parquet-converter commited on
Commit
5f543be
·
1 Parent(s): 0ff8fd1

Update parquet files

Browse files
README.dataset.txt DELETED
@@ -1,6 +0,0 @@
1
- # wlots > 2022-05-06 10:52pm
2
- https://universe.roboflow.com/asd-culfr/wlots
3
-
4
- Provided by a Roboflow user
5
- License: CC BY 4.0
6
-
 
 
 
 
 
 
 
README.md DELETED
@@ -1,52 +0,0 @@
1
- ---
2
- task_categories:
3
- - object-detection
4
- tags:
5
- - roboflow
6
- ---
7
-
8
- ### Roboflow Dataset Page
9
- https://universe.roboflow.com/asd-culfr/wlots
10
-
11
- ### Citation
12
- ```
13
- @misc{ wlots_dataset,
14
- title = { wlots Dataset },
15
- type = { Open Source Dataset },
16
- author = { asd },
17
- howpublished = { \\url{ https://universe.roboflow.com/asd-culfr/wlots } },
18
- url = { https://universe.roboflow.com/asd-culfr/wlots },
19
- journal = { Roboflow Universe },
20
- publisher = { Roboflow },
21
- year = { 2022 },
22
- month = { may },
23
- note = { visited on 2022-12-29 },
24
- }
25
- ```
26
-
27
- ### License
28
- CC BY 4.0
29
-
30
- ### Dataset Summary
31
- This dataset was exported via roboflow.com on December 28, 2022 at 8:08 PM GMT
32
-
33
- Roboflow is an end-to-end computer vision platform that helps you
34
- * collaborate with your team on computer vision projects
35
- * collect & organize images
36
- * understand unstructured image data
37
- * annotate, and create datasets
38
- * export, train, and deploy computer vision models
39
- * use active learning to improve your dataset over time
40
-
41
- It includes 4454 images.
42
- Ct-cthead-t-thead are annotated in COCO format.
43
-
44
- The following pre-processing was applied to each image:
45
- * Auto-orientation of pixel data (with EXIF-orientation stripping)
46
- * Resize to 416x416 (Fill (with center crop))
47
-
48
- The following augmentation was applied to create 3 versions of each source image:
49
- * Random brigthness adjustment of between -15 and +15 percent
50
-
51
-
52
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.roboflow.txt DELETED
@@ -1,25 +0,0 @@
1
-
2
- wlots - v1 2022-05-06 10:52pm
3
- ==============================
4
-
5
- This dataset was exported via roboflow.com on December 28, 2022 at 8:08 PM GMT
6
-
7
- Roboflow is an end-to-end computer vision platform that helps you
8
- * collaborate with your team on computer vision projects
9
- * collect & organize images
10
- * understand unstructured image data
11
- * annotate, and create datasets
12
- * export, train, and deploy computer vision models
13
- * use active learning to improve your dataset over time
14
-
15
- It includes 4454 images.
16
- Ct-cthead-t-thead are annotated in COCO format.
17
-
18
- The following pre-processing was applied to each image:
19
- * Auto-orientation of pixel data (with EXIF-orientation stripping)
20
- * Resize to 416x416 (Fill (with center crop))
21
-
22
- The following augmentation was applied to create 3 versions of each source image:
23
- * Random brigthness adjustment of between -15 and +15 percent
24
-
25
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
csgo-object-detection.py DELETED
@@ -1,121 +0,0 @@
1
- import collections
2
- import json
3
- import os
4
-
5
- import datasets
6
-
7
-
8
- _HOMEPAGE = "https://universe.roboflow.com/asd-culfr/wlots"
9
- _LICENSE = "CC BY 4.0"
10
- _CITATION = """\
11
- @misc{ wlots_dataset,
12
- title = { wlots Dataset },
13
- type = { Open Source Dataset },
14
- author = { asd },
15
- howpublished = { \\url{ https://universe.roboflow.com/asd-culfr/wlots } },
16
- url = { https://universe.roboflow.com/asd-culfr/wlots },
17
- journal = { Roboflow Universe },
18
- publisher = { Roboflow },
19
- year = { 2022 },
20
- month = { may },
21
- note = { visited on 2022-12-29 },
22
- }
23
- """
24
- _URLS = {
25
- "train": "https://huggingface.co/datasets/keremberke/csgo-object-detection/resolve/main/data/train.zip",
