 74; i++) { int flags = fcntl(open_fds[i], F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, 0); } for (i = 75; i <= 100; i++) { int flags = fcntl(open_fds[i], F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, FD_CLOEXEC); } /* Test a common pattern. */ ret = sys_close_range(3, UINT_MAX, CLOSE_RANGE_CLOEXEC); for (i = 0; i <= 100; i++) { int flags = fcntl(open_fds[i], F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, FD_CLOEXEC); } } TEST(close_range_cloexec_unshare) { int i, ret; int open_fds[101]; struct rlimit rlimit; for (i = 0; i < ARRAY_SIZE(open_fds); i++) { int fd; fd = open("/dev/null", O_RDONLY); ASSERT_GE(fd, 0) { if (errno == ENOENT) SKIP(return, "Skipping test since /dev/null does not exist"); } open_fds[i] = fd; } ret = sys_close_range(1000, 1000, CLOSE_RANGE_CLOEXEC); if (ret < 0) { if (errno == ENOSYS) SKIP(return, "close_range() syscall not supported"); if (errno == EINVAL) SKIP(return, "close_range() doesn't support CLOSE_RANGE_CLOEXEC"); } /* Ensure the FD_CLOEXEC bit is set also with a resource limit in place. */ ASSERT_EQ(0, getrlimit(RLIMIT_NOFILE, &rlimit)); rlimit.rlim_cur = 25; ASSERT_EQ(0, setrlimit(RLIMIT_NOFILE, &rlimit)); /* Set close-on-exec for two ranges: [0-50] and [75-100]. */ ret = sys_close_range(open_fds[0], open_fds[50], CLOSE_RANGE_CLOEXEC | CLOSE_RANGE_UNSHARE); ASSERT_EQ(0, ret); ret = sys_close_range(open_fds[75], open_fds[100], CLOSE_RANGE_CLOEXEC | CLOSE_RANGE_UNSHARE); ASSERT_EQ(0, ret); for (i = 0; i <= 50; i++) { int flags = fcntl(open_fds[i], F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, FD_CLOEXEC); } for (i = 51; i <= 74; i++) { int flags = fcntl(open_fds[i], F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, 0); } for (i = 75; i <= 100; i++) { int flags = fcntl(open_fds[i], F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, FD_CLOEXEC); } /* Test a common pattern. */ ret = sys_close_range(3, UINT_MAX, CLOSE_RANGE_CLOEXEC | CLOSE_RANGE_UNSHARE); for (i = 0; i <= 100; i++) { int flags = fcntl(open_fds[i], F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, FD_CLOEXEC); } } /* * Regression test for [email protected] */ TEST(close_range_cloexec_syzbot) { int fd1, fd2, fd3, flags, ret, status; pid_t pid; struct __clone_args args = { .flags = CLONE_FILES, .exit_signal = SIGCHLD, }; /* Create a huge gap in the fd table. */ fd1 = open("/dev/null", O_RDWR); EXPECT_GT(fd1, 0); fd2 = dup2(fd1, 1000); EXPECT_GT(fd2, 0); pid = sys_clone3(&args, sizeof(args)); ASSERT_GE(pid, 0); if (pid == 0) { ret = sys_close_range(3, ~0U, CLOSE_RANGE_CLOEXEC); if (ret) exit(EXIT_FAILURE); /* * We now have a private file descriptor table and all * our open fds should still be open but made * close-on-exec. */ flags = fcntl(fd1, F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, FD_CLOEXEC); flags = fcntl(fd2, F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, FD_CLOEXEC); fd3 = dup2(fd1, 42); EXPECT_GT(fd3, 0); /* * Duplicating the file descriptor must remove the * FD_CLOEXEC flag. */ flags = fcntl(fd3, F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, 0); exit(EXIT_SUCCESS); } EXPECT_EQ(waitpid(pid, &status, 0), pid); EXPECT_EQ(true, WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); /* * We had a shared file descriptor table before along with requesting * close-on-exec so the original fds must not be close-on-exec. */ flags = fcntl(fd1, F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, FD_CLOEXEC); flags = fcntl(fd2, F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, FD_CLOEXEC); fd3 = dup2(fd1, 42); EXPECT_GT(fd3, 0); flags = fcntl(fd3, F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, 0); EXPECT_EQ(close(fd1), 0); EXPECT_EQ(close(fd2), 0); EXPECT_EQ(close(fd3), 0); } /* * Regression test for [email protected] */ TEST(close_range_cloexec_unshare_syzbot) { int i, fd1, fd2, fd3, flags, ret, status; pid_t pid; struct __clone_args args = { .flags = CLONE_FILES, .exit_signal = SIGCHLD, }; /* * Create a huge gap in the fd table. When we now call * CLOSE_RANGE_UNSHARE with a shared fd table and and with ~0U as upper * bound the kernel will only copy up to fd1 file descriptors into the * new fd table. If the kernel is buggy and doesn't handle * CLOSE_RANGE_CLOEXEC correctly it will not have copied all file * descriptors and we will oops! * * On a buggy kernel this should immediately oops. But let's loop just * to be sure. */ fd1 = open("/dev/null", O_RDWR); EXPECT_GT(fd1, 0); fd2 = dup2(fd1, 1000); EXPECT_GT(fd2, 0); for (i = 0; i < 100; i++) { pid = sys_clone3(&args, sizeof(args)); ASSERT_GE(pid, 0); if (pid == 0) { ret = sys_close_range(3, ~0U, CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC); if (ret) exit(EXIT_FAILURE); /* * We now have a private file descriptor table and all * our open fds should still be open but made * close-on-exec. */ flags = fcntl(fd1, F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, FD_CLOEXEC); flags = fcntl(fd2, F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, FD_CLOEXEC); fd3 = dup2(fd1, 42); EXPECT_GT(fd3, 0); /* * Duplicating the file descriptor must remove the * FD_CLOEXEC flag. */ flags = fcntl(fd3, F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, 0); EXPECT_EQ(close(fd1), 0); EXPECT_EQ(close(fd2), 0); EXPECT_EQ(close(fd3), 0); exit(EXIT_SUCCESS); } EXPECT_EQ(waitpid(pid, &status, 0), pid); EXPECT_EQ(true, WIFEXITED(status)); EXPECT_EQ(0, WEXITSTATUS(status)); } /* * We created a private file descriptor table before along with * requesting close-on-exec so the original fds must not be * close-on-exec. */ flags = fcntl(fd1, F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, 0); flags = fcntl(fd2, F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, 0); fd3 = dup2(fd1, 42); EXPECT_GT(fd3, 0); flags = fcntl(fd3, F_GETFD); EXPECT_GT(flags, -1); EXPECT_EQ(flags & FD_CLOEXEC, 0); EXPECT_EQ(close(fd1), 0); EXPECT_EQ(close(fd2), 0); EXPECT_EQ(close(fd3), 0); } TEST_HARNESS_MAIN
linux-master
tools/testing/selftests/core/close_range_test.c
// SPDX-License-Identifier: GPL-2.0 #include <cap-ng.h> #include <linux/capability.h> #include <stdbool.h> #include <string.h> #include <stdio.h> #include <sys/prctl.h> #include <sys/auxv.h> #include "../kselftest.h" #ifndef PR_CAP_AMBIENT #define PR_CAP_AMBIENT 47 # define PR_CAP_AMBIENT_IS_SET 1 # define PR_CAP_AMBIENT_RAISE 2 # define PR_CAP_AMBIENT_LOWER 3 # define PR_CAP_AMBIENT_CLEAR_ALL 4 #endif #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 19) # define HAVE_GETAUXVAL #endif static bool bool_arg(char **argv, int i) { if (!strcmp(argv[i], "0")) return false; else if (!strcmp(argv[i], "1")) return true; else { ksft_exit_fail_msg("wrong argv[%d]\n", i); return false; } } int main(int argc, char **argv) { const char *atsec = ""; /* * Be careful just in case a setgid or setcapped copy of this * helper gets out. */ if (argc != 5) ksft_exit_fail_msg("wrong argc\n"); #ifdef HAVE_GETAUXVAL if (getauxval(AT_SECURE)) atsec = " (AT_SECURE is set)"; else atsec = " (AT_SECURE is not set)"; #endif capng_get_caps_process(); if (capng_have_capability(CAPNG_EFFECTIVE, CAP_NET_BIND_SERVICE) != bool_arg(argv, 1)) { ksft_print_msg("Wrong effective state%s\n", atsec); return 1; } if (capng_have_capability(CAPNG_PERMITTED, CAP_NET_BIND_SERVICE) != bool_arg(argv, 2)) { ksft_print_msg("Wrong permitted state%s\n", atsec); return 1; } if (capng_have_capability(CAPNG_INHERITABLE, CAP_NET_BIND_SERVICE) != bool_arg(argv, 3)) { ksft_print_msg("Wrong inheritable state%s\n", atsec); return 1; } if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_IS_SET, CAP_NET_BIND_SERVICE, 0, 0, 0) != bool_arg(argv, 4)) { ksft_print_msg("Wrong ambient state%s\n", atsec); return 1; } ksft_print_msg("%s: Capabilities after execve were correct\n", "validate_cap:"); return 0; }
linux-master
tools/testing/selftests/capabilities/validate_cap.c
// SPDX-License-Identifier: GPL-2.0 #define _GNU_SOURCE #include <cap-ng.h> #include <linux/capability.h> #include <stdbool.h> #include <string.h> #include <stdio.h> #include <fcntl.h> #include <errno.h> #include <stdarg.h> #include <sched.h> #include <sys/mount.h> #include <limits.h> #include <libgen.h> #include <malloc.h> #include <sys/wait.h> #include <sys/prctl.h> #include <sys/stat.h> #include "../kselftest.h" #ifndef PR_CAP_AMBIENT #define PR_CAP_AMBIENT 47 # define PR_CAP_AMBIENT_IS_SET 1 # define PR_CAP_AMBIENT_RAISE 2 # define PR_CAP_AMBIENT_LOWER 3 # define PR_CAP_AMBIENT_CLEAR_ALL 4 #endif static int nerrs; static pid_t mpid; /* main() pid is used to avoid duplicate test counts */ static void vmaybe_write_file(bool enoent_ok, char *filename, char *fmt, va_list ap) { char buf[4096]; int fd; ssize_t written; int buf_len; buf_len = vsnprintf(buf, sizeof(buf), fmt, ap); if (buf_len < 0) ksft_exit_fail_msg("vsnprintf failed - %s\n", strerror(errno)); if (buf_len >= sizeof(buf)) ksft_exit_fail_msg("vsnprintf output truncated\n"); fd = open(filename, O_WRONLY); if (fd < 0) { if ((errno == ENOENT) && enoent_ok) return; ksft_exit_fail_msg("open of %s failed - %s\n", filename, strerror(errno)); } written = write(fd, buf, buf_len); if (written != buf_len) { if (written >= 0) { ksft_exit_fail_msg("short write to %s\n", filename); } else { ksft_exit_fail_msg("write to %s failed - %s\n", filename, strerror(errno)); } } if (close(fd) != 0) { ksft_exit_fail_msg("close of %s failed - %s\n", filename, strerror(errno)); } } static void maybe_write_file(char *filename, char *fmt, ...) { va_list ap; va_start(ap, fmt); vmaybe_write_file(true, filename, fmt, ap); va_end(ap); } static void write_file(char *filename, char *fmt, ...) { va_list ap; va_start(ap, fmt); vmaybe_write_file(false, filename, fmt, ap); va_end(ap); } static bool create_and_enter_ns(uid_t inner_uid) { uid_t outer_uid; gid_t outer_gid; int i; bool have_outer_privilege; outer_uid = getuid(); outer_gid = getgid(); /* * TODO: If we're already root, we could skip creating the userns. */ if (unshare(CLONE_NEWNS) == 0) { ksft_print_msg("[NOTE]\tUsing global UIDs for tests\n"); if (prctl(PR_SET_KEEPCAPS, 1, 0, 0, 0) != 0) ksft_exit_fail_msg("PR_SET_KEEPCAPS - %s\n", strerror(errno)); if (setresuid(inner_uid, inner_uid, -1) != 0) ksft_exit_fail_msg("setresuid - %s\n", strerror(errno)); // Re-enable effective caps capng_get_caps_process(); for (i = 0; i < CAP_LAST_CAP; i++) if (capng_have_capability(CAPNG_PERMITTED, i)) capng_update(CAPNG_ADD, CAPNG_EFFECTIVE, i); if (capng_apply(CAPNG_SELECT_CAPS) != 0) ksft_exit_fail_msg( "capng_apply - %s\n", strerror(errno)); have_outer_privilege = true; } else if (unshare(CLONE_NEWUSER | CLONE_NEWNS) == 0) { ksft_print_msg("[NOTE]\tUsing a user namespace for tests\n"); maybe_write_file("/proc/self/setgroups", "deny"); write_file("/proc/self/uid_map", "%d %d 1", inner_uid, outer_uid); write_file("/proc/self/gid_map", "0 %d 1", outer_gid); have_outer_privilege = false; } else { ksft_exit_skip("must be root or be able to create a userns\n"); } if (mount("none", "/", NULL, MS_REC | MS_PRIVATE, NULL) != 0) ksft_exit_fail_msg("remount everything private - %s\n", strerror(errno)); return have_outer_privilege; } static void chdir_to_tmpfs(void) { char cwd[PATH_MAX]; if (getcwd(cwd, sizeof(cwd)) != cwd) ksft_exit_fail_msg("getcwd - %s\n", strerror(errno)); if (mount("private_tmp", ".", "tmpfs", 0, "mode=0777") != 0) ksft_exit_fail_msg("mount private tmpfs - %s\n", strerror(errno)); if (chdir(cwd) != 0) ksft_exit_fail_msg("chdir to private tmpfs - %s\n", strerror(errno)); } static void copy_fromat_to(int fromfd, const char *fromname, const char *toname) { int from = openat(fromfd, fromname, O_RDONLY); if (from == -1) ksft_exit_fail_msg("open copy source - %s\n", strerror(errno)); int to = open(toname, O_CREAT | O_WRONLY | O_EXCL, 0700); while (true) { char buf[4096]; ssize_t sz = read(from, buf, sizeof(buf)); if (sz == 0) break; if (sz < 0) ksft_exit_fail_msg("read - %s\n", strerror(errno)); if (write(to, buf, sz) != sz) /* no short writes on tmpfs */ ksft_exit_fail_msg("write - %s\n", strerror(errno)); } close(from); close(to); } static bool fork_wait(void) { pid_t child = fork(); if (child == 0) { nerrs = 0; return true; } else if (child > 0) { int status; if (waitpid(child, &status, 0) != child || !WIFEXITED(status)) { ksft_print_msg("Child died\n"); nerrs++; } else if (WEXITSTATUS(status) != 0) { ksft_print_msg("Child failed\n"); nerrs++; } else { /* don't print this message for mpid */ if (getpid() != mpid) ksft_test_result_pass("Passed\n"); } return false; } else { ksft_exit_fail_msg("fork - %s\n", strerror(errno)); return false; } } static void exec_other_validate_cap(const char *name, bool eff, bool perm, bool inh, bool ambient) { execl(name, name, (eff ? "1" : "0"), (perm ? "1" : "0"), (inh ? "1" : "0"), (ambient ? "1" : "0"), NULL); ksft_exit_fail_msg("execl - %s\n", strerror(errno)); } static void exec_validate_cap(bool eff, bool perm, bool inh, bool ambient) { exec_other_validate_cap("./validate_cap", eff, perm, inh, ambient); } static int do_tests(int uid, const char *our_path) { bool have_outer_privilege = create_and_enter_ns(uid); int ourpath_fd = open(our_path, O_RDONLY | O_DIRECTORY); if (ourpath_fd == -1) ksft_exit_fail_msg("open '%s' - %s\n", our_path, strerror(errno)); chdir_to_tmpfs(); copy_fromat_to(ourpath_fd, "validate_cap", "validate_cap"); if (have_outer_privilege) { uid_t gid = getegid(); copy_fromat_to(ourpath_fd, "validate_cap", "validate_cap_suidroot"); if (chown("validate_cap_suidroot", 0, -1) != 0) ksft_exit_fail_msg("chown - %s\n", strerror(errno)); if (chmod("validate_cap_suidroot", S_ISUID | 0700) != 0) ksft_exit_fail_msg("chmod - %s\n", strerror(errno)); copy_fromat_to(ourpath_fd, "validate_cap", "validate_cap_suidnonroot"); if (chown("validate_cap_suidnonroot", uid + 1, -1) != 0) ksft_exit_fail_msg("chown - %s\n", strerror(errno)); if (chmod("validate_cap_suidnonroot", S_ISUID | 0700) != 0) ksft_exit_fail_msg("chmod - %s\n", strerror(errno)); copy_fromat_to(ourpath_fd, "validate_cap", "validate_cap_sgidroot"); if (chown("validate_cap_sgidroot", -1, 0) != 0) ksft_exit_fail_msg("chown - %s\n", strerror(errno)); if (chmod("validate_cap_sgidroot", S_ISGID | 0710) != 0) ksft_exit_fail_msg("chmod - %s\n", strerror(errno)); copy_fromat_to(ourpath_fd, "validate_cap", "validate_cap_sgidnonroot"); if (chown("validate_cap_sgidnonroot", -1, gid + 1) != 0) ksft_exit_fail_msg("chown - %s\n", strerror(errno)); if (chmod("validate_cap_sgidnonroot", S_ISGID | 0710) != 0) ksft_exit_fail_msg("chmod - %s\n", strerror(errno)); } capng_get_caps_process(); /* Make sure that i starts out clear */ capng_update(CAPNG_DROP, CAPNG_INHERITABLE, CAP_NET_BIND_SERVICE); if (capng_apply(CAPNG_SELECT_CAPS) != 0) ksft_exit_fail_msg("capng_apply - %s\n", strerror(errno)); if (uid == 0) { ksft_print_msg("[RUN]\tRoot => ep\n"); if (fork_wait()) exec_validate_cap(true, true, false, false); } else { ksft_print_msg("[RUN]\tNon-root => no caps\n"); if (fork_wait()) exec_validate_cap(false, false, false, false); } ksft_print_msg("Check cap_ambient manipulation rules\n"); /* We should not be able to add ambient caps yet. */ if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, CAP_NET_BIND_SERVICE, 0, 0, 0) != -1 || errno != EPERM) { if (errno == EINVAL) ksft_test_result_fail( "PR_CAP_AMBIENT_RAISE isn't supported\n"); else ksft_test_result_fail( "PR_CAP_AMBIENT_RAISE should have failed eith EPERM on a non-inheritable cap\n"); return 1; } ksft_test_result_pass( "PR_CAP_AMBIENT_RAISE failed on non-inheritable cap\n"); capng_update(CAPNG_ADD, CAPNG_INHERITABLE, CAP_NET_RAW); capng_update(CAPNG_DROP, CAPNG_PERMITTED, CAP_NET_RAW); capng_update(CAPNG_DROP, CAPNG_EFFECTIVE, CAP_NET_RAW); if (capng_apply(CAPNG_SELECT_CAPS) != 0) ksft_exit_fail_msg("capng_apply - %s\n", strerror(errno)); if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, CAP_NET_RAW, 0, 0, 0) != -1 || errno != EPERM) { ksft_test_result_fail( "PR_CAP_AMBIENT_RAISE should have failed on a non-permitted cap\n"); return 1; } ksft_test_result_pass( "PR_CAP_AMBIENT_RAISE failed on non-permitted cap\n"); capng_update(CAPNG_ADD, CAPNG_INHERITABLE, CAP_NET_BIND_SERVICE); if (capng_apply(CAPNG_SELECT_CAPS) != 0) ksft_exit_fail_msg("capng_apply - %s\n", strerror(errno)); if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, CAP_NET_BIND_SERVICE, 0, 0, 0) != 0) { ksft_test_result_fail( "PR_CAP_AMBIENT_RAISE should have succeeded\n"); return 1; } ksft_test_result_pass("PR_CAP_AMBIENT_RAISE worked\n"); if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_IS_SET, CAP_NET_BIND_SERVICE, 0, 0, 0) != 1) { ksft_test_result_fail("PR_CAP_AMBIENT_IS_SET is broken\n"); return 1; } if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_CLEAR_ALL, 0, 0, 0, 0) != 0) ksft_exit_fail_msg("PR_CAP_AMBIENT_CLEAR_ALL - %s\n", strerror(errno)); if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_IS_SET, CAP_NET_BIND_SERVICE, 0, 0, 0) != 0) { ksft_test_result_fail( "PR_CAP_AMBIENT_CLEAR_ALL didn't work\n"); return 1; } if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, CAP_NET_BIND_SERVICE, 0, 0, 0) != 0) ksft_exit_fail_msg("PR_CAP_AMBIENT_RAISE - %s\n", strerror(errno)); capng_update(CAPNG_DROP, CAPNG_INHERITABLE, CAP_NET_BIND_SERVICE); if (capng_apply(CAPNG_SELECT_CAPS) != 0) ksft_exit_fail_msg("capng_apply - %s\n", strerror(errno)); if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_IS_SET, CAP_NET_BIND_SERVICE, 0, 0, 0) != 0) { ksft_test_result_fail("Dropping I should have dropped A\n"); return 1; } ksft_test_result_pass("Basic manipulation appears to work\n"); capng_update(CAPNG_ADD, CAPNG_INHERITABLE, CAP_NET_BIND_SERVICE); if (capng_apply(CAPNG_SELECT_CAPS) != 0) ksft_exit_fail_msg("capng_apply - %s\n", strerror(errno)); if (uid == 0) { ksft_print_msg("[RUN]\tRoot +i => eip\n"); if (fork_wait()) exec_validate_cap(true, true, true, false); } else { ksft_print_msg("[RUN]\tNon-root +i => i\n"); if (fork_wait()) exec_validate_cap(false, false, true, false); } if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, CAP_NET_BIND_SERVICE, 0, 0, 0) != 0) ksft_exit_fail_msg("PR_CAP_AMBIENT_RAISE - %s\n", strerror(errno)); ksft_print_msg("[RUN]\tUID %d +ia => eipa\n", uid); if (fork_wait()) exec_validate_cap(true, true, true, true); /* The remaining tests need real privilege */ if (!have_outer_privilege) { ksft_test_result_skip("SUID/SGID tests (needs privilege)\n"); goto done; } if (uid == 0) { ksft_print_msg("[RUN]\tRoot +ia, suidroot => eipa\n"); if (fork_wait()) exec_other_validate_cap("./validate_cap_suidroot", true, true, true, true); ksft_print_msg("[RUN]\tRoot +ia, suidnonroot => ip\n"); if (fork_wait()) exec_other_validate_cap("./validate_cap_suidnonroot", false, true, true, false); ksft_print_msg("[RUN]\tRoot +ia, sgidroot => eipa\n"); if (fork_wait()) exec_other_validate_cap("./validate_cap_sgidroot", true, true, true, true); if (fork_wait()) { ksft_print_msg( "[RUN]\tRoot, gid != 0, +ia, sgidroot => eip\n"); if (setresgid(1, 1, 1) != 0) ksft_exit_fail_msg("setresgid - %s\n", strerror(errno)); exec_other_validate_cap("./validate_cap_sgidroot", true, true, true, false); } ksft_print_msg("[RUN]\tRoot +ia, sgidnonroot => eip\n"); if (fork_wait()) exec_other_validate_cap("./validate_cap_sgidnonroot", true, true, true, false); } else { ksft_print_msg("[RUN]\tNon-root +ia, sgidnonroot => i\n"); if (fork_wait()) exec_other_validate_cap("./validate_cap_sgidnonroot", false, false, true, false); if (fork_wait()) { ksft_print_msg("[RUN]\tNon-root +ia, sgidroot => i\n"); if (setresgid(1, 1, 1) != 0) ksft_exit_fail_msg("setresgid - %s\n", strerror(errno)); exec_other_validate_cap("./validate_cap_sgidroot", false, false, true, false); } } done: ksft_print_cnts(); return nerrs ? 1 : 0; } int main(int argc, char **argv) { char *tmp1, *tmp2, *our_path; /* Find our path */ tmp1 = strdup(argv[0]); if (!tmp1) ksft_exit_fail_msg("strdup - %s\n", strerror(errno)); tmp2 = dirname(tmp1); our_path = strdup(tmp2); if (!our_path) ksft_exit_fail_msg("strdup - %s\n", strerror(errno)); free(tmp1); mpid = getpid(); if (fork_wait()) { ksft_print_header(); ksft_set_plan(12); ksft_print_msg("[RUN]\t+++ Tests with uid == 0 +++\n"); return do_tests(0, our_path); } ksft_print_msg("==================================================\n"); if (fork_wait()) { ksft_print_header(); ksft_set_plan(9); ksft_print_msg("[RUN]\t+++ Tests with uid != 0 +++\n"); return do_tests(1, our_path); } return nerrs ? 1 : 0; }
linux-master
tools/testing/selftests/capabilities/test_execve.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2013, Michael Ellerman, IBM Corp. */ #include <errno.h> #include <signal.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #include <elf.h> #include <fcntl.h> #include <link.h> #include <sys/stat.h> #include "subunit.h" #include "utils.h" #define KILL_TIMEOUT 5 /* Setting timeout to -1 disables the alarm */ static uint64_t timeout = 120; int run_test(int (test_function)(void), const char *name) { bool terminated; int rc, status; pid_t pid; /* Make sure output is flushed before forking */ fflush(stdout); pid = fork(); if (pid == 0) { setpgid(0, 0); exit(test_function()); } else if (pid == -1) { perror("fork"); return 1; } setpgid(pid, pid); if (timeout != -1) /* Wake us up in timeout seconds */ alarm(timeout); terminated = false; wait: rc = waitpid(pid, &status, 0); if (rc == -1) { if (errno != EINTR) { printf("unknown error from waitpid\n"); return 1; } if (terminated) { printf("!! force killing %s\n", name); kill(-pid, SIGKILL); return 1; } else { printf("!! killing %s\n", name); kill(-pid, SIGTERM); terminated = true; alarm(KILL_TIMEOUT); goto wait; } } /* Kill anything else in the process group that is still running */ kill(-pid, SIGTERM); if (WIFEXITED(status)) status = WEXITSTATUS(status); else { if (WIFSIGNALED(status)) printf("!! child died by signal %d\n", WTERMSIG(status)); else printf("!! child died by unknown cause\n"); status = 1; /* Signal or other */ } return status; } static void sig_handler(int signum) { /* Just wake us up from waitpid */ } static struct sigaction sig_action = { .sa_handler = sig_handler, }; void test_harness_set_timeout(uint64_t time) { timeout = time; } int test_harness(int (test_function)(void), const char *name) { int rc; test_start(name); test_set_git_version(GIT_VERSION); if (sigaction(SIGINT, &sig_action, NULL)) { perror("sigaction (sigint)"); test_error(name); return 1; } if (sigaction(SIGALRM, &sig_action, NULL)) { perror("sigaction (sigalrm)"); test_error(name); return 1; } rc = run_test(test_function, name); if (rc == MAGIC_SKIP_RETURN_VALUE) { test_skip(name); /* so that skipped test is not marked as failed */ rc = 0; } else test_finish(name, rc); return rc; }
linux-master
tools/testing/selftests/powerpc/harness.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2013-2015, Michael Ellerman, IBM Corp. */ #define _GNU_SOURCE /* For CPU_ZERO etc. */ #include <elf.h> #include <errno.h> #include <fcntl.h> #include <inttypes.h> #include <limits.h> #include <link.h> #include <sched.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/ioctl.h> #include <sys/stat.h> #include <sys/sysinfo.h> #include <sys/types.h> #include <sys/utsname.h> #include <unistd.h> #include <asm/unistd.h> #include <linux/limits.h> #include "utils.h" static char auxv[4096]; int read_file(const char *path, char *buf, size_t count, size_t *len) { ssize_t rc; int fd; int err; char eof; fd = open(path, O_RDONLY); if (fd < 0) return -errno; rc = read(fd, buf, count); if (rc < 0) { err = -errno; goto out; } if (len) *len = rc; /* Overflow if there are still more bytes after filling the buffer */ if (rc == count) { rc = read(fd, &eof, 1); if (rc != 0) { err = -EOVERFLOW; goto out; } } err = 0; out: close(fd); errno = -err; return err; } int read_file_alloc(const char *path, char **buf, size_t *len) { size_t read_offset = 0; size_t buffer_len = 0; char *buffer = NULL; int err; int fd; fd = open(path, O_RDONLY); if (fd < 0) return -errno; /* * We don't use stat & preallocate st_size because some non-files * report 0 file size. Instead just dynamically grow the buffer * as needed. */ while (1) { ssize_t rc; if (read_offset >= buffer_len / 2) { char *next_buffer; buffer_len = buffer_len ? buffer_len * 2 : 4096; next_buffer = realloc(buffer, buffer_len); if (!next_buffer) { err = -errno; goto out; } buffer = next_buffer; } rc = read(fd, buffer + read_offset, buffer_len - read_offset); if (rc < 0) { err = -errno; goto out; } if (rc == 0) break; read_offset += rc; } *buf = buffer; if (len) *len = read_offset; err = 0; out: close(fd); if (err) free(buffer); errno = -err; return err; } int write_file(const char *path, const char *buf, size_t count) { int fd; int err; ssize_t rc; fd = open(path, O_WRONLY | O_CREAT | O_TRUNC, 0644); if (fd < 0) return -errno; rc = write(fd, buf, count); if (rc < 0) { err = -errno; goto out; } if (rc != count) { err = -EOVERFLOW; goto out; } err = 0; out: close(fd); errno = -err; return err; } int read_auxv(char *buf, ssize_t buf_size) { int err; err = read_file("/proc/self/auxv", buf, buf_size, NULL); if (err) { perror("Error reading /proc/self/auxv"); return err; } return 0; } int read_debugfs_file(const char *subpath, char *buf, size_t count) { char path[PATH_MAX] = "/sys/kernel/debug/"; strncat(path, subpath, sizeof(path) - strlen(path) - 1); return read_file(path, buf, count, NULL); } int write_debugfs_file(const char *subpath, const char *buf, size_t count) { char path[PATH_MAX] = "/sys/kernel/debug/"; strncat(path, subpath, sizeof(path) - strlen(path) - 1); return write_file(path, buf, count); } static int validate_int_parse(const char *buffer, size_t count, char *end) { int err = 0; /* Require at least one digit */ if (end == buffer) { err = -EINVAL; goto out; } /* Require all remaining characters be whitespace-ish */ for (; end < buffer + count; end++) { if (*end == '\0') break; if (*end != ' ' && *end != '\n') { err = -EINVAL; goto out; } } out: errno = -err; return err; } static int parse_bounded_int(const char *buffer, size_t count, intmax_t *result, int base, intmax_t min, intmax_t max) { int err; char *end; errno = 0; *result = strtoimax(buffer, &end, base); if (errno) return -errno; err = validate_int_parse(buffer, count, end); if (err) goto out; if (*result < min || *result > max) err = -EOVERFLOW; out: errno = -err; return err; } static int parse_bounded_uint(const char *buffer, size_t count, uintmax_t *result, int base, uintmax_t max) { int err = 0; char *end; errno = 0; *result = strtoumax(buffer, &end, base); if (errno) return -errno; err = validate_int_parse(buffer, count, end); if (err) goto out; if (*result > max) err = -EOVERFLOW; out: errno = -err; return err; } int parse_intmax(const char *buffer, size_t count, intmax_t *result, int base) { return parse_bounded_int(buffer, count, result, base, INTMAX_MIN, INTMAX_MAX); } int parse_uintmax(const char *buffer, size_t count, uintmax_t *result, int base) { return parse_bounded_uint(buffer, count, result, base, UINTMAX_MAX); } int parse_int(const char *buffer, size_t count, int *result, int base) { intmax_t parsed; int err = parse_bounded_int(buffer, count, &parsed, base, INT_MIN, INT_MAX); *result = parsed; return err; } int parse_uint(const char *buffer, size_t count, unsigned int *result, int base) { uintmax_t parsed; int err = parse_bounded_uint(buffer, count, &parsed, base, UINT_MAX); *result = parsed; return err; } int parse_long(const char *buffer, size_t count, long *result, int base) { intmax_t parsed; int err = parse_bounded_int(buffer, count, &parsed, base, LONG_MIN, LONG_MAX); *result = parsed; return err; } int parse_ulong(const char *buffer, size_t count, unsigned long *result, int base) { uintmax_t parsed; int err = parse_bounded_uint(buffer, count, &parsed, base, ULONG_MAX); *result = parsed; return err; } int read_long(const char *path, long *result, int base) { int err; char buffer[32] = {0}; err = read_file(path, buffer, sizeof(buffer) - 1, NULL); if (err) return err; return parse_long(buffer, sizeof(buffer), result, base); } int read_ulong(const char *path, unsigned long *result, int base) { int err; char buffer[32] = {0}; err = read_file(path, buffer, sizeof(buffer) - 1, NULL); if (err) return err; return parse_ulong(buffer, sizeof(buffer), result, base); } int write_long(const char *path, long result, int base) { int err; int len; char buffer[32]; /* Decimal only for now: no format specifier for signed hex values */ if (base != 10) { err = -EINVAL; goto out; } len = snprintf(buffer, sizeof(buffer), "%ld", result); if (len < 0 || len >= sizeof(buffer)) { err = -EOVERFLOW; goto out; } err = write_file(path, buffer, len); out: errno = -err; return err; } int write_ulong(const char *path, unsigned long result, int base) { int err; int len; char buffer[32]; char *fmt; switch (base) { case 10: fmt = "%lu"; break; case 16: fmt = "%lx"; break; default: err = -EINVAL; goto out; } len = snprintf(buffer, sizeof(buffer), fmt, result); if (len < 0 || len >= sizeof(buffer)) { err = -errno; goto out; } err = write_file(path, buffer, len); out: errno = -err; return err; } void *find_auxv_entry(int type, char *auxv) { ElfW(auxv_t) *p; p = (ElfW(auxv_t) *)auxv; while (p->a_type != AT_NULL) { if (p->a_type == type) return p; p++; } return NULL; } void *get_auxv_entry(int type) { ElfW(auxv_t) *p; if (read_auxv(auxv, sizeof(auxv))) return NULL; p = find_auxv_entry(type, auxv); if (p) return (void *)p->a_un.a_val; return NULL; } int pick_online_cpu(void) { int ncpus, cpu = -1; cpu_set_t *mask; size_t size; ncpus = get_nprocs_conf(); size = CPU_ALLOC_SIZE(ncpus); mask = CPU_ALLOC(ncpus); if (!mask) { perror("malloc"); return -1; } CPU_ZERO_S(size, mask); if (sched_getaffinity(0, size, mask)) { perror("sched_getaffinity"); goto done; } /* We prefer a primary thread, but skip 0 */ for (cpu = 8; cpu < ncpus; cpu += 8) if (CPU_ISSET_S(cpu, size, mask)) goto done; /* Search for anything, but in reverse */ for (cpu = ncpus - 1; cpu >= 0; cpu--) if (CPU_ISSET_S(cpu, size, mask)) goto done; printf("No cpus in affinity mask?!\n"); done: CPU_FREE(mask); return cpu; } int bind_to_cpu(int cpu) { cpu_set_t mask; int err; if (cpu == BIND_CPU_ANY) { cpu = pick_online_cpu(); if (cpu < 0) return cpu; } printf("Binding to cpu %d\n", cpu); CPU_ZERO(&mask); CPU_SET(cpu, &mask); err = sched_setaffinity(0, sizeof(mask), &mask); if (err) return err; return cpu; } bool is_ppc64le(void) { struct utsname uts; int rc; errno = 0; rc = uname(&uts); if (rc) { perror("uname"); return false; } return strcmp(uts.machine, "ppc64le") == 0; } int read_sysfs_file(char *fpath, char *result, size_t result_size) { char path[PATH_MAX] = "/sys/"; strncat(path, fpath, PATH_MAX - strlen(path) - 1); return read_file(path, result, result_size, NULL); } int read_debugfs_int(const char *debugfs_file, int *result) { int err; char value[16] = {0}; err = read_debugfs_file(debugfs_file, value, sizeof(value) - 1); if (err) return err; return parse_int(value, sizeof(value), result, 10); } int write_debugfs_int(const char *debugfs_file, int result) { char value[16]; snprintf(value, 16, "%d", result); return write_debugfs_file(debugfs_file, value, strlen(value)); } static long perf_event_open(struct perf_event_attr *hw_event, pid_t pid, int cpu, int group_fd, unsigned long flags) { return syscall(__NR_perf_event_open, hw_event, pid, cpu, group_fd, flags); } static void perf_event_attr_init(struct perf_event_attr *event_attr, unsigned int type, unsigned long config) { memset(event_attr, 0, sizeof(*event_attr)); event_attr->type = type; event_attr->size = sizeof(struct perf_event_attr); event_attr->config = config; event_attr->read_format = PERF_FORMAT_GROUP; event_attr->disabled = 1; event_attr->exclude_kernel = 1; event_attr->exclude_hv = 1; event_attr->exclude_guest = 1; } int perf_event_open_counter(unsigned int type, unsigned long config, int group_fd) { int fd; struct perf_event_attr event_attr; perf_event_attr_init(&event_attr, type, config); fd = perf_event_open(&event_attr, 0, -1, group_fd, 0); if (fd < 0) perror("perf_event_open() failed"); return fd; } int perf_event_enable(int fd) { if (ioctl(fd, PERF_EVENT_IOC_ENABLE, PERF_IOC_FLAG_GROUP) == -1) { perror("error while enabling perf events"); return -1; } return 0; } int perf_event_disable(int fd) { if (ioctl(fd, PERF_EVENT_IOC_DISABLE, PERF_IOC_FLAG_GROUP) == -1) { perror("error disabling perf events"); return -1; } return 0; } int perf_event_reset(int fd) { if (ioctl(fd, PERF_EVENT_IOC_RESET, PERF_IOC_FLAG_GROUP) == -1) { perror("error resetting perf events"); return -1; } return 0; } int using_hash_mmu(bool *using_hash) { char line[128]; FILE *f; int rc; f = fopen("/proc/cpuinfo", "r"); FAIL_IF(!f); rc = 0; while (fgets(line, sizeof(line), f) != NULL) { if (!strcmp(line, "MMU : Hash\n") || !strcmp(line, "platform : Cell\n") || !strcmp(line, "platform : PowerMac\n")) { *using_hash = true; goto out; } if (strcmp(line, "MMU : Radix\n") == 0) { *using_hash = false; goto out; } } rc = -1; out: fclose(f); return rc; } struct sigaction push_signal_handler(int sig, void (*fn)(int, siginfo_t *, void *)) { struct sigaction sa; struct sigaction old_handler; sa.sa_sigaction = fn; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_SIGINFO; FAIL_IF_EXIT_MSG(sigaction(sig, &sa, &old_handler), "failed to push signal handler"); return old_handler; } struct sigaction pop_signal_handler(int sig, struct sigaction old_handler) { struct sigaction popped; FAIL_IF_EXIT_MSG(sigaction(sig, &old_handler, &popped), "failed to pop signal handler"); return popped; }
linux-master
tools/testing/selftests/powerpc/utils.c
