File size: 4,163 Bytes
4970960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c193eac
4970960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4c4e01
4970960
 
 
e4c4e01
4970960
 
e4c4e01
4970960
 
 
 
 
 
 
 
2f370e8
4970960
 
 
 
 
e4c4e01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f370e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import json
import pandas as pd
import datasets
import os

logger = datasets.logging.get_logger(__name__)

_CITATION = """
@inproceedings{chen-etal-2021-dialogsum,
  title={{D}ialog{S}um: {A} Real-Life Scenario Dialogue Summarization Dataset},
  author={Chen, Yulong and Liu, Yang  and Chen, Liang  and Zhang, Yue},
  journal={arXiv preprint arXiv:1911.12237},
  year={2021},
  booktitle ={Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021"},
  month = {aug},
  address = {Online},
  publisher = {Association for Computational Linguistics},
  url = {https://aclanthology.org/2021.findings-acl.449},
  doi = {10.18653/v1/2021.findings-acl.449},
  pages = {5062--5074}
}
"""

_DESCRIPTION = """
DialogSUM Corpus contains 13460 chat dialogues with manually annotated
summaries.
There are two features:
  - dialogue: text of dialogue.
  - summary: human written summary of the dialogue.
  - topic: one liner summary of the dialogue.
  - id: id of a example.
"""
_HOMEPAGE = "hhttps://aclanthology.org/2021.findings-acl.449"
_LICENSE = "CC BY-NC-ND 4.0"
_URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/tree/main/"
#_URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/resolve/main/"
_URLS = {
    "train": _URL + "train.json",
    "test": _URL + "test.json",
    "val": _URL + "val.json",
}

class Dialogsum(datasets.GeneratorBasedBuilder):
	"""DialogSum Corpus dataset."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="dialogsum_reformat",
            version=datasets.Version("1.0.0", ""),
            description="DialogSum Corpus dataset",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "dialogue": datasets.Value("string"),
                    "summary": datasets.Value("string"),
                    "topic": datasets.Value("string"),
                }
            ),
            # No default supervised_keys (as we have to pass both question
            # and context as input).
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        downloaded_files = dl_manager.download_and_extract(_URLS)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        with open(filepath) as f :
    		data = json.load(f)

        for info in data :
            dialogue_id = info['id']
            dialogue_name = info['dialogue']
            dialogue_summary = info['summary']
            dialogue_topic = info['topic']

            yield {
                "id" : dialogue_id,
                "dialogue" : dialogue_name,
                "summary" : dialogue_summary,
                "topic" : dialogue_topic,
            }
            
    # def _generate_examples(self, filepath, split):
    #     """This function returns the examples in the raw (text) form."""
    #     logger.info("generating examples from = %s", filepath)
    #     with open(os.path.join(filepath, split)) as f :
    # 		data = json.load(f)

    #     for info in data :
    #         dialogue_id = info['id']
    #         dialogue_name = info['dialogue']
    #         dialogue_summary = info['summary']
    #         dialogue_topic = info['topic']

    #         yield key, {
    #             "id" : dialogue_id,
    #             "dialogue" : dialogue_name,
    #             "summary" : dialogue_summary,
    #             "topic" : dialogue_topic,
    #         }