#!/usr/bin/env python3 import sys import subprocess from pathlib import Path from typing import List import json from tqdm import tqdm from sentence_transformers import SentenceTransformer from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.schema import Document from langchain.embeddings.base import Embeddings from langchain_community.vectorstores import FAISS def load_settings(path: Path): if not path.exists(): print(f"Settings file not found: {path}", file=sys.stderr) sys.exit(1) return json.loads(path.read_text(encoding='utf-8')) def clone_repo(repo_url: str, local_path: Path) -> None: if not local_path.exists(): print(f"Cloning repo {repo_url} into {local_path}...") subprocess.run(["git", "clone", repo_url, str(local_path)], check=True) else: print(f"Repository already exists at {local_path}") def extract_repo_files(repo_path: Path) -> List[Document]: docs: List[Document] = [] allowed_extensions = {'.cs', '.cpp', '.c', '.h', '.hpp'} all_files = [p for p in repo_path.rglob('*') if p.is_file() and p.suffix in allowed_extensions] for path in tqdm(all_files, desc="Reading repo files"): try: text = path.read_text(encoding='utf-8', errors='ignore') docs.append(Document(page_content=text, metadata={'source': str(path)})) except Exception as e: print(f"Warning: could not read {path}: {e}", file=sys.stderr) return docs def build_embeddings_index( repo_path: Path, index_path: Path, embed_model_name: str ) -> None: splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=64) raw_docs = extract_repo_files(repo_path) chunks: List[Document] = [] for doc in raw_docs: splits = splitter.split_text(doc.page_content) for chunk_text in splits: chunks.append(Document(page_content=chunk_text, metadata=doc.metadata)) embedder = SentenceTransformer(embed_model_name) class BTEmbeddings(Embeddings): def embed_documents(self, texts: List[str]) -> List[List[float]]: return embedder.encode(texts, show_progress_bar=True) def embed_query(self, text: str) -> List[float]: return embedder.encode([text])[0] embedding = BTEmbeddings() if not index_path.exists(): print("Building FAISS index...") vectorstore = FAISS.from_documents(chunks, embedding) vectorstore.save_local(str(index_path)) print("FAISS index built and saved.") else: print(f"FAISS index already exists at {index_path}.") def main(): # Configuration BASE_DIR = Path(__file__).resolve().parent SETTINGS_PATH = BASE_DIR.parent / 'settings.json' # Load settings settings = load_settings(SETTINGS_PATH) EMBED_MODEL = settings['embed_model'] OUT_DIR = BASE_DIR.parent / 'data' / 'rag' OUT_DIR.mkdir(parents=True, exist_ok=True) repo_url = settings['repository'] local_repo = OUT_DIR / 'repo' vector_index_path = OUT_DIR / 'faiss_index' clone_repo(repo_url, local_repo) build_embeddings_index(local_repo, vector_index_path, EMBED_MODEL) if __name__ == '__main__': main()