// SPDX-License-Identifier: GPL-2.0+ #include <errno.h> #include <setjmp.h> #include <signal.h> #include <sys/types.h> #include <sys/wait.h> #include "dexcr.h" #include "reg.h" #include "utils.h" static jmp_buf generic_signal_jump_buf; static void generic_signal_handler(int signum, siginfo_t *info, void *context) { longjmp(generic_signal_jump_buf, 0); } bool dexcr_exists(void) { struct sigaction old; volatile bool exists; old = push_signal_handler(SIGILL, generic_signal_handler); if (setjmp(generic_signal_jump_buf)) goto out; /* * If the SPR is not recognised by the hardware it triggers * a hypervisor emulation interrupt. If the kernel does not * recognise/try to emulate it, we receive a SIGILL signal. * * If we do not receive a signal, assume we have the SPR or the * kernel is trying to emulate it correctly. */ exists = false; mfspr(SPRN_DEXCR_RO); exists = true; out: pop_signal_handler(SIGILL, old); return exists; } /* * Just test if a bad hashchk triggers a signal, without checking * for support or if the NPHIE aspect is enabled. */ bool hashchk_triggers(void) { struct sigaction old; volatile bool triggers; old = push_signal_handler(SIGILL, generic_signal_handler); if (setjmp(generic_signal_jump_buf)) goto out; triggers = true; do_bad_hashchk(); triggers = false; out: pop_signal_handler(SIGILL, old); return triggers; } unsigned int get_dexcr(enum dexcr_source source) { switch (source) { case DEXCR: return mfspr(SPRN_DEXCR_RO); case HDEXCR: return mfspr(SPRN_HDEXCR_RO); case EFFECTIVE: return mfspr(SPRN_DEXCR_RO) | mfspr(SPRN_HDEXCR_RO); default: FAIL_IF_EXIT_MSG(true, "bad enum dexcr_source"); } } void await_child_success(pid_t pid) { int wstatus; FAIL_IF_EXIT_MSG(pid == -1, "fork failed"); FAIL_IF_EXIT_MSG(waitpid(pid, &wstatus, 0) == -1, "wait failed"); FAIL_IF_EXIT_MSG(!WIFEXITED(wstatus), "child did not exit cleanly"); FAIL_IF_EXIT_MSG(WEXITSTATUS(wstatus) != 0, "child exit error"); } /* * Perform a hashst instruction. The following components determine the result * * 1. The LR value (any register technically) * 2. The SP value (also any register, but it must be a valid address) * 3. A secret key managed by the kernel * * The result is stored to the address held in SP. */ void hashst(unsigned long lr, void *sp) { asm volatile ("addi 31, %0, 0;" /* set r31 (pretend LR) to lr */ "addi 30, %1, 8;" /* set r30 (pretend SP) to sp + 8 */ PPC_RAW_HASHST(31, -8, 30) /* compute hash into stack location */ : : "r" (lr), "r" (sp) : "r31", "r30", "memory"); } /* * Perform a hashchk instruction. A hash is computed as per hashst(), * however the result is not stored to memory. Instead the existing * value is read and compared against the computed hash. * * If they match, execution continues. * If they differ, an interrupt triggers. */ void hashchk(unsigned long lr, void *sp) { asm volatile ("addi 31, %0, 0;" /* set r31 (pretend LR) to lr */ "addi 30, %1, 8;" /* set r30 (pretend SP) to sp + 8 */ PPC_RAW_HASHCHK(31, -8, 30) /* check hash at stack location */ : : "r" (lr), "r" (sp) : "r31", "r30", "memory"); } void do_bad_hashchk(void) { unsigned long hash = 0; hashst(0, &hash); hash += 1; hashchk(0, &hash); }
linux-master
tools/testing/selftests/powerpc/dexcr/dexcr.c
// SPDX-License-Identifier: GPL-2.0+ #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <limits.h> #include <sched.h> #include <setjmp.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/mman.h> #include <sys/prctl.h> #include <unistd.h> #include "dexcr.h" #include "utils.h" static int require_nphie(void) { SKIP_IF_MSG(!dexcr_exists(), "DEXCR not supported"); SKIP_IF_MSG(!(get_dexcr(EFFECTIVE) & DEXCR_PR_NPHIE), "DEXCR[NPHIE] not enabled"); return 0; } static jmp_buf hashchk_detected_buf; static const char *hashchk_failure_msg; static void hashchk_handler(int signum, siginfo_t *info, void *context) { if (signum != SIGILL) hashchk_failure_msg = "wrong signal received"; else if (info->si_code != ILL_ILLOPN) hashchk_failure_msg = "wrong signal code received"; longjmp(hashchk_detected_buf, 0); } /* * Check that hashchk triggers when DEXCR[NPHIE] is enabled * and is detected as such by the kernel exception handler */ static int hashchk_detected_test(void) { struct sigaction old; int err; err = require_nphie(); if (err) return err; old = push_signal_handler(SIGILL, hashchk_handler); if (setjmp(hashchk_detected_buf)) goto out; hashchk_failure_msg = NULL; do_bad_hashchk(); hashchk_failure_msg = "hashchk failed to trigger"; out: pop_signal_handler(SIGILL, old); FAIL_IF_MSG(hashchk_failure_msg, hashchk_failure_msg); return 0; } #define HASH_COUNT 8 static unsigned long hash_values[HASH_COUNT + 1]; static void fill_hash_values(void) { for (unsigned long i = 0; i < HASH_COUNT; i++) hashst(i, &hash_values[i]); /* Used to ensure the checks uses the same addresses as the hashes */ hash_values[HASH_COUNT] = (unsigned long)&hash_values; } static unsigned int count_hash_values_matches(void) { unsigned long matches = 0; for (unsigned long i = 0; i < HASH_COUNT; i++) { unsigned long orig_hash = hash_values[i]; hash_values[i] = 0; hashst(i, &hash_values[i]); if (hash_values[i] == orig_hash) matches++; } return matches; } static int hashchk_exec_child(void) { ssize_t count; fill_hash_values(); count = write(STDOUT_FILENO, hash_values, sizeof(hash_values)); return count == sizeof(hash_values) ? 0 : EOVERFLOW; } static char *hashchk_exec_child_args[] = { "hashchk_exec_child", NULL }; /* * Check that new programs get different keys so a malicious process * can't recreate a victim's hash values. */ static int hashchk_exec_random_key_test(void) { pid_t pid; int err; int pipefd[2]; err = require_nphie(); if (err) return err; FAIL_IF_MSG(pipe(pipefd), "failed to create pipe"); pid = fork(); if (pid == 0) { if (dup2(pipefd[1], STDOUT_FILENO) == -1) _exit(errno); execve("/proc/self/exe", hashchk_exec_child_args, NULL); _exit(errno); } await_child_success(pid); FAIL_IF_MSG(read(pipefd[0], hash_values, sizeof(hash_values)) != sizeof(hash_values), "missing expected child output"); /* Verify the child used the same hash_values address */ FAIL_IF_EXIT_MSG(hash_values[HASH_COUNT] != (unsigned long)&hash_values, "bad address check"); /* If all hashes are the same it means (most likely) same key */ FAIL_IF_MSG(count_hash_values_matches() == HASH_COUNT, "shared key detected"); return 0; } /* * Check that forks share the same key so that existing hash values * remain valid. */ static int hashchk_fork_share_key_test(void) { pid_t pid; int err; err = require_nphie(); if (err) return err; fill_hash_values(); pid = fork(); if (pid == 0) { if (count_hash_values_matches() != HASH_COUNT) _exit(1); _exit(0); } await_child_success(pid); return 0; } #define STACK_SIZE (1024 * 1024) static int hashchk_clone_child_fn(void *args) { fill_hash_values(); return 0; } /* * Check that threads share the same key so that existing hash values * remain valid. */ static int hashchk_clone_share_key_test(void) { void *child_stack; pid_t pid; int err; err = require_nphie(); if (err) return err; child_stack = mmap(NULL, STACK_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0); FAIL_IF_MSG(child_stack == MAP_FAILED, "failed to map child stack"); pid = clone(hashchk_clone_child_fn, child_stack + STACK_SIZE, CLONE_VM | SIGCHLD, NULL); await_child_success(pid); FAIL_IF_MSG(count_hash_values_matches() != HASH_COUNT, "different key detected"); return 0; } int main(int argc, char *argv[]) { int err = 0; if (argc >= 1 && !strcmp(argv[0], hashchk_exec_child_args[0])) return hashchk_exec_child(); err |= test_harness(hashchk_detected_test, "hashchk_detected"); err |= test_harness(hashchk_exec_random_key_test, "hashchk_exec_random_key"); err |= test_harness(hashchk_fork_share_key_test, "hashchk_fork_share_key"); err |= test_harness(hashchk_clone_share_key_test, "hashchk_clone_share_key"); return err; }
linux-master
tools/testing/selftests/powerpc/dexcr/hashchk_test.c
// SPDX-License-Identifier: GPL-2.0+ #include <errno.h> #include <stddef.h> #include <stdio.h> #include <string.h> #include "dexcr.h" #include "utils.h" static unsigned int dexcr; static unsigned int hdexcr; static unsigned int effective; struct dexcr_aspect { const char *name; const char *desc; unsigned int index; }; static const struct dexcr_aspect aspects[] = { { .name = "SBHE", .desc = "Speculative branch hint enable", .index = 0, }, { .name = "IBRTPD", .desc = "Indirect branch recurrent target prediction disable", .index = 3, }, { .name = "SRAPD", .desc = "Subroutine return address prediction disable", .index = 4, }, { .name = "NPHIE", .desc = "Non-privileged hash instruction enable", .index = 5, }, { .name = "PHIE", .desc = "Privileged hash instruction enable", .index = 6, }, }; static void print_list(const char *list[], size_t len) { for (size_t i = 0; i < len; i++) { printf("%s", list[i]); if (i + 1 < len) printf(", "); } } static void print_dexcr(char *name, unsigned int bits) { const char *enabled_aspects[ARRAY_SIZE(aspects) + 1] = {NULL}; size_t j = 0; printf("%s: %08x", name, bits); if (bits == 0) { printf("\n"); return; } for (size_t i = 0; i < ARRAY_SIZE(aspects); i++) { unsigned int mask = DEXCR_PR_BIT(aspects[i].index); if (bits & mask) { enabled_aspects[j++] = aspects[i].name; bits &= ~mask; } } if (bits) enabled_aspects[j++] = "unknown"; printf(" ("); print_list(enabled_aspects, j); printf(")\n"); } static void print_aspect(const struct dexcr_aspect *aspect) { const char *attributes[8] = {NULL}; size_t j = 0; unsigned long mask; mask = DEXCR_PR_BIT(aspect->index); if (dexcr & mask) attributes[j++] = "set"; if (hdexcr & mask) attributes[j++] = "set (hypervisor)"; if (!(effective & mask)) attributes[j++] = "clear"; printf("%12s %c (%d): ", aspect->name, effective & mask ? '*' : ' ', aspect->index); print_list(attributes, j); printf(" \t(%s)\n", aspect->desc); } int main(int argc, char *argv[]) { if (!dexcr_exists()) { printf("DEXCR not detected on this hardware\n"); return 1; } dexcr = get_dexcr(DEXCR); hdexcr = get_dexcr(HDEXCR); effective = dexcr | hdexcr; print_dexcr(" DEXCR", dexcr); print_dexcr(" HDEXCR", hdexcr); print_dexcr("Effective", effective); printf("\n"); for (size_t i = 0; i < ARRAY_SIZE(aspects); i++) print_aspect(&aspects[i]); printf("\n"); if (effective & DEXCR_PR_NPHIE) { printf("DEXCR[NPHIE] enabled: hashst/hashchk "); if (hashchk_triggers()) printf("working\n"); else printf("failed to trigger\n"); } else { printf("DEXCR[NPHIE] disabled: hashst/hashchk "); if (hashchk_triggers()) printf("unexpectedly triggered\n"); else printf("ignored\n"); } return 0; }
linux-master
tools/testing/selftests/powerpc/dexcr/lsdexcr.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2018 IBM Corporation. */ #define __SANE_USERSPACE_TYPES__ #include <sys/types.h> #include <stdint.h> #include <malloc.h> #include <unistd.h> #include <stdlib.h> #include <string.h> #include <stdio.h> #include "utils.h" #include "flush_utils.h" int rfi_flush_test(void) { char *p; int repetitions = 10; int fd, passes = 0, iter, rc = 0; struct perf_event_read v; __u64 l1d_misses_total = 0; unsigned long iterations = 100000, zero_size = 24 * 1024; unsigned long l1d_misses_expected; int rfi_flush_orig, rfi_flush; int have_entry_flush, entry_flush_orig; SKIP_IF(geteuid() != 0); // The PMU event we use only works on Power7 or later SKIP_IF(!have_hwcap(PPC_FEATURE_ARCH_2_06)); if (read_debugfs_int("powerpc/rfi_flush", &rfi_flush_orig) < 0) { perror("Unable to read powerpc/rfi_flush debugfs file"); SKIP_IF(1); } if (read_debugfs_int("powerpc/entry_flush", &entry_flush_orig) < 0) { have_entry_flush = 0; } else { have_entry_flush = 1; if (entry_flush_orig != 0) { if (write_debugfs_int("powerpc/entry_flush", 0) < 0) { perror("error writing to powerpc/entry_flush debugfs file"); return 1; } } } rfi_flush = rfi_flush_orig; fd = perf_event_open_counter(PERF_TYPE_HW_CACHE, PERF_L1D_READ_MISS_CONFIG, -1); FAIL_IF(fd < 0); p = (char *)memalign(zero_size, CACHELINE_SIZE); FAIL_IF(perf_event_enable(fd)); // disable L1 prefetching set_dscr(1); iter = repetitions; /* * We expect to see l1d miss for each cacheline access when rfi_flush * is set. Allow a small variation on this. */ l1d_misses_expected = iterations * (zero_size / CACHELINE_SIZE - 2); again: FAIL_IF(perf_event_reset(fd)); syscall_loop(p, iterations, zero_size); FAIL_IF(read(fd, &v, sizeof(v)) != sizeof(v)); if (rfi_flush && v.l1d_misses >= l1d_misses_expected) passes++; else if (!rfi_flush && v.l1d_misses < (l1d_misses_expected / 2)) passes++; l1d_misses_total += v.l1d_misses; while (--iter) goto again; if (passes < repetitions) { printf("FAIL (L1D misses with rfi_flush=%d: %llu %c %lu) [%d/%d failures]\n", rfi_flush, l1d_misses_total, rfi_flush ? '<' : '>', rfi_flush ? repetitions * l1d_misses_expected : repetitions * l1d_misses_expected / 2, repetitions - passes, repetitions); rc = 1; } else printf("PASS (L1D misses with rfi_flush=%d: %llu %c %lu) [%d/%d pass]\n", rfi_flush, l1d_misses_total, rfi_flush ? '>' : '<', rfi_flush ? repetitions * l1d_misses_expected : repetitions * l1d_misses_expected / 2, passes, repetitions); if (rfi_flush == rfi_flush_orig) { rfi_flush = !rfi_flush_orig; if (write_debugfs_int("powerpc/rfi_flush", rfi_flush) < 0) { perror("error writing to powerpc/rfi_flush debugfs file"); return 1; } iter = repetitions; l1d_misses_total = 0; passes = 0; goto again; } perf_event_disable(fd); close(fd); set_dscr(0); if (write_debugfs_int("powerpc/rfi_flush", rfi_flush_orig) < 0) { perror("unable to restore original value of powerpc/rfi_flush debugfs file"); return 1; } if (have_entry_flush) { if (write_debugfs_int("powerpc/entry_flush", entry_flush_orig) < 0) { perror("unable to restore original value of powerpc/entry_flush " "debugfs file"); return 1; } } return rc; } int main(int argc, char *argv[]) { return test_harness(rfi_flush_test, "rfi_flush_test"); }
linux-master
tools/testing/selftests/powerpc/security/rfi_flush.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2018 IBM Corporation. */ #define __SANE_USERSPACE_TYPES__ #include <sys/types.h> #include <stdint.h> #include <malloc.h> #include <unistd.h> #include <signal.h> #include <stdlib.h> #include <string.h> #include <stdio.h> #include "utils.h" #include "flush_utils.h" int entry_flush_test(void) { char *p; int repetitions = 10; int fd, passes = 0, iter, rc = 0; struct perf_event_read v; __u64 l1d_misses_total = 0; unsigned long iterations = 100000, zero_size = 24 * 1024; unsigned long l1d_misses_expected; int rfi_flush_orig; int entry_flush, entry_flush_orig; SKIP_IF(geteuid() != 0); // The PMU event we use only works on Power7 or later SKIP_IF(!have_hwcap(PPC_FEATURE_ARCH_2_06)); if (read_debugfs_int("powerpc/rfi_flush", &rfi_flush_orig) < 0) { perror("Unable to read powerpc/rfi_flush debugfs file"); SKIP_IF(1); } if (read_debugfs_int("powerpc/entry_flush", &entry_flush_orig) < 0) { perror("Unable to read powerpc/entry_flush debugfs file"); SKIP_IF(1); } if (rfi_flush_orig != 0) { if (write_debugfs_int("powerpc/rfi_flush", 0) < 0) { perror("error writing to powerpc/rfi_flush debugfs file"); FAIL_IF(1); } } entry_flush = entry_flush_orig; fd = perf_event_open_counter(PERF_TYPE_HW_CACHE, PERF_L1D_READ_MISS_CONFIG, -1); FAIL_IF(fd < 0); p = (char *)memalign(zero_size, CACHELINE_SIZE); FAIL_IF(perf_event_enable(fd)); // disable L1 prefetching set_dscr(1); iter = repetitions; /* * We expect to see l1d miss for each cacheline access when entry_flush * is set. Allow a small variation on this. */ l1d_misses_expected = iterations * (zero_size / CACHELINE_SIZE - 2); again: FAIL_IF(perf_event_reset(fd)); syscall_loop(p, iterations, zero_size); FAIL_IF(read(fd, &v, sizeof(v)) != sizeof(v)); if (entry_flush && v.l1d_misses >= l1d_misses_expected) passes++; else if (!entry_flush && v.l1d_misses < (l1d_misses_expected / 2)) passes++; l1d_misses_total += v.l1d_misses; while (--iter) goto again; if (passes < repetitions) { printf("FAIL (L1D misses with entry_flush=%d: %llu %c %lu) [%d/%d failures]\n", entry_flush, l1d_misses_total, entry_flush ? '<' : '>', entry_flush ? repetitions * l1d_misses_expected : repetitions * l1d_misses_expected / 2, repetitions - passes, repetitions); rc = 1; } else { printf("PASS (L1D misses with entry_flush=%d: %llu %c %lu) [%d/%d pass]\n", entry_flush, l1d_misses_total, entry_flush ? '>' : '<', entry_flush ? repetitions * l1d_misses_expected : repetitions * l1d_misses_expected / 2, passes, repetitions); } if (entry_flush == entry_flush_orig) { entry_flush = !entry_flush_orig; if (write_debugfs_int("powerpc/entry_flush", entry_flush) < 0) { perror("error writing to powerpc/entry_flush debugfs file"); return 1; } iter = repetitions; l1d_misses_total = 0; passes = 0; goto again; } perf_event_disable(fd); close(fd); set_dscr(0); if (write_debugfs_int("powerpc/rfi_flush", rfi_flush_orig) < 0) { perror("unable to restore original value of powerpc/rfi_flush debugfs file"); return 1; } if (write_debugfs_int("powerpc/entry_flush", entry_flush_orig) < 0) { perror("unable to restore original value of powerpc/entry_flush debugfs file"); return 1; } return rc; } int main(int argc, char *argv[]) { return test_harness(entry_flush_test, "entry_flush_test"); }
linux-master
tools/testing/selftests/powerpc/security/entry_flush.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2018 IBM Corporation. */ #define __SANE_USERSPACE_TYPES__ #include <sys/types.h> #include <stdint.h> #include <unistd.h> #include <signal.h> #include <stdlib.h> #include <string.h> #include <stdio.h> #include <sys/utsname.h> #include "reg.h" #include "utils.h" #include "flush_utils.h" static inline __u64 load(void *addr) { __u64 tmp; asm volatile("ld %0,0(%1)" : "=r"(tmp) : "b"(addr)); return tmp; } void syscall_loop(char *p, unsigned long iterations, unsigned long zero_size) { for (unsigned long i = 0; i < iterations; i++) { for (unsigned long j = 0; j < zero_size; j += CACHELINE_SIZE) load(p + j); getppid(); } } void syscall_loop_uaccess(char *p, unsigned long iterations, unsigned long zero_size) { struct utsname utsname; for (unsigned long i = 0; i < iterations; i++) { for (unsigned long j = 0; j < zero_size; j += CACHELINE_SIZE) load(p + j); uname(&utsname); } } static void sigill_handler(int signr, siginfo_t *info, void *unused) { static int warned; ucontext_t *ctx = (ucontext_t *)unused; unsigned long *pc = &UCONTEXT_NIA(ctx); /* mtspr 3,RS to check for move to DSCR below */ if ((*((unsigned int *)*pc) & 0xfc1fffff) == 0x7c0303a6) { if (!warned++) printf("WARNING: Skipping over dscr setup. Consider running 'ppc64_cpu --dscr=1' manually.\n"); *pc += 4; } else { printf("SIGILL at %p\n", pc); abort(); } } void set_dscr(unsigned long val) { static int init; struct sigaction sa; if (!init) { memset(&sa, 0, sizeof(sa)); sa.sa_sigaction = sigill_handler; sa.sa_flags = SA_SIGINFO; if (sigaction(SIGILL, &sa, NULL)) perror("sigill_handler"); init = 1; } mtspr(SPRN_DSCR, val); }
linux-master
tools/testing/selftests/powerpc/security/flush_utils.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2018-2019 IBM Corporation. */ #define __SANE_USERSPACE_TYPES__ #include <sys/types.h> #include <stdint.h> #include <malloc.h> #include <unistd.h> #include <stdlib.h> #include <string.h> #include <stdio.h> #include <sys/prctl.h> #include "utils.h" #include "../pmu/event.h" extern void pattern_cache_loop(void); extern void indirect_branch_loop(void); static int do_count_loop(struct event *events, bool is_p9, s64 *miss_percent) { u64 pred, mpred; prctl(PR_TASK_PERF_EVENTS_ENABLE); if (is_p9) pattern_cache_loop(); else indirect_branch_loop(); prctl(PR_TASK_PERF_EVENTS_DISABLE); event_read(&events[0]); event_read(&events[1]); // We could scale all the events by running/enabled but we're lazy // As long as the PMU is uncontended they should all run FAIL_IF(events[0].result.running != events[0].result.enabled); FAIL_IF(events[1].result.running != events[1].result.enabled); pred = events[0].result.value; mpred = events[1].result.value; if (is_p9) { event_read(&events[2]); event_read(&events[3]); FAIL_IF(events[2].result.running != events[2].result.enabled); FAIL_IF(events[3].result.running != events[3].result.enabled); pred += events[2].result.value; mpred += events[3].result.value; } *miss_percent = 100 * mpred / pred; return 0; } static void setup_event(struct event *e, u64 config, char *name) { event_init_named(e, config, name); e->attr.disabled = 1; e->attr.exclude_kernel = 1; e->attr.exclude_hv = 1; e->attr.exclude_idle = 1; } enum spectre_v2_state { VULNERABLE = 0, UNKNOWN = 1, // Works with FAIL_IF() NOT_AFFECTED, BRANCH_SERIALISATION, COUNT_CACHE_DISABLED, COUNT_CACHE_FLUSH_SW, COUNT_CACHE_FLUSH_HW, BTB_FLUSH, }; static enum spectre_v2_state get_sysfs_state(void) { enum spectre_v2_state state = UNKNOWN; char buf[256]; int len; memset(buf, 0, sizeof(buf)); FAIL_IF(read_sysfs_file("devices/system/cpu/vulnerabilities/spectre_v2", buf, sizeof(buf))); // Make sure it's NULL terminated buf[sizeof(buf) - 1] = '\0'; // Trim the trailing newline len = strlen(buf); FAIL_IF(len < 1); buf[len - 1] = '\0'; printf("sysfs reports: '%s'\n", buf); // Order matters if (strstr(buf, "Vulnerable")) state = VULNERABLE; else if (strstr(buf, "Not affected")) state = NOT_AFFECTED; else if (strstr(buf, "Indirect branch serialisation (kernel only)")) state = BRANCH_SERIALISATION; else if (strstr(buf, "Indirect branch cache disabled")) state = COUNT_CACHE_DISABLED; else if (strstr(buf, "Software count cache flush (hardware accelerated)")) state = COUNT_CACHE_FLUSH_HW; else if (strstr(buf, "Software count cache flush")) state = COUNT_CACHE_FLUSH_SW; else if (strstr(buf, "Branch predictor state flush")) state = BTB_FLUSH; return state; } #define PM_BR_PRED_CCACHE 0x040a4 // P8 + P9 #define PM_BR_MPRED_CCACHE 0x040ac // P8 + P9 #define PM_BR_PRED_PCACHE 0x048a0 // P9 only #define PM_BR_MPRED_PCACHE 0x048b0 // P9 only int spectre_v2_test(void) { enum spectre_v2_state state; struct event events[4]; s64 miss_percent; bool is_p9; // The PMU events we use only work on Power8 or later SKIP_IF(!have_hwcap2(PPC_FEATURE2_ARCH_2_07)); state = get_sysfs_state(); if (state == UNKNOWN) { printf("Error: couldn't determine spectre_v2 mitigation state?\n"); return -1; } memset(events, 0, sizeof(events)); setup_event(&events[0], PM_BR_PRED_CCACHE, "PM_BR_PRED_CCACHE"); setup_event(&events[1], PM_BR_MPRED_CCACHE, "PM_BR_MPRED_CCACHE"); FAIL_IF(event_open(&events[0])); FAIL_IF(event_open_with_group(&events[1], events[0].fd) == -1); is_p9 = ((mfspr(SPRN_PVR) >> 16) & 0xFFFF) == 0x4e; if (is_p9) { // Count pattern cache too setup_event(&events[2], PM_BR_PRED_PCACHE, "PM_BR_PRED_PCACHE"); setup_event(&events[3], PM_BR_MPRED_PCACHE, "PM_BR_MPRED_PCACHE"); FAIL_IF(event_open_with_group(&events[2], events[0].fd) == -1); FAIL_IF(event_open_with_group(&events[3], events[0].fd) == -1); } FAIL_IF(do_count_loop(events, is_p9, &miss_percent)); event_report_justified(&events[0], 18, 10); event_report_justified(&events[1], 18, 10); event_close(&events[0]); event_close(&events[1]); if (is_p9) { event_report_justified(&events[2], 18, 10); event_report_justified(&events[3], 18, 10); event_close(&events[2]); event_close(&events[3]); } printf("Miss percent %lld %%\n", miss_percent); switch (state) { case VULNERABLE: case NOT_AFFECTED: case COUNT_CACHE_FLUSH_SW: case COUNT_CACHE_FLUSH_HW: // These should all not affect userspace branch prediction if (miss_percent > 15) { if (miss_percent > 95) { /* * Such a mismatch may be caused by a system being unaware * the count cache is disabled. This may be to enable * guest migration between hosts with different settings. * Return skip code to avoid detecting this as an error. * We are not vulnerable and reporting otherwise, so * missing such a mismatch is safe. */ printf("Branch misses > 95%% unexpected in this configuration.\n"); printf("Count cache likely disabled without Linux knowing.\n"); if (state == COUNT_CACHE_FLUSH_SW) printf("WARNING: Kernel performing unnecessary flushes.\n"); return 4; } printf("Branch misses > 15%% unexpected in this configuration!\n"); printf("Possible mismatch between reported & actual mitigation\n"); return 1; } break; case BRANCH_SERIALISATION: // This seems to affect userspace branch prediction a bit? if (miss_percent > 25) { printf("Branch misses > 25%% unexpected in this configuration!\n"); printf("Possible mismatch between reported & actual mitigation\n"); return 1; } break; case COUNT_CACHE_DISABLED: if (miss_percent < 95) { printf("Branch misses < 95%% unexpected in this configuration!\n"); printf("Possible mismatch between reported & actual mitigation\n"); return 1; } break; case UNKNOWN: case BTB_FLUSH: printf("Not sure!\n"); return 1; } printf("OK - Measured branch prediction rates match reported spectre v2 mitigation.\n"); return 0; } int main(int argc, char *argv[]) { return test_harness(spectre_v2_test, "spectre_v2"); }
linux-master
tools/testing/selftests/powerpc/security/spectre_v2.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2018 IBM Corporation. * Copyright 2020 Canonical Ltd. */ #define __SANE_USERSPACE_TYPES__ #include <sys/types.h> #include <stdint.h> #include <malloc.h> #include <unistd.h> #include <signal.h> #include <stdlib.h> #include <string.h> #include <stdio.h> #include "utils.h" #include "flush_utils.h" int uaccess_flush_test(void) { char *p; int repetitions = 10; int fd, passes = 0, iter, rc = 0; struct perf_event_read v; __u64 l1d_misses_total = 0; unsigned long iterations = 100000, zero_size = 24 * 1024; unsigned long l1d_misses_expected; int rfi_flush_orig; int entry_flush_orig; int uaccess_flush, uaccess_flush_orig; SKIP_IF(geteuid() != 0); // The PMU event we use only works on Power7 or later SKIP_IF(!have_hwcap(PPC_FEATURE_ARCH_2_06)); if (read_debugfs_int("powerpc/rfi_flush", &rfi_flush_orig) < 0) { perror("Unable to read powerpc/rfi_flush debugfs file"); SKIP_IF(1); } if (read_debugfs_int("powerpc/entry_flush", &entry_flush_orig) < 0) { perror("Unable to read powerpc/entry_flush debugfs file"); SKIP_IF(1); } if (read_debugfs_int("powerpc/uaccess_flush", &uaccess_flush_orig) < 0) { perror("Unable to read powerpc/entry_flush debugfs file"); SKIP_IF(1); } if (rfi_flush_orig != 0) { if (write_debugfs_int("powerpc/rfi_flush", 0) < 0) { perror("error writing to powerpc/rfi_flush debugfs file"); FAIL_IF(1); } } if (entry_flush_orig != 0) { if (write_debugfs_int("powerpc/entry_flush", 0) < 0) { perror("error writing to powerpc/entry_flush debugfs file"); FAIL_IF(1); } } uaccess_flush = uaccess_flush_orig; fd = perf_event_open_counter(PERF_TYPE_HW_CACHE, PERF_L1D_READ_MISS_CONFIG, -1); FAIL_IF(fd < 0); p = (char *)memalign(zero_size, CACHELINE_SIZE); FAIL_IF(perf_event_enable(fd)); // disable L1 prefetching set_dscr(1); iter = repetitions; /* * We expect to see l1d miss for each cacheline access when entry_flush * is set. Allow a small variation on this. */ l1d_misses_expected = iterations * (zero_size / CACHELINE_SIZE - 2); again: FAIL_IF(perf_event_reset(fd)); syscall_loop_uaccess(p, iterations, zero_size); FAIL_IF(read(fd, &v, sizeof(v)) != sizeof(v)); if (uaccess_flush && v.l1d_misses >= l1d_misses_expected) passes++; else if (!uaccess_flush && v.l1d_misses < (l1d_misses_expected / 2)) passes++; l1d_misses_total += v.l1d_misses; while (--iter) goto again; if (passes < repetitions) { printf("FAIL (L1D misses with uaccess_flush=%d: %llu %c %lu) [%d/%d failures]\n", uaccess_flush, l1d_misses_total, uaccess_flush ? '<' : '>', uaccess_flush ? repetitions * l1d_misses_expected : repetitions * l1d_misses_expected / 2, repetitions - passes, repetitions); rc = 1; } else { printf("PASS (L1D misses with uaccess_flush=%d: %llu %c %lu) [%d/%d pass]\n", uaccess_flush, l1d_misses_total, uaccess_flush ? '>' : '<', uaccess_flush ? repetitions * l1d_misses_expected : repetitions * l1d_misses_expected / 2, passes, repetitions); } if (uaccess_flush == uaccess_flush_orig) { uaccess_flush = !uaccess_flush_orig; if (write_debugfs_int("powerpc/uaccess_flush", uaccess_flush) < 0) { perror("error writing to powerpc/uaccess_flush debugfs file"); return 1; } iter = repetitions; l1d_misses_total = 0; passes = 0; goto again; } perf_event_disable(fd); close(fd); set_dscr(0); if (write_debugfs_int("powerpc/rfi_flush", rfi_flush_orig) < 0) { perror("unable to restore original value of powerpc/rfi_flush debugfs file"); return 1; } if (write_debugfs_int("powerpc/entry_flush", entry_flush_orig) < 0) { perror("unable to restore original value of powerpc/entry_flush debugfs file"); return 1; } if (write_debugfs_int("powerpc/uaccess_flush", uaccess_flush_orig) < 0) { perror("unable to restore original value of powerpc/uaccess_flush debugfs file"); return 1; } return rc; } int main(int argc, char *argv[]) { return test_harness(uaccess_flush_test, "uaccess_flush_test"); }
linux-master
tools/testing/selftests/powerpc/security/uaccess_flush.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Ptrace test for TAR, PPR, DSCR registers in the TM Suspend context * * Copyright (C) 2015 Anshuman Khandual, IBM Corporation. */ #include "ptrace.h" #include "tm.h" #include "ptrace-tar.h" int shm_id; int *cptr, *pptr; __attribute__((used)) void wait_parent(void) { cptr[2] = 1; while (!cptr[1]) asm volatile("" : : : "memory"); } void tm_spd_tar(void) { unsigned long result, texasr; unsigned long regs[3]; int ret; cptr = (int *)shmat(shm_id, NULL, 0); trans: cptr[2] = 0; asm __volatile__( "li 4, %[tar_1];" "mtspr %[sprn_tar], 4;" /* TAR_1 */ "li 4, %[dscr_1];" "mtspr %[sprn_dscr], 4;" /* DSCR_1 */ "or 31,31,31;" /* PPR_1*/ "1: ;" "tbegin.;" "beq 2f;" "li 4, %[tar_2];" "mtspr %[sprn_tar], 4;" /* TAR_2 */ "li 4, %[dscr_2];" "mtspr %[sprn_dscr], 4;" /* DSCR_2 */ "or 1,1,1;" /* PPR_2 */ "tsuspend.;" "li 4, %[tar_3];" "mtspr %[sprn_tar], 4;" /* TAR_3 */ "li 4, %[dscr_3];" "mtspr %[sprn_dscr], 4;" /* DSCR_3 */ "or 6,6,6;" /* PPR_3 */ "bl wait_parent;" "tresume.;" "tend.;" "li 0, 0;" "ori %[res], 0, 0;" "b 3f;" /* Transaction abort handler */ "2: ;" "li 0, 1;" "ori %[res], 0, 0;" "mfspr %[texasr], %[sprn_texasr];" "3: ;" : [res] "=r" (result), [texasr] "=r" (texasr) : [sprn_dscr]"i"(SPRN_DSCR), [sprn_tar]"i"(SPRN_TAR), [sprn_ppr]"i"(SPRN_PPR), [sprn_texasr]"i"(SPRN_TEXASR), [tar_1]"i"(TAR_1), [dscr_1]"i"(DSCR_1), [tar_2]"i"(TAR_2), [dscr_2]"i"(DSCR_2), [tar_3]"i"(TAR_3), [dscr_3]"i"(DSCR_3) : "memory", "r0", "r3", "r4", "r5", "r6", "lr" ); /* TM failed, analyse */ if (result) { if (!cptr[0]) goto trans; regs[0] = mfspr(SPRN_TAR); regs[1] = mfspr(SPRN_PPR); regs[2] = mfspr(SPRN_DSCR); shmdt(&cptr); printf("%-30s TAR: %lu PPR: %lx DSCR: %lu\n", user_read, regs[0], regs[1], regs[2]); ret = validate_tar_registers(regs, TAR_4, PPR_4, DSCR_4); if (ret) exit(1); exit(0); } shmdt(&cptr); exit(1); } int trace_tm_spd_tar(pid_t child) { unsigned long regs[3]; FAIL_IF(start_trace(child)); FAIL_IF(show_tar_registers(child, regs)); printf("%-30s TAR: %lu PPR: %lx DSCR: %lu\n", ptrace_read_running, regs[0], regs[1], regs[2]); FAIL_IF(validate_tar_registers(regs, TAR_3, PPR_3, DSCR_3)); FAIL_IF(show_tm_checkpointed_state(child, regs)); printf("%-30s TAR: %lu PPR: %lx DSCR: %lu\n", ptrace_read_ckpt, regs[0], regs[1], regs[2]); FAIL_IF(validate_tar_registers(regs, TAR_1, PPR_1, DSCR_1)); FAIL_IF(write_ckpt_tar_registers(child, TAR_4, PPR_4, DSCR_4)); printf("%-30s TAR: %u PPR: %lx DSCR: %u\n", ptrace_write_ckpt, TAR_4, PPR_4, DSCR_4); pptr[0] = 1; pptr[1] = 1; FAIL_IF(stop_trace(child)); return TEST_PASS; } int ptrace_tm_spd_tar(void) { pid_t pid; int ret, status; SKIP_IF_MSG(!have_htm(), "Don't have transactional memory"); SKIP_IF_MSG(htm_is_synthetic(), "Transactional memory is synthetic"); shm_id = shmget(IPC_PRIVATE, sizeof(int) * 3, 0777|IPC_CREAT); pid = fork(); if (pid == 0) tm_spd_tar(); pptr = (int *)shmat(shm_id, NULL, 0); pptr[0] = 0; pptr[1] = 0; if (pid) { while (!pptr[2]) asm volatile("" : : : "memory"); ret = trace_tm_spd_tar(pid); if (ret) { kill(pid, SIGTERM); shmdt(&pptr); shmctl(shm_id, IPC_RMID, NULL); return TEST_FAIL; } shmdt(&pptr); ret = wait(&status); shmctl(shm_id, IPC_RMID, NULL); if (ret != pid) { printf("Child's exit status not captured\n"); return TEST_FAIL; } return (WIFEXITED(status) && WEXITSTATUS(status)) ? TEST_FAIL : TEST_PASS; } return TEST_PASS; } int main(int argc, char *argv[]) { return test_harness(ptrace_tm_spd_tar, "ptrace_tm_spd_tar"); }
linux-master
tools/testing/selftests/powerpc/ptrace/ptrace-tm-spd-tar.c
