import json import pandas as pd import datasets import os logger = datasets.logging.get_logger(__name__) _CITATION = """ @inproceedings{chen-etal-2021-dialogsum, title={{D}ialog{S}um: {A} Real-Life Scenario Dialogue Summarization Dataset}, author={Chen, Yulong and Liu, Yang and Chen, Liang and Zhang, Yue}, journal={arXiv preprint arXiv:1911.12237}, year={2021}, booktitle ={Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021"}, month = {aug}, address = {Online}, publisher = {Association for Computational Linguistics}, url = {https://aclanthology.org/2021.findings-acl.449}, doi = {10.18653/v1/2021.findings-acl.449}, pages = {5062--5074} } """ _DESCRIPTION = """ DialogSUM Corpus contains 13460 chat dialogues with manually annotated summaries. There are two features: - dialogue: text of dialogue. - summary: human written summary of the dialogue. - topic: one liner summary of the dialogue. - id: id of a example. """ _HOMEPAGE = "hhttps://aclanthology.org/2021.findings-acl.449" _LICENSE = "CC BY-NC-ND 4.0" _URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/tree/main/" #_URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/resolve/main/" _URLS = { "train": _URL + "train.json", "test": _URL + "test.json", "val": _URL + "val.json", } class Dialogsum(datasets.GeneratorBasedBuilder): """DialogSum Corpus dataset.""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="dialogsum_reformat", version=datasets.Version("1.0.0", ""), description="DialogSum Corpus dataset", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "dialogue": datasets.Value("string"), "summary": datasets.Value("string"), "topic": datasets.Value("string"), } ), # No default supervised_keys (as we have to pass both question # and context as input). supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["test"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}), ] def _generate_examples(self, filepath, split): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) key = 0 with open(os.path.join(filepath, split)) as f : data = json.load(f) for info in data : dialogue_id = info['id'] dialogue_name = info['dialogue'] dialogue_summary = info['summary'] dialogue_topic = info['topic'] yield key, { "id" : dialogue_id, "dialogue" : dialogue_name, "summary" : dialogue_summary, "topic" : dialogue_topic, } key += 1