Upload timit_asr.py with huggingface_hub
Browse files- timit_asr.py +186 -0
timit_asr.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
# Lint as: python3
|
| 17 |
+
"""TIMIT automatic speech recognition dataset."""
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
import os
|
| 21 |
+
from pathlib import Path
|
| 22 |
+
|
| 23 |
+
import datasets
|
| 24 |
+
from datasets.tasks import AutomaticSpeechRecognition
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
_CITATION = """\
|
| 28 |
+
@inproceedings{
|
| 29 |
+
title={TIMIT Acoustic-Phonetic Continuous Speech Corpus},
|
| 30 |
+
author={Garofolo, John S., et al},
|
| 31 |
+
ldc_catalog_no={LDC93S1},
|
| 32 |
+
DOI={https://doi.org/10.35111/17gk-bn40},
|
| 33 |
+
journal={Linguistic Data Consortium, Philadelphia},
|
| 34 |
+
year={1983}
|
| 35 |
+
}
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
_DESCRIPTION = """\
|
| 39 |
+
The TIMIT corpus of reading speech has been developed to provide speech data for acoustic-phonetic research studies
|
| 40 |
+
and for the evaluation of automatic speech recognition systems.
|
| 41 |
+
TIMIT contains high quality recordings of 630 individuals/speakers with 8 different American English dialects,
|
| 42 |
+
with each individual reading upto 10 phonetically rich sentences.
|
| 43 |
+
More info on TIMIT dataset can be understood from the "README" which can be found here:
|
| 44 |
+
https://catalog.ldc.upenn.edu/docs/LDC93S1/readme.txt
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
_HOMEPAGE = "https://catalog.ldc.upenn.edu/LDC93S1"
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class TimitASRConfig(datasets.BuilderConfig):
|
| 51 |
+
"""BuilderConfig for TimitASR."""
|
| 52 |
+
|
| 53 |
+
def __init__(self, **kwargs):
|
| 54 |
+
"""
|
| 55 |
+
Args:
|
| 56 |
+
data_dir: `string`, the path to the folder containing the files in the
|
| 57 |
+
downloaded .tar
|
| 58 |
+
citation: `string`, citation for the data set
|
| 59 |
+
url: `string`, url for information about the data set
|
| 60 |
+
**kwargs: keyword arguments forwarded to super.
|
| 61 |
+
"""
|
| 62 |
+
super(TimitASRConfig, self).__init__(version=datasets.Version("2.0.1", ""), **kwargs)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class TimitASR(datasets.GeneratorBasedBuilder):
|
| 66 |
+
"""TimitASR dataset."""
|
| 67 |
+
|
| 68 |
+
BUILDER_CONFIGS = [TimitASRConfig(name="clean", description="'Clean' speech.")]
|
| 69 |
+
|
| 70 |
+
@property
|
| 71 |
+
def manual_download_instructions(self):
|
| 72 |
+
return (
|
| 73 |
+
"To use TIMIT you have to download it manually. "
|
| 74 |
+
"Please create an account and download the dataset from https://catalog.ldc.upenn.edu/LDC93S1 \n"
|
| 75 |
+
"Then extract all files in one folder and load the dataset with: "
|
| 76 |
+
"`datasets.load_dataset('timit_asr', data_dir='path/to/folder/folder_name')`"
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
def _info(self):
|
| 80 |
+
return datasets.DatasetInfo(
|
| 81 |
+
description=_DESCRIPTION,
|
| 82 |
+
features=datasets.Features(
|
| 83 |
+
{
|
| 84 |
+
"file": datasets.Value("string"),
|
| 85 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
| 86 |
+
"text": datasets.Value("string"),
|
| 87 |
+
"phonetic_detail": datasets.Sequence(
|
| 88 |
+
{
|
| 89 |
+
"start": datasets.Value("int64"),
|
| 90 |
+
"stop": datasets.Value("int64"),
|
| 91 |
+
"utterance": datasets.Value("string"),
|
| 92 |
+
}
|
| 93 |
+
),
|
| 94 |
+
"word_detail": datasets.Sequence(
|
| 95 |
+
{
|
| 96 |
+
"start": datasets.Value("int64"),
|
| 97 |
+
"stop": datasets.Value("int64"),
|
| 98 |
+
"utterance": datasets.Value("string"),
|
| 99 |
+
}
|
| 100 |
+
),
|
| 101 |
+
"dialect_region": datasets.Value("string"),
|
| 102 |
+
"sentence_type": datasets.Value("string"),
|
| 103 |
+
"speaker_id": datasets.Value("string"),
|
| 104 |
+
"id": datasets.Value("string"),
|
| 105 |
+
}
|
| 106 |
+
),
|
| 107 |
+
supervised_keys=("file", "text"),
|
| 108 |
+
homepage=_HOMEPAGE,
|
| 109 |
+
citation=_CITATION,
|
| 110 |
+
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
def _split_generators(self, dl_manager):
|
| 114 |
+
|
| 115 |
+
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
|
| 116 |
+
|
| 117 |
+
if not os.path.exists(data_dir):
|
| 118 |
+
raise FileNotFoundError(
|
| 119 |
+
f"{data_dir} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('timit_asr', data_dir=...)` that includes files unzipped from the TIMIT zip. Manual download instructions: {self.manual_download_instructions}"
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
return [
|
| 123 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"split": "train", "data_dir": data_dir}),
|
| 124 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"split": "test", "data_dir": data_dir}),
|
| 125 |
+
]
|
| 126 |
+
|
| 127 |
+
def _generate_examples(self, split, data_dir):
|
| 128 |
+
"""Generate examples from TIMIT archive_path based on the test/train csv information."""