// SPDX-License-Identifier: GPL-2.0+ /* * Ptrace test for Memory Protection Key registers * * Copyright (C) 2015 Anshuman Khandual, IBM Corporation. * Copyright (C) 2018 IBM Corporation. */ #include <limits.h> #include <linux/kernel.h> #include <sys/mman.h> #include <sys/types.h> #include <sys/stat.h> #include <sys/time.h> #include <sys/resource.h> #include <fcntl.h> #include <unistd.h> #include "ptrace.h" #include "child.h" #ifndef __NR_pkey_alloc #define __NR_pkey_alloc 384 #endif #ifndef __NR_pkey_free #define __NR_pkey_free 385 #endif #ifndef NT_PPC_PKEY #define NT_PPC_PKEY 0x110 #endif #ifndef PKEY_DISABLE_EXECUTE #define PKEY_DISABLE_EXECUTE 0x4 #endif #define AMR_BITS_PER_PKEY 2 #define PKEY_REG_BITS (sizeof(u64) * 8) #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey + 1) * AMR_BITS_PER_PKEY)) #define CORE_FILE_LIMIT (5 * 1024 * 1024) /* 5 MB should be enough */ static const char core_pattern_file[] = "/proc/sys/kernel/core_pattern"; static const char user_write[] = "[User Write (Running)]"; static const char core_read_running[] = "[Core Read (Running)]"; /* Information shared between the parent and the child. */ struct shared_info { struct child_sync child_sync; /* AMR value the parent expects to read in the core file. */ unsigned long amr; /* IAMR value the parent expects to read in the core file. */ unsigned long iamr; /* UAMOR value the parent expects to read in the core file. */ unsigned long uamor; /* When the child crashed. */ time_t core_time; }; static int sys_pkey_alloc(unsigned long flags, unsigned long init_access_rights) { return syscall(__NR_pkey_alloc, flags, init_access_rights); } static int sys_pkey_free(int pkey) { return syscall(__NR_pkey_free, pkey); } static int increase_core_file_limit(void) { struct rlimit rlim; int ret; ret = getrlimit(RLIMIT_CORE, &rlim); FAIL_IF(ret); if (rlim.rlim_cur != RLIM_INFINITY && rlim.rlim_cur < CORE_FILE_LIMIT) { rlim.rlim_cur = CORE_FILE_LIMIT; if (rlim.rlim_max != RLIM_INFINITY && rlim.rlim_max < CORE_FILE_LIMIT) rlim.rlim_max = CORE_FILE_LIMIT; ret = setrlimit(RLIMIT_CORE, &rlim); FAIL_IF(ret); } ret = getrlimit(RLIMIT_FSIZE, &rlim); FAIL_IF(ret); if (rlim.rlim_cur != RLIM_INFINITY && rlim.rlim_cur < CORE_FILE_LIMIT) { rlim.rlim_cur = CORE_FILE_LIMIT; if (rlim.rlim_max != RLIM_INFINITY && rlim.rlim_max < CORE_FILE_LIMIT) rlim.rlim_max = CORE_FILE_LIMIT; ret = setrlimit(RLIMIT_FSIZE, &rlim); FAIL_IF(ret); } return TEST_PASS; } static int child(struct shared_info *info) { bool disable_execute = true; int pkey1, pkey2, pkey3; int *ptr, ret; /* Wait until parent fills out the initial register values. */ ret = wait_parent(&info->child_sync); if (ret) return ret; ret = increase_core_file_limit(); FAIL_IF(ret); /* Get some pkeys so that we can change their bits in the AMR. */ pkey1 = sys_pkey_alloc(0, PKEY_DISABLE_EXECUTE); if (pkey1 < 0) { pkey1 = sys_pkey_alloc(0, 0); FAIL_IF(pkey1 < 0); disable_execute = false; } pkey2 = sys_pkey_alloc(0, 0); FAIL_IF(pkey2 < 0); pkey3 = sys_pkey_alloc(0, 0); FAIL_IF(pkey3 < 0); info->amr |= 3ul << pkeyshift(pkey1) | 2ul << pkeyshift(pkey2); if (disable_execute) info->iamr |= 1ul << pkeyshift(pkey1); else info->iamr &= ~(1ul << pkeyshift(pkey1)); info->iamr &= ~(1ul << pkeyshift(pkey2) | 1ul << pkeyshift(pkey3)); info->uamor |= 3ul << pkeyshift(pkey1) | 3ul << pkeyshift(pkey2); printf("%-30s AMR: %016lx pkey1: %d pkey2: %d pkey3: %d\n", user_write, info->amr, pkey1, pkey2, pkey3); set_amr(info->amr); /* * We won't use pkey3. This tests whether the kernel restores the UAMOR * permissions after a key is freed. */ sys_pkey_free(pkey3); info->core_time = time(NULL); /* Crash. */ ptr = 0; *ptr = 1; /* Shouldn't get here. */ FAIL_IF(true); return TEST_FAIL; } /* Return file size if filename exists and pass sanity check, or zero if not. */ static off_t try_core_file(const char *filename, struct shared_info *info, pid_t pid) { struct stat buf; int ret; ret = stat(filename, &buf); if (ret == -1) return TEST_FAIL; /* Make sure we're not using a stale core file. */ return buf.st_mtime >= info->core_time ? buf.st_size : TEST_FAIL; } static Elf64_Nhdr *next_note(Elf64_Nhdr *nhdr) { return (void *) nhdr + sizeof(*nhdr) + __ALIGN_KERNEL(nhdr->n_namesz, 4) + __ALIGN_KERNEL(nhdr->n_descsz, 4); } static int check_core_file(struct shared_info *info, Elf64_Ehdr *ehdr, off_t core_size) { unsigned long *regs; Elf64_Phdr *phdr; Elf64_Nhdr *nhdr; size_t phdr_size; void *p = ehdr, *note; int ret; ret = memcmp(ehdr->e_ident, ELFMAG, SELFMAG); FAIL_IF(ret); FAIL_IF(ehdr->e_type != ET_CORE); FAIL_IF(ehdr->e_machine != EM_PPC64); FAIL_IF(ehdr->e_phoff == 0 || ehdr->e_phnum == 0); /* * e_phnum is at most 65535 so calculating the size of the * program header cannot overflow. */ phdr_size = sizeof(*phdr) * ehdr->e_phnum; /* Sanity check the program header table location. */ FAIL_IF(ehdr->e_phoff + phdr_size < ehdr->e_phoff); FAIL_IF(ehdr->e_phoff + phdr_size > core_size); /* Find the PT_NOTE segment. */ for (phdr = p + ehdr->e_phoff; (void *) phdr < p + ehdr->e_phoff + phdr_size; phdr += ehdr->e_phentsize) if (phdr->p_type == PT_NOTE) break; FAIL_IF((void *) phdr >= p + ehdr->e_phoff + phdr_size); /* Find the NT_PPC_PKEY note. */ for (nhdr = p + phdr->p_offset; (void *) nhdr < p + phdr->p_offset + phdr->p_filesz; nhdr = next_note(nhdr)) if (nhdr->n_type == NT_PPC_PKEY) break; FAIL_IF((void *) nhdr >= p + phdr->p_offset + phdr->p_filesz); FAIL_IF(nhdr->n_descsz == 0); p = nhdr; note = p + sizeof(*nhdr) + __ALIGN_KERNEL(nhdr->n_namesz, 4); regs = (unsigned long *) note; printf("%-30s AMR: %016lx IAMR: %016lx UAMOR: %016lx\n", core_read_running, regs[0], regs[1], regs[2]); FAIL_IF(regs[0] != info->amr); FAIL_IF(regs[1] != info->iamr); FAIL_IF(regs[2] != info->uamor); return TEST_PASS; } static int parent(struct shared_info *info, pid_t pid) { char *filenames, *filename[3]; int fd, i, ret, status; unsigned long regs[3]; off_t core_size; void *core; /* * Get the initial values for AMR, IAMR and UAMOR and communicate them * to the child. */ ret = ptrace_read_regs(pid, NT_PPC_PKEY, regs, 3); PARENT_SKIP_IF_UNSUPPORTED(ret, &info->child_sync, "PKEYs not supported"); PARENT_FAIL_IF(ret, &info->child_sync); info->amr = regs[0]; info->iamr = regs[1]; info->uamor = regs[2]; /* Wake up child so that it can set itself up. */ ret = prod_child(&info->child_sync); PARENT_FAIL_IF(ret, &info->child_sync); ret = wait(&status); if (ret != pid) { printf("Child's exit status not captured\n"); return TEST_FAIL; } else if (!WIFSIGNALED(status) || !WCOREDUMP(status)) { printf("Child didn't dump core\n"); return TEST_FAIL; } /* Construct array of core file names to try. */ filename[0] = filenames = malloc(PATH_MAX); if (!filenames) { perror("Error allocating memory"); return TEST_FAIL; } ret = snprintf(filename[0], PATH_MAX, "core-pkey.%d", pid); if (ret < 0 || ret >= PATH_MAX) { ret = TEST_FAIL; goto out; } filename[1] = filename[0] + ret + 1; ret = snprintf(filename[1], PATH_MAX - ret - 1, "core.%d", pid); if (ret < 0 || ret >= PATH_MAX - ret - 1) { ret = TEST_FAIL; goto out; } filename[2] = "core"; for (i = 0; i < 3; i++) { core_size = try_core_file(filename[i], info, pid); if (core_size != TEST_FAIL) break; } if (i == 3) { printf("Couldn't find core file\n"); ret = TEST_FAIL; goto out; } fd = open(filename[i], O_RDONLY); if (fd == -1) { perror("Error opening core file"); ret = TEST_FAIL; goto out; } core = mmap(NULL, core_size, PROT_READ, MAP_PRIVATE, fd, 0); if (core == (void *) -1) { perror("Error mmapping core file"); ret = TEST_FAIL; goto out; } ret = check_core_file(info, core, core_size); munmap(core, core_size); close(fd); unlink(filename[i]); out: free(filenames); return ret; } static int write_core_pattern(const char *core_pattern) { int err; err = write_file(core_pattern_file, core_pattern, strlen(core_pattern)); if (err) { SKIP_IF_MSG(err == -EPERM, "Try with root privileges"); perror("Error writing to core_pattern file"); return TEST_FAIL; } return TEST_PASS; } static int setup_core_pattern(char **core_pattern_, bool *changed_) { char *core_pattern; size_t len; int ret; core_pattern = malloc(PATH_MAX); if (!core_pattern) { perror("Error allocating memory"); return TEST_FAIL; } ret = read_file(core_pattern_file, core_pattern, PATH_MAX - 1, &len); if (ret) { perror("Error reading core_pattern file"); ret = TEST_FAIL; goto out; } core_pattern[len] = '\0'; /* Check whether we can predict the name of the core file. */ if (!strcmp(core_pattern, "core") || !strcmp(core_pattern, "core.%p")) *changed_ = false; else { ret = write_core_pattern("core-pkey.%p"); if (ret) goto out; *changed_ = true; } *core_pattern_ = core_pattern; ret = TEST_PASS; out: if (ret) free(core_pattern); return ret; } static int core_pkey(void) { char *core_pattern; bool changed_core_pattern; struct shared_info *info; int shm_id; int ret; pid_t pid; ret = setup_core_pattern(&core_pattern, &changed_core_pattern); if (ret) return ret; shm_id = shmget(IPC_PRIVATE, sizeof(*info), 0777 | IPC_CREAT); info = shmat(shm_id, NULL, 0); ret = init_child_sync(&info->child_sync); if (ret) return ret; pid = fork(); if (pid < 0) { perror("fork() failed"); ret = TEST_FAIL; } else if (pid == 0) ret = child(info); else ret = parent(info, pid); shmdt(info); if (pid) { destroy_child_sync(&info->child_sync); shmctl(shm_id, IPC_RMID, NULL); if (changed_core_pattern) write_core_pattern(core_pattern); } free(core_pattern); return ret; } int main(int argc, char *argv[]) { return test_harness(core_pkey, "core_pkey"); }
linux-master
tools/testing/selftests/powerpc/ptrace/core-pkey.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Ptrace test for VMX/VSX registers * * Copyright (C) 2015 Anshuman Khandual, IBM Corporation. */ #include "ptrace.h" #include "ptrace-vsx.h" /* Tracer and Tracee Shared Data */ int shm_id; int *cptr, *pptr; unsigned long fp_load[VEC_MAX]; unsigned long fp_load_new[VEC_MAX]; unsigned long fp_store[VEC_MAX]; void vsx(void) { int ret; cptr = (int *)shmat(shm_id, NULL, 0); loadvsx(fp_load, 0); cptr[1] = 1; while (!cptr[0]) asm volatile("" : : : "memory"); shmdt((void *) cptr); storevsx(fp_store, 0); ret = compare_vsx_vmx(fp_store, fp_load_new); if (ret) exit(1); exit(0); } int trace_vsx(pid_t child) { unsigned long vsx[VSX_MAX]; unsigned long vmx[VMX_MAX + 2][2]; FAIL_IF(start_trace(child)); FAIL_IF(show_vsx(child, vsx)); FAIL_IF(validate_vsx(vsx, fp_load)); FAIL_IF(show_vmx(child, vmx)); FAIL_IF(validate_vmx(vmx, fp_load)); memset(vsx, 0, sizeof(vsx)); memset(vmx, 0, sizeof(vmx)); load_vsx_vmx(fp_load_new, vsx, vmx); FAIL_IF(write_vsx(child, vsx)); FAIL_IF(write_vmx(child, vmx)); FAIL_IF(stop_trace(child)); return TEST_PASS; } int ptrace_vsx(void) { pid_t pid; int ret, status, i; SKIP_IF_MSG(!have_hwcap(PPC_FEATURE_HAS_VSX), "Don't have VSX"); shm_id = shmget(IPC_PRIVATE, sizeof(int) * 2, 0777|IPC_CREAT); for (i = 0; i < VEC_MAX; i++) fp_load[i] = i + rand(); for (i = 0; i < VEC_MAX; i++) fp_load_new[i] = i + 2 * rand(); pid = fork(); if (pid < 0) { perror("fork() failed"); return TEST_FAIL; } if (pid == 0) vsx(); if (pid) { pptr = (int *)shmat(shm_id, NULL, 0); while (!pptr[1]) asm volatile("" : : : "memory"); ret = trace_vsx(pid); if (ret) { kill(pid, SIGTERM); shmdt((void *)pptr); shmctl(shm_id, IPC_RMID, NULL); return TEST_FAIL; } pptr[0] = 1; shmdt((void *)pptr); ret = wait(&status); shmctl(shm_id, IPC_RMID, NULL); if (ret != pid) { printf("Child's exit status not captured\n"); return TEST_FAIL; } return (WIFEXITED(status) && WEXITSTATUS(status)) ? TEST_FAIL : TEST_PASS; } return TEST_PASS; } int main(int argc, char *argv[]) { return test_harness(ptrace_vsx, "ptrace_vsx"); }
linux-master
tools/testing/selftests/powerpc/ptrace/ptrace-vsx.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Ptrace test for VMX/VSX registers in the TM Suspend context * * Copyright (C) 2015 Anshuman Khandual, IBM Corporation. */ #include "ptrace.h" #include "tm.h" #include "ptrace-vsx.h" int shm_id; int *cptr, *pptr; unsigned long fp_load[VEC_MAX]; unsigned long fp_load_new[VEC_MAX]; unsigned long fp_store[VEC_MAX]; unsigned long fp_load_ckpt[VEC_MAX]; unsigned long fp_load_ckpt_new[VEC_MAX]; __attribute__((used)) void load_vsx(void) { loadvsx(fp_load, 0); } __attribute__((used)) void load_vsx_new(void) { loadvsx(fp_load_new, 0); } __attribute__((used)) void load_vsx_ckpt(void) { loadvsx(fp_load_ckpt, 0); } __attribute__((used)) void wait_parent(void) { cptr[2] = 1; while (!cptr[1]) asm volatile("" : : : "memory"); } void tm_spd_vsx(void) { unsigned long result, texasr; int ret; cptr = (int *)shmat(shm_id, NULL, 0); trans: cptr[2] = 0; asm __volatile__( "bl load_vsx_ckpt;" "1: ;" "tbegin.;" "beq 2f;" "bl load_vsx_new;" "tsuspend.;" "bl load_vsx;" "bl wait_parent;" "tresume.;" "tend.;" "li 0, 0;" "ori %[res], 0, 0;" "b 3f;" "2: ;" "li 0, 1;" "ori %[res], 0, 0;" "mfspr %[texasr], %[sprn_texasr];" "3: ;" : [res] "=r" (result), [texasr] "=r" (texasr) : [sprn_texasr] "i" (SPRN_TEXASR) : "memory", "r0", "r3", "r4", "r7", "r8", "r9", "r10", "r11", "lr" ); if (result) { if (!cptr[0]) goto trans; shmdt((void *)cptr); storevsx(fp_store, 0); ret = compare_vsx_vmx(fp_store, fp_load_ckpt_new); if (ret) exit(1); exit(0); } shmdt((void *)cptr); exit(1); } int trace_tm_spd_vsx(pid_t child) { unsigned long vsx[VSX_MAX]; unsigned long vmx[VMX_MAX + 2][2]; FAIL_IF(start_trace(child)); FAIL_IF(show_vsx(child, vsx)); FAIL_IF(validate_vsx(vsx, fp_load)); FAIL_IF(show_vmx(child, vmx)); FAIL_IF(validate_vmx(vmx, fp_load)); FAIL_IF(show_vsx_ckpt(child, vsx)); FAIL_IF(validate_vsx(vsx, fp_load_ckpt)); FAIL_IF(show_vmx_ckpt(child, vmx)); FAIL_IF(validate_vmx(vmx, fp_load_ckpt)); memset(vsx, 0, sizeof(vsx)); memset(vmx, 0, sizeof(vmx)); load_vsx_vmx(fp_load_ckpt_new, vsx, vmx); FAIL_IF(write_vsx_ckpt(child, vsx)); FAIL_IF(write_vmx_ckpt(child, vmx)); pptr[0] = 1; pptr[1] = 1; FAIL_IF(stop_trace(child)); return TEST_PASS; } int ptrace_tm_spd_vsx(void) { pid_t pid; int ret, status, i; SKIP_IF_MSG(!have_htm(), "Don't have transactional memory"); SKIP_IF_MSG(htm_is_synthetic(), "Transactional memory is synthetic"); shm_id = shmget(IPC_PRIVATE, sizeof(int) * 3, 0777|IPC_CREAT); for (i = 0; i < 128; i++) { fp_load[i] = 1 + rand(); fp_load_new[i] = 1 + 2 * rand(); fp_load_ckpt[i] = 1 + 3 * rand(); fp_load_ckpt_new[i] = 1 + 4 * rand(); } pid = fork(); if (pid < 0) { perror("fork() failed"); return TEST_FAIL; } if (pid == 0) tm_spd_vsx(); if (pid) { pptr = (int *)shmat(shm_id, NULL, 0); while (!pptr[2]) asm volatile("" : : : "memory"); ret = trace_tm_spd_vsx(pid); if (ret) { kill(pid, SIGKILL); shmdt((void *)pptr); shmctl(shm_id, IPC_RMID, NULL); return TEST_FAIL; } shmdt((void *)pptr); ret = wait(&status); shmctl(shm_id, IPC_RMID, NULL); if (ret != pid) { printf("Child's exit status not captured\n"); return TEST_FAIL; } return (WIFEXITED(status) && WEXITSTATUS(status)) ? TEST_FAIL : TEST_PASS; } return TEST_PASS; } int main(int argc, char *argv[]) { return test_harness(ptrace_tm_spd_vsx, "ptrace_tm_spd_vsx"); }
linux-master
tools/testing/selftests/powerpc/ptrace/ptrace-tm-spd-vsx.c
// SPDX-License-Identifier: GPL-2.0+ #include <asm/unistd.h> #include <linux/hw_breakpoint.h> #include <linux/ptrace.h> #include <memory.h> #include <stdlib.h> #include <sys/wait.h> #include "utils.h" /* * Child subroutine that performs a load on the address, then traps */ void same_watch_addr_child(unsigned long *addr); /* Address of the ld instruction in same_watch_addr_child() */ extern char same_watch_addr_load[]; /* Address of the end trap instruction in same_watch_addr_child() */ extern char same_watch_addr_trap[]; /* * Child subroutine that performs a load on the first address, then a load on * the second address (with no instructions separating this from the first * load), then traps. */ void perf_then_ptrace_child(unsigned long *first_addr, unsigned long *second_addr); /* Address of the first ld instruction in perf_then_ptrace_child() */ extern char perf_then_ptrace_load1[]; /* Address of the second ld instruction in perf_then_ptrace_child() */ extern char perf_then_ptrace_load2[]; /* Address of the end trap instruction in perf_then_ptrace_child() */ extern char perf_then_ptrace_trap[]; static inline long sys_ptrace(long request, pid_t pid, unsigned long addr, unsigned long data) { return syscall(__NR_ptrace, request, pid, addr, data); } static long ptrace_traceme(void) { return sys_ptrace(PTRACE_TRACEME, 0, 0, 0); } static long ptrace_getregs(pid_t pid, struct pt_regs *result) { return sys_ptrace(PTRACE_GETREGS, pid, 0, (unsigned long)result); } static long ptrace_setregs(pid_t pid, struct pt_regs *result) { return sys_ptrace(PTRACE_SETREGS, pid, 0, (unsigned long)result); } static long ptrace_cont(pid_t pid, long signal) { return sys_ptrace(PTRACE_CONT, pid, 0, signal); } static long ptrace_singlestep(pid_t pid, long signal) { return sys_ptrace(PTRACE_SINGLESTEP, pid, 0, signal); } static long ppc_ptrace_gethwdbginfo(pid_t pid, struct ppc_debug_info *dbginfo) { return sys_ptrace(PPC_PTRACE_GETHWDBGINFO, pid, 0, (unsigned long)dbginfo); } static long ppc_ptrace_sethwdbg(pid_t pid, struct ppc_hw_breakpoint *bp_info) { return sys_ptrace(PPC_PTRACE_SETHWDEBUG, pid, 0, (unsigned long)bp_info); } static long ppc_ptrace_delhwdbg(pid_t pid, int bp_id) { return sys_ptrace(PPC_PTRACE_DELHWDEBUG, pid, 0L, bp_id); } static long ptrace_getreg_pc(pid_t pid, void **pc) { struct pt_regs regs; long err; err = ptrace_getregs(pid, &regs); if (err) return err; *pc = (void *)regs.nip; return 0; } static long ptrace_setreg_pc(pid_t pid, void *pc) { struct pt_regs regs; long err; err = ptrace_getregs(pid, &regs); if (err) return err; regs.nip = (unsigned long)pc; err = ptrace_setregs(pid, &regs); if (err) return err; return 0; } static int perf_event_open(struct perf_event_attr *attr, pid_t pid, int cpu, int group_fd, unsigned long flags) { return syscall(__NR_perf_event_open, attr, pid, cpu, group_fd, flags); } static void perf_user_event_attr_set(struct perf_event_attr *attr, void *addr, u64 len) { memset(attr, 0, sizeof(struct perf_event_attr)); attr->type = PERF_TYPE_BREAKPOINT; attr->size = sizeof(struct perf_event_attr); attr->bp_type = HW_BREAKPOINT_R; attr->bp_addr = (u64)addr; attr->bp_len = len; attr->exclude_kernel = 1; attr->exclude_hv = 1; } static int perf_watchpoint_open(pid_t child_pid, void *addr, u64 len) { struct perf_event_attr attr; perf_user_event_attr_set(&attr, addr, len); return perf_event_open(&attr, child_pid, -1, -1, 0); } static int perf_read_counter(int perf_fd, u64 *count) { /* * A perf counter is retrieved by the read() syscall. It contains * the current count as 8 bytes that are interpreted as a u64 */ ssize_t len = read(perf_fd, count, sizeof(*count)); if (len != sizeof(*count)) return -1; return 0; } static void ppc_ptrace_init_breakpoint(struct ppc_hw_breakpoint *info, int type, void *addr, int len) { info->version = 1; info->trigger_type = type; info->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; info->addr = (u64)addr; info->addr2 = (u64)addr + len; info->condition_value = 0; if (!len) info->addr_mode = PPC_BREAKPOINT_MODE_EXACT; else info->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; } /* * Checks if we can place at least 2 watchpoints on the child process */ static int check_watchpoints(pid_t pid) { struct ppc_debug_info dbginfo; FAIL_IF_MSG(ppc_ptrace_gethwdbginfo(pid, &dbginfo), "PPC_PTRACE_GETHWDBGINFO failed"); SKIP_IF_MSG(dbginfo.num_data_bps <= 1, "Not enough data watchpoints (need at least 2)"); return 0; } /* * Wrapper around a plain fork() call that sets up the child for * ptrace-ing. Both the parent and child return from this, though * the child is stopped until ptrace_cont(pid) is run by the parent. */ static int ptrace_fork_child(pid_t *pid) { int status; *pid = fork(); if (*pid < 0) FAIL_IF_MSG(1, "Failed to fork child"); if (!*pid) { FAIL_IF_EXIT_MSG(ptrace_traceme(), "PTRACE_TRACEME failed"); FAIL_IF_EXIT_MSG(raise(SIGSTOP), "Child failed to raise SIGSTOP"); } else { /* Synchronise on child SIGSTOP */ FAIL_IF_MSG(waitpid(*pid, &status, 0) == -1, "Failed to wait for child"); FAIL_IF_MSG(!WIFSTOPPED(status), "Child is not stopped"); } return 0; } /* * Tests the interaction between ptrace and perf watching the same data. * * We expect ptrace to take 'priority', as it is has before-execute * semantics. * * The perf counter should not be incremented yet because perf has after-execute * semantics. E.g., if ptrace changes the child PC, we don't even execute the * instruction at all. * * When the child is stopped for ptrace, we test both continue and single step. * Both should increment the perf counter. We also test changing the PC somewhere * different and stepping, which should not increment the perf counter. */ int same_watch_addr_test(void) { struct ppc_hw_breakpoint bp_info; /* ptrace breakpoint info */ int bp_id; /* Breakpoint handle of ptrace watchpoint */ int perf_fd; /* File descriptor of perf performance counter */ u64 perf_count; /* Most recently fetched perf performance counter value */ pid_t pid; /* PID of child process */ void *pc; /* Most recently fetched child PC value */ int status; /* Stop status of child after waitpid */ unsigned long value; /* Dummy value to be read/written to by child */ int err; err = ptrace_fork_child(&pid); if (err) return err; if (!pid) { same_watch_addr_child(&value); exit(1); } err = check_watchpoints(pid); if (err) return err; /* Place a perf watchpoint counter on value */ perf_fd = perf_watchpoint_open(pid, &value, sizeof(value)); FAIL_IF_MSG(perf_fd < 0, "Failed to open perf performance counter"); /* Place a ptrace watchpoint on value */ ppc_ptrace_init_breakpoint(&bp_info, PPC_BREAKPOINT_TRIGGER_READ, &value, sizeof(value)); bp_id = ppc_ptrace_sethwdbg(pid, &bp_info); FAIL_IF_MSG(bp_id < 0, "Failed to set ptrace watchpoint"); /* Let the child run. It should stop on the ptrace watchpoint */ FAIL_IF_MSG(ptrace_cont(pid, 0), "Failed to continue child"); FAIL_IF_MSG(waitpid(pid, &status, 0) == -1, "Failed to wait for child"); FAIL_IF_MSG(!WIFSTOPPED(status), "Child is not stopped"); FAIL_IF_MSG(ptrace_getreg_pc(pid, &pc), "Failed to get child PC"); FAIL_IF_MSG(pc != same_watch_addr_load, "Child did not stop on load instruction"); /* * We stopped before executing the load, so perf should not have * recorded any events yet */ FAIL_IF_MSG(perf_read_counter(perf_fd, &perf_count), "Failed to read perf counter"); FAIL_IF_MSG(perf_count != 0, "perf recorded unexpected event"); /* Single stepping over the load should increment the perf counter */ FAIL_IF_MSG(ptrace_singlestep(pid, 0), "Failed to single step child"); FAIL_IF_MSG(waitpid(pid, &status, 0) == -1, "Failed to wait for child"); FAIL_IF_MSG(!WIFSTOPPED(status), "Child is not stopped"); FAIL_IF_MSG(ptrace_getreg_pc(pid, &pc), "Failed to get child PC"); FAIL_IF_MSG(pc != same_watch_addr_load + 4, "Failed to single step load instruction"); FAIL_IF_MSG(perf_read_counter(perf_fd, &perf_count), "Failed to read perf counter"); FAIL_IF_MSG(perf_count != 1, "perf counter did not increment"); /* * Set up a ptrace watchpoint on the value again and trigger it. * The perf counter should not have incremented because we do not * execute the load yet. */ FAIL_IF_MSG(ppc_ptrace_delhwdbg(pid, bp_id), "Failed to remove old ptrace watchpoint"); bp_id = ppc_ptrace_sethwdbg(pid, &bp_info); FAIL_IF_MSG(bp_id < 0, "Failed to set ptrace watchpoint"); FAIL_IF_MSG(ptrace_setreg_pc(pid, same_watch_addr_load), "Failed to set child PC"); FAIL_IF_MSG(ptrace_cont(pid, 0), "Failed to continue child"); FAIL_IF_MSG(waitpid(pid, &status, 0) == -1, "Failed to wait for child"); FAIL_IF_MSG(!WIFSTOPPED(status), "Child is not stopped"); FAIL_IF_MSG(ptrace_getreg_pc(pid, &pc), "Failed to get child PC"); FAIL_IF_MSG(pc != same_watch_addr_load, "Child did not stop on load trap"); FAIL_IF_MSG(perf_read_counter(perf_fd, &perf_count), "Failed to read perf counter"); FAIL_IF_MSG(perf_count != 1, "perf counter should not have changed"); /* Continuing over the load should increment the perf counter */ FAIL_IF_MSG(ptrace_cont(pid, 0), "Failed to continue child"); FAIL_IF_MSG(waitpid(pid, &status, 0) == -1, "Failed to wait for child"); FAIL_IF_MSG(!WIFSTOPPED(status), "Child is not stopped"); FAIL_IF_MSG(ptrace_getreg_pc(pid, &pc), "Failed to get child PC"); FAIL_IF_MSG(pc != same_watch_addr_trap, "Child did not stop on end trap"); FAIL_IF_MSG(perf_read_counter(perf_fd, &perf_count), "Failed to read perf counter"); FAIL_IF_MSG(perf_count != 2, "perf counter did not increment"); /* * If we set the child PC back to the load instruction, then continue, * we should reach the end trap (because ptrace is one-shot) and have * another perf event. */ FAIL_IF_MSG(ptrace_setreg_pc(pid, same_watch_addr_load), "Failed to set child PC"); FAIL_IF_MSG(ptrace_cont(pid, 0), "Failed to continue child"); FAIL_IF_MSG(waitpid(pid, &status, 0) == -1, "Failed to wait for child"); FAIL_IF_MSG(!WIFSTOPPED(status), "Child is not stopped"); FAIL_IF_MSG(ptrace_getreg_pc(pid, &pc), "Failed to get child PC"); FAIL_IF_MSG(pc != same_watch_addr_trap, "Child did not stop on end trap"); FAIL_IF_MSG(perf_read_counter(perf_fd, &perf_count), "Failed to read perf counter"); FAIL_IF_MSG(perf_count != 3, "perf counter did not increment"); /* * If we set the child PC back to the load instruction, set a ptrace * watchpoint on the load, then continue, we should immediately get * the ptrace trap without incrementing the perf counter */ FAIL_IF_MSG(ppc_ptrace_delhwdbg(pid, bp_id), "Failed to remove old ptrace watchpoint"); bp_id = ppc_ptrace_sethwdbg(pid, &bp_info); FAIL_IF_MSG(bp_id < 0, "Failed to set ptrace watchpoint"); FAIL_IF_MSG(ptrace_setreg_pc(pid, same_watch_addr_load), "Failed to set child PC"); FAIL_IF_MSG(ptrace_cont(pid, 0), "Failed to continue child"); FAIL_IF_MSG(waitpid(pid, &status, 0) == -1, "Failed to wait for child"); FAIL_IF_MSG(!WIFSTOPPED(status), "Child is not stopped"); FAIL_IF_MSG(ptrace_getreg_pc(pid, &pc), "Failed to get child PC"); FAIL_IF_MSG(pc != same_watch_addr_load, "Child did not stop on load instruction"); FAIL_IF_MSG(perf_read_counter(perf_fd, &perf_count), "Failed to read perf counter"); FAIL_IF_MSG(perf_count != 3, "perf counter should not have changed"); /* * If we change the PC while stopped on the load instruction, we should * not increment the perf counter (because ptrace is before-execute, * perf is after-execute). */ FAIL_IF_MSG(ptrace_setreg_pc(pid, same_watch_addr_load + 4), "Failed to set child PC"); FAIL_IF_MSG(ptrace_cont(pid, 0), "Failed to continue child"); FAIL_IF_MSG(waitpid(pid, &status, 0) == -1, "Failed to wait for child"); FAIL_IF_MSG(!WIFSTOPPED(status), "Child is not stopped"); FAIL_IF_MSG(ptrace_getreg_pc(pid, &pc), "Failed to get child PC"); FAIL_IF_MSG(pc != same_watch_addr_trap, "Child did not stop on end trap"); FAIL_IF_MSG(perf_read_counter(perf_fd, &perf_count), "Failed to read perf counter"); FAIL_IF_MSG(perf_count != 3, "perf counter should not have changed"); /* Clean up child */ FAIL_IF_MSG(kill(pid, SIGKILL) != 0, "Failed to kill child"); return 0; } /* * Tests the interaction between ptrace and perf when: * 1. perf watches a value * 2. ptrace watches a different value * 3. The perf value is read, then the ptrace value is read immediately after * * A breakpoint implementation may accidentally misattribute/skip one of * the ptrace or perf handlers, as interrupt based work is done after perf * and before ptrace. * * We expect the perf counter to increment before the ptrace watchpoint * triggers. */ int perf_then_ptrace_test(void) { struct ppc_hw_breakpoint bp_info; /* ptrace breakpoint info */ int bp_id; /* Breakpoint handle of ptrace watchpoint */ int perf_fd; /* File descriptor of perf performance counter */ u64 perf_count; /* Most recently fetched perf performance counter value */ pid_t pid; /* PID of child process */ void *pc; /* Most recently fetched child PC value */ int status; /* Stop status of child after waitpid */ unsigned long perf_value; /* Dummy value to be watched by perf */ unsigned long ptrace_value; /* Dummy value to be watched by ptrace */ int err; err = ptrace_fork_child(&pid); if (err) return err; /* * If we are the child, run a subroutine that reads the perf value, * then reads the ptrace value with consecutive load instructions */ if (!pid) { perf_then_ptrace_child(&perf_value, &ptrace_value); exit(0); } err = check_watchpoints(pid); if (err) return err; /* Place a perf watchpoint counter */ perf_fd = perf_watchpoint_open(pid, &perf_value, sizeof(perf_value)); FAIL_IF_MSG(perf_fd < 0, "Failed to open perf performance counter"); /* Place a ptrace watchpoint */ ppc_ptrace_init_breakpoint(&bp_info, PPC_BREAKPOINT_TRIGGER_READ, &ptrace_value, sizeof(ptrace_value)); bp_id = ppc_ptrace_sethwdbg(pid, &bp_info); FAIL_IF_MSG(bp_id < 0, "Failed to set ptrace watchpoint"); /* Let the child run. It should stop on the ptrace watchpoint */ FAIL_IF_MSG(ptrace_cont(pid, 0), "Failed to continue child"); FAIL_IF_MSG(waitpid(pid, &status, 0) == -1, "Failed to wait for child"); FAIL_IF_MSG(!WIFSTOPPED(status), "Child is not stopped"); FAIL_IF_MSG(ptrace_getreg_pc(pid, &pc), "Failed to get child PC"); FAIL_IF_MSG(pc != perf_then_ptrace_load2, "Child did not stop on ptrace load"); /* perf should have recorded the first load */ FAIL_IF_MSG(perf_read_counter(perf_fd, &perf_count), "Failed to read perf counter"); FAIL_IF_MSG(perf_count != 1, "perf counter did not increment"); /* Clean up child */ FAIL_IF_MSG(kill(pid, SIGKILL) != 0, "Failed to kill child"); return 0; } int main(int argc, char *argv[]) { int err = 0; err |= test_harness(same_watch_addr_test, "same_watch_addr"); err |= test_harness(perf_then_ptrace_test, "perf_then_ptrace"); return err; }
linux-master
tools/testing/selftests/powerpc/ptrace/ptrace-perf-hwbreak.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Ptrace test for GPR/FPR registers in TM context * * Copyright (C) 2015 Anshuman Khandual, IBM Corporation. */ #include "ptrace.h" #include "ptrace-gpr.h" #include "tm.h" /* Tracer and Tracee Shared Data */ int shm_id; unsigned long *cptr, *pptr; double a = FPR_1; double b = FPR_2; double c = FPR_3; void tm_gpr(void) { unsigned long gpr_buf[18]; unsigned long result, texasr; double fpr_buf[32]; printf("Starting the child\n"); cptr = (unsigned long *)shmat(shm_id, NULL, 0); trans: cptr[1] = 0; asm __volatile__( ASM_LOAD_GPR_IMMED(gpr_1) ASM_LOAD_FPR(flt_1) "1: ;" "tbegin.;" "beq 2f;" ASM_LOAD_GPR_IMMED(gpr_2) ASM_LOAD_FPR(flt_2) "tsuspend.;" "li 7, 1;" "stw 7, 0(%[cptr1]);" "tresume.;" "b .;" "tend.;" "li 0, 0;" "ori %[res], 0, 0;" "b 3f;" /* Transaction abort handler */ "2: ;" "li 0, 1;" "ori %[res], 0, 0;" "mfspr %[texasr], %[sprn_texasr];" "3: ;" : [res] "=r" (result), [texasr] "=r" (texasr) : [gpr_1]"i"(GPR_1), [gpr_2]"i"(GPR_2), [sprn_texasr] "i" (SPRN_TEXASR), [flt_1] "b" (&a), [flt_2] "b" (&b), [cptr1] "b" (&cptr[1]) : "memory", "r0", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31" ); if (result) { if (!cptr[0]) goto trans; shmdt((void *)cptr); store_gpr(gpr_buf); store_fpr(fpr_buf); if (validate_gpr(gpr_buf, GPR_3)) exit(1); if (validate_fpr_double(fpr_buf, c)) exit(1); exit(0); } shmdt((void *)cptr); exit(1); } int trace_tm_gpr(pid_t child) { unsigned long gpr[18]; __u64 fpr[32]; FAIL_IF(start_trace(child)); FAIL_IF(show_gpr(child, gpr)); FAIL_IF(validate_gpr(gpr, GPR_2)); FAIL_IF(show_fpr(child, fpr)); FAIL_IF(validate_fpr(fpr, FPR_2_REP)); FAIL_IF(show_ckpt_fpr(child, fpr)); FAIL_IF(validate_fpr(fpr, FPR_1_REP)); FAIL_IF(show_ckpt_gpr(child, gpr)); FAIL_IF(validate_gpr(gpr, GPR_1)); FAIL_IF(write_ckpt_gpr(child, GPR_3)); FAIL_IF(write_ckpt_fpr(child, FPR_3_REP)); pptr[0] = 1; FAIL_IF(stop_trace(child)); return TEST_PASS; } int ptrace_tm_gpr(void) { pid_t pid; int ret, status; SKIP_IF_MSG(!have_htm(), "Don't have transactional memory"); SKIP_IF_MSG(htm_is_synthetic(), "Transactional memory is synthetic"); shm_id = shmget(IPC_PRIVATE, sizeof(int) * 2, 0777|IPC_CREAT); pid = fork(); if (pid < 0) { perror("fork() failed"); return TEST_FAIL; } if (pid == 0) tm_gpr(); if (pid) { pptr = (unsigned long *)shmat(shm_id, NULL, 0); while (!pptr[1]) asm volatile("" : : : "memory"); ret = trace_tm_gpr(pid); if (ret) { kill(pid, SIGTERM); return TEST_FAIL; } shmdt((void *)pptr); ret = wait(&status); shmctl(shm_id, IPC_RMID, NULL); if (ret != pid) { printf("Child's exit status not captured\n"); return TEST_FAIL; } return (WIFEXITED(status) && WEXITSTATUS(status)) ? TEST_FAIL : TEST_PASS; } return TEST_PASS; } int main(int argc, char *argv[]) { return test_harness(ptrace_tm_gpr, "ptrace_tm_gpr"); }
linux-master
tools/testing/selftests/powerpc/ptrace/ptrace-tm-gpr.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Ptrace test TM SPR registers * * Copyright (C) 2015 Anshuman Khandual, IBM Corporation. */ #include "ptrace.h" #include "tm.h" /* Tracee and tracer shared data */ struct shared { int flag; struct tm_spr_regs regs; }; unsigned long tfhar; int shm_id; struct shared *cptr, *pptr; int shm_id1; int *cptr1, *pptr1; #define TM_KVM_SCHED 0xe0000001ac000001 int validate_tm_spr(struct tm_spr_regs *regs) { FAIL_IF(regs->tm_tfhar != tfhar); FAIL_IF((regs->tm_texasr == TM_KVM_SCHED) && (regs->tm_tfiar != 0)); return TEST_PASS; } void tm_spr(void) { unsigned long result, texasr; int ret; cptr = (struct shared *)shmat(shm_id, NULL, 0); cptr1 = (int *)shmat(shm_id1, NULL, 0); trans: cptr1[0] = 0; asm __volatile__( "1: ;" /* TM failover handler should follow "tbegin.;" */ "mflr 31;" "bl 4f;" /* $ = TFHAR - 12 */ "4: ;" "mflr %[tfhar];" "mtlr 31;" "tbegin.;" "beq 2f;" "tsuspend.;" "li 8, 1;" "sth 8, 0(%[cptr1]);" "tresume.;" "b .;" "tend.;" "li 0, 0;" "ori %[res], 0, 0;" "b 3f;" "2: ;" "li 0, 1;" "ori %[res], 0, 0;" "mfspr %[texasr], %[sprn_texasr];" "3: ;" : [tfhar] "=r" (tfhar), [res] "=r" (result), [texasr] "=r" (texasr), [cptr1] "=b" (cptr1) : [sprn_texasr] "i" (SPRN_TEXASR) : "memory", "r0", "r8", "r31" ); /* There are 2 32bit instructions before tbegin. */ tfhar += 12; if (result) { if (!cptr->flag) goto trans; ret = validate_tm_spr((struct tm_spr_regs *)&cptr->regs); shmdt((void *)cptr); shmdt((void *)cptr1); if (ret) exit(1); exit(0); } shmdt((void *)cptr); shmdt((void *)cptr1); exit(1); } int trace_tm_spr(pid_t child) { FAIL_IF(start_trace(child)); FAIL_IF(show_tm_spr(child, (struct tm_spr_regs *)&pptr->regs)); printf("TFHAR: %lx TEXASR: %lx TFIAR: %lx\n", pptr->regs.tm_tfhar, pptr->regs.tm_texasr, pptr->regs.tm_tfiar); pptr->flag = 1; FAIL_IF(stop_trace(child)); return TEST_PASS; } int ptrace_tm_spr(void) { pid_t pid; int ret, status; SKIP_IF_MSG(!have_htm(), "Don't have transactional memory"); SKIP_IF_MSG(htm_is_synthetic(), "Transactional memory is synthetic"); shm_id = shmget(IPC_PRIVATE, sizeof(struct shared), 0777|IPC_CREAT); shm_id1 = shmget(IPC_PRIVATE, sizeof(int), 0777|IPC_CREAT); pid = fork(); if (pid < 0) { perror("fork() failed"); return TEST_FAIL; } if (pid == 0) tm_spr(); if (pid) { pptr = (struct shared *)shmat(shm_id, NULL, 0); pptr1 = (int *)shmat(shm_id1, NULL, 0); while (!pptr1[0]) asm volatile("" : : : "memory"); ret = trace_tm_spr(pid); if (ret) { kill(pid, SIGKILL); shmdt((void *)pptr); shmdt((void *)pptr1); shmctl(shm_id, IPC_RMID, NULL); shmctl(shm_id1, IPC_RMID, NULL); return TEST_FAIL; } shmdt((void *)pptr); shmdt((void *)pptr1); ret = wait(&status); shmctl(shm_id, IPC_RMID, NULL); shmctl(shm_id1, IPC_RMID, NULL); if (ret != pid) { printf("Child's exit status not captured\n"); return TEST_FAIL; } return (WIFEXITED(status) && WEXITSTATUS(status)) ? TEST_FAIL : TEST_PASS; } return TEST_PASS; } int main(int argc, char *argv[]) { return test_harness(ptrace_tm_spr, "ptrace_tm_spr"); }
linux-master
