Ubuntu commited on
Commit
fdd0e33
Β·
0 Parent(s):

Initial commit

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # .NET Runtime Training Data and Index
2
+
3
+ This directory contains data for fine-tuning models and building RAGs for the dotnet/runtime repository.
4
+
5
+ ## Overview
6
+
7
+ - **data/**: Contains all datasets and indexes.
8
+ - **raw_sample/**: Directories of raw PRs and diffs as collected from GitHub.
9
+ - **raw_data.tar**: Collected PRs and diffs from GitHub.
10
+ - **samples/**: JSONL files with processed samples suitable for dataset generation (e.g., HuggingFace).
11
+ - **processed/**: Parquet or JSONL files for fine-tuning (e.g., `train.parquet`, `test.parquet`).
12
+ - **faiss/**: Vector indexes for RAG workflows.
13
+ - **scripts/**: Python and Node.js scripts for crawling, processing, and indexing.
14
+
15
+ ## Data Structure
16
+
17
+ ```
18
+ data/
19
+ β”œβ”€β”€ raw_data.tar
20
+ β”œβ”€β”€ raw_sample/
21
+ β”‚ β”œβ”€β”€ prs/
22
+ β”‚ β”œβ”€β”€ diffs/
23
+ β”‚ └── ... (extracted files)
24
+ β”œβ”€β”€ processed/
25
+ β”‚ β”œβ”€β”€ train.parquet
26
+ β”‚ └── test.parquet
27
+ └── faiss/
28
+ └── index
29
+ ```
30
+
31
+ - **raw_data/**: Contains the full, unprocessed PR and diff data as collected from GitHub.
32
+ - **samples/**: Contains JSONL files formatted for use with HuggingFace Datasets.
33
+ - **processed/**: Contains files for model fine-tuning.
34
+ - **faiss/**: Contains vector indexes for fast retrieval in RAG setups.
35
+
36
+ ## Generated dataset
37
+
38
+ PR is considered as a timeline with events. Input is PR metadata (title, description, label) and commit n-1, with all events between n-1 and n. Completion is n. It is possible to filter by time, label, authors, etc.
39
+
40
+ ## Scripts
41
+
42
+ See [scripts/README.md](scripts/README.md) for details on running the crawler, dataset generation, fine-tuning, and RAG indexing.
43
+
44
+ ## PyTorch Dataset Example
45
+
46
+ ```python
47
+ from datasets import load_dataset
48
+
49
+ # Load Parquet train/test splits
50
+ train = load_dataset("parquet", data_files="data/processed/train.parquet", split="train")
51
+ test = load_dataset("parquet", data_files="data/processed/test.parquet", split="train")
52
+ ```
53
+
54
+ ## RAG Vector Search Example
55
+
56
+ ```python
57
+ import faiss
58
+ import numpy as np
59
+
60
+ # Load FAISS index
61
+ index = faiss.read_index("data/faiss/index.faiss")
62
+
63
+ # Example query embedding (replace with your embedding)
64
+ query_embedding = ...
65
+
66
+ # Search
67
+ D, I = index.search(query_embedding.reshape(1, -1), k=5)
68
+ print("Top 5 similar PR indices:", I[0])
69
+ ```