File size: 4,249 Bytes
4970960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0678d07
fe67af4
db88c62
0678d07
4970960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4c4e01
4970960
 
 
e4c4e01
4970960
 
e4c4e01
4970960
 
 
 
 
 
 
 
2f370e8
4970960
 
 
 
 
e4c4e01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f370e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import json
import pandas as pd
import datasets
import os

logger = datasets.logging.get_logger(__name__)

_CITATION = """
@inproceedings{chen-etal-2021-dialogsum,
  title={{D}ialog{S}um: {A} Real-Life Scenario Dialogue Summarization Dataset},
  author={Chen, Yulong and Liu, Yang  and Chen, Liang  and Zhang, Yue},
  journal={arXiv preprint arXiv:1911.12237},
  year={2021},
  booktitle ={Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021"},
  month = {aug},
  address = {Online},
  publisher = {Association for Computational Linguistics},
  url = {https://aclanthology.org/2021.findings-acl.449},
  doi = {10.18653/v1/2021.findings-acl.449},
  pages = {5062--5074}
}
"""

_DESCRIPTION = """
DialogSUM Corpus contains 13460 chat dialogues with manually annotated
summaries.
There are two features:
  - dialogue: text of dialogue.
  - summary: human written summary of the dialogue.
  - topic: one liner summary of the dialogue.
  - id: id of a example.
"""
_HOMEPAGE = "hhttps://aclanthology.org/2021.findings-acl.449"
_LICENSE = "CC BY-NC-ND 4.0"
# _URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/tree/main/"
_URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/resolve/main/"
# _URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/blob/main/"

_URLS = {
    "train": _URL + "train.json",
    "test": _URL + "test.json",
    "val": _URL + "val.json",
}

class Dialogsum(datasets.GeneratorBasedBuilder):
	"""DialogSum Corpus dataset."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="dialogsum_reformat",
            version=datasets.Version("1.0.0", ""),
            description="DialogSum Corpus dataset",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "dialogue": datasets.Value("string"),
                    "summary": datasets.Value("string"),
                    "topic": datasets.Value("string"),
                }
            ),
            # No default supervised_keys (as we have to pass both question
            # and context as input).
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        downloaded_files = dl_manager.download_and_extract(_URLS)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        with open(filepath) as f :
    		data = json.load(f)

        for info in data :
            dialogue_id = info['id']
            dialogue_name = info['dialogue']
            dialogue_summary = info['summary']
            dialogue_topic = info['topic']

            yield {
                "id" : dialogue_id,
                "dialogue" : dialogue_name,
                "summary" : dialogue_summary,
                "topic" : dialogue_topic,
            }
            
    # def _generate_examples(self, filepath, split):
    #     """This function returns the examples in the raw (text) form."""
    #     logger.info("generating examples from = %s", filepath)
    #     with open(os.path.join(filepath, split)) as f :
    # 		data = json.load(f)

    #     for info in data :
    #         dialogue_id = info['id']
    #         dialogue_name = info['dialogue']
    #         dialogue_summary = info['summary']
    #         dialogue_topic = info['topic']

    #         yield key, {
    #             "id" : dialogue_id,
    #             "dialogue" : dialogue_name,
    #             "summary" : dialogue_summary,
    #             "topic" : dialogue_topic,
    #         }