tools/testing/selftests/powerpc/ptrace/ptrace-tm-spr.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Ptrace test for TAR, PPR, DSCR registers * * Copyright (C) 2015 Anshuman Khandual, IBM Corporation. */ #include "ptrace.h" #include "ptrace-tar.h" /* Tracer and Tracee Shared Data */ int shm_id; int *cptr; int *pptr; void tar(void) { unsigned long reg[3]; int ret; cptr = (int *)shmat(shm_id, NULL, 0); printf("%-30s TAR: %u PPR: %lx DSCR: %u\n", user_write, TAR_1, PPR_1, DSCR_1); mtspr(SPRN_TAR, TAR_1); mtspr(SPRN_PPR, PPR_1); mtspr(SPRN_DSCR, DSCR_1); cptr[2] = 1; /* Wait on parent */ while (!cptr[0]) asm volatile("" : : : "memory"); reg[0] = mfspr(SPRN_TAR); reg[1] = mfspr(SPRN_PPR); reg[2] = mfspr(SPRN_DSCR); printf("%-30s TAR: %lu PPR: %lx DSCR: %lu\n", user_read, reg[0], reg[1], reg[2]); /* Unblock the parent now */ cptr[1] = 1; shmdt((int *)cptr); ret = validate_tar_registers(reg, TAR_2, PPR_2, DSCR_2); if (ret) exit(1); exit(0); } int trace_tar(pid_t child) { unsigned long reg[3]; FAIL_IF(start_trace(child)); FAIL_IF(show_tar_registers(child, reg)); printf("%-30s TAR: %lu PPR: %lx DSCR: %lu\n", ptrace_read_running, reg[0], reg[1], reg[2]); FAIL_IF(validate_tar_registers(reg, TAR_1, PPR_1, DSCR_1)); FAIL_IF(stop_trace(child)); return TEST_PASS; } int trace_tar_write(pid_t child) { FAIL_IF(start_trace(child)); FAIL_IF(write_tar_registers(child, TAR_2, PPR_2, DSCR_2)); printf("%-30s TAR: %u PPR: %lx DSCR: %u\n", ptrace_write_running, TAR_2, PPR_2, DSCR_2); FAIL_IF(stop_trace(child)); return TEST_PASS; } int ptrace_tar(void) { pid_t pid; int ret, status; // TAR was added in v2.07 SKIP_IF_MSG(!have_hwcap2(PPC_FEATURE2_ARCH_2_07), "TAR requires ISA 2.07 compatible hardware"); shm_id = shmget(IPC_PRIVATE, sizeof(int) * 3, 0777|IPC_CREAT); pid = fork(); if (pid < 0) { perror("fork() failed"); return TEST_FAIL; } if (pid == 0) tar(); if (pid) { pptr = (int *)shmat(shm_id, NULL, 0); pptr[0] = 0; pptr[1] = 0; while (!pptr[2]) asm volatile("" : : : "memory"); ret = trace_tar(pid); if (ret) return ret; ret = trace_tar_write(pid); if (ret) return ret; /* Unblock the child now */ pptr[0] = 1; /* Wait on child */ while (!pptr[1]) asm volatile("" : : : "memory"); shmdt((int *)pptr); ret = wait(&status); shmctl(shm_id, IPC_RMID, NULL); if (ret != pid) { printf("Child's exit status not captured\n"); return TEST_PASS; } return (WIFEXITED(status) && WEXITSTATUS(status)) ? TEST_FAIL : TEST_PASS; } return TEST_PASS; } int main(int argc, char *argv[]) { return test_harness(ptrace_tar, "ptrace_tar"); }
linux-master
tools/testing/selftests/powerpc/ptrace/ptrace-tar.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Ptrace test for GPR/FPR registers in TM Suspend context * * Copyright (C) 2015 Anshuman Khandual, IBM Corporation. */ #include "ptrace.h" #include "ptrace-gpr.h" #include "tm.h" /* Tracer and Tracee Shared Data */ int shm_id; int *cptr, *pptr; double a = FPR_1; double b = FPR_2; double c = FPR_3; double d = FPR_4; __attribute__((used)) void wait_parent(void) { cptr[2] = 1; while (!cptr[1]) asm volatile("" : : : "memory"); } void tm_spd_gpr(void) { unsigned long gpr_buf[18]; unsigned long result, texasr; double fpr_buf[32]; cptr = (int *)shmat(shm_id, NULL, 0); trans: cptr[2] = 0; asm __volatile__( ASM_LOAD_GPR_IMMED(gpr_1) ASM_LOAD_FPR(flt_1) "1: ;" "tbegin.;" "beq 2f;" ASM_LOAD_GPR_IMMED(gpr_2) "tsuspend.;" ASM_LOAD_GPR_IMMED(gpr_4) ASM_LOAD_FPR(flt_4) "bl wait_parent;" "tresume.;" "tend.;" "li 0, 0;" "ori %[res], 0, 0;" "b 3f;" /* Transaction abort handler */ "2: ;" "li 0, 1;" "ori %[res], 0, 0;" "mfspr %[texasr], %[sprn_texasr];" "3: ;" : [res] "=r" (result), [texasr] "=r" (texasr) : [gpr_1]"i"(GPR_1), [gpr_2]"i"(GPR_2), [gpr_4]"i"(GPR_4), [sprn_texasr] "i" (SPRN_TEXASR), [flt_1] "b" (&a), [flt_4] "b" (&d) : "memory", "r0", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31" ); if (result) { if (!cptr[0]) goto trans; shmdt((void *)cptr); store_gpr(gpr_buf); store_fpr(fpr_buf); if (validate_gpr(gpr_buf, GPR_3)) exit(1); if (validate_fpr_double(fpr_buf, c)) exit(1); exit(0); } shmdt((void *)cptr); exit(1); } int trace_tm_spd_gpr(pid_t child) { unsigned long gpr[18]; __u64 fpr[32]; FAIL_IF(start_trace(child)); FAIL_IF(show_gpr(child, gpr)); FAIL_IF(validate_gpr(gpr, GPR_4)); FAIL_IF(show_fpr(child, fpr)); FAIL_IF(validate_fpr(fpr, FPR_4_REP)); FAIL_IF(show_ckpt_fpr(child, fpr)); FAIL_IF(validate_fpr(fpr, FPR_1_REP)); FAIL_IF(show_ckpt_gpr(child, gpr)); FAIL_IF(validate_gpr(gpr, GPR_1)); FAIL_IF(write_ckpt_gpr(child, GPR_3)); FAIL_IF(write_ckpt_fpr(child, FPR_3_REP)); pptr[0] = 1; pptr[1] = 1; FAIL_IF(stop_trace(child)); return TEST_PASS; } int ptrace_tm_spd_gpr(void) { pid_t pid; int ret, status; SKIP_IF_MSG(!have_htm(), "Don't have transactional memory"); SKIP_IF_MSG(htm_is_synthetic(), "Transactional memory is synthetic"); shm_id = shmget(IPC_PRIVATE, sizeof(int) * 3, 0777|IPC_CREAT); pid = fork(); if (pid < 0) { perror("fork() failed"); return TEST_FAIL; } if (pid == 0) tm_spd_gpr(); if (pid) { pptr = (int *)shmat(shm_id, NULL, 0); pptr[0] = 0; pptr[1] = 0; while (!pptr[2]) asm volatile("" : : : "memory"); ret = trace_tm_spd_gpr(pid); if (ret) { kill(pid, SIGTERM); shmdt((void *)pptr); shmctl(shm_id, IPC_RMID, NULL); return TEST_FAIL; } shmdt((void *)pptr); ret = wait(&status); shmctl(shm_id, IPC_RMID, NULL); if (ret != pid) { printf("Child's exit status not captured\n"); return TEST_FAIL; } return (WIFEXITED(status) && WEXITSTATUS(status)) ? TEST_FAIL : TEST_PASS; } return TEST_PASS; } int main(int argc, char *argv[]) { return test_harness(ptrace_tm_spd_gpr, "ptrace_tm_spd_gpr"); }
linux-master
tools/testing/selftests/powerpc/ptrace/ptrace-tm-spd-gpr.c
// SPDX-License-Identifier: GPL-2.0+ /* * Ptrace test for hw breakpoints * * Based on tools/testing/selftests/breakpoints/breakpoint_test.c * * This test forks and the parent then traces the child doing various * types of ptrace enabled breakpoints * * Copyright (C) 2018 Michael Neuling, IBM Corporation. */ #include <sys/ptrace.h> #include <unistd.h> #include <stddef.h> #include <sys/user.h> #include <stdio.h> #include <stdlib.h> #include <signal.h> #include <sys/types.h> #include <sys/wait.h> #include <sys/syscall.h> #include <linux/limits.h> #include "ptrace.h" #include "reg.h" #define SPRN_PVR 0x11F #define PVR_8xx 0x00500000 bool is_8xx; /* * Use volatile on all global var so that compiler doesn't * optimise their load/stores. Otherwise selftest can fail. */ static volatile __u64 glvar; #define DAWR_MAX_LEN 512 static volatile __u8 big_var[DAWR_MAX_LEN] __attribute__((aligned(512))); #define A_LEN 6 #define B_LEN 6 struct gstruct { __u8 a[A_LEN]; /* double word aligned */ __u8 b[B_LEN]; /* double word unaligned */ }; static volatile struct gstruct gstruct __attribute__((aligned(512))); static volatile char cwd[PATH_MAX] __attribute__((aligned(8))); static void get_dbginfo(pid_t child_pid, struct ppc_debug_info *dbginfo) { if (ptrace(PPC_PTRACE_GETHWDBGINFO, child_pid, NULL, dbginfo)) { perror("Can't get breakpoint info"); exit(-1); } } static bool dawr_present(struct ppc_debug_info *dbginfo) { return !!(dbginfo->features & PPC_DEBUG_FEATURE_DATA_BP_DAWR); } static void write_var(int len) { volatile __u8 *pcvar; volatile __u16 *psvar; volatile __u32 *pivar; volatile __u64 *plvar; switch (len) { case 1: pcvar = (volatile __u8 *)&glvar; *pcvar = 0xff; break; case 2: psvar = (volatile __u16 *)&glvar; *psvar = 0xffff; break; case 4: pivar = (volatile __u32 *)&glvar; *pivar = 0xffffffff; break; case 8: plvar = (volatile __u64 *)&glvar; *plvar = 0xffffffffffffffffLL; break; } } static void read_var(int len) { __u8 cvar __attribute__((unused)); __u16 svar __attribute__((unused)); __u32 ivar __attribute__((unused)); __u64 lvar __attribute__((unused)); switch (len) { case 1: cvar = (volatile __u8)glvar; break; case 2: svar = (volatile __u16)glvar; break; case 4: ivar = (volatile __u32)glvar; break; case 8: lvar = (volatile __u64)glvar; break; } } static void test_workload(void) { __u8 cvar __attribute__((unused)); __u32 ivar __attribute__((unused)); int len = 0; if (ptrace(PTRACE_TRACEME, 0, NULL, 0)) { perror("Child can't be traced?"); exit(-1); } /* Wake up father so that it sets up the first test */ kill(getpid(), SIGUSR1); /* PTRACE_SET_DEBUGREG, WO test */ for (len = 1; len <= sizeof(glvar); len <<= 1) write_var(len); /* PTRACE_SET_DEBUGREG, RO test */ for (len = 1; len <= sizeof(glvar); len <<= 1) read_var(len); /* PTRACE_SET_DEBUGREG, RW test */ for (len = 1; len <= sizeof(glvar); len <<= 1) { if (rand() % 2) read_var(len); else write_var(len); } /* PTRACE_SET_DEBUGREG, Kernel Access Userspace test */ syscall(__NR_getcwd, &cwd, PATH_MAX); /* PPC_PTRACE_SETHWDEBUG, MODE_EXACT, WO test */ write_var(1); /* PPC_PTRACE_SETHWDEBUG, MODE_EXACT, RO test */ read_var(1); /* PPC_PTRACE_SETHWDEBUG, MODE_EXACT, RW test */ if (rand() % 2) write_var(1); else read_var(1); /* PPC_PTRACE_SETHWDEBUG, MODE_EXACT, Kernel Access Userspace test */ syscall(__NR_getcwd, &cwd, PATH_MAX); /* PPC_PTRACE_SETHWDEBUG, MODE_RANGE, DW ALIGNED, WO test */ gstruct.a[rand() % A_LEN] = 'a'; /* PPC_PTRACE_SETHWDEBUG, MODE_RANGE, DW ALIGNED, RO test */ cvar = gstruct.a[rand() % A_LEN]; /* PPC_PTRACE_SETHWDEBUG, MODE_RANGE, DW ALIGNED, RW test */ if (rand() % 2) gstruct.a[rand() % A_LEN] = 'a'; else cvar = gstruct.a[rand() % A_LEN]; /* PPC_PTRACE_SETHWDEBUG, MODE_RANGE, DW UNALIGNED, WO test */ gstruct.b[rand() % B_LEN] = 'b'; /* PPC_PTRACE_SETHWDEBUG, MODE_RANGE, DW UNALIGNED, RO test */ cvar = gstruct.b[rand() % B_LEN]; /* PPC_PTRACE_SETHWDEBUG, MODE_RANGE, DW UNALIGNED, RW test */ if (rand() % 2) gstruct.b[rand() % B_LEN] = 'b'; else cvar = gstruct.b[rand() % B_LEN]; /* PPC_PTRACE_SETHWDEBUG, MODE_RANGE, DW UNALIGNED, DAR OUTSIDE, RW test */ if (rand() % 2) *((int *)(gstruct.a + 4)) = 10; else ivar = *((int *)(gstruct.a + 4)); /* PPC_PTRACE_SETHWDEBUG. DAWR_MAX_LEN. RW test */ if (rand() % 2) big_var[rand() % DAWR_MAX_LEN] = 'a'; else cvar = big_var[rand() % DAWR_MAX_LEN]; /* PPC_PTRACE_SETHWDEBUG 2, MODE_RANGE, DW ALIGNED, WO test */ gstruct.a[rand() % A_LEN] = 'a'; /* PPC_PTRACE_SETHWDEBUG 2, MODE_RANGE, DW UNALIGNED, RO test */ cvar = gstruct.b[rand() % B_LEN]; /* PPC_PTRACE_SETHWDEBUG 2, MODE_RANGE, DAWR Overlap, WO test */ gstruct.a[rand() % A_LEN] = 'a'; /* PPC_PTRACE_SETHWDEBUG 2, MODE_RANGE, DAWR Overlap, RO test */ cvar = gstruct.a[rand() % A_LEN]; } static void check_success(pid_t child_pid, const char *name, const char *type, unsigned long saddr, int len) { int status; siginfo_t siginfo; unsigned long eaddr = (saddr + len - 1) | 0x7; saddr &= ~0x7; /* Wait for the child to SIGTRAP */ wait(&status); ptrace(PTRACE_GETSIGINFO, child_pid, NULL, &siginfo); if (!WIFSTOPPED(status) || WSTOPSIG(status) != SIGTRAP || (unsigned long)siginfo.si_addr < saddr || (unsigned long)siginfo.si_addr > eaddr) { printf("%s, %s, len: %d: Fail\n", name, type, len); exit(-1); } printf("%s, %s, len: %d: Ok\n", name, type, len); if (!is_8xx) { /* * For ptrace registered watchpoint, signal is generated * before executing load/store. Singlestep the instruction * and then continue the test. */ ptrace(PTRACE_SINGLESTEP, child_pid, NULL, 0); wait(NULL); } } static void ptrace_set_debugreg(pid_t child_pid, unsigned long wp_addr) { if (ptrace(PTRACE_SET_DEBUGREG, child_pid, 0, wp_addr)) { perror("PTRACE_SET_DEBUGREG failed"); exit(-1); } } static int ptrace_sethwdebug(pid_t child_pid, struct ppc_hw_breakpoint *info) { int wh = ptrace(PPC_PTRACE_SETHWDEBUG, child_pid, 0, info); if (wh <= 0) { perror("PPC_PTRACE_SETHWDEBUG failed"); exit(-1); } return wh; } static void ptrace_delhwdebug(pid_t child_pid, int wh) { if (ptrace(PPC_PTRACE_DELHWDEBUG, child_pid, 0, wh) < 0) { perror("PPC_PTRACE_DELHWDEBUG failed"); exit(-1); } } #define DABR_READ_SHIFT 0 #define DABR_WRITE_SHIFT 1 #define DABR_TRANSLATION_SHIFT 2 static int test_set_debugreg(pid_t child_pid) { unsigned long wp_addr = (unsigned long)&glvar; char *name = "PTRACE_SET_DEBUGREG"; int len; /* PTRACE_SET_DEBUGREG, WO test*/ wp_addr &= ~0x7UL; wp_addr |= (1UL << DABR_WRITE_SHIFT); wp_addr |= (1UL << DABR_TRANSLATION_SHIFT); for (len = 1; len <= sizeof(glvar); len <<= 1) { ptrace_set_debugreg(child_pid, wp_addr); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "WO", wp_addr, len); } /* PTRACE_SET_DEBUGREG, RO test */ wp_addr &= ~0x7UL; wp_addr |= (1UL << DABR_READ_SHIFT); wp_addr |= (1UL << DABR_TRANSLATION_SHIFT); for (len = 1; len <= sizeof(glvar); len <<= 1) { ptrace_set_debugreg(child_pid, wp_addr); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "RO", wp_addr, len); } /* PTRACE_SET_DEBUGREG, RW test */ wp_addr &= ~0x7UL; wp_addr |= (1Ul << DABR_READ_SHIFT); wp_addr |= (1UL << DABR_WRITE_SHIFT); wp_addr |= (1UL << DABR_TRANSLATION_SHIFT); for (len = 1; len <= sizeof(glvar); len <<= 1) { ptrace_set_debugreg(child_pid, wp_addr); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "RW", wp_addr, len); } ptrace_set_debugreg(child_pid, 0); return 0; } static int test_set_debugreg_kernel_userspace(pid_t child_pid) { unsigned long wp_addr = (unsigned long)cwd; char *name = "PTRACE_SET_DEBUGREG"; /* PTRACE_SET_DEBUGREG, Kernel Access Userspace test */ wp_addr &= ~0x7UL; wp_addr |= (1Ul << DABR_READ_SHIFT); wp_addr |= (1UL << DABR_WRITE_SHIFT); wp_addr |= (1UL << DABR_TRANSLATION_SHIFT); ptrace_set_debugreg(child_pid, wp_addr); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "Kernel Access Userspace", wp_addr, 8); ptrace_set_debugreg(child_pid, 0); return 0; } static void get_ppc_hw_breakpoint(struct ppc_hw_breakpoint *info, int type, unsigned long addr, int len) { info->version = 1; info->trigger_type = type; info->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; info->addr = (__u64)addr; info->addr2 = (__u64)addr + len; info->condition_value = 0; if (!len) info->addr_mode = PPC_BREAKPOINT_MODE_EXACT; else info->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; } static void test_sethwdebug_exact(pid_t child_pid) { struct ppc_hw_breakpoint info; unsigned long wp_addr = (unsigned long)&glvar; char *name = "PPC_PTRACE_SETHWDEBUG, MODE_EXACT"; int len = 1; /* hardcoded in kernel */ int wh; /* PPC_PTRACE_SETHWDEBUG, MODE_EXACT, WO test */ get_ppc_hw_breakpoint(&info, PPC_BREAKPOINT_TRIGGER_WRITE, wp_addr, 0); wh = ptrace_sethwdebug(child_pid, &info); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "WO", wp_addr, len); ptrace_delhwdebug(child_pid, wh); /* PPC_PTRACE_SETHWDEBUG, MODE_EXACT, RO test */ get_ppc_hw_breakpoint(&info, PPC_BREAKPOINT_TRIGGER_READ, wp_addr, 0); wh = ptrace_sethwdebug(child_pid, &info); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "RO", wp_addr, len); ptrace_delhwdebug(child_pid, wh); /* PPC_PTRACE_SETHWDEBUG, MODE_EXACT, RW test */ get_ppc_hw_breakpoint(&info, PPC_BREAKPOINT_TRIGGER_RW, wp_addr, 0); wh = ptrace_sethwdebug(child_pid, &info); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "RW", wp_addr, len); ptrace_delhwdebug(child_pid, wh); } static void test_sethwdebug_exact_kernel_userspace(pid_t child_pid) { struct ppc_hw_breakpoint info; unsigned long wp_addr = (unsigned long)&cwd; char *name = "PPC_PTRACE_SETHWDEBUG, MODE_EXACT"; int len = 1; /* hardcoded in kernel */ int wh; /* PPC_PTRACE_SETHWDEBUG, MODE_EXACT, Kernel Access Userspace test */ get_ppc_hw_breakpoint(&info, PPC_BREAKPOINT_TRIGGER_WRITE, wp_addr, 0); wh = ptrace_sethwdebug(child_pid, &info); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "Kernel Access Userspace", wp_addr, len); ptrace_delhwdebug(child_pid, wh); } static void test_sethwdebug_range_aligned(pid_t child_pid) { struct ppc_hw_breakpoint info; unsigned long wp_addr; char *name = "PPC_PTRACE_SETHWDEBUG, MODE_RANGE, DW ALIGNED"; int len; int wh; /* PPC_PTRACE_SETHWDEBUG, MODE_RANGE, DW ALIGNED, WO test */ wp_addr = (unsigned long)&gstruct.a; len = A_LEN; get_ppc_hw_breakpoint(&info, PPC_BREAKPOINT_TRIGGER_WRITE, wp_addr, len); wh = ptrace_sethwdebug(child_pid, &info); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "WO", wp_addr, len); ptrace_delhwdebug(child_pid, wh); /* PPC_PTRACE_SETHWDEBUG, MODE_RANGE, DW ALIGNED, RO test */ wp_addr = (unsigned long)&gstruct.a; len = A_LEN; get_ppc_hw_breakpoint(&info, PPC_BREAKPOINT_TRIGGER_READ, wp_addr, len); wh = ptrace_sethwdebug(child_pid, &info); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "RO", wp_addr, len); ptrace_delhwdebug(child_pid, wh); /* PPC_PTRACE_SETHWDEBUG, MODE_RANGE, DW ALIGNED, RW test */ wp_addr = (unsigned long)&gstruct.a; len = A_LEN; get_ppc_hw_breakpoint(&info, PPC_BREAKPOINT_TRIGGER_RW, wp_addr, len); wh = ptrace_sethwdebug(child_pid, &info); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "RW", wp_addr, len); ptrace_delhwdebug(child_pid, wh); } static void test_multi_sethwdebug_range(pid_t child_pid) { struct ppc_hw_breakpoint info1, info2; unsigned long wp_addr1, wp_addr2; char *name1 = "PPC_PTRACE_SETHWDEBUG 2, MODE_RANGE, DW ALIGNED"; char *name2 = "PPC_PTRACE_SETHWDEBUG 2, MODE_RANGE, DW UNALIGNED"; int len1, len2; int wh1, wh2; wp_addr1 = (unsigned long)&gstruct.a; wp_addr2 = (unsigned long)&gstruct.b; len1 = A_LEN; len2 = B_LEN; get_ppc_hw_breakpoint(&info1, PPC_BREAKPOINT_TRIGGER_WRITE, wp_addr1, len1); get_ppc_hw_breakpoint(&info2, PPC_BREAKPOINT_TRIGGER_READ, wp_addr2, len2); /* PPC_PTRACE_SETHWDEBUG 2, MODE_RANGE, DW ALIGNED, WO test */ wh1 = ptrace_sethwdebug(child_pid, &info1); /* PPC_PTRACE_SETHWDEBUG 2, MODE_RANGE, DW UNALIGNED, RO test */ wh2 = ptrace_sethwdebug(child_pid, &info2); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name1, "WO", wp_addr1, len1); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name2, "RO", wp_addr2, len2); ptrace_delhwdebug(child_pid, wh1); ptrace_delhwdebug(child_pid, wh2); } static void test_multi_sethwdebug_range_dawr_overlap(pid_t child_pid) { struct ppc_hw_breakpoint info1, info2; unsigned long wp_addr1, wp_addr2; char *name = "PPC_PTRACE_SETHWDEBUG 2, MODE_RANGE, DAWR Overlap"; int len1, len2; int wh1, wh2; wp_addr1 = (unsigned long)&gstruct.a; wp_addr2 = (unsigned long)&gstruct.a; len1 = A_LEN; len2 = A_LEN; get_ppc_hw_breakpoint(&info1, PPC_BREAKPOINT_TRIGGER_WRITE, wp_addr1, len1); get_ppc_hw_breakpoint(&info2, PPC_BREAKPOINT_TRIGGER_READ, wp_addr2, len2); /* PPC_PTRACE_SETHWDEBUG 2, MODE_RANGE, DAWR Overlap, WO test */ wh1 = ptrace_sethwdebug(child_pid, &info1); /* PPC_PTRACE_SETHWDEBUG 2, MODE_RANGE, DAWR Overlap, RO test */ wh2 = ptrace_sethwdebug(child_pid, &info2); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "WO", wp_addr1, len1); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "RO", wp_addr2, len2); ptrace_delhwdebug(child_pid, wh1); ptrace_delhwdebug(child_pid, wh2); } static void test_sethwdebug_range_unaligned(pid_t child_pid) { struct ppc_hw_breakpoint info; unsigned long wp_addr; char *name = "PPC_PTRACE_SETHWDEBUG, MODE_RANGE, DW UNALIGNED"; int len; int wh; /* PPC_PTRACE_SETHWDEBUG, MODE_RANGE, DW UNALIGNED, WO test */ wp_addr = (unsigned long)&gstruct.b; len = B_LEN; get_ppc_hw_breakpoint(&info, PPC_BREAKPOINT_TRIGGER_WRITE, wp_addr, len); wh = ptrace_sethwdebug(child_pid, &info); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "WO", wp_addr, len); ptrace_delhwdebug(child_pid, wh); /* PPC_PTRACE_SETHWDEBUG, MODE_RANGE, DW UNALIGNED, RO test */ wp_addr = (unsigned long)&gstruct.b; len = B_LEN; get_ppc_hw_breakpoint(&info, PPC_BREAKPOINT_TRIGGER_READ, wp_addr, len); wh = ptrace_sethwdebug(child_pid, &info); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "RO", wp_addr, len); ptrace_delhwdebug(child_pid, wh); /* PPC_PTRACE_SETHWDEBUG, MODE_RANGE, DW UNALIGNED, RW test */ wp_addr = (unsigned long)&gstruct.b; len = B_LEN; get_ppc_hw_breakpoint(&info, PPC_BREAKPOINT_TRIGGER_RW, wp_addr, len); wh = ptrace_sethwdebug(child_pid, &info); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "RW", wp_addr, len); ptrace_delhwdebug(child_pid, wh); } static void test_sethwdebug_range_unaligned_dar(pid_t child_pid) { struct ppc_hw_breakpoint info; unsigned long wp_addr; char *name = "PPC_PTRACE_SETHWDEBUG, MODE_RANGE, DW UNALIGNED, DAR OUTSIDE"; int len; int wh; /* PPC_PTRACE_SETHWDEBUG, MODE_RANGE, DW UNALIGNED, DAR OUTSIDE, RW test */ wp_addr = (unsigned long)&gstruct.b; len = B_LEN; get_ppc_hw_breakpoint(&info, PPC_BREAKPOINT_TRIGGER_WRITE, wp_addr, len); wh = ptrace_sethwdebug(child_pid, &info); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "RW", wp_addr, len); ptrace_delhwdebug(child_pid, wh); } static void test_sethwdebug_dawr_max_range(pid_t child_pid) { struct ppc_hw_breakpoint info; unsigned long wp_addr; char *name = "PPC_PTRACE_SETHWDEBUG, DAWR_MAX_LEN"; int len; int wh; /* PPC_PTRACE_SETHWDEBUG, DAWR_MAX_LEN, RW test */ wp_addr = (unsigned long)big_var; len = DAWR_MAX_LEN; get_ppc_hw_breakpoint(&info, PPC_BREAKPOINT_TRIGGER_RW, wp_addr, len); wh = ptrace_sethwdebug(child_pid, &info); ptrace(PTRACE_CONT, child_pid, NULL, 0); check_success(child_pid, name, "RW", wp_addr, len); ptrace_delhwdebug(child_pid, wh); } /* Set the breakpoints and check the child successfully trigger them */ static void run_tests(pid_t child_pid, struct ppc_debug_info *dbginfo, bool dawr) { test_set_debugreg(child_pid); test_set_debugreg_kernel_userspace(child_pid); test_sethwdebug_exact(child_pid); test_sethwdebug_exact_kernel_userspace(child_pid); if (dbginfo->features & PPC_DEBUG_FEATURE_DATA_BP_RANGE) { test_sethwdebug_range_aligned(child_pid); if (dawr || is_8xx) { test_sethwdebug_range_unaligned(child_pid); test_sethwdebug_range_unaligned_dar(child_pid); test_sethwdebug_dawr_max_range(child_pid); if (dbginfo->num_data_bps > 1) { test_multi_sethwdebug_range(child_pid); test_multi_sethwdebug_range_dawr_overlap(child_pid); } } } } static int ptrace_hwbreak(void) { pid_t child_pid; struct ppc_debug_info dbginfo; bool dawr; child_pid = fork(); if (!child_pid) { test_workload(); return 0; } wait(NULL); get_dbginfo(child_pid, &dbginfo); SKIP_IF_MSG(dbginfo.num_data_bps == 0, "No data breakpoints present"); dawr = dawr_present(&dbginfo); run_tests(child_pid, &dbginfo, dawr); /* Let the child exit first. */ ptrace(PTRACE_CONT, child_pid, NULL, 0); wait(NULL); /* * Testcases exits immediately with -1 on any failure. If * it has reached here, it means all tests were successful. */ return TEST_PASS; } int main(int argc, char **argv, char **envp) { is_8xx = mfspr(SPRN_PVR) == PVR_8xx; return test_harness(ptrace_hwbreak, "ptrace-hwbreak"); }
linux-master
tools/testing/selftests/powerpc/ptrace/ptrace-hwbreak.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Ptrace test for VMX/VSX registers in the TM context * * Copyright (C) 2015 Anshuman Khandual, IBM Corporation. */ #include "ptrace.h" #include "tm.h" #include "ptrace-vsx.h" int shm_id; unsigned long *cptr, *pptr; unsigned long fp_load[VEC_MAX]; unsigned long fp_store[VEC_MAX]; unsigned long fp_load_ckpt[VEC_MAX]; unsigned long fp_load_ckpt_new[VEC_MAX]; __attribute__((used)) void load_vsx(void) { loadvsx(fp_load, 0); } __attribute__((used)) void load_vsx_ckpt(void) { loadvsx(fp_load_ckpt, 0); } void tm_vsx(void) { unsigned long result, texasr; int ret; cptr = (unsigned long *)shmat(shm_id, NULL, 0); trans: cptr[1] = 0; asm __volatile__( "bl load_vsx_ckpt;" "1: ;" "tbegin.;" "beq 2f;" "bl load_vsx;" "tsuspend.;" "li 7, 1;" "stw 7, 0(%[cptr1]);" "tresume.;" "b .;" "tend.;" "li 0, 0;" "ori %[res], 0, 0;" "b 3f;" "2: ;" "li 0, 1;" "ori %[res], 0, 0;" "mfspr %[texasr], %[sprn_texasr];" "3: ;" : [res] "=r" (result), [texasr] "=r" (texasr) : [sprn_texasr] "i" (SPRN_TEXASR), [cptr1] "b" (&cptr[1]) : "memory", "r0", "r3", "r4", "r7", "r8", "r9", "r10", "r11", "lr" ); if (result) { if (!cptr[0]) goto trans; shmdt((void *)cptr); storevsx(fp_store, 0); ret = compare_vsx_vmx(fp_store, fp_load_ckpt_new); if (ret) exit(1); exit(0); } shmdt((void *)cptr); exit(1); } int trace_tm_vsx(pid_t child) { unsigned long vsx[VSX_MAX]; unsigned long vmx[VMX_MAX + 2][2]; FAIL_IF(start_trace(child)); FAIL_IF(show_vsx(child, vsx)); FAIL_IF(validate_vsx(vsx, fp_load)); FAIL_IF(show_vmx(child, vmx)); FAIL_IF(validate_vmx(vmx, fp_load)); FAIL_IF(show_vsx_ckpt(child, vsx)); FAIL_IF(validate_vsx(vsx, fp_load_ckpt)); FAIL_IF(show_vmx_ckpt(child, vmx)); FAIL_IF(validate_vmx(vmx, fp_load_ckpt)); memset(vsx, 0, sizeof(vsx)); memset(vmx, 0, sizeof(vmx)); load_vsx_vmx(fp_load_ckpt_new, vsx, vmx); FAIL_IF(write_vsx_ckpt(child, vsx)); FAIL_IF(write_vmx_ckpt(child, vmx)); pptr[0] = 1; FAIL_IF(stop_trace(child)); return TEST_PASS; } int ptrace_tm_vsx(void) { pid_t pid; int ret, status, i; SKIP_IF_MSG(!have_htm(), "Don't have transactional memory"); SKIP_IF_MSG(htm_is_synthetic(), "Transactional memory is synthetic"); shm_id = shmget(IPC_PRIVATE, sizeof(int) * 2, 0777|IPC_CREAT); for (i = 0; i < 128; i++) { fp_load[i] = 1 + rand(); fp_load_ckpt[i] = 1 + 2 * rand(); fp_load_ckpt_new[i] = 1 + 3 * rand(); } pid = fork(); if (pid < 0) { perror("fork() failed"); return TEST_FAIL; } if (pid == 0) tm_vsx(); if (pid) { pptr = (unsigned long *)shmat(shm_id, NULL, 0); while (!pptr[1]) asm volatile("" : : : "memory"); ret = trace_tm_vsx(pid); if (ret) { kill(pid, SIGKILL); shmdt((void *)pptr); shmctl(shm_id, IPC_RMID, NULL); return TEST_FAIL; } shmdt((void *)pptr); ret = wait(&status); shmctl(shm_id, IPC_RMID, NULL); if (ret != pid) { printf("Child's exit status not captured\n"); return TEST_FAIL; } return (WIFEXITED(status) && WEXITSTATUS(status)) ? TEST_FAIL : TEST_PASS; } return TEST_PASS; } int main(int argc, char *argv[]) { return test_harness(ptrace_tm_vsx, "ptrace_tm_vsx"); }
linux-master
tools/testing/selftests/powerpc/ptrace/ptrace-tm-vsx.c
// SPDX-License-Identifier: GPL-2.0 /* * A ptrace test for testing PTRACE_SYSEMU, PTRACE_SETREGS and * PTRACE_GETREG. This test basically create a child process that executes * syscalls and the parent process check if it is being traced appropriated. * * This test is heavily based on tools/testing/selftests/x86/ptrace_syscall.c * test, and it was adapted to run on Powerpc by * Breno Leitao <[email protected]> */ #define _GNU_SOURCE #include <sys/ptrace.h> #include <sys/types.h> #include <sys/wait.h> #include <sys/syscall.h> #include <sys/user.h> #include <unistd.h> #include <errno.h> #include <stddef.h> #include <stdio.h> #include <err.h> #include <string.h> #include <sys/auxv.h> #include "utils.h" /* Bitness-agnostic defines for user_regs_struct fields. */ #define user_syscall_nr gpr[0] #define user_arg0 gpr[3] #define user_arg1 gpr[4] #define user_arg2 gpr[5] #define user_arg3 gpr[6] #define user_arg4 gpr[7] #define user_arg5 gpr[8] #define user_ip nip #define PTRACE_SYSEMU 0x1d static int nerrs; static void wait_trap(pid_t chld) { siginfo_t si; if (waitid(P_PID, chld, &si, WEXITED|WSTOPPED) != 0) err(1, "waitid"); if (si.si_pid != chld) errx(1, "got unexpected pid in event\n"); if (si.si_code != CLD_TRAPPED) errx(1, "got unexpected event type %d\n", si.si_code); } static void test_ptrace_syscall_restart(void) { int status; struct pt_regs regs; pid_t chld; printf("[RUN]\tptrace-induced syscall restart\n"); chld = fork(); if (chld < 0) err(1, "fork"); /* * Child process is running 4 syscalls after ptrace. * * 1) getpid() * 2) gettid() * 3) tgkill() -> Send SIGSTOP * 4) gettid() -> Where the tests will happen essentially */ if (chld == 0) { if (ptrace(PTRACE_TRACEME, 0, 0, 0) != 0) err(1, "PTRACE_TRACEME"); pid_t pid = getpid(), tid = syscall(SYS_gettid); printf("\tChild will make one syscall\n"); syscall(SYS_tgkill, pid, tid, SIGSTOP); syscall(SYS_gettid, 10, 11, 12, 13, 14, 15); _exit(0); } /* Parent process below */ /* Wait for SIGSTOP sent by tgkill above. */ if (waitpid(chld, &status, 0) != chld || !WIFSTOPPED(status)) err(1, "waitpid"); printf("[RUN]\tSYSEMU\n"); if (ptrace(PTRACE_SYSEMU, chld, 0, 0) != 0) err(1, "PTRACE_SYSEMU"); wait_trap(chld); if (ptrace(PTRACE_GETREGS, chld, 0, &regs) != 0) err(1, "PTRACE_GETREGS"); /* * Ptrace trapped prior to executing the syscall, thus r3 still has * the syscall number instead of the sys_gettid() result */ if (regs.user_syscall_nr != SYS_gettid || regs.user_arg0 != 10 || regs.user_arg1 != 11 || regs.user_arg2 != 12 || regs.user_arg3 != 13 || regs.user_arg4 != 14 || regs.user_arg5 != 15) { printf("[FAIL]\tInitial args are wrong (nr=%lu, args=%lu %lu %lu %lu %lu %lu)\n", (unsigned long)regs.user_syscall_nr, (unsigned long)regs.user_arg0, (unsigned long)regs.user_arg1, (unsigned long)regs.user_arg2, (unsigned long)regs.user_arg3, (unsigned long)regs.user_arg4, (unsigned long)regs.user_arg5); nerrs++; } else { printf("[OK]\tInitial nr and args are correct\n"); } printf("[RUN]\tRestart the syscall (ip = 0x%lx)\n", (unsigned long)regs.user_ip); /* * Rewind to retry the same syscall again. This will basically test * the rewind process together with PTRACE_SETREGS and PTRACE_GETREGS. */ regs.user_ip -= 4; if (ptrace(PTRACE_SETREGS, chld, 0, &regs) != 0) err(1, "PTRACE_SETREGS"); if (ptrace(PTRACE_SYSEMU, chld, 0, 0) != 0) err(1, "PTRACE_SYSEMU"); wait_trap(chld); if (ptrace(PTRACE_GETREGS, chld, 0, &regs) != 0) err(1, "PTRACE_GETREGS"); if (regs.user_syscall_nr != SYS_gettid || regs.user_arg0 != 10 || regs.user_arg1 != 11 || regs.user_arg2 != 12 || regs.user_arg3 != 13 || regs.user_arg4 != 14 || regs.user_arg5 != 15) { printf("[FAIL]\tRestart nr or args are wrong (nr=%lu, args=%lu %lu %lu %lu %lu %lu)\n", (unsigned long)regs.user_syscall_nr, (unsigned long)regs.user_arg0, (unsigned long)regs.user_arg1, (unsigned long)regs.user_arg2, (unsigned long)regs.user_arg3, (unsigned long)regs.user_arg4, (unsigned long)regs.user_arg5); nerrs++; } else { printf("[OK]\tRestarted nr and args are correct\n"); } printf("[RUN]\tChange nr and args and restart the syscall (ip = 0x%lx)\n", (unsigned long)regs.user_ip); /* * Inject a new syscall (getpid) in the same place the previous * syscall (gettid), rewind and re-execute. */ regs.user_syscall_nr = SYS_getpid; regs.user_arg0 = 20; regs.user_arg1 = 21; regs.user_arg2 = 22; regs.user_arg3 = 23; regs.user_arg4 = 24; regs.user_arg5 = 25; regs.user_ip -= 4; if (ptrace(PTRACE_SETREGS, chld, 0, &regs) != 0) err(1, "PTRACE_SETREGS"); if (ptrace(PTRACE_SYSEMU, chld, 0, 0) != 0) err(1, "PTRACE_SYSEMU"); wait_trap(chld); if (ptrace(PTRACE_GETREGS, chld, 0, &regs) != 0) err(1, "PTRACE_GETREGS"); /* Check that ptrace stopped at the new syscall that was * injected, and guarantee that it haven't executed, i.e, user_args * contain the arguments and not the syscall return value, for * instance. */ if (regs.user_syscall_nr != SYS_getpid || regs.user_arg0 != 20 || regs.user_arg1 != 21 || regs.user_arg2 != 22 || regs.user_arg3 != 23 || regs.user_arg4 != 24 || regs.user_arg5 != 25) { printf("[FAIL]\tRestart nr or args are wrong (nr=%lu, args=%lu %lu %lu %lu %lu %lu)\n", (unsigned long)regs.user_syscall_nr, (unsigned long)regs.user_arg0, (unsigned long)regs.user_arg1, (unsigned long)regs.user_arg2, (unsigned long)regs.user_arg3, (unsigned long)regs.user_arg4, (unsigned long)regs.user_arg5); nerrs++; } else { printf("[OK]\tReplacement nr and args are correct\n"); } if (ptrace(PTRACE_CONT, chld, 0, 0) != 0) err(1, "PTRACE_CONT"); if (waitpid(chld, &status, 0) != chld) err(1, "waitpid"); /* Guarantee that the process executed properly, returning 0 */ if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { printf("[FAIL]\tChild failed\n"); nerrs++; } else { printf("[OK]\tChild exited cleanly\n"); } } int ptrace_syscall(void) { test_ptrace_syscall_restart(); return nerrs; } int main(void) { return test_harness(ptrace_syscall, "ptrace_syscall"); }
linux-master
tools/testing/selftests/powerpc/ptrace/ptrace-syscall.c
