Datasets:
Tasks:
Object Detection
Size:
< 1K
Commit
·
00bfdb9
1
Parent(s):
25a2bf4
Delete aerial-sheep-object-detection.py
Browse files- aerial-sheep-object-detection.py +0 -121
aerial-sheep-object-detection.py
DELETED
@@ -1,121 +0,0 @@
|
|
1 |
-
import collections
|
2 |
-
import json
|
3 |
-
import os
|
4 |
-
|
5 |
-
import datasets
|
6 |
-
|
7 |
-
|
8 |
-
_HOMEPAGE = "https://universe.roboflow.com/riis/aerial-sheep/dataset/1"
|
9 |
-
_LICENSE = "Public Domain"
|
10 |
-
_CITATION = """\
|
11 |
-
@misc{ aerial-sheep_dataset,
|
12 |
-
title = { Aerial Sheep Dataset },
|
13 |
-
type = { Open Source Dataset },
|
14 |
-
author = { Riis },
|
15 |
-
howpublished = { \\url{ https://universe.roboflow.com/riis/aerial-sheep } },
|
16 |
-
url = { https://universe.roboflow.com/riis/aerial-sheep },
|
17 |
-
journal = { Roboflow Universe },
|
18 |
-
publisher = { Roboflow },
|
19 |
-
year = { 2022 },
|
20 |
-
month = { jun },
|
21 |
-
note = { visited on 2023-01-01 },
|
22 |
-
}
|
23 |
-
"""
|
24 |
-
_URLS = {
|
25 |
-
"train": "https://huggingface.co/datasets/keremberke/aerial-sheep-object-detection/resolve/main/data/train.zip",
|
26 |
-
"validation": "https://huggingface.co/datasets/keremberke/aerial-sheep-object-detection/resolve/main/data/valid.zip",
|
27 |
-
"test": "https://huggingface.co/datasets/keremberke/aerial-sheep-object-detection/resolve/main/data/test.zip",
|
28 |
-
}
|
29 |
-
|
30 |
-
_CATEGORIES = ['sheep']
|
31 |
-
_ANNOTATION_FILENAME = "_annotations.coco.json"
|
32 |
-
|
33 |
-
|
34 |
-
class AERIALSHEEPOBJECTDETECTION(datasets.GeneratorBasedBuilder):
|
35 |
-
VERSION = datasets.Version("1.0.0")
|
36 |
-
|
37 |
-
def _info(self):
|
38 |
-
features = datasets.Features(
|
39 |
-
{
|
40 |
-
"image_id": datasets.Value("int64"),
|
41 |
-
"image": datasets.Image(),
|
42 |
-
"width": datasets.Value("int32"),
|
43 |
-
"height": datasets.Value("int32"),
|
44 |
-
"objects": datasets.Sequence(
|
45 |
-
{
|
46 |
-
"id": datasets.Value("int64"),
|
47 |
-
"area": datasets.Value("int64"),
|
48 |
-
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
49 |
-
"category": datasets.ClassLabel(names=_CATEGORIES),
|
50 |
-
}
|
51 |
-
),
|
52 |
-
}
|
53 |
-
)
|
54 |
-
return datasets.DatasetInfo(
|
55 |
-
features=features,
|
56 |
-
homepage=_HOMEPAGE,
|
57 |
-
citation=_CITATION,
|
58 |
-
license=_LICENSE,
|
59 |
-
)
|
60 |
-
|
61 |
-
def _split_generators(self, dl_manager):
|
62 |
-
data_files = dl_manager.download_and_extract(_URLS)
|
63 |
-
return [
|
64 |
-
datasets.SplitGenerator(
|
65 |
-
name=datasets.Split.TRAIN,
|
66 |
-
gen_kwargs={
|
67 |
-
"folder_dir": data_files["train"],
|
68 |
-
},
|
69 |
-
),
|
70 |
-
datasets.SplitGenerator(
|
71 |
-
name=datasets.Split.VALIDATION,
|
72 |
-
gen_kwargs={
|
73 |
-
"folder_dir": data_files["validation"],
|
74 |
-
},
|
75 |
-
),
|
76 |
-
datasets.SplitGenerator(
|
77 |
-
name=datasets.Split.TEST,
|
78 |
-
gen_kwargs={
|
79 |
-
"folder_dir": data_files["test"],
|
80 |
-
},
|
81 |
-
),
|
82 |
-
]
|
83 |
-
|
84 |
-
def _generate_examples(self, folder_dir):
|
85 |
-
def process_annot(annot, category_id_to_category):
|
86 |
-
return {
|
87 |
-
"id": annot["id"],
|
88 |
-
"area": annot["area"],
|
89 |
-
"bbox": annot["bbox"],
|
90 |
-
"category": category_id_to_category[annot["category_id"]],
|
91 |
-
}
|
92 |
-
|
93 |
-
image_id_to_image = {}
|
94 |
-
idx = 0
|
95 |
-
|
96 |
-
annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
|
97 |
-
with open(annotation_filepath, "r") as f:
|
98 |
-
annotations = json.load(f)
|
99 |
-
category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
|
100 |
-
image_id_to_annotations = collections.defaultdict(list)
|
101 |
-
for annot in annotations["annotations"]:
|
102 |
-
image_id_to_annotations[annot["image_id"]].append(annot)
|
103 |
-
image_id_to_image = {annot["file_name"]: annot for annot in annotations["images"]}
|
104 |
-
|
105 |
-
for filename in os.listdir(folder_dir):
|
106 |
-
filepath = os.path.join(folder_dir, filename)
|
107 |
-
if filename in image_id_to_image:
|
108 |
-
image = image_id_to_image[filename]
|
109 |
-
objects = [
|
110 |
-
process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
|
111 |
-
]
|
112 |
-
with open(filepath, "rb") as f:
|
113 |
-
image_bytes = f.read()
|
114 |
-
yield idx, {
|
115 |
-
"image_id": image["id"],
|
116 |
-
"image": {"path": filepath, "bytes": image_bytes},
|
117 |
-
"width": image["width"],
|
118 |
-
"height": image["height"],
|
119 |
-
"objects": objects,
|
120 |
-
}
|
121 |
-
idx += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|