|
| 129 |
+
# Iterating the contents of the data to extract the relevant information
|
| 130 |
+
wav_paths = sorted(Path(data_dir).glob(f"**/{split}/**/*.wav"))
|
| 131 |
+
wav_paths = wav_paths if wav_paths else sorted(Path(data_dir).glob(f"**/{split.upper()}/**/*.WAV"))
|
| 132 |
+
for key, wav_path in enumerate(wav_paths):
|
| 133 |
+
|
| 134 |
+
# extract transcript
|
| 135 |
+
txt_path = with_case_insensitive_suffix(wav_path, ".txt")
|
| 136 |
+
with txt_path.open(encoding="utf-8") as op:
|
| 137 |
+
transcript = " ".join(op.readlines()[0].split()[2:]) # first two items are sample number
|
| 138 |
+
|
| 139 |
+
# extract phonemes
|
| 140 |
+
phn_path = with_case_insensitive_suffix(wav_path, ".phn")
|
| 141 |
+
with phn_path.open(encoding="utf-8") as op:
|
| 142 |
+
phonemes = [
|
| 143 |
+
{
|
| 144 |
+
"start": i.split(" ")[0],
|
| 145 |
+
"stop": i.split(" ")[1],
|
| 146 |
+
"utterance": " ".join(i.split(" ")[2:]).strip(),
|
| 147 |
+
}
|
| 148 |
+
for i in op.readlines()
|
| 149 |
+
]
|
| 150 |
+
|
| 151 |
+
# extract words
|
| 152 |
+
wrd_path = with_case_insensitive_suffix(wav_path, ".wrd")
|
| 153 |
+
with wrd_path.open(encoding="utf-8") as op:
|
| 154 |
+
words = [
|
| 155 |
+
{
|
| 156 |
+
"start": i.split(" ")[0],
|
| 157 |
+
"stop": i.split(" ")[1],
|
| 158 |
+
"utterance": " ".join(i.split(" ")[2:]).strip(),
|
| 159 |
+
}
|
| 160 |
+
for i in op.readlines()
|
| 161 |
+
]
|
| 162 |
+
|
| 163 |
+
dialect_region = wav_path.parents[1].name
|
| 164 |
+
sentence_type = wav_path.name[0:2]
|
| 165 |
+
speaker_id = wav_path.parents[0].name[1:]
|
| 166 |
+
id_ = wav_path.stem
|
| 167 |
+
|
| 168 |
+
example = {
|
| 169 |
+
"file": str(wav_path),
|
| 170 |
+
"audio": str(wav_path),
|
| 171 |
+
"text": transcript,
|
| 172 |
+
"phonetic_detail": phonemes,
|
| 173 |
+
"word_detail": words,
|
| 174 |
+
"dialect_region": dialect_region,
|
| 175 |
+
"sentence_type": sentence_type,
|
| 176 |
+
"speaker_id": speaker_id,
|
| 177 |
+
"id": id_,
|
| 178 |
+
}
|
| 179 |
+
|
| 180 |
+
yield key, example
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def with_case_insensitive_suffix(path: Path, suffix: str):
|
| 184 |
+
path = path.with_suffix(suffix.lower())
|
| 185 |
+
path = path if path.exists() else path.with_suffix(suffix.upper())
|
| 186 |
+
return path
|