// SPDX-License-Identifier: GPL-2.0+ /* * Ptrace test for Memory Protection Key registers * * Copyright (C) 2015 Anshuman Khandual, IBM Corporation. * Copyright (C) 2018 IBM Corporation. */ #include "ptrace.h" #include "child.h" #ifndef __NR_pkey_alloc #define __NR_pkey_alloc 384 #endif #ifndef __NR_pkey_free #define __NR_pkey_free 385 #endif #ifndef NT_PPC_PKEY #define NT_PPC_PKEY 0x110 #endif #ifndef PKEY_DISABLE_EXECUTE #define PKEY_DISABLE_EXECUTE 0x4 #endif #define AMR_BITS_PER_PKEY 2 #define PKEY_REG_BITS (sizeof(u64) * 8) #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey + 1) * AMR_BITS_PER_PKEY)) static const char user_read[] = "[User Read (Running)]"; static const char user_write[] = "[User Write (Running)]"; static const char ptrace_read_running[] = "[Ptrace Read (Running)]"; static const char ptrace_write_running[] = "[Ptrace Write (Running)]"; /* Information shared between the parent and the child. */ struct shared_info { struct child_sync child_sync; /* AMR value the parent expects to read from the child. */ unsigned long amr1; /* AMR value the parent is expected to write to the child. */ unsigned long amr2; /* AMR value that ptrace should refuse to write to the child. */ unsigned long invalid_amr; /* IAMR value the parent expects to read from the child. */ unsigned long expected_iamr; /* UAMOR value the parent expects to read from the child. */ unsigned long expected_uamor; /* * IAMR and UAMOR values that ptrace should refuse to write to the child * (even though they're valid ones) because userspace doesn't have * access to those registers. */ unsigned long invalid_iamr; unsigned long invalid_uamor; }; static int sys_pkey_alloc(unsigned long flags, unsigned long init_access_rights) { return syscall(__NR_pkey_alloc, flags, init_access_rights); } static int child(struct shared_info *info) { unsigned long reg; bool disable_execute = true; int pkey1, pkey2, pkey3; int ret; /* Wait until parent fills out the initial register values. */ ret = wait_parent(&info->child_sync); if (ret) return ret; /* Get some pkeys so that we can change their bits in the AMR. */ pkey1 = sys_pkey_alloc(0, PKEY_DISABLE_EXECUTE); if (pkey1 < 0) { pkey1 = sys_pkey_alloc(0, 0); CHILD_FAIL_IF(pkey1 < 0, &info->child_sync); disable_execute = false; } pkey2 = sys_pkey_alloc(0, 0); CHILD_FAIL_IF(pkey2 < 0, &info->child_sync); pkey3 = sys_pkey_alloc(0, 0); CHILD_FAIL_IF(pkey3 < 0, &info->child_sync); info->amr1 |= 3ul << pkeyshift(pkey1); info->amr2 |= 3ul << pkeyshift(pkey2); /* * invalid amr value where we try to force write * things which are deined by a uamor setting. */ info->invalid_amr = info->amr2 | (~0x0UL & ~info->expected_uamor); /* * if PKEY_DISABLE_EXECUTE succeeded we should update the expected_iamr */ if (disable_execute) info->expected_iamr |= 1ul << pkeyshift(pkey1); else info->expected_iamr &= ~(1ul << pkeyshift(pkey1)); /* * We allocated pkey2 and pkey 3 above. Clear the IAMR bits. */ info->expected_iamr &= ~(1ul << pkeyshift(pkey2)); info->expected_iamr &= ~(1ul << pkeyshift(pkey3)); /* * Create an IAMR value different from expected value. * Kernel will reject an IAMR and UAMOR change. */ info->invalid_iamr = info->expected_iamr | (1ul << pkeyshift(pkey1) | 1ul << pkeyshift(pkey2)); info->invalid_uamor = info->expected_uamor & ~(0x3ul << pkeyshift(pkey1)); printf("%-30s AMR: %016lx pkey1: %d pkey2: %d pkey3: %d\n", user_write, info->amr1, pkey1, pkey2, pkey3); set_amr(info->amr1); /* Wait for parent to read our AMR value and write a new one. */ ret = prod_parent(&info->child_sync); CHILD_FAIL_IF(ret, &info->child_sync); ret = wait_parent(&info->child_sync); if (ret) return ret; reg = mfspr(SPRN_AMR); printf("%-30s AMR: %016lx\n", user_read, reg); CHILD_FAIL_IF(reg != info->amr2, &info->child_sync); /* * Wait for parent to try to write an invalid AMR value. */ ret = prod_parent(&info->child_sync); CHILD_FAIL_IF(ret, &info->child_sync); ret = wait_parent(&info->child_sync); if (ret) return ret; reg = mfspr(SPRN_AMR); printf("%-30s AMR: %016lx\n", user_read, reg); CHILD_FAIL_IF(reg != info->amr2, &info->child_sync); /* * Wait for parent to try to write an IAMR and a UAMOR value. We can't * verify them, but we can verify that the AMR didn't change. */ ret = prod_parent(&info->child_sync); CHILD_FAIL_IF(ret, &info->child_sync); ret = wait_parent(&info->child_sync); if (ret) return ret; reg = mfspr(SPRN_AMR); printf("%-30s AMR: %016lx\n", user_read, reg); CHILD_FAIL_IF(reg != info->amr2, &info->child_sync); /* Now let parent now that we are finished. */ ret = prod_parent(&info->child_sync); CHILD_FAIL_IF(ret, &info->child_sync); return TEST_PASS; } static int parent(struct shared_info *info, pid_t pid) { unsigned long regs[3]; int ret, status; /* * Get the initial values for AMR, IAMR and UAMOR and communicate them * to the child. */ ret = ptrace_read_regs(pid, NT_PPC_PKEY, regs, 3); PARENT_SKIP_IF_UNSUPPORTED(ret, &info->child_sync, "PKEYs not supported"); PARENT_FAIL_IF(ret, &info->child_sync); info->amr1 = info->amr2 = regs[0]; info->expected_iamr = regs[1]; info->expected_uamor = regs[2]; /* Wake up child so that it can set itself up. */ ret = prod_child(&info->child_sync); PARENT_FAIL_IF(ret, &info->child_sync); ret = wait_child(&info->child_sync); if (ret) return ret; /* Verify that we can read the pkey registers from the child. */ ret = ptrace_read_regs(pid, NT_PPC_PKEY, regs, 3); PARENT_FAIL_IF(ret, &info->child_sync); printf("%-30s AMR: %016lx IAMR: %016lx UAMOR: %016lx\n", ptrace_read_running, regs[0], regs[1], regs[2]); PARENT_FAIL_IF(regs[0] != info->amr1, &info->child_sync); PARENT_FAIL_IF(regs[1] != info->expected_iamr, &info->child_sync); PARENT_FAIL_IF(regs[2] != info->expected_uamor, &info->child_sync); /* Write valid AMR value in child. */ ret = ptrace_write_regs(pid, NT_PPC_PKEY, &info->amr2, 1); PARENT_FAIL_IF(ret, &info->child_sync); printf("%-30s AMR: %016lx\n", ptrace_write_running, info->amr2); /* Wake up child so that it can verify it changed. */ ret = prod_child(&info->child_sync); PARENT_FAIL_IF(ret, &info->child_sync); ret = wait_child(&info->child_sync); if (ret) return ret; /* Write invalid AMR value in child. */ ret = ptrace_write_regs(pid, NT_PPC_PKEY, &info->invalid_amr, 1); PARENT_FAIL_IF(ret, &info->child_sync); printf("%-30s AMR: %016lx\n", ptrace_write_running, info->invalid_amr); /* Wake up child so that it can verify it didn't change. */ ret = prod_child(&info->child_sync); PARENT_FAIL_IF(ret, &info->child_sync); ret = wait_child(&info->child_sync); if (ret) return ret; /* Try to write to IAMR. */ regs[0] = info->amr1; regs[1] = info->invalid_iamr; ret = ptrace_write_regs(pid, NT_PPC_PKEY, regs, 2); PARENT_FAIL_IF(!ret, &info->child_sync); printf("%-30s AMR: %016lx IAMR: %016lx\n", ptrace_write_running, regs[0], regs[1]); /* Try to write to IAMR and UAMOR. */ regs[2] = info->invalid_uamor; ret = ptrace_write_regs(pid, NT_PPC_PKEY, regs, 3); PARENT_FAIL_IF(!ret, &info->child_sync); printf("%-30s AMR: %016lx IAMR: %016lx UAMOR: %016lx\n", ptrace_write_running, regs[0], regs[1], regs[2]); /* Verify that all registers still have their expected values. */ ret = ptrace_read_regs(pid, NT_PPC_PKEY, regs, 3); PARENT_FAIL_IF(ret, &info->child_sync); printf("%-30s AMR: %016lx IAMR: %016lx UAMOR: %016lx\n", ptrace_read_running, regs[0], regs[1], regs[2]); PARENT_FAIL_IF(regs[0] != info->amr2, &info->child_sync); PARENT_FAIL_IF(regs[1] != info->expected_iamr, &info->child_sync); PARENT_FAIL_IF(regs[2] != info->expected_uamor, &info->child_sync); /* Wake up child so that it can verify AMR didn't change and wrap up. */ ret = prod_child(&info->child_sync); PARENT_FAIL_IF(ret, &info->child_sync); ret = wait(&status); if (ret != pid) { printf("Child's exit status not captured\n"); ret = TEST_PASS; } else if (!WIFEXITED(status)) { printf("Child exited abnormally\n"); ret = TEST_FAIL; } else ret = WEXITSTATUS(status) ? TEST_FAIL : TEST_PASS; return ret; } static int ptrace_pkey(void) { struct shared_info *info; int shm_id; int ret; pid_t pid; shm_id = shmget(IPC_PRIVATE, sizeof(*info), 0777 | IPC_CREAT); info = shmat(shm_id, NULL, 0); ret = init_child_sync(&info->child_sync); if (ret) return ret; pid = fork(); if (pid < 0) { perror("fork() failed"); ret = TEST_FAIL; } else if (pid == 0) ret = child(info); else ret = parent(info, pid); shmdt(info); if (pid) { destroy_child_sync(&info->child_sync); shmctl(shm_id, IPC_RMID, NULL); } return ret; } int main(int argc, char *argv[]) { return test_harness(ptrace_pkey, "ptrace_pkey"); }
linux-master
tools/testing/selftests/powerpc/ptrace/ptrace-pkey.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Ptrace test for TAR, PPR, DSCR registers in the TM context * * Copyright (C) 2015 Anshuman Khandual, IBM Corporation. */ #include "ptrace.h" #include "tm.h" #include "ptrace-tar.h" int shm_id; unsigned long *cptr, *pptr; void tm_tar(void) { unsigned long result, texasr; unsigned long regs[3]; int ret; cptr = (unsigned long *)shmat(shm_id, NULL, 0); trans: cptr[1] = 0; asm __volatile__( "li 4, %[tar_1];" "mtspr %[sprn_tar], 4;" /* TAR_1 */ "li 4, %[dscr_1];" "mtspr %[sprn_dscr], 4;" /* DSCR_1 */ "or 31,31,31;" /* PPR_1*/ "1: ;" "tbegin.;" "beq 2f;" "li 4, %[tar_2];" "mtspr %[sprn_tar], 4;" /* TAR_2 */ "li 4, %[dscr_2];" "mtspr %[sprn_dscr], 4;" /* DSCR_2 */ "or 1,1,1;" /* PPR_2 */ "tsuspend.;" "li 0, 1;" "stw 0, 0(%[cptr1]);" "tresume.;" "b .;" "tend.;" "li 0, 0;" "ori %[res], 0, 0;" "b 3f;" /* Transaction abort handler */ "2: ;" "li 0, 1;" "ori %[res], 0, 0;" "mfspr %[texasr], %[sprn_texasr];" "3: ;" : [res] "=r" (result), [texasr] "=r" (texasr) : [sprn_dscr]"i"(SPRN_DSCR), [sprn_tar]"i"(SPRN_TAR), [sprn_ppr]"i"(SPRN_PPR), [sprn_texasr]"i"(SPRN_TEXASR), [tar_1]"i"(TAR_1), [dscr_1]"i"(DSCR_1), [tar_2]"i"(TAR_2), [dscr_2]"i"(DSCR_2), [cptr1] "b" (&cptr[1]) : "memory", "r0", "r3", "r4", "r5", "r6" ); /* TM failed, analyse */ if (result) { if (!cptr[0]) goto trans; regs[0] = mfspr(SPRN_TAR); regs[1] = mfspr(SPRN_PPR); regs[2] = mfspr(SPRN_DSCR); shmdt(&cptr); printf("%-30s TAR: %lu PPR: %lx DSCR: %lu\n", user_read, regs[0], regs[1], regs[2]); ret = validate_tar_registers(regs, TAR_4, PPR_4, DSCR_4); if (ret) exit(1); exit(0); } shmdt(&cptr); exit(1); } int trace_tm_tar(pid_t child) { unsigned long regs[3]; FAIL_IF(start_trace(child)); FAIL_IF(show_tar_registers(child, regs)); printf("%-30s TAR: %lu PPR: %lx DSCR: %lu\n", ptrace_read_running, regs[0], regs[1], regs[2]); FAIL_IF(validate_tar_registers(regs, TAR_2, PPR_2, DSCR_2)); FAIL_IF(show_tm_checkpointed_state(child, regs)); printf("%-30s TAR: %lu PPR: %lx DSCR: %lu\n", ptrace_read_ckpt, regs[0], regs[1], regs[2]); FAIL_IF(validate_tar_registers(regs, TAR_1, PPR_1, DSCR_1)); FAIL_IF(write_ckpt_tar_registers(child, TAR_4, PPR_4, DSCR_4)); printf("%-30s TAR: %u PPR: %lx DSCR: %u\n", ptrace_write_ckpt, TAR_4, PPR_4, DSCR_4); pptr[0] = 1; FAIL_IF(stop_trace(child)); return TEST_PASS; } int ptrace_tm_tar(void) { pid_t pid; int ret, status; SKIP_IF_MSG(!have_htm(), "Don't have transactional memory"); SKIP_IF_MSG(htm_is_synthetic(), "Transactional memory is synthetic"); shm_id = shmget(IPC_PRIVATE, sizeof(int) * 2, 0777|IPC_CREAT); pid = fork(); if (pid == 0) tm_tar(); pptr = (unsigned long *)shmat(shm_id, NULL, 0); pptr[0] = 0; if (pid) { while (!pptr[1]) asm volatile("" : : : "memory"); ret = trace_tm_tar(pid); if (ret) { kill(pid, SIGTERM); shmdt(&pptr); shmctl(shm_id, IPC_RMID, NULL); return TEST_FAIL; } shmdt(&pptr); ret = wait(&status); shmctl(shm_id, IPC_RMID, NULL); if (ret != pid) { printf("Child's exit status not captured\n"); return TEST_FAIL; } return (WIFEXITED(status) && WEXITSTATUS(status)) ? TEST_FAIL : TEST_PASS; } return TEST_PASS; } int main(int argc, char *argv[]) { return test_harness(ptrace_tm_tar, "ptrace_tm_tar"); }
linux-master
tools/testing/selftests/powerpc/ptrace/ptrace-tm-tar.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Ptrace test for GPR/FPR registers * * Copyright (C) 2015 Anshuman Khandual, IBM Corporation. */ #include "ptrace.h" #include "ptrace-gpr.h" #include "reg.h" #include <time.h> /* Tracer and Tracee Shared Data */ int shm_id; int *cptr, *pptr; extern void gpr_child_loop(int *read_flag, int *write_flag, unsigned long *gpr_buf, double *fpr_buf); unsigned long child_gpr_val, parent_gpr_val; double child_fpr_val, parent_fpr_val; static int child(void) { unsigned long gpr_buf[32]; double fpr_buf[32]; int i; cptr = (int *)shmat(shm_id, NULL, 0); memset(gpr_buf, 0, sizeof(gpr_buf)); memset(fpr_buf, 0, sizeof(fpr_buf)); for (i = 0; i < 32; i++) { gpr_buf[i] = child_gpr_val; fpr_buf[i] = child_fpr_val; } gpr_child_loop(&cptr[0], &cptr[1], gpr_buf, fpr_buf); shmdt((void *)cptr); FAIL_IF(validate_gpr(gpr_buf, parent_gpr_val)); FAIL_IF(validate_fpr_double(fpr_buf, parent_fpr_val)); return 0; } int trace_gpr(pid_t child) { __u64 tmp, fpr[32], *peeked_fprs; unsigned long gpr[18]; FAIL_IF(start_trace(child)); // Check child GPRs match what we expect using GETREGS FAIL_IF(show_gpr(child, gpr)); FAIL_IF(validate_gpr(gpr, child_gpr_val)); // Check child FPRs match what we expect using GETFPREGS FAIL_IF(show_fpr(child, fpr)); memcpy(&tmp, &child_fpr_val, sizeof(tmp)); FAIL_IF(validate_fpr(fpr, tmp)); // Check child FPRs match what we expect using PEEKUSR peeked_fprs = peek_fprs(child); FAIL_IF(!peeked_fprs); FAIL_IF(validate_fpr(peeked_fprs, tmp)); free(peeked_fprs); // Write child GPRs using SETREGS FAIL_IF(write_gpr(child, parent_gpr_val)); // Write child FPRs using SETFPREGS memcpy(&tmp, &parent_fpr_val, sizeof(tmp)); FAIL_IF(write_fpr(child, tmp)); // Check child FPRs match what we just set, using PEEKUSR peeked_fprs = peek_fprs(child); FAIL_IF(!peeked_fprs); FAIL_IF(validate_fpr(peeked_fprs, tmp)); // Write child FPRs using POKEUSR FAIL_IF(poke_fprs(child, (unsigned long *)peeked_fprs)); // Child will check its FPRs match before exiting FAIL_IF(stop_trace(child)); return TEST_PASS; } #ifndef __LONG_WIDTH__ #define __LONG_WIDTH__ (sizeof(long) * 8) #endif static uint64_t rand_reg(void) { uint64_t result; long r; r = random(); // Small values are typical result = r & 0xffff; if (r & 0x10000) return result; // Pointers tend to have high bits set result |= random() << (__LONG_WIDTH__ - 31); if (r & 0x100000) return result; // And sometimes we want a full 64-bit value result ^= random() << 16; return result; } int ptrace_gpr(void) { unsigned long seed; int ret, status; pid_t pid; seed = getpid() ^ time(NULL); printf("srand(%lu)\n", seed); srand(seed); child_gpr_val = rand_reg(); child_fpr_val = rand_reg(); parent_gpr_val = rand_reg(); parent_fpr_val = rand_reg(); shm_id = shmget(IPC_PRIVATE, sizeof(int) * 2, 0777|IPC_CREAT); pid = fork(); if (pid < 0) { perror("fork() failed"); return TEST_FAIL; } if (pid == 0) exit(child()); if (pid) { pptr = (int *)shmat(shm_id, NULL, 0); while (!pptr[1]) asm volatile("" : : : "memory"); ret = trace_gpr(pid); if (ret) { kill(pid, SIGTERM); shmdt((void *)pptr); shmctl(shm_id, IPC_RMID, NULL); return TEST_FAIL; } pptr[0] = 1; shmdt((void *)pptr); ret = wait(&status); shmctl(shm_id, IPC_RMID, NULL); if (ret != pid) { printf("Child's exit status not captured\n"); return TEST_FAIL; } return (WIFEXITED(status) && WEXITSTATUS(status)) ? TEST_FAIL : TEST_PASS; } return TEST_PASS; } int main(int argc, char *argv[]) { return test_harness(ptrace_gpr, "ptrace_gpr"); }
linux-master
tools/testing/selftests/powerpc/ptrace/ptrace-gpr.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * perf events self profiling example test case for hw breakpoints. * * This tests perf PERF_TYPE_BREAKPOINT parameters * 1) tests all variants of the break on read/write flags * 2) tests exclude_user == 0 and 1 * 3) test array matches (if DAWR is supported)) * 4) test different numbers of breakpoints matches * * Configure this breakpoint, then read and write the data a number of * times. Then check the output count from perf is as expected. * * Based on: * http://ozlabs.org/~anton/junkcode/perf_events_example1.c * * Copyright (C) 2018 Michael Neuling, IBM Corporation. */ #define _GNU_SOURCE #include <unistd.h> #include <assert.h> #include <sched.h> #include <stdio.h> #include <stdlib.h> #include <signal.h> #include <string.h> #include <sys/ioctl.h> #include <sys/wait.h> #include <sys/ptrace.h> #include <sys/resource.h> #include <sys/sysinfo.h> #include <asm/ptrace.h> #include <elf.h> #include <pthread.h> #include <sys/syscall.h> #include <linux/perf_event.h> #include <linux/hw_breakpoint.h> #include "utils.h" #ifndef PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 #define PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 0x20 #endif #define MAX_LOOPS 10000 #define DAWR_LENGTH_MAX ((0x3f + 1) * 8) int nprocs; static volatile int a = 10; static volatile int b = 10; static volatile char c[512 + 8] __attribute__((aligned(512))); static void perf_event_attr_set(struct perf_event_attr *attr, __u32 type, __u64 addr, __u64 len, bool exclude_user) { memset(attr, 0, sizeof(struct perf_event_attr)); attr->type = PERF_TYPE_BREAKPOINT; attr->size = sizeof(struct perf_event_attr); attr->bp_type = type; attr->bp_addr = addr; attr->bp_len = len; attr->exclude_kernel = 1; attr->exclude_hv = 1; attr->exclude_guest = 1; attr->exclude_user = exclude_user; attr->disabled = 1; } static int perf_process_event_open_exclude_user(__u32 type, __u64 addr, __u64 len, bool exclude_user) { struct perf_event_attr attr; perf_event_attr_set(&attr, type, addr, len, exclude_user); return syscall(__NR_perf_event_open, &attr, getpid(), -1, -1, 0); } static int perf_process_event_open(__u32 type, __u64 addr, __u64 len) { struct perf_event_attr attr; perf_event_attr_set(&attr, type, addr, len, 0); return syscall(__NR_perf_event_open, &attr, getpid(), -1, -1, 0); } static int perf_cpu_event_open(long cpu, __u32 type, __u64 addr, __u64 len) { struct perf_event_attr attr; perf_event_attr_set(&attr, type, addr, len, 0); return syscall(__NR_perf_event_open, &attr, -1, cpu, -1, 0); } static void close_fds(int *fd, int n) { int i; for (i = 0; i < n; i++) close(fd[i]); } static unsigned long read_fds(int *fd, int n) { int i; unsigned long c = 0; unsigned long count = 0; size_t res; for (i = 0; i < n; i++) { res = read(fd[i], &c, sizeof(c)); assert(res == sizeof(unsigned long long)); count += c; } return count; } static void reset_fds(int *fd, int n) { int i; for (i = 0; i < n; i++) ioctl(fd[i], PERF_EVENT_IOC_RESET); } static void enable_fds(int *fd, int n) { int i; for (i = 0; i < n; i++) ioctl(fd[i], PERF_EVENT_IOC_ENABLE); } static void disable_fds(int *fd, int n) { int i; for (i = 0; i < n; i++) ioctl(fd[i], PERF_EVENT_IOC_DISABLE); } static int perf_systemwide_event_open(int *fd, __u32 type, __u64 addr, __u64 len) { int i, ncpus, cpu, ret = 0; struct rlimit rlim; cpu_set_t *mask; size_t size; if (getrlimit(RLIMIT_NOFILE, &rlim)) { perror("getrlimit"); return -1; } rlim.rlim_cur = 65536; if (setrlimit(RLIMIT_NOFILE, &rlim)) { perror("setrlimit"); return -1; } ncpus = get_nprocs_conf(); size = CPU_ALLOC_SIZE(ncpus); mask = CPU_ALLOC(ncpus); if (!mask) { perror("malloc"); return -1; } CPU_ZERO_S(size, mask); if (sched_getaffinity(0, size, mask)) { perror("sched_getaffinity"); ret = -1; goto done; } for (i = 0, cpu = 0; i < nprocs && cpu < ncpus; cpu++) { if (!CPU_ISSET_S(cpu, size, mask)) continue; fd[i] = perf_cpu_event_open(cpu, type, addr, len); if (fd[i] < 0) { perror("perf_systemwide_event_open"); close_fds(fd, i); ret = fd[i]; goto done; } i++; } if (i < nprocs) { printf("Error: Number of online cpus reduced since start of test: %d < %d\n", i, nprocs); close_fds(fd, i); ret = -1; } done: CPU_FREE(mask); return ret; } static inline bool breakpoint_test(int len) { int fd; /* bp_addr can point anywhere but needs to be aligned */ fd = perf_process_event_open(HW_BREAKPOINT_R, (__u64)(&fd) & 0xfffffffffffff800, len); if (fd < 0) return false; close(fd); return true; } static inline bool perf_breakpoint_supported(void) { return breakpoint_test(4); } static inline bool dawr_supported(void) { return breakpoint_test(DAWR_LENGTH_MAX); } static int runtestsingle(int readwriteflag, int exclude_user, int arraytest) { int i,j; size_t res; unsigned long long breaks, needed; int readint; int readintarraybig[2*DAWR_LENGTH_MAX/sizeof(int)]; int *readintalign; volatile int *ptr; int break_fd; int loop_num = MAX_LOOPS - (rand() % 100); /* provide some variability */ volatile int *k; __u64 len; /* align to 0x400 boundary as required by DAWR */ readintalign = (int *)(((unsigned long)readintarraybig + 0x7ff) & 0xfffffffffffff800); ptr = &readint; if (arraytest) ptr = &readintalign[0]; len = arraytest ? DAWR_LENGTH_MAX : sizeof(int); break_fd = perf_process_event_open_exclude_user(readwriteflag, (__u64)ptr, len, exclude_user); if (break_fd < 0) { perror("perf_process_event_open_exclude_user"); exit(1); } /* start counters */ ioctl(break_fd, PERF_EVENT_IOC_ENABLE); /* Test a bunch of reads and writes */ k = &readint; for (i = 0; i < loop_num; i++) { if (arraytest) k = &(readintalign[i % (DAWR_LENGTH_MAX/sizeof(int))]); j = *k; *k = j; } /* stop counters */ ioctl(break_fd, PERF_EVENT_IOC_DISABLE); /* read and check counters */ res = read(break_fd, &breaks, sizeof(unsigned long long)); assert(res == sizeof(unsigned long long)); /* we read and write each loop, so subtract the ones we are counting */ needed = 0; if (readwriteflag & HW_BREAKPOINT_R) needed += loop_num; if (readwriteflag & HW_BREAKPOINT_W) needed += loop_num; needed = needed * (1 - exclude_user); printf("TESTED: addr:0x%lx brks:% 8lld loops:% 8i rw:%i !user:%i array:%i\n", (unsigned long int)ptr, breaks, loop_num, readwriteflag, exclude_user, arraytest); if (breaks != needed) { printf("FAILED: 0x%lx brks:%lld needed:%lli %i %i %i\n\n", (unsigned long int)ptr, breaks, needed, loop_num, readwriteflag, exclude_user); return 1; } close(break_fd); return 0; } static int runtest_dar_outside(void) { void *target; volatile __u16 temp16; volatile __u64 temp64; int break_fd; unsigned long long breaks; int fail = 0; size_t res; target = malloc(8); if (!target) { perror("malloc failed"); exit(EXIT_FAILURE); } /* watch middle half of target array */ break_fd = perf_process_event_open(HW_BREAKPOINT_RW, (__u64)(target + 2), 4); if (break_fd < 0) { free(target); perror("perf_process_event_open"); exit(EXIT_FAILURE); } /* Shouldn't hit. */ ioctl(break_fd, PERF_EVENT_IOC_RESET); ioctl(break_fd, PERF_EVENT_IOC_ENABLE); temp16 = *((__u16 *)target); *((__u16 *)target) = temp16; ioctl(break_fd, PERF_EVENT_IOC_DISABLE); res = read(break_fd, &breaks, sizeof(unsigned long long)); assert(res == sizeof(unsigned long long)); if (breaks == 0) { printf("TESTED: No overlap\n"); } else { printf("FAILED: No overlap: %lld != 0\n", breaks); fail = 1; } /* Hit */ ioctl(break_fd, PERF_EVENT_IOC_RESET); ioctl(break_fd, PERF_EVENT_IOC_ENABLE); temp16 = *((__u16 *)(target + 1)); *((__u16 *)(target + 1)) = temp16; ioctl(break_fd, PERF_EVENT_IOC_DISABLE); res = read(break_fd, &breaks, sizeof(unsigned long long)); assert(res == sizeof(unsigned long long)); if (breaks == 2) { printf("TESTED: Partial overlap\n"); } else { printf("FAILED: Partial overlap: %lld != 2\n", breaks); fail = 1; } /* Hit */ ioctl(break_fd, PERF_EVENT_IOC_RESET); ioctl(break_fd, PERF_EVENT_IOC_ENABLE); temp16 = *((__u16 *)(target + 5)); *((__u16 *)(target + 5)) = temp16; ioctl(break_fd, PERF_EVENT_IOC_DISABLE); res = read(break_fd, &breaks, sizeof(unsigned long long)); assert(res == sizeof(unsigned long long)); if (breaks == 2) { printf("TESTED: Partial overlap\n"); } else { printf("FAILED: Partial overlap: %lld != 2\n", breaks); fail = 1; } /* Shouldn't Hit */ ioctl(break_fd, PERF_EVENT_IOC_RESET); ioctl(break_fd, PERF_EVENT_IOC_ENABLE); temp16 = *((__u16 *)(target + 6)); *((__u16 *)(target + 6)) = temp16; ioctl(break_fd, PERF_EVENT_IOC_DISABLE); res = read(break_fd, &breaks, sizeof(unsigned long long)); assert(res == sizeof(unsigned long long)); if (breaks == 0) { printf("TESTED: No overlap\n"); } else { printf("FAILED: No overlap: %lld != 0\n", breaks); fail = 1; } /* Hit */ ioctl(break_fd, PERF_EVENT_IOC_RESET); ioctl(break_fd, PERF_EVENT_IOC_ENABLE); temp64 = *((__u64 *)target); *((__u64 *)target) = temp64; ioctl(break_fd, PERF_EVENT_IOC_DISABLE); res = read(break_fd, &breaks, sizeof(unsigned long long)); assert(res == sizeof(unsigned long long)); if (breaks == 2) { printf("TESTED: Full overlap\n"); } else { printf("FAILED: Full overlap: %lld != 2\n", breaks); fail = 1; } free(target); close(break_fd); return fail; } static void multi_dawr_workload(void) { a += 10; b += 10; c[512 + 1] += 'a'; } static int test_process_multi_diff_addr(void) { unsigned long long breaks1 = 0, breaks2 = 0; int fd1, fd2; char *desc = "Process specific, Two events, diff addr"; size_t res; fd1 = perf_process_event_open(HW_BREAKPOINT_RW, (__u64)&a, (__u64)sizeof(a)); if (fd1 < 0) { perror("perf_process_event_open"); exit(EXIT_FAILURE); } fd2 = perf_process_event_open(HW_BREAKPOINT_RW, (__u64)&b, (__u64)sizeof(b)); if (fd2 < 0) { close(fd1); perror("perf_process_event_open"); exit(EXIT_FAILURE); } ioctl(fd1, PERF_EVENT_IOC_RESET); ioctl(fd2, PERF_EVENT_IOC_RESET); ioctl(fd1, PERF_EVENT_IOC_ENABLE); ioctl(fd2, PERF_EVENT_IOC_ENABLE); multi_dawr_workload(); ioctl(fd1, PERF_EVENT_IOC_DISABLE); ioctl(fd2, PERF_EVENT_IOC_DISABLE); res = read(fd1, &breaks1, sizeof(breaks1)); assert(res == sizeof(unsigned long long)); res = read(fd2, &breaks2, sizeof(breaks2)); assert(res == sizeof(unsigned long long)); close(fd1); close(fd2); if (breaks1 != 2 || breaks2 != 2) { printf("FAILED: %s: %lld != 2 || %lld != 2\n", desc, breaks1, breaks2); return 1; } printf("TESTED: %s\n", desc); return 0; } static int test_process_multi_same_addr(void) { unsigned long long breaks1 = 0, breaks2 = 0; int fd1, fd2; char *desc = "Process specific, Two events, same addr"; size_t res; fd1 = perf_process_event_open(HW_BREAKPOINT_RW, (__u64)&a, (__u64)sizeof(a)); if (fd1 < 0) { perror("perf_process_event_open"); exit(EXIT_FAILURE); } fd2 = perf_process_event_open(HW_BREAKPOINT_RW, (__u64)&a, (__u64)sizeof(a)); if (fd2 < 0) { close(fd1); perror("perf_process_event_open"); exit(EXIT_FAILURE); } ioctl(fd1, PERF_EVENT_IOC_RESET); ioctl(fd2, PERF_EVENT_IOC_RESET); ioctl(fd1, PERF_EVENT_IOC_ENABLE); ioctl(fd2, PERF_EVENT_IOC_ENABLE); multi_dawr_workload(); ioctl(fd1, PERF_EVENT_IOC_DISABLE); ioctl(fd2, PERF_EVENT_IOC_DISABLE); res = read(fd1, &breaks1, sizeof(breaks1)); assert(res == sizeof(unsigned long long)); res = read(fd2, &breaks2, sizeof(breaks2)); assert(res == sizeof(unsigned long long)); close(fd1); close(fd2); if (breaks1 != 2 || breaks2 != 2) { printf("FAILED: %s: %lld != 2 || %lld != 2\n", desc, breaks1, breaks2); return 1; } printf("TESTED: %s\n", desc); return 0; } static int test_process_multi_diff_addr_ro_wo(void) { unsigned long long breaks1 = 0, breaks2 = 0; int fd1, fd2; char *desc = "Process specific, Two events, diff addr, one is RO, other is WO"; size_t res; fd1 = perf_process_event_open(HW_BREAKPOINT_W, (__u64)&a, (__u64)sizeof(a)); if (fd1 < 0) { perror("perf_process_event_open"); exit(EXIT_FAILURE); } fd2 = perf_process_event_open(HW_BREAKPOINT_R, (__u64)&b, (__u64)sizeof(b)); if (fd2 < 0) { close(fd1); perror("perf_process_event_open"); exit(EXIT_FAILURE); } ioctl(fd1, PERF_EVENT_IOC_RESET); ioctl(fd2, PERF_EVENT_IOC_RESET); ioctl(fd1, PERF_EVENT_IOC_ENABLE); ioctl(fd2, PERF_EVENT_IOC_ENABLE); multi_dawr_workload(); ioctl(fd1, PERF_EVENT_IOC_DISABLE); ioctl(fd2, PERF_EVENT_IOC_DISABLE); res = read(fd1, &breaks1, sizeof(breaks1)); assert(res == sizeof(unsigned long long)); res = read(fd2, &breaks2, sizeof(breaks2)); assert(res == sizeof(unsigned long long)); close(fd1); close(fd2); if (breaks1 != 1 || breaks2 != 1) { printf("FAILED: %s: %lld != 1 || %lld != 1\n", desc, breaks1, breaks2); return 1; } printf("TESTED: %s\n", desc); return 0; } static int test_process_multi_same_addr_ro_wo(void) { unsigned long long breaks1 = 0, breaks2 = 0; int fd1, fd2; char *desc = "Process specific, Two events, same addr, one is RO, other is WO"; size_t res; fd1 = perf_process_event_open(HW_BREAKPOINT_R, (__u64)&a, (__u64)sizeof(a)); if (fd1 < 0) { perror("perf_process_event_open"); exit(EXIT_FAILURE); } fd2 = perf_process_event_open(HW_BREAKPOINT_W, (__u64)&a, (__u64)sizeof(a)); if (fd2 < 0) { close(fd1); perror("perf_process_event_open"); exit(EXIT_FAILURE); } ioctl(fd1, PERF_EVENT_IOC_RESET); ioctl(fd2, PERF_EVENT_IOC_RESET); ioctl(fd1, PERF_EVENT_IOC_ENABLE); ioctl(fd2, PERF_EVENT_IOC_ENABLE); multi_dawr_workload(); ioctl(fd1, PERF_EVENT_IOC_DISABLE); ioctl(fd2, PERF_EVENT_IOC_DISABLE); res = read(fd1, &breaks1, sizeof(breaks1)); assert(res == sizeof(unsigned long long)); res = read(fd2, &breaks2, sizeof(breaks2)); assert(res == sizeof(unsigned long long)); close(fd1); close(fd2); if (breaks1 != 1 || breaks2 != 1) { printf("FAILED: %s: %lld != 1 || %lld != 1\n", desc, breaks1, breaks2); return 1; } printf("TESTED: %s\n", desc); return 0; } static int test_syswide_multi_diff_addr(void) { unsigned long long breaks1 = 0, breaks2 = 0; int *fd1 = malloc(nprocs * sizeof(int)); int *fd2 = malloc(nprocs * sizeof(int)); char *desc = "Systemwide, Two events, diff addr"; int ret; ret = perf_systemwide_event_open(fd1, HW_BREAKPOINT_RW, (__u64)&a, (__u64)sizeof(a)); if (ret) exit(EXIT_FAILURE); ret = perf_systemwide_event_open(fd2, HW_BREAKPOINT_RW, (__u64)&b, (__u64)sizeof(b)); if (ret) { close_fds(fd1, nprocs); exit(EXIT_FAILURE); } reset_fds(fd1, nprocs); reset_fds(fd2, nprocs); enable_fds(fd1, nprocs); enable_fds(fd2, nprocs); multi_dawr_workload(); disable_fds(fd1, nprocs); disable_fds(fd2, nprocs); breaks1 = read_fds(fd1, nprocs); breaks2 = read_fds(fd2, nprocs); close_fds(fd1, nprocs); close_fds(fd2, nprocs); free(fd1); free(fd2); if (breaks1 != 2 || breaks2 != 2) { printf("FAILED: %s: %lld != 2 || %lld != 2\n", desc, breaks1, breaks2); return 1; } printf("TESTED: %s\n", desc); return 0; } static int test_syswide_multi_same_addr(void) { unsigned long long breaks1 = 0, breaks2 = 0; int *fd1 = malloc(nprocs * sizeof(int)); int *fd2 = malloc(nprocs * sizeof(int)); char *desc = "Systemwide, Two events, same addr"; int ret; ret = perf_systemwide_event_open(fd1, HW_BREAKPOINT_RW, (__u64)&a, (__u64)sizeof(a)); if (ret) exit(EXIT_FAILURE); ret = perf_systemwide_event_open(fd2, HW_BREAKPOINT_RW, (__u64)&a, (__u64)sizeof(a)); if (ret) { close_fds(fd1, nprocs); exit(EXIT_FAILURE); } reset_fds(fd1, nprocs); reset_fds(fd2, nprocs); enable_fds(fd1, nprocs); enable_fds(fd2, nprocs); multi_dawr_workload(); disable_fds(fd1, nprocs); disable_fds(fd2, nprocs); breaks1 = read_fds(fd1, nprocs); breaks2 = read_fds(fd2, nprocs); close_fds(fd1, nprocs); close_fds(fd2, nprocs); free(fd1); free(fd2); if (breaks1 != 2 || breaks2 != 2) { printf("FAILED: %s: %lld != 2 || %lld != 2\n", desc, breaks1, breaks2); return 1; } printf("TESTED: %s\n", desc); return 0; } static int test_syswide_multi_diff_addr_ro_wo(void) { unsigned long long breaks1 = 0, breaks2 = 0; int *fd1 = malloc(nprocs * sizeof(int)); int *fd2 = malloc(nprocs * sizeof(int)); char *desc = "Systemwide, Two events, diff addr, one is RO, other is WO"; int ret; ret = perf_systemwide_event_open(fd1, HW_BREAKPOINT_W, (__u64)&a, (__u64)sizeof(a)); if (ret) exit(EXIT_FAILURE); ret = perf_systemwide_event_open(fd2, HW_BREAKPOINT_R, (__u64)&b, (__u64)sizeof(b)); if (ret) { close_fds(fd1, nprocs); exit(EXIT_FAILURE); } reset_fds(fd1, nprocs); reset_fds(fd2, nprocs); enable_fds(fd1, nprocs); enable_fds(fd2, nprocs); multi_dawr_workload(); disable_fds(fd1, nprocs); disable_fds(fd2, nprocs); breaks1 = read_fds(fd1, nprocs); breaks2 = read_fds(fd2, nprocs); close_fds(fd1, nprocs); close_fds(fd2, nprocs); free(fd1); free(fd2); if (breaks1 != 1 || breaks2 != 1) { printf("FAILED: %s: %lld != 1 || %lld != 1\n", desc, breaks1, breaks2); return 1; } printf("TESTED: %s\n", desc); return 0; } static int test_syswide_multi_same_addr_ro_wo(void) { unsigned long long breaks1 = 0, breaks2 = 0; int *fd1 = malloc(nprocs * sizeof(int)); int *fd2 = malloc(nprocs * sizeof(int)); char *desc = "Systemwide, Two events, same addr, one is RO, other is WO"; int ret; ret = perf_systemwide_event_open(fd1, HW_BREAKPOINT_W, (__u64)&a, (__u64)sizeof(a)); if (ret) exit(EXIT_FAILURE); ret = perf_systemwide_event_open(fd2, HW_BREAKPOINT_R, (__u64)&a, (__u64)sizeof(a)); if (ret) { close_fds(fd1, nprocs); exit(EXIT_FAILURE); } reset_fds(fd1, nprocs); reset_fds(fd2, nprocs); enable_fds(fd1, nprocs); enable_fds(fd2, nprocs); multi_dawr_workload(); disable_fds(fd1, nprocs); disable_fds(fd2, nprocs); breaks1 = read_fds(fd1, nprocs); breaks2 = read_fds(fd2, nprocs); close_fds(fd1, nprocs); close_fds(fd2, nprocs); free(fd1); free(fd2); if (breaks1 != 1 || breaks2 != 1) { printf("FAILED: %s: %lld != 1 || %lld != 1\n", desc, breaks1, breaks2); return 1; } printf("TESTED: %s\n", desc); return 0; } static int runtest_multi_dawr(void) { int ret = 0; ret |= test_process_multi_diff_addr(); ret |= test_process_multi_same_addr(); ret |= test_process_multi_diff_addr_ro_wo(); ret |= test_process_multi_same_addr_ro_wo(); ret |= test_syswide_multi_diff_addr(); ret |= test_syswide_multi_same_addr(); ret |= test_syswide_multi_diff_addr_ro_wo(); ret |= test_syswide_multi_same_addr_ro_wo(); return ret; } static int runtest_unaligned_512bytes(void) { unsigned long long breaks = 0; int fd; char *desc = "Process specific, 512 bytes, unaligned"; __u64 addr = (__u64)&c + 8; size_t res; fd = perf_process_event_open(HW_BREAKPOINT_RW, addr, 512); if (fd < 0) { perror("perf_process_event_open"); exit(EXIT_FAILURE); } ioctl(fd, PERF_EVENT_IOC_RESET); ioctl(fd, PERF_EVENT_IOC_ENABLE); multi_dawr_workload(); ioctl(fd, PERF_EVENT_IOC_DISABLE); res = read(fd, &breaks, sizeof(breaks)); assert(res == sizeof(unsigned long long)); close(fd); if (breaks != 2) { printf("FAILED: %s: %lld != 2\n", desc, breaks); return 1; } printf("TESTED: %s\n", desc); return 0; } /* There is no perf api to find number of available watchpoints. Use ptrace. */ static int get_nr_wps(bool *arch_31) { struct ppc_debug_info dbginfo; int child_pid; child_pid = fork(); if (!child_pid) { int ret = ptrace(PTRACE_TRACEME, 0, NULL, 0); if (ret) { perror("PTRACE_TRACEME failed\n"); exit(EXIT_FAILURE); } kill(getpid(), SIGUSR1); sleep(1); exit(EXIT_SUCCESS); } wait(NULL); if (ptrace(PPC_PTRACE_GETHWDBGINFO, child_pid, NULL, &dbginfo)) { perror("Can't get breakpoint info"); exit(EXIT_FAILURE); } *arch_31 = !!(dbginfo.features & PPC_DEBUG_FEATURE_DATA_BP_ARCH_31); return dbginfo.num_data_bps; } static int runtest(void) { int rwflag; int exclude_user; int ret; bool dawr = dawr_supported(); bool arch_31 = false; int nr_wps = get_nr_wps(&arch_31); /* * perf defines rwflag as two bits read and write and at least * one must be set. So range 1-3. */ for (rwflag = 1 ; rwflag < 4; rwflag++) { for (exclude_user = 0 ; exclude_user < 2; exclude_user++) { ret = runtestsingle(rwflag, exclude_user, 0); if (ret) return ret; /* if we have the dawr, we can do an array test */ if (!dawr) continue; ret = runtestsingle(rwflag, exclude_user, 1); if (ret) return ret; } } ret = runtest_dar_outside(); if (ret) return ret; if (dawr && nr_wps > 1) { nprocs = get_nprocs(); ret = runtest_multi_dawr(); if (ret) return ret; } if (dawr && arch_31) ret = runtest_unaligned_512bytes(); return ret; } static int perf_hwbreak(void) { srand ( time(NULL) ); SKIP_IF_MSG(!perf_breakpoint_supported(), "Perf breakpoints not supported"); return runtest(); } int main(int argc, char *argv[], char **envp) { return test_harness(perf_hwbreak, "perf_hwbreak"); }
linux-master
tools/testing/selftests/powerpc/ptrace/perf-hwbreak.c
// SPDX-License-Identifier: GPL-2.0-only /* * POWER Data Stream Control Register (DSCR) sysfs interface test * * This test updates to system wide DSCR default through the sysfs interface * and then verifies that all the CPU specific DSCR defaults are updated as * well verified from their sysfs interfaces. * * Copyright 2015, Anshuman Khandual, IBM Corporation. */ #include "dscr.h" static int check_cpu_dscr_default(char *file, unsigned long val) { unsigned long cpu_dscr; int err; err = read_ulong(file, &cpu_dscr, 16); if (err) return err; if (cpu_dscr != val) { printf("DSCR match failed: %ld (system) %ld (cpu)\n", val, cpu_dscr); return 1; } return 0; } static int check_all_cpu_dscr_defaults(unsigned long val) { DIR *sysfs; struct dirent *dp; char file[LEN_MAX]; sysfs = opendir(CPU_PATH); if (!sysfs) { perror("opendir() failed"); return 1; } while ((dp = readdir(sysfs))) { int len; if (!(dp->d_type & DT_DIR)) continue; if (!strcmp(dp->d_name, "cpuidle")) continue; if (!strstr(dp->d_name, "cpu")) continue; len = snprintf(file, LEN_MAX, "%s%s/dscr", CPU_PATH, dp->d_name); if (len >= LEN_MAX) continue; if (access(file, F_OK)) continue; if (check_cpu_dscr_default(file, val)) { closedir(sysfs); return 1; } } closedir(sysfs); return 0; } int dscr_sysfs(void) { unsigned long orig_dscr_default; SKIP_IF(!have_hwcap2(PPC_FEATURE2_DSCR)); orig_dscr_default = get_default_dscr(); for (int i = 0; i < DSCR_MAX; i++) { set_default_dscr(i); if (check_all_cpu_dscr_defaults(i)) goto fail; } set_default_dscr(orig_dscr_default); return 0; fail: set_default_dscr(orig_dscr_default); return 1; } int main(int argc, char *argv[]) { return test_harness(dscr_sysfs, "dscr_sysfs_test"); }
linux-master
