File size: 4,111 Bytes
2a00acc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
# coding=utf-8
# Copyright 2023 Charles Koutcheme
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import datasets
from itertools import product
_DESCRIPTION = """
Intro Programming. A dataset of open student submissions to programming assignments.
"""
_DUBLIN_URLS = {
"data": {
"train": f"./data/dublin_data_train.jsonl",
"test": f"./data/dublin_data_test.jsonl",
},
"repair": {
"train": f"./data/dublin_repair_train.jsonl",
"test": f"./data/dublin_repair_test.jsonl",
}
}
_SINGAPORE_URLS = {
"data": {
"train": f"./data/singapore_data_train.jsonl",
},
"repair": {
"train": f"./data/singapore_repair_train.jsonl",
}
}
_URLS = {
"dublin": _DUBLIN_URLS,
"singapore": _SINGAPORE_URLS
}
class IntroProgConfig(datasets.BuilderConfig):
""" BuilderConfig for StaQC."""
def __init__(self, **kwargs):
"""BuilderConfig for StaQC.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(IntroProgConfig, self).__init__(**kwargs)
class IntroProg(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
# splits "data", "repair", "bugs"
# also add here the "metadata" split which will also contain the full metadata
tasks = [("data", "Submissions to the programming assignments."),
("repair", "Buggy programs and ground truth repair(s)."),]
# ("bug", "Buggy programs and bug categories.")]
sources = ["dublin", "singapore"]
BUILDER_CONFIGS = []
for (task, description), source in product(tasks, sources):
BUILDER_CONFIGS.append(
IntroProgConfig(
name=f"{source}_{task}",
description=description,
version=VERSION,
)
)
def _info(self):
features = datasets.Features({
"submission_id": datasets.Value("int32"),
"func_code": datasets.Value("string"),
# assignment information
"assignment_id": datasets.Value("string"),
"func_name": datasets.Value("string"),
"description": datasets.Value(dtype='string'),
"test": datasets.Value(dtype='string'),
})
if self.config.name.split("_")[1] == "repair":
features["annotation"] = datasets.Value("string")
if self.config.name.split("_")[1] == "bug":
features["comments"] = datasets.Value("string")
if self.config.name.split("_")[0] == "dublin":
features["user"] = datasets.Value("string")
features["academic_year"] = datasets.Value('int32')
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
source, task = self.config.name.split("_")
urls = _URLS[source][task]
downloaded_files = dl_manager.download_and_extract(urls)
splits = []
for name, files in downloaded_files.items():
splits.append(datasets.SplitGenerator(name=name, gen_kwargs={"filepath": files}))
return splits
def _generate_examples(self, filepath):
with open(filepath, "r") as f:
lines = f.read().splitlines()
for key, line in enumerate(lines):
d = json.loads(line)
d = {k:v for k, v in d.items() if k in self.info.features}
yield key, d |