tools/testing/selftests/powerpc/dscr/dscr_sysfs_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * POWER Data Stream Control Register (DSCR) explicit test * * This test modifies the DSCR value using mtspr instruction and * verifies the change with mfspr instruction. It uses both the * privilege state SPR and the problem state SPR for this purpose. * * When using the privilege state SPR, the instructions such as * mfspr or mtspr are privileged and the kernel emulates them * for us. Instructions using problem state SPR can be executed * directly without any emulation if the HW supports them. Else * they also get emulated by the kernel. * * Copyright 2012, Anton Blanchard, IBM Corporation. * Copyright 2015, Anshuman Khandual, IBM Corporation. */ #define _GNU_SOURCE #include "dscr.h" #include "utils.h" #include <pthread.h> #include <sched.h> #include <semaphore.h> void *dscr_explicit_lockstep_thread(void *args) { sem_t *prev = (sem_t *)args; sem_t *next = (sem_t *)args + 1; unsigned long expected_dscr = 0; set_dscr(expected_dscr); srand(gettid()); for (int i = 0; i < COUNT; i++) { FAIL_IF_EXIT(sem_wait(prev)); FAIL_IF_EXIT(expected_dscr != get_dscr()); FAIL_IF_EXIT(expected_dscr != get_dscr_usr()); expected_dscr = (expected_dscr + 1) % DSCR_MAX; set_dscr(expected_dscr); FAIL_IF_EXIT(sem_post(next)); } return NULL; } int dscr_explicit_lockstep_test(void) { pthread_t thread; sem_t semaphores[2]; sem_t *prev = &semaphores[1]; /* reversed prev/next than for the other thread */ sem_t *next = &semaphores[0]; unsigned long expected_dscr = 0; SKIP_IF(!have_hwcap2(PPC_FEATURE2_DSCR)); srand(gettid()); set_dscr(expected_dscr); FAIL_IF(sem_init(prev, 0, 0)); FAIL_IF(sem_init(next, 0, 1)); /* other thread starts first */ FAIL_IF(bind_to_cpu(BIND_CPU_ANY) < 0); FAIL_IF(pthread_create(&thread, NULL, dscr_explicit_lockstep_thread, (void *)semaphores)); for (int i = 0; i < COUNT; i++) { FAIL_IF(sem_wait(prev)); FAIL_IF(expected_dscr != get_dscr()); FAIL_IF(expected_dscr != get_dscr_usr()); expected_dscr = (expected_dscr - 1) % DSCR_MAX; set_dscr(expected_dscr); FAIL_IF(sem_post(next)); } FAIL_IF(pthread_join(thread, NULL)); FAIL_IF(sem_destroy(prev)); FAIL_IF(sem_destroy(next)); return 0; } struct random_thread_args { pthread_t thread_id; bool do_yields; pthread_barrier_t *barrier; }; void *dscr_explicit_random_thread(void *in) { struct random_thread_args *args = (struct random_thread_args *)in; unsigned long expected_dscr = 0; int err; srand(gettid()); err = pthread_barrier_wait(args->barrier); FAIL_IF_EXIT(err != 0 && err != PTHREAD_BARRIER_SERIAL_THREAD); for (int i = 0; i < COUNT; i++) { expected_dscr = rand() % DSCR_MAX; set_dscr(expected_dscr); for (int j = rand() % 5; j > 0; --j) { FAIL_IF_EXIT(get_dscr() != expected_dscr); FAIL_IF_EXIT(get_dscr_usr() != expected_dscr); if (args->do_yields && rand() % 2) sched_yield(); } expected_dscr = rand() % DSCR_MAX; set_dscr_usr(expected_dscr); for (int j = rand() % 5; j > 0; --j) { FAIL_IF_EXIT(get_dscr() != expected_dscr); FAIL_IF_EXIT(get_dscr_usr() != expected_dscr); if (args->do_yields && rand() % 2) sched_yield(); } } return NULL; } int dscr_explicit_random_test(void) { struct random_thread_args threads[THREADS]; pthread_barrier_t barrier; SKIP_IF(!have_hwcap2(PPC_FEATURE2_DSCR)); FAIL_IF(pthread_barrier_init(&barrier, NULL, THREADS)); for (int i = 0; i < THREADS; i++) { threads[i].do_yields = i % 2 == 0; threads[i].barrier = &barrier; FAIL_IF(pthread_create(&threads[i].thread_id, NULL, dscr_explicit_random_thread, (void *)&threads[i])); } for (int i = 0; i < THREADS; i++) FAIL_IF(pthread_join(threads[i].thread_id, NULL)); FAIL_IF(pthread_barrier_destroy(&barrier)); return 0; } int main(int argc, char *argv[]) { unsigned long orig_dscr_default = 0; int err = 0; if (have_hwcap2(PPC_FEATURE2_DSCR)) orig_dscr_default = get_default_dscr(); err |= test_harness(dscr_explicit_lockstep_test, "dscr_explicit_lockstep_test"); err |= test_harness(dscr_explicit_random_test, "dscr_explicit_random_test"); if (have_hwcap2(PPC_FEATURE2_DSCR)) set_default_dscr(orig_dscr_default); return err; }
linux-master
tools/testing/selftests/powerpc/dscr/dscr_explicit_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * POWER Data Stream Control Register (DSCR) fork test * * This testcase modifies the DSCR using mtspr, forks and then * verifies that the child process has the correct changed DSCR * value using mfspr. * * When using the privilege state SPR, the instructions such as * mfspr or mtspr are privileged and the kernel emulates them * for us. Instructions using problem state SPR can be executed * directly without any emulation if the HW supports them. Else * they also get emulated by the kernel. * * Copyright 2012, Anton Blanchard, IBM Corporation. * Copyright 2015, Anshuman Khandual, IBM Corporation. */ #include "dscr.h" int dscr_inherit(void) { unsigned long i, dscr = 0; pid_t pid; SKIP_IF(!have_hwcap2(PPC_FEATURE2_DSCR)); srand(getpid()); set_dscr(dscr); for (i = 0; i < COUNT; i++) { unsigned long cur_dscr, cur_dscr_usr; dscr++; if (dscr > DSCR_MAX) dscr = 0; if (i % 2 == 0) set_dscr_usr(dscr); else set_dscr(dscr); pid = fork(); if (pid == -1) { perror("fork() failed"); exit(1); } else if (pid) { int status; if (waitpid(pid, &status, 0) == -1) { perror("waitpid() failed"); exit(1); } if (!WIFEXITED(status)) { fprintf(stderr, "Child didn't exit cleanly\n"); exit(1); } if (WEXITSTATUS(status) != 0) { fprintf(stderr, "Child didn't exit cleanly\n"); return 1; } } else { cur_dscr = get_dscr(); if (cur_dscr != dscr) { fprintf(stderr, "Kernel DSCR should be %ld " "but is %ld\n", dscr, cur_dscr); exit(1); } cur_dscr_usr = get_dscr_usr(); if (cur_dscr_usr != dscr) { fprintf(stderr, "User DSCR should be %ld " "but is %ld\n", dscr, cur_dscr_usr); exit(1); } exit(0); } } return 0; } int main(int argc, char *argv[]) { return test_harness(dscr_inherit, "dscr_inherit_test"); }
linux-master
tools/testing/selftests/powerpc/dscr/dscr_inherit_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * POWER Data Stream Control Register (DSCR) default test * * This test modifies the system wide default DSCR through * it's sysfs interface and then verifies that all threads * see the correct changed DSCR value immediately. * * Copyright 2012, Anton Blanchard, IBM Corporation. * Copyright 2015, Anshuman Khandual, IBM Corporation. */ #define _GNU_SOURCE #include "dscr.h" #include <pthread.h> #include <semaphore.h> #include <unistd.h> static void *dscr_default_lockstep_writer(void *arg) { sem_t *reader_sem = (sem_t *)arg; sem_t *writer_sem = (sem_t *)arg + 1; unsigned long expected_dscr = 0; for (int i = 0; i < COUNT; i++) { FAIL_IF_EXIT(sem_wait(writer_sem)); set_default_dscr(expected_dscr); expected_dscr = (expected_dscr + 1) % DSCR_MAX; FAIL_IF_EXIT(sem_post(reader_sem)); } return NULL; } int dscr_default_lockstep_test(void) { pthread_t writer; sem_t rw_semaphores[2]; sem_t *reader_sem = &rw_semaphores[0]; sem_t *writer_sem = &rw_semaphores[1]; unsigned long expected_dscr = 0; SKIP_IF(!have_hwcap2(PPC_FEATURE2_DSCR)); FAIL_IF(sem_init(reader_sem, 0, 0)); FAIL_IF(sem_init(writer_sem, 0, 1)); /* writer starts first */ FAIL_IF(bind_to_cpu(BIND_CPU_ANY) < 0); FAIL_IF(pthread_create(&writer, NULL, dscr_default_lockstep_writer, (void *)rw_semaphores)); for (int i = 0; i < COUNT ; i++) { FAIL_IF(sem_wait(reader_sem)); FAIL_IF(get_dscr() != expected_dscr); FAIL_IF(get_dscr_usr() != expected_dscr); expected_dscr = (expected_dscr + 1) % DSCR_MAX; FAIL_IF(sem_post(writer_sem)); } FAIL_IF(pthread_join(writer, NULL)); FAIL_IF(sem_destroy(reader_sem)); FAIL_IF(sem_destroy(writer_sem)); return 0; } struct random_thread_args { pthread_t thread_id; unsigned long *expected_system_dscr; pthread_rwlock_t *rw_lock; pthread_barrier_t *barrier; }; static void *dscr_default_random_thread(void *in) { struct random_thread_args *args = (struct random_thread_args *)in; unsigned long *expected_dscr_p = args->expected_system_dscr; pthread_rwlock_t *rw_lock = args->rw_lock; int err; srand(gettid()); err = pthread_barrier_wait(args->barrier); FAIL_IF_EXIT(err != 0 && err != PTHREAD_BARRIER_SERIAL_THREAD); for (int i = 0; i < COUNT; i++) { unsigned long expected_dscr; unsigned long current_dscr; unsigned long current_dscr_usr; FAIL_IF_EXIT(pthread_rwlock_rdlock(rw_lock)); expected_dscr = *expected_dscr_p; current_dscr = get_dscr(); current_dscr_usr = get_dscr_usr(); FAIL_IF_EXIT(pthread_rwlock_unlock(rw_lock)); FAIL_IF_EXIT(current_dscr != expected_dscr); FAIL_IF_EXIT(current_dscr_usr != expected_dscr); if (rand() % 10 == 0) { unsigned long next_dscr; FAIL_IF_EXIT(pthread_rwlock_wrlock(rw_lock)); next_dscr = (*expected_dscr_p + 1) % DSCR_MAX; set_default_dscr(next_dscr); *expected_dscr_p = next_dscr; FAIL_IF_EXIT(pthread_rwlock_unlock(rw_lock)); } } pthread_exit((void *)0); } int dscr_default_random_test(void) { struct random_thread_args threads[THREADS]; unsigned long expected_system_dscr = 0; pthread_rwlockattr_t rwlock_attr; pthread_rwlock_t rw_lock; pthread_barrier_t barrier; SKIP_IF(!have_hwcap2(PPC_FEATURE2_DSCR)); FAIL_IF(pthread_rwlockattr_setkind_np(&rwlock_attr, PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP)); FAIL_IF(pthread_rwlock_init(&rw_lock, &rwlock_attr)); FAIL_IF(pthread_barrier_init(&barrier, NULL, THREADS)); set_default_dscr(expected_system_dscr); for (int i = 0; i < THREADS; i++) { threads[i].expected_system_dscr = &expected_system_dscr; threads[i].rw_lock = &rw_lock; threads[i].barrier = &barrier; FAIL_IF(pthread_create(&threads[i].thread_id, NULL, dscr_default_random_thread, (void *)&threads[i])); } for (int i = 0; i < THREADS; i++) FAIL_IF(pthread_join(threads[i].thread_id, NULL)); FAIL_IF(pthread_barrier_destroy(&barrier)); FAIL_IF(pthread_rwlock_destroy(&rw_lock)); return 0; } int main(int argc, char *argv[]) { unsigned long orig_dscr_default = 0; int err = 0; if (have_hwcap2(PPC_FEATURE2_DSCR)) orig_dscr_default = get_default_dscr(); err |= test_harness(dscr_default_lockstep_test, "dscr_default_lockstep_test"); err |= test_harness(dscr_default_random_test, "dscr_default_random_test"); if (have_hwcap2(PPC_FEATURE2_DSCR)) set_default_dscr(orig_dscr_default); return err; }
linux-master
tools/testing/selftests/powerpc/dscr/dscr_default_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * POWER Data Stream Control Register (DSCR) SPR test * * This test modifies the DSCR value through both the SPR number * based mtspr instruction and then makes sure that the same is * reflected through mfspr instruction using either of the SPR * numbers. * * When using the privilege state SPR, the instructions such as * mfspr or mtspr are privileged and the kernel emulates them * for us. Instructions using problem state SPR can be executed * directly without any emulation if the HW supports them. Else * they also get emulated by the kernel. * * Copyright 2013, Anton Blanchard, IBM Corporation. * Copyright 2015, Anshuman Khandual, IBM Corporation. */ #include "dscr.h" static int check_dscr(char *str) { unsigned long cur_dscr, cur_dscr_usr; cur_dscr = get_dscr(); cur_dscr_usr = get_dscr_usr(); if (cur_dscr != cur_dscr_usr) { printf("%s set, kernel get %lx != user get %lx\n", str, cur_dscr, cur_dscr_usr); return 1; } return 0; } int dscr_user(void) { int i; SKIP_IF(!have_hwcap2(PPC_FEATURE2_DSCR)); check_dscr(""); for (i = 0; i < COUNT; i++) { set_dscr(i); if (check_dscr("kernel")) return 1; } for (i = 0; i < COUNT; i++) { set_dscr_usr(i); if (check_dscr("user")) return 1; } return 0; } int main(int argc, char *argv[]) { return test_harness(dscr_user, "dscr_user_test"); }
linux-master
tools/testing/selftests/powerpc/dscr/dscr_user_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * POWER Data Stream Control Register (DSCR) sysfs thread test * * This test updates the system wide DSCR default value through * sysfs interface which should then update all the CPU specific * DSCR default values which must also be then visible to threads * executing on individual CPUs on the system. * * Copyright 2015, Anshuman Khandual, IBM Corporation. */ #define _GNU_SOURCE #include "dscr.h" static int test_thread_dscr(unsigned long val) { unsigned long cur_dscr, cur_dscr_usr; cur_dscr = get_dscr(); cur_dscr_usr = get_dscr_usr(); if (val != cur_dscr) { printf("[cpu %d] Kernel DSCR should be %ld but is %ld\n", sched_getcpu(), val, cur_dscr); return 1; } if (val != cur_dscr_usr) { printf("[cpu %d] User DSCR should be %ld but is %ld\n", sched_getcpu(), val, cur_dscr_usr); return 1; } return 0; } static int check_cpu_dscr_thread(unsigned long val) { cpu_set_t mask; int cpu; for (cpu = 0; cpu < CPU_SETSIZE; cpu++) { CPU_ZERO(&mask); CPU_SET(cpu, &mask); if (sched_setaffinity(0, sizeof(mask), &mask)) continue; if (test_thread_dscr(val)) return 1; } return 0; } int dscr_sysfs_thread(void) { unsigned long orig_dscr_default; int i, j; SKIP_IF(!have_hwcap2(PPC_FEATURE2_DSCR)); orig_dscr_default = get_default_dscr(); for (i = 0; i < COUNT; i++) { for (j = 0; j < DSCR_MAX; j++) { set_default_dscr(j); if (check_cpu_dscr_thread(j)) goto fail; } } set_default_dscr(orig_dscr_default); return 0; fail: set_default_dscr(orig_dscr_default); return 1; } int main(int argc, char *argv[]) { return test_harness(dscr_sysfs_thread, "dscr_sysfs_thread_test"); }
linux-master
tools/testing/selftests/powerpc/dscr/dscr_sysfs_thread_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * POWER Data Stream Control Register (DSCR) fork exec test * * This testcase modifies the DSCR using mtspr, forks & execs and * verifies that the child is using the changed DSCR using mfspr. * * When using the privilege state SPR, the instructions such as * mfspr or mtspr are privileged and the kernel emulates them * for us. Instructions using problem state SPR can be executed * directly without any emulation if the HW supports them. Else * they also get emulated by the kernel. * * Copyright 2012, Anton Blanchard, IBM Corporation. * Copyright 2015, Anshuman Khandual, IBM Corporation. */ #include "dscr.h" static char *prog; static void do_exec(unsigned long parent_dscr) { unsigned long cur_dscr, cur_dscr_usr; cur_dscr = get_dscr(); cur_dscr_usr = get_dscr_usr(); if (cur_dscr != parent_dscr) { fprintf(stderr, "Parent DSCR %ld was not inherited " "over exec (kernel value)\n", parent_dscr); exit(1); } if (cur_dscr_usr != parent_dscr) { fprintf(stderr, "Parent DSCR %ld was not inherited " "over exec (user value)\n", parent_dscr); exit(1); } exit(0); } int dscr_inherit_exec(void) { unsigned long i, dscr = 0; pid_t pid; SKIP_IF(!have_hwcap2(PPC_FEATURE2_DSCR)); for (i = 0; i < COUNT; i++) { dscr++; if (dscr > DSCR_MAX) dscr = 0; if (dscr == get_default_dscr()) continue; if (i % 2 == 0) set_dscr_usr(dscr); else set_dscr(dscr); pid = fork(); if (pid == -1) { perror("fork() failed"); exit(1); } else if (pid) { int status; if (waitpid(pid, &status, 0) == -1) { perror("waitpid() failed"); exit(1); } if (!WIFEXITED(status)) { fprintf(stderr, "Child didn't exit cleanly\n"); exit(1); } if (WEXITSTATUS(status) != 0) { fprintf(stderr, "Child didn't exit cleanly\n"); return 1; } } else { char dscr_str[16]; sprintf(dscr_str, "%ld", dscr); execlp(prog, prog, "exec", dscr_str, NULL); exit(1); } } return 0; } int main(int argc, char *argv[]) { if (argc == 3 && !strcmp(argv[1], "exec")) { unsigned long parent_dscr; parent_dscr = atoi(argv[2]); do_exec(parent_dscr); } else if (argc != 1) { fprintf(stderr, "Usage: %s\n", argv[0]); exit(1); } prog = argv[0]; return test_harness(dscr_inherit_exec, "dscr_inherit_exec_test"); }
linux-master
tools/testing/selftests/powerpc/dscr/dscr_inherit_exec_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #define _GNU_SOURCE #include <elf.h> #include <limits.h> #include <stdio.h> #include <stdbool.h> #include <string.h> #include <sys/prctl.h> #include "event.h" #include "lib.h" #include "utils.h" /* * Test that per-event excludes work. */ static int per_event_excludes(void) { struct event *e, events[4]; int i; SKIP_IF(!have_hwcap2(PPC_FEATURE2_ARCH_2_07)); /* * We need to create the events disabled, otherwise the running/enabled * counts don't match up. */ e = &events[0]; event_init_opts(e, PERF_COUNT_HW_INSTRUCTIONS, PERF_TYPE_HARDWARE, "instructions"); e->attr.disabled = 1; e = &events[1]; event_init_opts(e, PERF_COUNT_HW_INSTRUCTIONS, PERF_TYPE_HARDWARE, "instructions(k)"); e->attr.disabled = 1; e->attr.exclude_user = 1; e->attr.exclude_hv = 1; e = &events[2]; event_init_opts(e, PERF_COUNT_HW_INSTRUCTIONS, PERF_TYPE_HARDWARE, "instructions(h)"); e->attr.disabled = 1; e->attr.exclude_user = 1; e->attr.exclude_kernel = 1; e = &events[3]; event_init_opts(e, PERF_COUNT_HW_INSTRUCTIONS, PERF_TYPE_HARDWARE, "instructions(u)"); e->attr.disabled = 1; e->attr.exclude_hv = 1; e->attr.exclude_kernel = 1; FAIL_IF(event_open(&events[0])); /* * The open here will fail if we don't have per event exclude support, * because the second event has an incompatible set of exclude settings * and we're asking for the events to be in a group. */ for (i = 1; i < 4; i++) FAIL_IF(event_open_with_group(&events[i], events[0].fd)); /* * Even though the above will fail without per-event excludes we keep * testing in order to be thorough. */ prctl(PR_TASK_PERF_EVENTS_ENABLE); /* Spin for a while */ for (i = 0; i < INT_MAX; i++) asm volatile("" : : : "memory"); prctl(PR_TASK_PERF_EVENTS_DISABLE); for (i = 0; i < 4; i++) { FAIL_IF(event_read(&events[i])); event_report(&events[i]); } /* * We should see that all events have enabled == running. That * shows that they were all on the PMU at once. */ for (i = 0; i < 4; i++) FAIL_IF(events[i].result.running != events[i].result.enabled); /* * We can also check that the result for instructions is >= all the * other counts. That's because it is counting all instructions while * the others are counting a subset. */ for (i = 1; i < 4; i++) FAIL_IF(events[0].result.value < events[i].result.value); for (i = 0; i < 4; i++) event_close(&events[i]); return 0; } int main(void) { return test_harness(per_event_excludes, "per_event_excludes"); }
linux-master
tools/testing/selftests/powerpc/pmu/per_event_excludes.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #define _GNU_SOURCE /* For CPU_ZERO etc. */ #include <errno.h> #include <sched.h> #include <setjmp.h> #include <stdlib.h> #include <sys/wait.h> #include "utils.h" #include "lib.h" #define PARENT_TOKEN 0xAA #define CHILD_TOKEN 0x55 int sync_with_child(union pipe read_pipe, union pipe write_pipe) { char c = PARENT_TOKEN; FAIL_IF(write(write_pipe.write_fd, &c, 1) != 1); FAIL_IF(read(read_pipe.read_fd, &c, 1) != 1); if (c != CHILD_TOKEN) /* sometimes expected */ return 1; return 0; } int wait_for_parent(union pipe read_pipe) { char c; FAIL_IF(read(read_pipe.read_fd, &c, 1) != 1); FAIL_IF(c != PARENT_TOKEN); return 0; } int notify_parent(union pipe write_pipe) { char c = CHILD_TOKEN; FAIL_IF(write(write_pipe.write_fd, &c, 1) != 1); return 0; } int notify_parent_of_error(union pipe write_pipe) { char c = ~CHILD_TOKEN; FAIL_IF(write(write_pipe.write_fd, &c, 1) != 1); return 0; } int wait_for_child(pid_t child_pid) { int rc; if (waitpid(child_pid, &rc, 0) == -1) { perror("waitpid"); return 1; } if (WIFEXITED(rc)) rc = WEXITSTATUS(rc); else rc = 1; /* Signal or other */ return rc; } int kill_child_and_wait(pid_t child_pid) { kill(child_pid, SIGTERM); return wait_for_child(child_pid); } static int eat_cpu_child(union pipe read_pipe, union pipe write_pipe) { volatile int i = 0; /* * We are just here to eat cpu and die. So make sure we can be killed, * and also don't do any custom SIGTERM handling. */ signal(SIGTERM, SIG_DFL); notify_parent(write_pipe); wait_for_parent(read_pipe); /* Soak up cpu forever */ while (1) i++; return 0; } pid_t eat_cpu(int (test_function)(void)) { union pipe read_pipe, write_pipe; int rc; pid_t pid; FAIL_IF(bind_to_cpu(BIND_CPU_ANY) < 0); if (pipe(read_pipe.fds) == -1) return -1; if (pipe(write_pipe.fds) == -1) return -1; pid = fork(); if (pid == 0) exit(eat_cpu_child(write_pipe, read_pipe)); if (sync_with_child(read_pipe, write_pipe)) { rc = -1; goto out; } printf("main test running as pid %d\n", getpid()); rc = test_function(); out: kill(pid, SIGKILL); return rc; } struct addr_range libc, vdso; int parse_proc_maps(void) { unsigned long start, end; char execute, name[128]; FILE *f; int rc; f = fopen("/proc/self/maps", "r"); if (!f) { perror("fopen"); return -1; } do { /* This skips line with no executable which is what we want */ rc = fscanf(f, "%lx-%lx %*c%*c%c%*c %*x %*d:%*d %*d %127s\n", &start, &end, &execute, name); if (rc <= 0) break; if (execute != 'x') continue; if (strstr(name, "libc")) { libc.first = start; libc.last = end - 1; } else if (strstr(name, "[vdso]")) { vdso.first = start; vdso.last = end - 1; } } while(1); fclose(f); return 0; } #define PARANOID_PATH "/proc/sys/kernel/perf_event_paranoid" bool require_paranoia_below(int level) { int err; long current; err = read_long(PARANOID_PATH, &current, 10); if (err) { printf("Couldn't parse " PARANOID_PATH "?\n"); return false; } return current < level; }
linux-master
tools/testing/selftests/powerpc/pmu/lib.c
/* * Copyright 2013, Michael Ellerman, IBM Corp. * Licensed under GPLv2. */ #define _GNU_SOURCE #include <stdio.h> #include <stdbool.h> #include <string.h> #include <sys/prctl.h> #include "event.h" #include "utils.h" #include "lib.h" extern void thirty_two_instruction_loop_with_ll_sc(u64 loops, u64 *ll_sc_target); static void setup_event(struct event *e, u64 config, int type, char *name) { event_init_opts(e, config, type, name); e->attr.disabled = 1; e->attr.exclude_kernel = 1; e->attr.exclude_hv = 1; e->attr.exclude_idle = 1; } static int do_count_loop(struct event *events, u64 instructions, u64 overhead, bool report) { s64 difference, expected; double percentage; u64 dummy; prctl(PR_TASK_PERF_EVENTS_ENABLE); /* Run for 1M instructions */ thirty_two_instruction_loop_with_ll_sc(instructions >> 5, &dummy); prctl(PR_TASK_PERF_EVENTS_DISABLE); event_read(&events[0]); event_read(&events[1]); event_read(&events[2]); expected = instructions + overhead + (events[2].result.value * 10); difference = events[0].result.value - expected; percentage = (double)difference / events[0].result.value * 100; if (report) { printf("-----\n"); event_report(&events[0]); event_report(&events[1]); event_report(&events[2]); printf("Looped for %llu instructions, overhead %llu\n", instructions, overhead); printf("Expected %llu\n", expected); printf("Actual %llu\n", events[0].result.value); printf("Delta %lld, %f%%\n", difference, percentage); } event_reset(&events[0]); event_reset(&events[1]); event_reset(&events[2]); if (difference < 0) difference = -difference; /* Tolerate a difference below 0.0001 % */ difference *= 10000 * 100; if (difference / events[0].result.value) return -1; return 0; } /* Count how many instructions it takes to do a null loop */ static u64 determine_overhead(struct event *events) { u64 current, overhead; int i; do_count_loop(events, 0, 0, false); overhead = events[0].result.value; for (i = 0; i < 100; i++) { do_count_loop(events, 0, 0, false); current = events[0].result.value; if (current < overhead) { printf("Replacing overhead %llu with %llu\n", overhead, current); overhead = current; } } return overhead; } #define PM_MRK_STCX_FAIL 0x03e158 #define PM_STCX_FAIL 0x01e058 static int test_body(void) { struct event events[3]; u64 overhead; // The STCX_FAIL event we use works on Power8 or later SKIP_IF(!have_hwcap2(PPC_FEATURE2_ARCH_2_07)); setup_event(&events[0], PERF_COUNT_HW_INSTRUCTIONS, PERF_TYPE_HARDWARE, "instructions"); setup_event(&events[1], PERF_COUNT_HW_CPU_CYCLES, PERF_TYPE_HARDWARE, "cycles"); setup_event(&events[2], PM_STCX_FAIL, PERF_TYPE_RAW, "stcx_fail"); if (event_open(&events[0])) { perror("perf_event_open"); return -1; } if (event_open_with_group(&events[1], events[0].fd)) { perror("perf_event_open"); return -1; } if (event_open_with_group(&events[2], events[0].fd)) { perror("perf_event_open"); return -1; } overhead = determine_overhead(events); printf("Overhead of null loop: %llu instructions\n", overhead); /* Run for 1Mi instructions */ FAIL_IF(do_count_loop(events, 1000000, overhead, true)); /* Run for 10Mi instructions */ FAIL_IF(do_count_loop(events, 10000000, overhead, true)); /* Run for 100Mi instructions */ FAIL_IF(do_count_loop(events, 100000000, overhead, true)); /* Run for 1Bi instructions */ FAIL_IF(do_count_loop(events, 1000000000, overhead, true)); /* Run for 16Bi instructions */ FAIL_IF(do_count_loop(events, 16000000000, overhead, true)); /* Run for 64Bi instructions */ FAIL_IF(do_count_loop(events, 64000000000, overhead, true)); event_close(&events[0]); event_close(&events[1]); return 0; } static int count_ll_sc(void) { return eat_cpu(test_body); } int main(void) { return test_harness(count_ll_sc, "count_ll_sc"); }
linux-master
tools/testing/selftests/powerpc/pmu/count_stcx_fail.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2013, Michael Ellerman, IBM Corp. */ #define _GNU_SOURCE #include <unistd.h> #include <sys/syscall.h> #include <string.h> #include <stdio.h> #include <stdbool.h> #include <sys/ioctl.h> #include "event.h" int perf_event_open(struct perf_event_attr *attr, pid_t pid, int cpu, int group_fd, unsigned long flags) { return syscall(__NR_perf_event_open, attr, pid, cpu, group_fd, flags); } static void __event_init_opts(struct event *e, u64 config, int type, char *name, bool sampling) { memset(e, 0, sizeof(*e)); e->name = name; e->attr.type = type; e->attr.config = config; e->attr.size = sizeof(e->attr); /* This has to match the structure layout in the header */ e->attr.read_format = PERF_FORMAT_TOTAL_TIME_ENABLED | \ PERF_FORMAT_TOTAL_TIME_RUNNING; if (sampling) { e->attr.sample_period = 1000; e->attr.sample_type = PERF_SAMPLE_REGS_INTR; e->attr.disabled = 1; } } void event_init_opts(struct event *e, u64 config, int type, char *name) { __event_init_opts(e, config, type, name, false); } void event_init_named(struct event *e, u64 config, char *name) { event_init_opts(e, config, PERF_TYPE_RAW, name); } void event_init(struct event *e, u64 config) { event_init_opts(e, config, PERF_TYPE_RAW, "event"); } void event_init_sampling(struct event *e, u64 config) { __event_init_opts(e, config, PERF_TYPE_RAW, "event", true); } #define PERF_CURRENT_PID 0 #define PERF_NO_PID -1 #define PERF_NO_CPU -1 #define PERF_NO_GROUP -1 int event_open_with_options(struct event *e, pid_t pid, int cpu, int group_fd) { e->fd = perf_event_open(&e->attr, pid, cpu, group_fd, 0); if (e->fd == -1) { perror("perf_event_open"); return -1; } return 0; } int event_open_with_group(struct event *e, int group_fd) { return event_open_with_options(e, PERF_CURRENT_PID, PERF_NO_CPU, group_fd); } int event_open_with_pid(struct event *e, pid_t pid) { return event_open_with_options(e, pid, PERF_NO_CPU, PERF_NO_GROUP); } int event_open_with_cpu(struct event *e, int cpu) { return event_open_with_options(e, PERF_NO_PID, cpu, PERF_NO_GROUP); } int event_open(struct event *e) { return event_open_with_options(e, PERF_CURRENT_PID, PERF_NO_CPU, PERF_NO_GROUP); } void event_close(struct event *e) { close(e->fd); } int event_enable(struct event *e) { return ioctl(e->fd, PERF_EVENT_IOC_ENABLE); } int event_disable(struct event *e) { return ioctl(e->fd, PERF_EVENT_IOC_DISABLE); } int event_reset(struct event *e) { return ioctl(e->fd, PERF_EVENT_IOC_RESET); } int event_read(struct event *e) { int rc; rc = read(e->fd, &e->result, sizeof(e->result)); if (rc != sizeof(e->result)) { fprintf(stderr, "read error on event %p!\n", e); return -1; } return 0; } void event_report_justified(struct event *e, int name_width, int result_width) { printf("%*s: result %*llu ", name_width, e->name, result_width, e->result.value); if (e->result.running == e->result.enabled) printf("running/enabled %llu\n", e->result.running); else printf("running %llu enabled %llu\n", e->result.running, e->result.enabled); } void event_report(struct event *e) { event_report_justified(e, 0, 0); }
linux-master
tools/testing/selftests/powerpc/pmu/event.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include "event.h" #include "utils.h" #define MALLOC_SIZE (0x10000 * 10) /* Ought to be enough .. */ /* * Tests that the L3 bank handling is correct. We fixed it in commit e9aaac1. */ static int l3_bank_test(void) { struct event event; char *p; int i; // The L3 bank logic is only used on Power8 or later SKIP_IF(!have_hwcap2(PPC_FEATURE2_ARCH_2_07)); p = malloc(MALLOC_SIZE); FAIL_IF(!p); event_init(&event, 0x84918F); FAIL_IF(event_open(&event)); for (i = 0; i < MALLOC_SIZE; i += 0x10000) p[i] = i; event_read(&event); event_report(&event); FAIL_IF(event.result.running == 0); FAIL_IF(event.result.enabled == 0); event_close(&event); free(p); return 0; } int main(void) { return test_harness(l3_bank_test, "l3_bank_test"); }
linux-master
tools/testing/selftests/powerpc/pmu/l3_bank_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2013, Michael Ellerman, IBM Corp. */ #define _GNU_SOURCE #include <stdio.h> #include <stdbool.h> #include <string.h> #include <sys/prctl.h> #include "event.h" #include "utils.h" #include "lib.h" extern void thirty_two_instruction_loop(u64 loops); static void setup_event(struct event *e, u64 config, char *name) { event_init_opts(e, config, PERF_TYPE_HARDWARE, name); e->attr.disabled = 1; e->attr.exclude_kernel = 1; e->attr.exclude_hv = 1; e->attr.exclude_idle = 1; } static int do_count_loop(struct event *events, u64 instructions, u64 overhead, bool report) { s64 difference, expected; double percentage; prctl(PR_TASK_PERF_EVENTS_ENABLE); /* Run for 1M instructions */ thirty_two_instruction_loop(instructions >> 5); prctl(PR_TASK_PERF_EVENTS_DISABLE); event_read(&events[0]); event_read(&events[1]); expected = instructions + overhead; difference = events[0].result.value - expected; percentage = (double)difference / events[0].result.value * 100; if (report) { event_report(&events[0]); event_report(&events[1]); printf("Looped for %llu instructions, overhead %llu\n", instructions, overhead); printf("Expected %llu\n", expected); printf("Actual %llu\n", events[0].result.value); printf("Delta %lld, %f%%\n", difference, percentage); } event_reset(&events[0]); event_reset(&events[1]); if (difference < 0) difference = -difference; /* Tolerate a difference below 0.0001 % */ difference *= 10000 * 100; if (difference / events[0].result.value) return -1; return 0; } /* Count how many instructions it takes to do a null loop */ static u64 determine_overhead(struct event *events) { u64 current, overhead; int i; do_count_loop(events, 0, 0, false); overhead = events[0].result.value; for (i = 0; i < 100; i++) { do_count_loop(events, 0, 0, false); current = events[0].result.value; if (current < overhead) { printf("Replacing overhead %llu with %llu\n", overhead, current); overhead = current; } } return overhead; } static int test_body(void) { struct event events[2]; u64 overhead; setup_event(&events[0], PERF_COUNT_HW_INSTRUCTIONS, "instructions"); setup_event(&events[1], PERF_COUNT_HW_CPU_CYCLES, "cycles"); if (event_open(&events[0])) { perror("perf_event_open"); return -1; } if (event_open_with_group(&events[1], events[0].fd)) { perror("perf_event_open"); return -1; } overhead = determine_overhead(events); printf("Overhead of null loop: %llu instructions\n", overhead); /* Run for 1Mi instructions */ FAIL_IF(do_count_loop(events, 1000000, overhead, true)); /* Run for 10Mi instructions */ FAIL_IF(do_count_loop(events, 10000000, overhead, true)); /* Run for 100Mi instructions */ FAIL_IF(do_count_loop(events, 100000000, overhead, true)); /* Run for 1Bi instructions */ FAIL_IF(do_count_loop(events, 1000000000, overhead, true)); /* Run for 16Bi instructions */ FAIL_IF(do_count_loop(events, 16000000000, overhead, true)); /* Run for 64Bi instructions */ FAIL_IF(do_count_loop(events, 64000000000, overhead, true)); event_close(&events[0]); event_close(&events[1]); return 0; } static int count_instructions(void) { return eat_cpu(test_body); } int main(void) { return test_harness(count_instructions, "count_instructions"); }
linux-master
tools/testing/selftests/powerpc/pmu/count_instructions.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <sched.h> #include <signal.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include "ebb.h" /* * Test that the kernel properly handles PMAE across context switches. * * We test this by calling into the kernel inside our EBB handler, where PMAE * is clear. A cpu eater companion thread is running on the same CPU as us to * encourage the scheduler to switch us. * * The kernel must make sure that when it context switches us back in, it * honours the fact that we had PMAE clear. * * Observed to hit the failing case on the first EBB with a broken kernel. */ static bool mmcr0_mismatch; static uint64_t before, after; static void syscall_ebb_callee(void) { uint64_t val; val = mfspr(SPRN_BESCR); if (!(val & BESCR_PMEO)) { ebb_state.stats.spurious++; goto out; } ebb_state.stats.ebb_count++; count_pmc(1, sample_period); before = mfspr(SPRN_MMCR0); /* Try and get ourselves scheduled, to force a PMU context switch */ sched_yield(); after = mfspr(SPRN_MMCR0); if (before != after) mmcr0_mismatch = true; out: reset_ebb(); } static int test_body(void) { struct event event; SKIP_IF(!ebb_is_supported()); event_init_named(&event, 0x1001e, "cycles"); event_leader_ebb_init(&event); event.attr.exclude_kernel = 1; event.attr.exclude_hv = 1; event.attr.exclude_idle = 1; FAIL_IF(event_open(&event)); setup_ebb_handler(syscall_ebb_callee); ebb_global_enable(); FAIL_IF(ebb_event_enable(&event)); mtspr(SPRN_PMC1, pmc_sample_period(sample_period)); while (ebb_state.stats.ebb_count < 20 && !mmcr0_mismatch) FAIL_IF(core_busy_loop()); ebb_global_disable(); ebb_freeze_pmcs(); dump_ebb_state(); if (mmcr0_mismatch) printf("Saw MMCR0 before 0x%lx after 0x%lx\n", before, after); event_close(&event); FAIL_IF(ebb_state.stats.ebb_count == 0); FAIL_IF(mmcr0_mismatch); return 0; } int pmae_handling(void) { return eat_cpu(test_body); } int main(void) { return test_harness(pmae_handling, "pmae_handling"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/pmae_handling_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include "ebb.h" /* * Basic test that counts user cycles and takes EBBs. */ int cycles(void) { struct event event; SKIP_IF(!ebb_is_supported()); event_init_named(&event, 0x1001e, "cycles"); event_leader_ebb_init(&event); event.attr.exclude_kernel = 1; event.attr.exclude_hv = 1; event.attr.exclude_idle = 1; FAIL_IF(event_open(&event)); ebb_enable_pmc_counting(1); setup_ebb_handler(standard_ebb_callee); ebb_global_enable(); FAIL_IF(ebb_event_enable(&event)); mtspr(SPRN_PMC1, pmc_sample_period(sample_period)); while (ebb_state.stats.ebb_count < 10) { FAIL_IF(core_busy_loop()); FAIL_IF(ebb_check_mmcr0()); } ebb_global_disable(); ebb_freeze_pmcs(); dump_ebb_state(); event_close(&event); FAIL_IF(ebb_state.stats.ebb_count == 0); FAIL_IF(!ebb_check_count(1, sample_period, 100)); return 0; } int main(void) { return test_harness(cycles, "cycles"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/cycles_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #include "ebb.h" /* * Tests a per-task event vs an EBB - in that order. The EBB should push the * per-task event off the PMU. */ static int setup_child_event(struct event *event, pid_t child_pid) { event_init_named(event, 0x400FA, "PM_RUN_INST_CMPL"); event->attr.exclude_kernel = 1; event->attr.exclude_hv = 1; event->attr.exclude_idle = 1; FAIL_IF(event_open_with_pid(event, child_pid)); FAIL_IF(event_enable(event)); return 0; } int task_event_vs_ebb(void) { union pipe read_pipe, write_pipe; struct event event; pid_t pid; int rc; SKIP_IF(!ebb_is_supported()); FAIL_IF(pipe(read_pipe.fds) == -1); FAIL_IF(pipe(write_pipe.fds) == -1); pid = fork(); if (pid == 0) { /* NB order of pipes looks reversed */ exit(ebb_child(write_pipe, read_pipe)); } /* We setup the task event first */ rc = setup_child_event(&event, pid); if (rc) { kill_child_and_wait(pid); return rc; } /* Signal the child to install its EBB event and wait */ if (sync_with_child(read_pipe, write_pipe)) /* If it fails, wait for it to exit */ goto wait; /* Signal the child to run */ FAIL_IF(sync_with_child(read_pipe, write_pipe)); wait: /* The EBB event should push the task event off so the child should succeed */ FAIL_IF(wait_for_child(pid)); FAIL_IF(event_disable(&event)); FAIL_IF(event_read(&event)); event_report(&event); /* The task event may have run, or not so we can't assert anything about it */ return 0; } int main(void) { return test_harness(task_event_vs_ebb, "task_event_vs_ebb"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/task_event_vs_ebb_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <errno.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/mman.h> #include "trace.h" struct trace_buffer *trace_buffer_allocate(u64 size) { struct trace_buffer *tb; if (size < sizeof(*tb)) { fprintf(stderr, "Error: trace buffer too small\n"); return NULL; } tb = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); if (tb == MAP_FAILED) { perror("mmap"); return NULL; } tb->size = size; tb->tail = tb->data; tb->overflow = false; return tb; } static bool trace_check_bounds(struct trace_buffer *tb, void *p) { return p < ((void *)tb + tb->size); } static bool trace_check_alloc(struct trace_buffer *tb, void *p) { /* * If we ever overflowed don't allow any more input. This prevents us * from dropping a large item and then later logging a small one. The * buffer should just stop when overflow happened, not be patchy. If * you're overflowing, make your buffer bigger. */ if (tb->overflow) return false; if (!trace_check_bounds(tb, p)) { tb->overflow = true; return false; } return true; } static void *trace_alloc(struct trace_buffer *tb, int bytes) { void *p, *newtail; p = tb->tail; newtail = tb->tail + bytes; if (!trace_check_alloc(tb, newtail)) return NULL; tb->tail = newtail; return p; } static struct trace_entry *trace_alloc_entry(struct trace_buffer *tb, int payload_size) { struct trace_entry *e; e = trace_alloc(tb, sizeof(*e) + payload_size); if (e) e->length = payload_size; return e; } int trace_log_reg(struct trace_buffer *tb, u64 reg, u64 value) { struct trace_entry *e; u64 *p; e = trace_alloc_entry(tb, sizeof(reg) + sizeof(value)); if (!e) return -ENOSPC; e->type = TRACE_TYPE_REG; p = (u64 *)e->data; *p++ = reg; *p++ = value; return 0; } int trace_log_counter(struct trace_buffer *tb, u64 value) { struct trace_entry *e; u64 *p; e = trace_alloc_entry(tb, sizeof(value)); if (!e) return -ENOSPC; e->type = TRACE_TYPE_COUNTER; p = (u64 *)e->data; *p++ = value; return 0; } int trace_log_string(struct trace_buffer *tb, char *str) { struct trace_entry *e; char *p; int len; len = strlen(str); /* We NULL terminate to make printing easier */ e = trace_alloc_entry(tb, len + 1); if (!e) return -ENOSPC; e->type = TRACE_TYPE_STRING; p = (char *)e->data; memcpy(p, str, len); p += len; *p = '\0'; return 0; } int trace_log_indent(struct trace_buffer *tb) { struct trace_entry *e; e = trace_alloc_entry(tb, 0); if (!e) return -ENOSPC; e->type = TRACE_TYPE_INDENT; return 0; } int trace_log_outdent(struct trace_buffer *tb) { struct trace_entry *e; e = trace_alloc_entry(tb, 0); if (!e) return -ENOSPC; e->type = TRACE_TYPE_OUTDENT; return 0; } static void trace_print_header(int seq, int prefix) { printf("%*s[%d]: ", prefix, "", seq); } static char *trace_decode_reg(int reg) { switch (reg) { case 769: return "SPRN_MMCR2"; break; case 770: return "SPRN_MMCRA"; break; case 779: return "SPRN_MMCR0"; break; case 804: return "SPRN_EBBHR"; break; case 805: return "SPRN_EBBRR"; break; case 806: return "SPRN_BESCR"; break; case 800: return "SPRN_BESCRS"; break; case 801: return "SPRN_BESCRSU"; break; case 802: return "SPRN_BESCRR"; break; case 803: return "SPRN_BESCRRU"; break; case 771: return "SPRN_PMC1"; break; case 772: return "SPRN_PMC2"; break; case 773: return "SPRN_PMC3"; break; case 774: return "SPRN_PMC4"; break; case 775: return "SPRN_PMC5"; break; case 776: return "SPRN_PMC6"; break; case 780: return "SPRN_SIAR"; break; case 781: return "SPRN_SDAR"; break; case 768: return "SPRN_SIER"; break; } return NULL; } static void trace_print_reg(struct trace_entry *e) { u64 *p, *reg, *value; char *name; p = (u64 *)e->data; reg = p++; value = p; name = trace_decode_reg(*reg); if (name) printf("register %-10s = 0x%016llx\n", name, *value); else printf("register %lld = 0x%016llx\n", *reg, *value); } static void trace_print_counter(struct trace_entry *e) { u64 *value; value = (u64 *)e->data; printf("counter = %lld\n", *value); } static void trace_print_string(struct trace_entry *e) { char *str; str = (char *)e->data; puts(str); } #define BASE_PREFIX 2 #define PREFIX_DELTA 8 static void trace_print_entry(struct trace_entry *e, int seq, int *prefix) { switch (e->type) { case TRACE_TYPE_REG: trace_print_header(seq, *prefix); trace_print_reg(e); break; case TRACE_TYPE_COUNTER: trace_print_header(seq, *prefix); trace_print_counter(e); break; case TRACE_TYPE_STRING: trace_print_header(seq, *prefix); trace_print_string(e); break; case TRACE_TYPE_INDENT: trace_print_header(seq, *prefix); puts("{"); *prefix += PREFIX_DELTA; break; case TRACE_TYPE_OUTDENT: *prefix -= PREFIX_DELTA; if (*prefix < BASE_PREFIX) *prefix = BASE_PREFIX; trace_print_header(seq, *prefix); puts("}"); break; default: trace_print_header(seq, *prefix); printf("entry @ %p type %d\n", e, e->type); break; } } void trace_buffer_print(struct trace_buffer *tb) { struct trace_entry *e; int i, prefix; void *p; printf("Trace buffer dump:\n"); printf(" address %p \n", tb); printf(" tail %p\n", tb->tail); printf(" size %llu\n", tb->size); printf(" overflow %s\n", tb->overflow ? "TRUE" : "false"); printf(" Content:\n"); p = tb->data; i = 0; prefix = BASE_PREFIX; while (trace_check_bounds(tb, p) && p < tb->tail) { e = p; trace_print_entry(e, i, &prefix); i++; p = (void *)e + sizeof(*e) + e->length; } } void trace_print_location(struct trace_buffer *tb) { printf("Trace buffer 0x%llx bytes @ %p\n", tb->size, tb); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/trace.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #include "ebb.h" /* * Tests a pinned per-task event vs an EBB - in that order. The pinned per-task * event should prevent the EBB event from being enabled. */ static int setup_child_event(struct event *event, pid_t child_pid) { event_init_named(event, 0x400FA, "PM_RUN_INST_CMPL"); event->attr.pinned = 1; event->attr.exclude_kernel = 1; event->attr.exclude_hv = 1; event->attr.exclude_idle = 1; FAIL_IF(event_open_with_pid(event, child_pid)); FAIL_IF(event_enable(event)); return 0; } int task_event_pinned_vs_ebb(void) { union pipe read_pipe, write_pipe; struct event event; pid_t pid; int rc; SKIP_IF(!ebb_is_supported()); FAIL_IF(pipe(read_pipe.fds) == -1); FAIL_IF(pipe(write_pipe.fds) == -1); pid = fork(); if (pid == 0) { /* NB order of pipes looks reversed */ exit(ebb_child(write_pipe, read_pipe)); } /* We setup the task event first */ rc = setup_child_event(&event, pid); if (rc) { kill_child_and_wait(pid); return rc; } /* Signal the child to install its EBB event and wait */ if (sync_with_child(read_pipe, write_pipe)) /* If it fails, wait for it to exit */ goto wait; /* Signal the child to run */ FAIL_IF(sync_with_child(read_pipe, write_pipe)); wait: /* We expect it to fail to read the event */ FAIL_IF(wait_for_child(pid) != 2); FAIL_IF(event_disable(&event)); FAIL_IF(event_read(&event)); event_report(&event); FAIL_IF(event.result.value == 0); /* * For reasons I don't understand enabled is usually just slightly * lower than running. Would be good to confirm why. */ FAIL_IF(event.result.enabled == 0); FAIL_IF(event.result.running == 0); return 0; } int main(void) { return test_harness(task_event_pinned_vs_ebb, "task_event_pinned_vs_ebb"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/task_event_pinned_vs_ebb_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include "ebb.h" /* * Test basic access to the EBB regs, they should be user accessible with no * kernel interaction required. */ int reg_access(void) { uint64_t val, expected; SKIP_IF(!ebb_is_supported()); expected = 0x8000000100000000ull; mtspr(SPRN_BESCR, expected); val = mfspr(SPRN_BESCR); FAIL_IF(val != expected); expected = 0x0000000001000000ull; mtspr(SPRN_EBBHR, expected); val = mfspr(SPRN_EBBHR); FAIL_IF(val != expected); return 0; } int main(void) { return test_harness(reg_access, "reg_access"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/reg_access_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include "ebb.h" #define NUMBER_OF_EBBS 50 /* * Test that if we overflow the counter while in the EBB handler, we take * another EBB on exiting from the handler. * * We do this by counting with a stupidly low sample period, causing us to * overflow the PMU while we're still in the EBB handler, leading to another * EBB. * * We get out of what would otherwise be an infinite loop by leaving the * counter frozen once we've taken enough EBBs. */ static void ebb_callee(void) { uint64_t siar, val; val = mfspr(SPRN_BESCR); if (!(val & BESCR_PMEO)) { ebb_state.stats.spurious++; goto out; } ebb_state.stats.ebb_count++; trace_log_counter(ebb_state.trace, ebb_state.stats.ebb_count); /* Resets the PMC */ count_pmc(1, sample_period); out: if (ebb_state.stats.ebb_count == NUMBER_OF_EBBS) /* Reset but leave counters frozen */ reset_ebb_with_clear_mask(MMCR0_PMAO); else /* Unfreezes */ reset_ebb(); /* Do some stuff to chew some cycles and pop the counter */ siar = mfspr(SPRN_SIAR); trace_log_reg(ebb_state.trace, SPRN_SIAR, siar); val = mfspr(SPRN_PMC1); trace_log_reg(ebb_state.trace, SPRN_PMC1, val); val = mfspr(SPRN_MMCR0); trace_log_reg(ebb_state.trace, SPRN_MMCR0, val); } int back_to_back_ebbs(void) { struct event event; SKIP_IF(!ebb_is_supported()); event_init_named(&event, 0x1001e, "cycles"); event_leader_ebb_init(&event); event.attr.exclude_kernel = 1; event.attr.exclude_hv = 1; event.attr.exclude_idle = 1; FAIL_IF(event_open(&event)); setup_ebb_handler(ebb_callee); FAIL_IF(ebb_event_enable(&event)); sample_period = 5; ebb_freeze_pmcs(); mtspr(SPRN_PMC1, pmc_sample_period(sample_period)); ebb_global_enable(); ebb_unfreeze_pmcs(); while (ebb_state.stats.ebb_count < NUMBER_OF_EBBS) FAIL_IF(core_busy_loop()); ebb_global_disable(); ebb_freeze_pmcs(); dump_ebb_state(); event_close(&event); FAIL_IF(ebb_state.stats.ebb_count != NUMBER_OF_EBBS); return 0; } int main(void) { return test_harness(back_to_back_ebbs, "back_to_back_ebbs"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/back_to_back_ebbs_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <signal.h> #include "ebb.h" /* * Test running multiple EBB using processes at once on a single CPU. They * should all run happily without interfering with each other. */ static bool child_should_exit; static void sigint_handler(int signal) { child_should_exit = true; } struct sigaction sigint_action = { .sa_handler = sigint_handler, }; static int cycles_child(void) { struct event event; if (sigaction(SIGINT, &sigint_action, NULL)) { perror("sigaction"); return 1; } event_init_named(&event, 0x1001e, "cycles"); event_leader_ebb_init(&event); event.attr.exclude_kernel = 1; event.attr.exclude_hv = 1; event.attr.exclude_idle = 1; FAIL_IF(event_open(&event)); ebb_enable_pmc_counting(1); setup_ebb_handler(standard_ebb_callee); ebb_global_enable(); FAIL_IF(ebb_event_enable(&event)); mtspr(SPRN_PMC1, pmc_sample_period(sample_period)); while (!child_should_exit) { FAIL_IF(core_busy_loop()); FAIL_IF(ebb_check_mmcr0()); } ebb_global_disable(); ebb_freeze_pmcs(); dump_summary_ebb_state(); event_close(&event); FAIL_IF(ebb_state.stats.ebb_count == 0); return 0; } #define NR_CHILDREN 4 int multi_ebb_procs(void) { pid_t pids[NR_CHILDREN]; int rc, i; SKIP_IF(!ebb_is_supported()); FAIL_IF(bind_to_cpu(BIND_CPU_ANY) < 0); for (i = 0; i < NR_CHILDREN; i++) { pids[i] = fork(); if (pids[i] == 0) exit(cycles_child()); } /* Have them all run for "a while" */ sleep(10); rc = 0; for (i = 0; i < NR_CHILDREN; i++) { /* Tell them to stop */ kill(pids[i], SIGINT); /* And wait */ rc |= wait_for_child(pids[i]); } return rc; } int main(void) { return test_harness(multi_ebb_procs, "multi_ebb_procs"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/multi_ebb_procs_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <sched.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <sys/mman.h> #include "ebb.h" /* * Test that tries to trigger CPU_FTR_PMAO_BUG. Which is a hardware defect * where an exception triggers but we context switch before it is delivered and * lose the exception. */ static int test_body(void) { int i, orig_period, max_period; struct event event; SKIP_IF(!ebb_is_supported()); /* We use PMC4 to make sure the kernel switches all counters correctly */ event_init_named(&event, 0x40002, "instructions"); event_leader_ebb_init(&event); event.attr.exclude_kernel = 1; event.attr.exclude_hv = 1; event.attr.exclude_idle = 1; FAIL_IF(event_open(&event)); ebb_enable_pmc_counting(4); setup_ebb_handler(standard_ebb_callee); ebb_global_enable(); FAIL_IF(ebb_event_enable(&event)); /* * We want a low sample period, but we also want to get out of the EBB * handler without tripping up again. * * This value picked after much experimentation. */ orig_period = max_period = sample_period = 400; mtspr(SPRN_PMC4, pmc_sample_period(sample_period)); while (ebb_state.stats.ebb_count < 1000000) { /* * We are trying to get the EBB exception to race exactly with * us entering the kernel to do the syscall. We then need the * kernel to decide our timeslice is up and context switch to * the other thread. When we come back our EBB will have been * lost and we'll spin in this while loop forever. */ for (i = 0; i < 100000; i++) sched_yield(); /* Change the sample period slightly to try and hit the race */ if (sample_period >= (orig_period + 200)) sample_period = orig_period; else sample_period++; if (sample_period > max_period) max_period = sample_period; } ebb_freeze_pmcs(); ebb_global_disable(); mtspr(SPRN_PMC4, 0xdead); dump_summary_ebb_state(); dump_ebb_hw_state(); event_close(&event); FAIL_IF(ebb_state.stats.ebb_count == 0); /* We vary our sample period so we need extra fudge here */ FAIL_IF(!ebb_check_count(4, orig_period, 2 * (max_period - orig_period))); return 0; } static int lost_exception(void) { return eat_cpu(test_body); } int main(void) { test_harness_set_timeout(300); return test_harness(lost_exception, "lost_exception"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/lost_exception_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #include <setjmp.h> #include "ebb.h" /* * Test that a fork clears the PMU state of the child. eg. BESCR/EBBHR/EBBRR * are cleared, and MMCR0_PMCC is reset, preventing the child from accessing * the PMU. */ static struct event event; static int child(void) { /* Even though we have EBE=0 we can still see the EBB regs */ FAIL_IF(mfspr(SPRN_BESCR) != 0); FAIL_IF(mfspr(SPRN_EBBHR) != 0); FAIL_IF(mfspr(SPRN_EBBRR) != 0); FAIL_IF(catch_sigill(write_pmc1)); /* We can still read from the event, though it is on our parent */ FAIL_IF(event_read(&event)); return 0; } /* Tests that fork clears EBB state */ int fork_cleanup(void) { pid_t pid; SKIP_IF(!ebb_is_supported()); event_init_named(&event, 0x1001e, "cycles"); event_leader_ebb_init(&event); FAIL_IF(event_open(&event)); ebb_enable_pmc_counting(1); setup_ebb_handler(standard_ebb_callee); ebb_global_enable(); FAIL_IF(ebb_event_enable(&event)); mtspr(SPRN_MMCR0, MMCR0_FC); mtspr(SPRN_PMC1, pmc_sample_period(sample_period)); /* Don't need to actually take any EBBs */ pid = fork(); if (pid == 0) exit(child()); /* Child does the actual testing */ FAIL_IF(wait_for_child(pid)); /* After fork */ event_close(&event); return 0; } int main(void) { return test_harness(fork_cleanup, "fork_cleanup"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/fork_cleanup_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #include "ebb.h" /* * Tests we can setup an EBB on our child. The child expects this and enables * EBBs, which are then delivered to the child, even though the event is * created by the parent. */ static int victim_child(union pipe read_pipe, union pipe write_pipe) { FAIL_IF(wait_for_parent(read_pipe)); /* Setup our EBB handler, before the EBB event is created */ ebb_enable_pmc_counting(1); setup_ebb_handler(standard_ebb_callee); ebb_global_enable(); FAIL_IF(notify_parent(write_pipe)); while (ebb_state.stats.ebb_count < 20) { FAIL_IF(core_busy_loop()); } ebb_global_disable(); ebb_freeze_pmcs(); dump_ebb_state(); FAIL_IF(ebb_state.stats.ebb_count == 0); return 0; } /* Tests we can setup an EBB on our child - if it's expecting it */ int ebb_on_willing_child(void) { union pipe read_pipe, write_pipe; struct event event; pid_t pid; SKIP_IF(!ebb_is_supported()); FAIL_IF(pipe(read_pipe.fds) == -1); FAIL_IF(pipe(write_pipe.fds) == -1); pid = fork(); if (pid == 0) { /* NB order of pipes looks reversed */ exit(victim_child(write_pipe, read_pipe)); } /* Signal the child to setup its EBB handler */ FAIL_IF(sync_with_child(read_pipe, write_pipe)); /* Child is running now */ event_init_named(&event, 0x1001e, "cycles"); event_leader_ebb_init(&event); event.attr.exclude_kernel = 1; event.attr.exclude_hv = 1; event.attr.exclude_idle = 1; FAIL_IF(event_open_with_pid(&event, pid)); FAIL_IF(ebb_event_enable(&event)); /* Child show now take EBBs and then exit */ FAIL_IF(wait_for_child(pid)); event_close(&event); return 0; } int main(void) { return test_harness(ebb_on_willing_child, "ebb_on_willing_child"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/ebb_on_willing_child_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #include "ebb.h" /* * Tests an EBB vs a cpu event - in that order. The EBB should force the cpu * event off the PMU. */ static int setup_cpu_event(struct event *event, int cpu) { event_init_named(event, 0x400FA, "PM_RUN_INST_CMPL"); event->attr.exclude_kernel = 1; event->attr.exclude_hv = 1; event->attr.exclude_idle = 1; SKIP_IF(require_paranoia_below(1)); FAIL_IF(event_open_with_cpu(event, cpu)); FAIL_IF(event_enable(event)); return 0; } int ebb_vs_cpu_event(void) { union pipe read_pipe, write_pipe; struct event event; int cpu, rc; pid_t pid; SKIP_IF(!ebb_is_supported()); cpu = bind_to_cpu(BIND_CPU_ANY); FAIL_IF(cpu < 0); FAIL_IF(pipe(read_pipe.fds) == -1); FAIL_IF(pipe(write_pipe.fds) == -1); pid = fork(); if (pid == 0) { /* NB order of pipes looks reversed */ exit(ebb_child(write_pipe, read_pipe)); } /* Signal the child to install its EBB event and wait */ FAIL_IF(sync_with_child(read_pipe, write_pipe)); /* Now try to install our CPU event */ rc = setup_cpu_event(&event, cpu); if (rc) { kill_child_and_wait(pid); return rc; } /* Signal the child to run */ FAIL_IF(sync_with_child(read_pipe, write_pipe)); /* .. and wait for it to complete */ FAIL_IF(wait_for_child(pid)); FAIL_IF(event_disable(&event)); FAIL_IF(event_read(&event)); event_report(&event); /* The cpu event may have run, but we don't expect 100% */ FAIL_IF(event.result.enabled >= event.result.running); return 0; } int main(void) { return test_harness(ebb_vs_cpu_event, "ebb_vs_cpu_event"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/ebb_vs_cpu_event_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include "ebb.h" /* * Test that PMC5 & 6 are frozen (ie. don't overflow) when they are not being * used. Tests the MMCR0_FC56 logic in the kernel. */ static int pmc56_overflowed; static void ebb_callee(void) { uint64_t val; val = mfspr(SPRN_BESCR); if (!(val & BESCR_PMEO)) { ebb_state.stats.spurious++; goto out; } ebb_state.stats.ebb_count++; count_pmc(2, sample_period); val = mfspr(SPRN_PMC5); if (val >= COUNTER_OVERFLOW) pmc56_overflowed++; count_pmc(5, COUNTER_OVERFLOW); val = mfspr(SPRN_PMC6); if (val >= COUNTER_OVERFLOW) pmc56_overflowed++; count_pmc(6, COUNTER_OVERFLOW); out: reset_ebb(); } int pmc56_overflow(void) { struct event event; SKIP_IF(!ebb_is_supported()); /* Use PMC2 so we set PMCjCE, which enables PMC5/6 */ event_init(&event, 0x2001e); event_leader_ebb_init(&event); event.attr.exclude_kernel = 1; event.attr.exclude_hv = 1; event.attr.exclude_idle = 1; FAIL_IF(event_open(&event)); setup_ebb_handler(ebb_callee); ebb_global_enable(); FAIL_IF(ebb_event_enable(&event)); mtspr(SPRN_PMC2, pmc_sample_period(sample_period)); mtspr(SPRN_PMC5, 0); mtspr(SPRN_PMC6, 0); while (ebb_state.stats.ebb_count < 10) FAIL_IF(core_busy_loop()); ebb_global_disable(); ebb_freeze_pmcs(); dump_ebb_state(); printf("PMC5/6 overflow %d\n", pmc56_overflowed); event_close(&event); FAIL_IF(ebb_state.stats.ebb_count == 0 || pmc56_overflowed != 0); return 0; } int main(void) { return test_harness(pmc56_overflow, "pmc56_overflow"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/pmc56_overflow_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #include "ebb.h" /* * Tests a pinned cpu event vs an EBB - in that order. The pinned cpu event * should remain and the EBB event should fail to enable. */ static int setup_cpu_event(struct event *event, int cpu) { event_init_named(event, 0x400FA, "PM_RUN_INST_CMPL"); event->attr.pinned = 1; event->attr.exclude_kernel = 1; event->attr.exclude_hv = 1; event->attr.exclude_idle = 1; SKIP_IF(require_paranoia_below(1)); FAIL_IF(event_open_with_cpu(event, cpu)); FAIL_IF(event_enable(event)); return 0; } int cpu_event_pinned_vs_ebb(void) { union pipe read_pipe, write_pipe; struct event event; int cpu, rc; pid_t pid; SKIP_IF(!ebb_is_supported()); cpu = bind_to_cpu(BIND_CPU_ANY); FAIL_IF(cpu < 0); FAIL_IF(pipe(read_pipe.fds) == -1); FAIL_IF(pipe(write_pipe.fds) == -1); pid = fork(); if (pid == 0) { /* NB order of pipes looks reversed */ exit(ebb_child(write_pipe, read_pipe)); } /* We setup the cpu event first */ rc = setup_cpu_event(&event, cpu); if (rc) { kill_child_and_wait(pid); return rc; } /* Signal the child to install its EBB event and wait */ if (sync_with_child(read_pipe, write_pipe)) /* If it fails, wait for it to exit */ goto wait; /* Signal the child to run */ FAIL_IF(sync_with_child(read_pipe, write_pipe)); wait: /* We expect it to fail to read the event */ FAIL_IF(wait_for_child(pid) != 2); FAIL_IF(event_disable(&event)); FAIL_IF(event_read(&event)); event_report(&event); /* The cpu event should have run */ FAIL_IF(event.result.value == 0); FAIL_IF(event.result.enabled != event.result.running); return 0; } int main(void) { return test_harness(cpu_event_pinned_vs_ebb, "cpu_event_pinned_vs_ebb"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/cpu_event_pinned_vs_ebb_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #include "ebb.h" /* * Tests a cpu event vs an EBB - in that order. The EBB should force the cpu * event off the PMU. */ static int setup_cpu_event(struct event *event, int cpu) { event_init_named(event, 0x400FA, "PM_RUN_INST_CMPL"); event->attr.exclude_kernel = 1; event->attr.exclude_hv = 1; event->attr.exclude_idle = 1; SKIP_IF(require_paranoia_below(1)); FAIL_IF(event_open_with_cpu(event, cpu)); FAIL_IF(event_enable(event)); return 0; } int cpu_event_vs_ebb(void) { union pipe read_pipe, write_pipe; struct event event; int cpu, rc; pid_t pid; SKIP_IF(!ebb_is_supported()); cpu = bind_to_cpu(BIND_CPU_ANY); FAIL_IF(cpu < 0); FAIL_IF(pipe(read_pipe.fds) == -1); FAIL_IF(pipe(write_pipe.fds) == -1); pid = fork(); if (pid == 0) { /* NB order of pipes looks reversed */ exit(ebb_child(write_pipe, read_pipe)); } /* We setup the cpu event first */ rc = setup_cpu_event(&event, cpu); if (rc) { kill_child_and_wait(pid); return rc; } /* Signal the child to install its EBB event and wait */ if (sync_with_child(read_pipe, write_pipe)) /* If it fails, wait for it to exit */ goto wait; /* Signal the child to run */ FAIL_IF(sync_with_child(read_pipe, write_pipe)); wait: /* We expect the child to succeed */ FAIL_IF(wait_for_child(pid)); FAIL_IF(event_disable(&event)); FAIL_IF(event_read(&event)); event_report(&event); /* The cpu event may have run */ return 0; } int main(void) { return test_harness(cpu_event_vs_ebb, "cpu_event_vs_ebb"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/cpu_event_vs_ebb_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #define _GNU_SOURCE /* For CPU_ZERO etc. */ #include <sched.h> #include <sys/wait.h> #include <setjmp.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/ioctl.h> #include "trace.h" #include "ebb.h" void (*ebb_user_func)(void); void ebb_hook(void) { if (ebb_user_func) ebb_user_func(); } struct ebb_state ebb_state; u64 sample_period = 0x40000000ull; void reset_ebb_with_clear_mask(unsigned long mmcr0_clear_mask) { u64 val; /* 2) clear MMCR0[PMAO] - docs say BESCR[PMEO] should do this */ /* 3) set MMCR0[PMAE] - docs say BESCR[PME] should do this */ val = mfspr(SPRN_MMCR0); mtspr(SPRN_MMCR0, (val & ~mmcr0_clear_mask) | MMCR0_PMAE); /* 4) clear BESCR[PMEO] */ mtspr(SPRN_BESCRR, BESCR_PMEO); /* 5) set BESCR[PME] */ mtspr(SPRN_BESCRS, BESCR_PME); /* 6) rfebb 1 - done in our caller */ } void reset_ebb(void) { reset_ebb_with_clear_mask(MMCR0_PMAO | MMCR0_FC); } /* Called outside of the EBB handler to check MMCR0 is sane */ int ebb_check_mmcr0(void) { u64 val; val = mfspr(SPRN_MMCR0); if ((val & (MMCR0_FC | MMCR0_PMAO)) == MMCR0_FC) { /* It's OK if we see FC & PMAO, but not FC by itself */ printf("Outside of loop, only FC set 0x%llx\n", val); return 1; } return 0; } bool ebb_check_count(int pmc, u64 sample_period, int fudge) { u64 count, upper, lower; count = ebb_state.stats.pmc_count[PMC_INDEX(pmc)]; lower = ebb_state.stats.ebb_count * (sample_period - fudge); if (count < lower) { printf("PMC%d count (0x%llx) below lower limit 0x%llx (-0x%llx)\n", pmc, count, lower, lower - count); return false; } upper = ebb_state.stats.ebb_count * (sample_period + fudge); if (count > upper) { printf("PMC%d count (0x%llx) above upper limit 0x%llx (+0x%llx)\n", pmc, count, upper, count - upper); return false; } printf("PMC%d count (0x%llx) is between 0x%llx and 0x%llx delta +0x%llx/-0x%llx\n", pmc, count, lower, upper, count - lower, upper - count); return true; } void standard_ebb_callee(void) { int found, i; u64 val; val = mfspr(SPRN_BESCR); if (!(val & BESCR_PMEO)) { ebb_state.stats.spurious++; goto out; } ebb_state.stats.ebb_count++; trace_log_counter(ebb_state.trace, ebb_state.stats.ebb_count); val = mfspr(SPRN_MMCR0); trace_log_reg(ebb_state.trace, SPRN_MMCR0, val); found = 0; for (i = 1; i <= 6; i++) { if (ebb_state.pmc_enable[PMC_INDEX(i)]) found += count_pmc(i, sample_period); } if (!found) ebb_state.stats.no_overflow++; out: reset_ebb(); } extern void ebb_handler(void); void setup_ebb_handler(void (*callee)(void)) { u64 entry; #if defined(_CALL_ELF) && _CALL_ELF == 2 entry = (u64)ebb_handler; #else struct opd { u64 entry; u64 toc; } *opd; opd = (struct opd *)ebb_handler; entry = opd->entry; #endif printf("EBB Handler is at %#llx\n", entry); ebb_user_func = callee; /* Ensure ebb_user_func is set before we set the handler */ mb(); mtspr(SPRN_EBBHR, entry); /* Make sure the handler is set before we return */ mb(); } void clear_ebb_stats(void) { memset(&ebb_state.stats, 0, sizeof(ebb_state.stats)); } void dump_summary_ebb_state(void) { printf("ebb_state:\n" \ " ebb_count = %d\n" \ " spurious = %d\n" \ " negative = %d\n" \ " no_overflow = %d\n" \ " pmc[1] count = 0x%llx\n" \ " pmc[2] count = 0x%llx\n" \ " pmc[3] count = 0x%llx\n" \ " pmc[4] count = 0x%llx\n" \ " pmc[5] count = 0x%llx\n" \ " pmc[6] count = 0x%llx\n", ebb_state.stats.ebb_count, ebb_state.stats.spurious, ebb_state.stats.negative, ebb_state.stats.no_overflow, ebb_state.stats.pmc_count[0], ebb_state.stats.pmc_count[1], ebb_state.stats.pmc_count[2], ebb_state.stats.pmc_count[3], ebb_state.stats.pmc_count[4], ebb_state.stats.pmc_count[5]); } static char *decode_mmcr0(u32 value) { static char buf[16]; buf[0] = '\0'; if (value & (1 << 31)) strcat(buf, "FC "); if (value & (1 << 26)) strcat(buf, "PMAE "); if (value & (1 << 7)) strcat(buf, "PMAO "); return buf; } static char *decode_bescr(u64 value) { static char buf[16]; buf[0] = '\0'; if (value & (1ull << 63)) strcat(buf, "GE "); if (value & (1ull << 32)) strcat(buf, "PMAE "); if (value & 1) strcat(buf, "PMAO "); return buf; } void dump_ebb_hw_state(void) { u64 bescr; u32 mmcr0; mmcr0 = mfspr(SPRN_MMCR0); bescr = mfspr(SPRN_BESCR); printf("HW state:\n" \ "MMCR0 0x%016x %s\n" \ "MMCR2 0x%016lx\n" \ "EBBHR 0x%016lx\n" \ "BESCR 0x%016llx %s\n" \ "PMC1 0x%016lx\n" \ "PMC2 0x%016lx\n" \ "PMC3 0x%016lx\n" \ "PMC4 0x%016lx\n" \ "PMC5 0x%016lx\n" \ "PMC6 0x%016lx\n" \ "SIAR 0x%016lx\n", mmcr0, decode_mmcr0(mmcr0), mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR), bescr, decode_bescr(bescr), mfspr(SPRN_PMC1), mfspr(SPRN_PMC2), mfspr(SPRN_PMC3), mfspr(SPRN_PMC4), mfspr(SPRN_PMC5), mfspr(SPRN_PMC6), mfspr(SPRN_SIAR)); } void dump_ebb_state(void) { dump_summary_ebb_state(); dump_ebb_hw_state(); trace_buffer_print(ebb_state.trace); } int count_pmc(int pmc, uint32_t sample_period) { uint32_t start_value; u64 val; /* 0) Read PMC */ start_value = pmc_sample_period(sample_period); val = read_pmc(pmc); if (val < start_value) ebb_state.stats.negative++; else ebb_state.stats.pmc_count[PMC_INDEX(pmc)] += val - start_value; trace_log_reg(ebb_state.trace, SPRN_PMC1 + pmc - 1, val); /* 1) Reset PMC */ write_pmc(pmc, start_value); /* Report if we overflowed */ return val >= COUNTER_OVERFLOW; } int ebb_event_enable(struct event *e) { int rc; /* Ensure any SPR writes are ordered vs us */ mb(); rc = ioctl(e->fd, PERF_EVENT_IOC_ENABLE); if (rc) return rc; rc = event_read(e); /* Ditto */ mb(); return rc; } void ebb_freeze_pmcs(void) { mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC); mb(); } void ebb_unfreeze_pmcs(void) { /* Unfreeze counters */ mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) & ~MMCR0_FC); mb(); } void ebb_global_enable(void) { /* Enable EBBs globally and PMU EBBs */ mtspr(SPRN_BESCR, 0x8000000100000000ull); mb(); } void ebb_global_disable(void) { /* Disable EBBs & freeze counters, events are still scheduled */ mtspr(SPRN_BESCRR, BESCR_PME); mb(); } bool ebb_is_supported(void) { #ifdef PPC_FEATURE2_EBB /* EBB requires at least POWER8 */ return have_hwcap2(PPC_FEATURE2_EBB); #else return false; #endif } void event_ebb_init(struct event *e) { e->attr.config |= (1ull << 63); } void event_bhrb_init(struct event *e, unsigned ifm) { e->attr.config |= (1ull << 62) | ((u64)ifm << 60); } void event_leader_ebb_init(struct event *e) { event_ebb_init(e); e->attr.exclusive = 1; e->attr.pinned = 1; } int ebb_child(union pipe read_pipe, union pipe write_pipe) { struct event event; uint64_t val; FAIL_IF(wait_for_parent(read_pipe)); event_init_named(&event, 0x1001e, "cycles"); event_leader_ebb_init(&event); event.attr.exclude_kernel = 1; event.attr.exclude_hv = 1; event.attr.exclude_idle = 1; FAIL_IF(event_open(&event)); ebb_enable_pmc_counting(1); setup_ebb_handler(standard_ebb_callee); ebb_global_enable(); FAIL_IF(event_enable(&event)); if (event_read(&event)) { /* * Some tests expect to fail here, so don't report an error on * this line, and return a distinguisable error code. Tell the * parent an error happened. */ notify_parent_of_error(write_pipe); return 2; } mtspr(SPRN_PMC1, pmc_sample_period(sample_period)); FAIL_IF(notify_parent(write_pipe)); FAIL_IF(wait_for_parent(read_pipe)); FAIL_IF(notify_parent(write_pipe)); while (ebb_state.stats.ebb_count < 20) { FAIL_IF(core_busy_loop()); /* To try and hit SIGILL case */ val = mfspr(SPRN_MMCRA); val |= mfspr(SPRN_MMCR2); val |= mfspr(SPRN_MMCR0); } ebb_global_disable(); ebb_freeze_pmcs(); dump_ebb_state(); event_close(&event); FAIL_IF(ebb_state.stats.ebb_count == 0); return 0; } static jmp_buf setjmp_env; static void sigill_handler(int signal) { printf("Took sigill\n"); longjmp(setjmp_env, 1); } static struct sigaction sigill_action = { .sa_handler = sigill_handler, }; int catch_sigill(void (*func)(void)) { if (sigaction(SIGILL, &sigill_action, NULL)) { perror("sigaction"); return 1; } if (setjmp(setjmp_env) == 0) { func(); return 1; } return 0; } void write_pmc1(void) { mtspr(SPRN_PMC1, 0); } void write_pmc(int pmc, u64 value) { switch (pmc) { case 1: mtspr(SPRN_PMC1, value); break; case 2: mtspr(SPRN_PMC2, value); break; case 3: mtspr(SPRN_PMC3, value); break; case 4: mtspr(SPRN_PMC4, value); break; case 5: mtspr(SPRN_PMC5, value); break; case 6: mtspr(SPRN_PMC6, value); break; } } u64 read_pmc(int pmc) { switch (pmc) { case 1: return mfspr(SPRN_PMC1); case 2: return mfspr(SPRN_PMC2); case 3: return mfspr(SPRN_PMC3); case 4: return mfspr(SPRN_PMC4); case 5: return mfspr(SPRN_PMC5); case 6: return mfspr(SPRN_PMC6); } return 0; } static void term_handler(int signal) { dump_summary_ebb_state(); dump_ebb_hw_state(); abort(); } struct sigaction term_action = { .sa_handler = term_handler, }; static void __attribute__((constructor)) ebb_init(void) { clear_ebb_stats(); if (sigaction(SIGTERM, &term_action, NULL)) perror("sigaction"); ebb_state.trace = trace_buffer_allocate(1 * 1024 * 1024); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/ebb.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include <setjmp.h> #include <signal.h> #include "ebb.h" /* Test that things work sanely if we have no handler */ static int no_handler_test(void) { struct event event; u64 val; int i; SKIP_IF(!ebb_is_supported()); event_init_named(&event, 0x1001e, "cycles"); event_leader_ebb_init(&event); event.attr.exclude_kernel = 1; event.attr.exclude_hv = 1; event.attr.exclude_idle = 1; FAIL_IF(event_open(&event)); FAIL_IF(ebb_event_enable(&event)); val = mfspr(SPRN_EBBHR); FAIL_IF(val != 0); /* Make sure it overflows quickly */ sample_period = 1000; mtspr(SPRN_PMC1, pmc_sample_period(sample_period)); /* Spin to make sure the event has time to overflow */ for (i = 0; i < 1000; i++) mb(); dump_ebb_state(); /* We expect to see the PMU frozen & PMAO set */ val = mfspr(SPRN_MMCR0); FAIL_IF(val != 0x0000000080000080); event_close(&event); /* The real test is that we never took an EBB at 0x0 */ return 0; } int main(void) { return test_harness(no_handler_test,"no_handler_test"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/no_handler_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include <sys/ioctl.h> #include "ebb.h" /* * Test counting multiple events using EBBs. */ int multi_counter(void) { struct event events[6]; int i, group_fd; SKIP_IF(!ebb_is_supported()); event_init_named(&events[0], 0x1001C, "PM_CMPLU_STALL_THRD"); event_init_named(&events[1], 0x2D016, "PM_CMPLU_STALL_FXU"); event_init_named(&events[2], 0x30006, "PM_CMPLU_STALL_OTHER_CMPL"); event_init_named(&events[3], 0x4000A, "PM_CMPLU_STALL"); event_init_named(&events[4], 0x600f4, "PM_RUN_CYC"); event_init_named(&events[5], 0x500fa, "PM_RUN_INST_CMPL"); event_leader_ebb_init(&events[0]); for (i = 1; i < 6; i++) event_ebb_init(&events[i]); group_fd = -1; for (i = 0; i < 6; i++) { events[i].attr.exclude_kernel = 1; events[i].attr.exclude_hv = 1; events[i].attr.exclude_idle = 1; FAIL_IF(event_open_with_group(&events[i], group_fd)); if (group_fd == -1) group_fd = events[0].fd; } ebb_enable_pmc_counting(1); ebb_enable_pmc_counting(2); ebb_enable_pmc_counting(3); ebb_enable_pmc_counting(4); ebb_enable_pmc_counting(5); ebb_enable_pmc_counting(6); setup_ebb_handler(standard_ebb_callee); FAIL_IF(ioctl(events[0].fd, PERF_EVENT_IOC_ENABLE, PERF_IOC_FLAG_GROUP)); FAIL_IF(event_read(&events[0])); ebb_global_enable(); mtspr(SPRN_PMC1, pmc_sample_period(sample_period)); mtspr(SPRN_PMC2, pmc_sample_period(sample_period)); mtspr(SPRN_PMC3, pmc_sample_period(sample_period)); mtspr(SPRN_PMC4, pmc_sample_period(sample_period)); mtspr(SPRN_PMC5, pmc_sample_period(sample_period)); mtspr(SPRN_PMC6, pmc_sample_period(sample_period)); while (ebb_state.stats.ebb_count < 50) { FAIL_IF(core_busy_loop()); FAIL_IF(ebb_check_mmcr0()); } ebb_global_disable(); ebb_freeze_pmcs(); dump_ebb_state(); for (i = 0; i < 6; i++) event_close(&events[i]); FAIL_IF(ebb_state.stats.ebb_count == 0); return 0; } int main(void) { return test_harness(multi_counter, "multi_counter"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/multi_counter_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #define _GNU_SOURCE #include <stdio.h> #include <stdbool.h> #include <string.h> #include <sys/prctl.h> #include "ebb.h" /* * Run a calibrated instruction loop and count instructions executed using * EBBs. Make sure the counts look right. */ extern void thirty_two_instruction_loop(uint64_t loops); static bool counters_frozen = true; static int do_count_loop(struct event *event, uint64_t instructions, uint64_t overhead, bool report) { int64_t difference, expected; double percentage; clear_ebb_stats(); counters_frozen = false; mb(); mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) & ~MMCR0_FC); thirty_two_instruction_loop(instructions >> 5); counters_frozen = true; mb(); mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC); count_pmc(4, sample_period); event->result.value = ebb_state.stats.pmc_count[4-1]; expected = instructions + overhead; difference = event->result.value - expected; percentage = (double)difference / event->result.value * 100; if (report) { printf("Looped for %lu instructions, overhead %lu\n", instructions, overhead); printf("Expected %lu\n", expected); printf("Actual %llu\n", event->result.value); printf("Delta %ld, %f%%\n", difference, percentage); printf("Took %d EBBs\n", ebb_state.stats.ebb_count); } if (difference < 0) difference = -difference; /* Tolerate a difference of up to 0.0001 % */ difference *= 10000 * 100; if (difference / event->result.value) return -1; return 0; } /* Count how many instructions it takes to do a null loop */ static uint64_t determine_overhead(struct event *event) { uint64_t current, overhead; int i; do_count_loop(event, 0, 0, false); overhead = event->result.value; for (i = 0; i < 100; i++) { do_count_loop(event, 0, 0, false); current = event->result.value; if (current < overhead) { printf("Replacing overhead %lu with %lu\n", overhead, current); overhead = current; } } return overhead; } static void pmc4_ebb_callee(void) { uint64_t val; val = mfspr(SPRN_BESCR); if (!(val & BESCR_PMEO)) { ebb_state.stats.spurious++; goto out; } ebb_state.stats.ebb_count++; count_pmc(4, sample_period); out: if (counters_frozen) reset_ebb_with_clear_mask(MMCR0_PMAO); else reset_ebb(); } int instruction_count(void) { struct event event; uint64_t overhead; SKIP_IF(!ebb_is_supported()); event_init_named(&event, 0x400FA, "PM_RUN_INST_CMPL"); event_leader_ebb_init(&event); event.attr.exclude_kernel = 1; event.attr.exclude_hv = 1; event.attr.exclude_idle = 1; FAIL_IF(event_open(&event)); FAIL_IF(ebb_event_enable(&event)); sample_period = COUNTER_OVERFLOW; setup_ebb_handler(pmc4_ebb_callee); mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) & ~MMCR0_FC); ebb_global_enable(); overhead = determine_overhead(&event); printf("Overhead of null loop: %lu instructions\n", overhead); /* Run for 1M instructions */ FAIL_IF(do_count_loop(&event, 0x100000, overhead, true)); /* Run for 10M instructions */ FAIL_IF(do_count_loop(&event, 0xa00000, overhead, true)); /* Run for 100M instructions */ FAIL_IF(do_count_loop(&event, 0x6400000, overhead, true)); /* Run for 1G instructions */ FAIL_IF(do_count_loop(&event, 0x40000000, overhead, true)); /* Run for 16G instructions */ FAIL_IF(do_count_loop(&event, 0x400000000, overhead, true)); /* Run for 64G instructions */ FAIL_IF(do_count_loop(&event, 0x1000000000, overhead, true)); /* Run for 128G instructions */ FAIL_IF(do_count_loop(&event, 0x2000000000, overhead, true)); ebb_global_disable(); event_close(&event); printf("Finished OK\n"); return 0; } int main(void) { test_harness_set_timeout(300); return test_harness(instruction_count, "instruction_count"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/instruction_count_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2021, Athira Rajeev, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include <setjmp.h> #include <signal.h> #include "ebb.h" /* * Test that closing the EBB event clears MMCR0_PMCC and * sets MMCR0_PMCCEXT preventing further read access to the * group B PMU registers. */ static int regs_access_pmccext(void) { struct event event; SKIP_IF(!ebb_is_supported()); event_init_named(&event, 0x1001e, "cycles"); event_leader_ebb_init(&event); FAIL_IF(event_open(&event)); ebb_enable_pmc_counting(1); setup_ebb_handler(standard_ebb_callee); ebb_global_enable(); FAIL_IF(ebb_event_enable(&event)); mtspr(SPRN_PMC1, pmc_sample_period(sample_period)); while (ebb_state.stats.ebb_count < 1) FAIL_IF(core_busy_loop()); ebb_global_disable(); event_close(&event); FAIL_IF(ebb_state.stats.ebb_count == 0); /* * For ISA v3.1, verify the test takes a SIGILL when reading * PMU regs after the event is closed. With the control bit * in MMCR0 (PMCCEXT) restricting access to group B PMU regs, * sigill is expected. */ if (have_hwcap2(PPC_FEATURE2_ARCH_3_1)) FAIL_IF(catch_sigill(dump_ebb_state)); else dump_ebb_state(); return 0; } int main(void) { return test_harness(regs_access_pmccext, "regs_access_pmccext"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/regs_access_pmccext_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include "ebb.h" /* * Test various attributes of the EBB event are enforced. */ int event_attributes(void) { struct event event, leader; SKIP_IF(!ebb_is_supported()); event_init(&event, 0x1001e); event_leader_ebb_init(&event); /* Expected to succeed */ FAIL_IF(event_open(&event)); event_close(&event); event_init(&event, 0x001e); /* CYCLES - no PMC specified */ event_leader_ebb_init(&event); /* Expected to fail, no PMC specified */ FAIL_IF(event_open(&event) == 0); event_init(&event, 0x2001e); event_leader_ebb_init(&event); event.attr.exclusive = 0; /* Expected to fail, not exclusive */ FAIL_IF(event_open(&event) == 0); event_init(&event, 0x3001e); event_leader_ebb_init(&event); event.attr.freq = 1; /* Expected to fail, sets freq */ FAIL_IF(event_open(&event) == 0); event_init(&event, 0x4001e); event_leader_ebb_init(&event); event.attr.sample_period = 1; /* Expected to fail, sets sample_period */ FAIL_IF(event_open(&event) == 0); event_init(&event, 0x1001e); event_leader_ebb_init(&event); event.attr.enable_on_exec = 1; /* Expected to fail, sets enable_on_exec */ FAIL_IF(event_open(&event) == 0); event_init(&event, 0x1001e); event_leader_ebb_init(&event); event.attr.inherit = 1; /* Expected to fail, sets inherit */ FAIL_IF(event_open(&event) == 0); event_init(&leader, 0x1001e); event_leader_ebb_init(&leader); FAIL_IF(event_open(&leader)); event_init(&event, 0x20002); event_ebb_init(&event); /* Expected to succeed */ FAIL_IF(event_open_with_group(&event, leader.fd)); event_close(&leader); event_close(&event); event_init(&leader, 0x1001e); event_leader_ebb_init(&leader); FAIL_IF(event_open(&leader)); event_init(&event, 0x20002); /* Expected to fail, event doesn't request EBB, leader does */ FAIL_IF(event_open_with_group(&event, leader.fd) == 0); event_close(&leader); event_init(&leader, 0x1001e); event_leader_ebb_init(&leader); /* Clear the EBB flag */ leader.attr.config &= ~(1ull << 63); FAIL_IF(event_open(&leader)); event_init(&event, 0x20002); event_ebb_init(&event); /* Expected to fail, leader doesn't request EBB */ FAIL_IF(event_open_with_group(&event, leader.fd) == 0); event_close(&leader); event_init(&leader, 0x1001e); event_leader_ebb_init(&leader); leader.attr.exclusive = 0; /* Expected to fail, leader isn't exclusive */ FAIL_IF(event_open(&leader) == 0); event_init(&leader, 0x1001e); event_leader_ebb_init(&leader); leader.attr.pinned = 0; /* Expected to fail, leader isn't pinned */ FAIL_IF(event_open(&leader) == 0); event_init(&event, 0x1001e); event_leader_ebb_init(&event); /* Expected to fail, not a task event */ SKIP_IF(require_paranoia_below(1)); FAIL_IF(event_open_with_cpu(&event, 0) == 0); return 0; } int main(void) { return test_harness(event_attributes, "event_attributes"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/event_attributes_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #include "ebb.h" /* * Tests we can setup an EBB on our child. Nothing interesting happens, because * even though the event is enabled and running the child hasn't enabled the * actual delivery of the EBBs. */ static int victim_child(union pipe read_pipe, union pipe write_pipe) { int i; FAIL_IF(wait_for_parent(read_pipe)); FAIL_IF(notify_parent(write_pipe)); /* Parent creates EBB event */ FAIL_IF(wait_for_parent(read_pipe)); FAIL_IF(notify_parent(write_pipe)); /* Check the EBB is enabled by writing PMC1 */ write_pmc1(); /* EBB event is enabled here */ for (i = 0; i < 1000000; i++) ; return 0; } int ebb_on_child(void) { union pipe read_pipe, write_pipe; struct event event; pid_t pid; SKIP_IF(!ebb_is_supported()); FAIL_IF(pipe(read_pipe.fds) == -1); FAIL_IF(pipe(write_pipe.fds) == -1); pid = fork(); if (pid == 0) { /* NB order of pipes looks reversed */ exit(victim_child(write_pipe, read_pipe)); } FAIL_IF(sync_with_child(read_pipe, write_pipe)); /* Child is running now */ event_init_named(&event, 0x1001e, "cycles"); event_leader_ebb_init(&event); event.attr.exclude_kernel = 1; event.attr.exclude_hv = 1; event.attr.exclude_idle = 1; FAIL_IF(event_open_with_pid(&event, pid)); FAIL_IF(ebb_event_enable(&event)); FAIL_IF(sync_with_child(read_pipe, write_pipe)); /* Child should just exit happily */ FAIL_IF(wait_for_child(pid)); event_close(&event); return 0; } int main(void) { return test_harness(ebb_on_child, "ebb_on_child"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/ebb_on_child_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include <setjmp.h> #include <signal.h> #include "ebb.h" /* * Test that closing the EBB event clears MMCR0_PMCC, preventing further access * by userspace to the PMU hardware. */ int close_clears_pmcc(void) { struct event event; SKIP_IF(!ebb_is_supported()); event_init_named(&event, 0x1001e, "cycles"); event_leader_ebb_init(&event); FAIL_IF(event_open(&event)); ebb_enable_pmc_counting(1); setup_ebb_handler(standard_ebb_callee); ebb_global_enable(); FAIL_IF(ebb_event_enable(&event)); mtspr(SPRN_PMC1, pmc_sample_period(sample_period)); while (ebb_state.stats.ebb_count < 1) FAIL_IF(core_busy_loop()); ebb_global_disable(); event_close(&event); FAIL_IF(ebb_state.stats.ebb_count == 0); /* The real test is here, do we take a SIGILL when writing PMU regs now * that we have closed the event. We expect that we will. */ FAIL_IF(catch_sigill(write_pmc1)); /* We should still be able to read EBB regs though */ mfspr(SPRN_EBBHR); mfspr(SPRN_EBBRR); mfspr(SPRN_BESCR); return 0; } int main(void) { return test_harness(close_clears_pmcc, "close_clears_pmcc"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/close_clears_pmcc_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include "ebb.h" /* * Test of counting cycles while manipulating the user accessible bits in MMCR2. */ /* We use two values because the first freezes PMC1 and so we would get no EBBs */ #define MMCR2_EXPECTED_1 0x4020100804020000UL /* (FC1P|FC2P|FC3P|FC4P|FC5P|FC6P) */ #define MMCR2_EXPECTED_2 0x0020100804020000UL /* ( FC2P|FC3P|FC4P|FC5P|FC6P) */ int cycles_with_mmcr2(void) { struct event event; uint64_t val, expected[2], actual; int i; bool bad_mmcr2; SKIP_IF(!ebb_is_supported()); event_init_named(&event, 0x1001e, "cycles"); event_leader_ebb_init(&event); event.attr.exclude_kernel = 1; event.attr.exclude_hv = 1; event.attr.exclude_idle = 1; FAIL_IF(event_open(&event)); ebb_enable_pmc_counting(1); setup_ebb_handler(standard_ebb_callee); ebb_global_enable(); FAIL_IF(ebb_event_enable(&event)); mtspr(SPRN_PMC1, pmc_sample_period(sample_period)); /* XXX Set of MMCR2 must be after enable */ expected[0] = MMCR2_EXPECTED_1; expected[1] = MMCR2_EXPECTED_2; i = 0; bad_mmcr2 = false; actual = 0; /* Make sure we loop until we take at least one EBB */ while ((ebb_state.stats.ebb_count < 20 && !bad_mmcr2) || ebb_state.stats.ebb_count < 1) { mtspr(SPRN_MMCR2, expected[i % 2]); FAIL_IF(core_busy_loop()); val = mfspr(SPRN_MMCR2); if (val != expected[i % 2]) { bad_mmcr2 = true; actual = val; } i++; } ebb_global_disable(); ebb_freeze_pmcs(); dump_ebb_state(); event_close(&event); FAIL_IF(ebb_state.stats.ebb_count == 0); if (bad_mmcr2) printf("Bad MMCR2 value seen is 0x%lx\n", actual); FAIL_IF(bad_mmcr2); return 0; } int main(void) { return test_harness(cycles_with_mmcr2, "cycles_with_mmcr2"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/cycles_with_mmcr2_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2014, Michael Ellerman, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include "ebb.h" /* * Test of counting cycles while using MMCR0_FC (freeze counters) to only count * parts of the code. This is complicated by the fact that FC is set by the * hardware when the event overflows. We may take the EBB after we have set FC, * so we have to be careful about whether we clear FC at the end of the EBB * handler or not. */ static bool counters_frozen = false; static int ebbs_while_frozen = 0; static void ebb_callee(void) { uint64_t mask, val; mask = MMCR0_PMAO | MMCR0_FC; val = mfspr(SPRN_BESCR); if (!(val & BESCR_PMEO)) { ebb_state.stats.spurious++; goto out; } ebb_state.stats.ebb_count++; trace_log_counter(ebb_state.trace, ebb_state.stats.ebb_count); val = mfspr(SPRN_MMCR0); trace_log_reg(ebb_state.trace, SPRN_MMCR0, val); if (counters_frozen) { trace_log_string(ebb_state.trace, "frozen"); ebbs_while_frozen++; mask &= ~MMCR0_FC; } count_pmc(1, sample_period); out: reset_ebb_with_clear_mask(mask); } int cycles_with_freeze(void) { struct event event; uint64_t val; bool fc_cleared; SKIP_IF(!ebb_is_supported()); event_init_named(&event, 0x1001e, "cycles"); event_leader_ebb_init(&event); event.attr.exclude_kernel = 1; event.attr.exclude_hv = 1; event.attr.exclude_idle = 1; FAIL_IF(event_open(&event)); setup_ebb_handler(ebb_callee); ebb_global_enable(); FAIL_IF(ebb_event_enable(&event)); mtspr(SPRN_PMC1, pmc_sample_period(sample_period)); fc_cleared = false; /* Make sure we loop until we take at least one EBB */ while ((ebb_state.stats.ebb_count < 20 && !fc_cleared) || ebb_state.stats.ebb_count < 1) { counters_frozen = false; mb(); mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) & ~MMCR0_FC); FAIL_IF(core_busy_loop()); counters_frozen = true; mb(); mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC); val = mfspr(SPRN_MMCR0); if (! (val & MMCR0_FC)) { printf("Outside of loop, FC NOT set MMCR0 0x%lx\n", val); fc_cleared = true; } } ebb_global_disable(); ebb_freeze_pmcs(); dump_ebb_state(); printf("EBBs while frozen %d\n", ebbs_while_frozen); event_close(&event); FAIL_IF(ebb_state.stats.ebb_count == 0); FAIL_IF(fc_cleared); return 0; } int main(void) { return test_harness(cycles_with_freeze, "cycles_with_freeze"); }
linux-master
tools/testing/selftests/powerpc/pmu/ebb/cycles_with_freeze_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2022, Athira Rajeev, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include "../event.h" #include "misc.h" #include "utils.h" /* All successful D-side store dispatches for this thread that were L2 Miss */ #define EventCode 0x46880 extern void thirty_two_instruction_loop_with_ll_sc(u64 loops, u64 *ll_sc_target); /* * A perf sampling test for mmcr1 * fields : comb. */ static int mmcr1_comb(void) { struct event event; u64 *intr_regs; u64 dummy; /* Check for platform support for the test */ SKIP_IF(check_pvr_for_sampling_tests()); /* Init the event for the sampling test */ event_init_sampling(&event, EventCode); event.attr.sample_regs_intr = platform_extended_mask; FAIL_IF(event_open(&event)); event.mmap_buffer = event_sample_buf_mmap(event.fd, 1); FAIL_IF(event_enable(&event)); /* workload to make the event overflow */ thirty_two_instruction_loop_with_ll_sc(10000000, &dummy); FAIL_IF(event_disable(&event)); /* Check for sample count */ FAIL_IF(!collect_samples(event.mmap_buffer)); intr_regs = get_intr_regs(&event, event.mmap_buffer); /* Check for intr_regs */ FAIL_IF(!intr_regs); /* * Verify that comb field match with * corresponding event code fields */ FAIL_IF(EV_CODE_EXTRACT(event.attr.config, comb) != get_mmcr1_comb(get_reg_value(intr_regs, "MMCR1"), 4)); event_close(&event); return 0; } int main(void) { return test_harness(mmcr1_comb, "mmcr1_comb"); }
linux-master
tools/testing/selftests/powerpc/pmu/sampling_tests/mmcr1_comb_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2022, Athira Rajeev, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include "../event.h" #include "misc.h" #include "utils.h" extern void thirty_two_instruction_loop(int loops); /* * A perf sampling test for mmcr0 * field: cc56run. */ static int mmcr0_cc56run(void) { struct event event; u64 *intr_regs; /* Check for platform support for the test */ SKIP_IF(check_pvr_for_sampling_tests()); SKIP_IF(!have_hwcap2(PPC_FEATURE2_ARCH_3_1)); /* Init the event for the sampling test */ event_init_sampling(&event, 0x500fa); event.attr.sample_regs_intr = platform_extended_mask; FAIL_IF(event_open(&event)); event.mmap_buffer = event_sample_buf_mmap(event.fd, 1); FAIL_IF(event_enable(&event)); /* workload to make the event overflow */ thirty_two_instruction_loop(10000); FAIL_IF(event_disable(&event)); /* Check for sample count */ FAIL_IF(!collect_samples(event.mmap_buffer)); intr_regs = get_intr_regs(&event, event.mmap_buffer); /* Check for intr_regs */ FAIL_IF(!intr_regs); /* Verify that cc56run bit is set in MMCR0 */ FAIL_IF(!get_mmcr0_cc56run(get_reg_value(intr_regs, "MMCR0"), 5)); event_close(&event); return 0; } int main(void) { return test_harness(mmcr0_cc56run, "mmcr0_cc56run"); }
linux-master
tools/testing/selftests/powerpc/pmu/sampling_tests/mmcr0_cc56run_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2022, Kajol Jain, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include "../event.h" #include "misc.h" #include "utils.h" /* * Primary PMU event used here is PM_MRK_INST_CMPL (0x401e0) * Threshold event selection used is issue to complete for cycles * Sampling criteria is Load only sampling */ #define EventCode 0x35340401e0 extern void thirty_two_instruction_loop_with_ll_sc(u64 loops, u64 *ll_sc_target); /* A perf sampling test to test mmcra fields */ static int mmcra_thresh_marked_sample(void) { struct event event; u64 *intr_regs; u64 dummy; /* Check for platform support for the test */ SKIP_IF(check_pvr_for_sampling_tests()); /* Init the event for the sampling test */ event_init_sampling(&event, EventCode); event.attr.sample_regs_intr = platform_extended_mask; FAIL_IF(event_open(&event)); event.mmap_buffer = event_sample_buf_mmap(event.fd, 1); FAIL_IF(event_enable(&event)); /* workload to make the event overflow */ thirty_two_instruction_loop_with_ll_sc(1000000, &dummy); FAIL_IF(event_disable(&event)); /* Check for sample count */ FAIL_IF(!collect_samples(event.mmap_buffer)); intr_regs = get_intr_regs(&event, event.mmap_buffer); /* Check for intr_regs */ FAIL_IF(!intr_regs); /* * Verify that thresh sel/start/stop, marked, random sample * eligibility, sdar mode and sample mode fields match with * the corresponding event code fields */ FAIL_IF(EV_CODE_EXTRACT(event.attr.config, thd_sel) != get_mmcra_thd_sel(get_reg_value(intr_regs, "MMCRA"), 4)); FAIL_IF(EV_CODE_EXTRACT(event.attr.config, thd_start) != get_mmcra_thd_start(get_reg_value(intr_regs, "MMCRA"), 4)); FAIL_IF(EV_CODE_EXTRACT(event.attr.config, thd_stop) != get_mmcra_thd_stop(get_reg_value(intr_regs, "MMCRA"), 4)); FAIL_IF(EV_CODE_EXTRACT(event.attr.config, marked) != get_mmcra_marked(get_reg_value(intr_regs, "MMCRA"), 4)); FAIL_IF((EV_CODE_EXTRACT(event.attr.config, sample) >> 2) != get_mmcra_rand_samp_elig(get_reg_value(intr_regs, "MMCRA"), 4)); FAIL_IF((EV_CODE_EXTRACT(event.attr.config, sample) & 0x3) != get_mmcra_sample_mode(get_reg_value(intr_regs, "MMCRA"), 4)); FAIL_IF(EV_CODE_EXTRACT(event.attr.config, sm) != get_mmcra_sm(get_reg_value(intr_regs, "MMCRA"), 4)); event_close(&event); return 0; } int main(void) { return test_harness(mmcra_thresh_marked_sample, "mmcra_thresh_marked_sample"); }
linux-master
tools/testing/selftests/powerpc/pmu/sampling_tests/mmcra_thresh_marked_sample_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2022, Kajol Jain, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include "../event.h" #include "misc.h" #include "utils.h" extern void thirty_two_instruction_loop_with_ll_sc(u64 loops, u64 *ll_sc_target); /* The data cache was reloaded from local core's L3 due to a demand load */ #define EventCode 0x1340000001c040 /* * A perf sampling test for mmcr3 * fields. */ static int mmcr3_src(void) { struct event event; u64 *intr_regs; u64 dummy; /* Check for platform support for the test */ SKIP_IF(check_pvr_for_sampling_tests()); SKIP_IF(!have_hwcap2(PPC_FEATURE2_ARCH_3_1)); /* Init the event for the sampling test */ event_init_sampling(&event, EventCode); event.attr.sample_regs_intr = platform_extended_mask; FAIL_IF(event_open(&event)); event.mmap_buffer = event_sample_buf_mmap(event.fd, 1); FAIL_IF(event_enable(&event)); /* workload to make event overflow */ thirty_two_instruction_loop_with_ll_sc(1000000, &dummy); FAIL_IF(event_disable(&event)); /* Check for sample count */ FAIL_IF(!collect_samples(event.mmap_buffer)); intr_regs = get_intr_regs(&event, event.mmap_buffer); /* Check for intr_regs */ FAIL_IF(!intr_regs); /* * Verify that src field of MMCR3 match with * corresponding event code field */ FAIL_IF(EV_CODE_EXTRACT(event.attr.config, mmcr3_src) != get_mmcr3_src(get_reg_value(intr_regs, "MMCR3"), 1)); event_close(&event); return 0; } int main(void) { return test_harness(mmcr3_src, "mmcr3_src"); }
linux-master
tools/testing/selftests/powerpc/pmu/sampling_tests/mmcr3_src_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2022, Kajol Jain, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include "../event.h" #include "misc.h" #include "utils.h" extern void thirty_two_instruction_loop(int loops); /* Instructions */ #define EventCode 0x500fa /* ifm field for conditional branch mode */ #define IFM_COND_BRANCH 0x3 /* * A perf sampling test for mmcra * field: ifm for bhrb cond call. */ static int mmcra_bhrb_cond_test(void) { struct event event; u64 *intr_regs; /* * Check for platform support for the test. * This test is only aplicable on power10 */ SKIP_IF(check_pvr_for_sampling_tests()); SKIP_IF(!have_hwcap2(PPC_FEATURE2_ARCH_3_1)); /* Init the event for the sampling test */ event_init_sampling(&event, EventCode); event.attr.sample_regs_intr = platform_extended_mask; event.attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; event.attr.branch_sample_type = PERF_SAMPLE_BRANCH_COND; event.attr.exclude_kernel = 1; FAIL_IF(event_open(&event)); event.mmap_buffer = event_sample_buf_mmap(event.fd, 1); FAIL_IF(event_enable(&event)); /* workload to make the event overflow */ thirty_two_instruction_loop(10000); FAIL_IF(event_disable(&event)); intr_regs = get_intr_regs(&event, event.mmap_buffer); /* Check for intr_regs */ FAIL_IF(!intr_regs); /* Verify that ifm bit is set properly in MMCRA */ FAIL_IF(get_mmcra_ifm(get_reg_value(intr_regs, "MMCRA"), 5) != IFM_COND_BRANCH); event_close(&event); return 0; } int main(void) { return test_harness(mmcra_bhrb_cond_test, "mmcra_bhrb_cond_test"); }
linux-master
tools/testing/selftests/powerpc/pmu/sampling_tests/mmcra_bhrb_cond_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2022, Kajol Jain, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include "../event.h" #include "misc.h" #include "utils.h" /* * Primary PMU event used here is PM_MRK_INST_CMPL (0x401e0) * Threshold event selection used is issue to complete for cycles * Sampling criteria is Load only sampling */ #define p9_EventCode 0x13E35340401e0 #define p10_EventCode 0x35340401e0 extern void thirty_two_instruction_loop_with_ll_sc(u64 loops, u64 *ll_sc_target); /* A perf sampling test to test mmcra fields */ static int mmcra_thresh_cmp(void) { struct event event; u64 *intr_regs; u64 dummy; /* Check for platform support for the test */ SKIP_IF(check_pvr_for_sampling_tests()); /* Skip for comapt mode */ SKIP_IF(check_for_compat_mode()); /* Init the event for the sampling test */ if (!have_hwcap2(PPC_FEATURE2_ARCH_3_1)) { event_init_sampling(&event, p9_EventCode); } else { event_init_sampling(&event, p10_EventCode); event.attr.config1 = 1000; } event.attr.sample_regs_intr = platform_extended_mask; FAIL_IF(event_open(&event)); event.mmap_buffer = event_sample_buf_mmap(event.fd, 1); FAIL_IF(event_enable(&event)); /* workload to make the event overflow */ thirty_two_instruction_loop_with_ll_sc(1000000, &dummy); FAIL_IF(event_disable(&event)); /* Check for sample count */ FAIL_IF(!collect_samples(event.mmap_buffer)); intr_regs = get_intr_regs(&event, event.mmap_buffer); /* Check for intr_regs */ FAIL_IF(!intr_regs); /* Verify that thresh cmp match with the corresponding event code fields */ FAIL_IF(get_thresh_cmp_val(event) != get_mmcra_thd_cmp(get_reg_value(intr_regs, "MMCRA"), 4)); event_close(&event); return 0; } int main(void) { FAIL_IF(test_harness(mmcra_thresh_cmp, "mmcra_thresh_cmp")); }
linux-master
tools/testing/selftests/powerpc/pmu/sampling_tests/mmcra_thresh_cmp_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2022, Athira Rajeev, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include "../event.h" #include "misc.h" #include "utils.h" extern void thirty_two_instruction_loop(int loops); /* * A perf sampling test for mmcr0 * fields : pmae, pmao. */ static int mmcr0_exceptionbits(void) { struct event event; u64 *intr_regs; /* Check for platform support for the test */ SKIP_IF(check_pvr_for_sampling_tests()); /* Init the event for the sampling test */ event_init_sampling(&event, 0x500fa); event.attr.sample_regs_intr = platform_extended_mask; FAIL_IF(event_open(&event)); event.mmap_buffer = event_sample_buf_mmap(event.fd, 1); FAIL_IF(event_enable(&event)); /* workload to make the event overflow */ thirty_two_instruction_loop(10000); FAIL_IF(event_disable(&event)); /* Check for sample count */ FAIL_IF(!collect_samples(event.mmap_buffer)); intr_regs = get_intr_regs(&event, event.mmap_buffer); /* Check for intr_regs */ FAIL_IF(!intr_regs); /* Verify that pmae is cleared and pmao is set in MMCR0 */ FAIL_IF(get_mmcr0_pmae(get_reg_value(intr_regs, "MMCR0"), 5)); FAIL_IF(!get_mmcr0_pmao(get_reg_value(intr_regs, "MMCR0"), 5)); event_close(&event); return 0; } int main(void) { return test_harness(mmcr0_exceptionbits, "mmcr0_exceptionbits"); }
linux-master
tools/testing/selftests/powerpc/pmu/sampling_tests/mmcr0_exceptionbits_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2022, Athira Rajeev, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include "../event.h" #include "misc.h" #include "utils.h" extern void thirty_two_instruction_loop(int loops); /* * A perf sampling test for mmcr0 * field: pmccext */ static int mmcr0_pmccext(void) { struct event event; u64 *intr_regs; /* Check for platform support for the test */ SKIP_IF(check_pvr_for_sampling_tests()); SKIP_IF(!have_hwcap2(PPC_FEATURE2_ARCH_3_1)); /* Init the event for the sampling test */ event_init_sampling(&event, 0x4001e); event.attr.sample_regs_intr = platform_extended_mask; FAIL_IF(event_open(&event)); event.mmap_buffer = event_sample_buf_mmap(event.fd, 1); FAIL_IF(event_enable(&event)); /* workload to make the event overflow */ thirty_two_instruction_loop(10000); FAIL_IF(event_disable(&event)); /* Check for sample count */ FAIL_IF(!collect_samples(event.mmap_buffer)); intr_regs = get_intr_regs(&event, event.mmap_buffer); /* Check for intr_regs */ FAIL_IF(!intr_regs); /* Verify that pmccext field is set in MMCR0 */ FAIL_IF(!get_mmcr0_pmccext(get_reg_value(intr_regs, "MMCR0"), 4)); event_close(&event); return 0; } int main(void) { return test_harness(mmcr0_pmccext, "mmcr0_pmccext"); }
linux-master
tools/testing/selftests/powerpc/pmu/sampling_tests/mmcr0_pmccext_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2022, Athira Rajeev, IBM Corp. */ #include <stdio.h> #include <stdlib.h> #include "../event.h" #include "misc.h" #include "utils.h" /* * A perf sampling test to check bhrb filter * map. All the branch filters are not supported * in powerpc. Supported filters in: * power10: any, any_call, ind_call, cond * power9: any, any_call * * Testcase checks event open for invalid bhrb filter * types should fail and valid filter types should pass. * Testcase does validity check for these branch * sample types. */ /* Invalid types for powerpc */ /* Valid bhrb filters in power9/power10 */ int bhrb_filter_map_valid_common[] = { PERF_SAMPLE_BRANCH_ANY, PERF_SAMPLE_BRANCH_ANY_CALL, }; /* Valid bhrb filters in power10 */ int bhrb_filter_map_valid_p10[] = { PERF_SAMPLE_BRANCH_IND_CALL, PERF_SAMPLE_BRANCH_COND, }; #define EventCode 0x1001e static int bhrb_filter_map_test(void) { struct event event; int i; /* Check for platform support for the test */ SKIP_IF(platform_check_for_tests()); /* * Skip for Generic compat PMU since * bhrb filters is not supported */ SKIP_IF(check_for_generic_compat_pmu()); /* Init the event for the sampling test */ event_init(&event, EventCode); event.attr.sample_period = 1000; event.attr.sample_type = PERF_SAMPLE_BRANCH_STACK; event.attr.disabled = 1; /* Invalid filter maps which are expected to fail in event_open */ for (i = PERF_SAMPLE_BRANCH_USER_SHIFT; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) { /* Skip the valid branch sample type */ if (i == PERF_SAMPLE_BRANCH_ANY_SHIFT || i == PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT \ || i == PERF_SAMPLE_BRANCH_IND_CALL_SHIFT || i == PERF_SAMPLE_BRANCH_COND_SHIFT) continue; event.attr.branch_sample_type = 1U << i; FAIL_IF(!event_open(&event)); } /* valid filter maps for power9/power10 which are expected to pass in event_open */ for (i = 0; i < ARRAY_SIZE(bhrb_filter_map_valid_common); i++) { event.attr.branch_sample_type = bhrb_filter_map_valid_common[i]; FAIL_IF(event_open(&event)); event_close(&event); } /* * filter maps which are valid in power10 and invalid in power9. * PVR check is used here since PMU specific data like bhrb filter * alternative tests is handled by respective PMU driver code and * using PVR will work correctly for all cases including generic * compat mode. */ if (PVR_VER(mfspr(SPRN_PVR)) == POWER10) { for (i = 0; i < ARRAY_SIZE(bhrb_filter_map_valid_p10); i++) { event.attr.branch_sample_type = bhrb_filter_map_valid_p10[i]; FAIL_IF(event_open(&event)); event_close(&event); } } else { for (i = 0; i < ARRAY_SIZE(bhrb_filter_map_valid_p10); i++) { event.attr.branch_sample_type = bhrb_filter_map_valid_p10[i]; FAIL_IF(!event_open(&event)); } } /* * Combine filter maps which includes a valid branch filter and an invalid branch * filter. Example: any ( PERF_SAMPLE_BRANCH_ANY) and any_call * (PERF_SAMPLE_BRANCH_ANY_CALL). * The perf_event_open should fail in this case. */ event.attr.branch_sample_type = PERF_SAMPLE_BRANCH_ANY | PERF_SAMPLE_BRANCH_ANY_CALL; FAIL_IF(!event_open(&event)); return 0; } int main(void) { return test_harness(bhrb_filter_map_test, "bhrb_filter_map_test"); }
linux-master
tools/testing/selftests/powerpc/pmu/sampling_tests/bhrb_filter_map_test.c