26
- "validation": "https://huggingface.co/datasets/keremberke/csgo-object-detection/resolve/main/data/valid.zip",
27
- "test": "https://huggingface.co/datasets/keremberke/csgo-object-detection/resolve/main/data/test.zip",
28
- }
29
-
30
- _CATEGORIES = ['thead', 't', 'cthead', 'ct']
31
- _ANNOTATION_FILENAME = "_annotations.coco.json"
32
-
33
-
34
- class CSGOOBJECTDETECTION(datasets.GeneratorBasedBuilder):
35
- VERSION = datasets.Version("1.0.0")
36
-
37
- def _info(self):
38
- features = datasets.Features(
39
- {
40
- "image_id": datasets.Value("int64"),
41
- "image": datasets.Image(),
42
- "width": datasets.Value("int32"),
43
- "height": datasets.Value("int32"),
44
- "objects": datasets.Sequence(
45
- {
46
- "id": datasets.Value("int64"),
47
- "area": datasets.Value("int64"),
48
- "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
49
- "category": datasets.ClassLabel(names=_CATEGORIES),
50
- }
51
- ),
52
- }
53
- )
54
- return datasets.DatasetInfo(
55
- features=features,
56
- homepage=_HOMEPAGE,
57
- citation=_CITATION,
58
- license=_LICENSE,
59
- )
60
-
61
- def _split_generators(self, dl_manager):
62
- data_files = dl_manager.download_and_extract(_URLS)
63
- return [
64
- datasets.SplitGenerator(
65
- name=datasets.Split.TRAIN,
66
- gen_kwargs={
67
- "folder_dir": data_files["train"],
68
- },
69
- ),
70
- datasets.SplitGenerator(
71
- name=datasets.Split.VALIDATION,
72
- gen_kwargs={
73
- "folder_dir": data_files["validation"],
74
- },
75
- ),
76
- datasets.SplitGenerator(
77
- name=datasets.Split.TEST,
78
- gen_kwargs={
79
- "folder_dir": data_files["test"],
80
- },
81
- ),
82
- ]
83
-
84
- def _generate_examples(self, folder_dir):
85
- def process_annot(annot, category_id_to_category):
86
- return {
87
- "id": annot["id"],
88
- "area": annot["area"],
89
- "bbox": annot["bbox"],
90
- "category": category_id_to_category[annot["category_id"]],
91
- }
92
-
93
- image_id_to_image = {}
94
- idx = 0
95
-
96
- annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
97
- with open(annotation_filepath, "r") as f:
98
- annotations = json.load(f)
99
- category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
100
- image_id_to_annotations = collections.defaultdict(list)
101
- for annot in annotations["annotations"]:
102
- image_id_to_annotations[annot["image_id"]].append(annot)
103
- image_id_to_image = {annot["file_name"]: annot for annot in annotations["images"]}
104
-
105
- for filename in os.listdir(folder_dir):
106
- filepath = os.path.join(folder_dir, filename)
107
- if filename in image_id_to_image:
108
- image = image_id_to_image[filename]
109
- objects = [
110
- process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
111
- ]
112
- with open(filepath, "rb") as f:
113
- image_bytes = f.read()
114
- yield idx, {
115
- "image_id": image["id"],
116
- "image": {"path": filepath, "bytes": image_bytes},
117
- "width": image["width"],
118
- "height": image["height"],
119
- "objects": objects,
120
- }
121
- idx += 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/test.zip → default/csgo-object-detection-test.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fd5b254e5840a3c8f560bf0b27c2e175dffea93c2d3cb99f94108fa04fead5af
3
- size 4941492
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b4d92fb761b1310971242fc2ecd2ef1cf8ba93ff031d28cf1c14f201af5ceba
3
+ size 4951505
data/train.zip → default/csgo-object-detection-train.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b30e5753bf1fa91af52d9af058888a75243aa7442433258b5fce1d2730fe5dc0
3
- size 101266440
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d86d23a271e39e3b9eb8ab4c74c232289f0fe220e832a711f7d5759414757d12
3
+ size 101160989
data/valid.zip → default/csgo-object-detection-validation.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:79421a3a866a7ae8a179ac72a51a507aa30feb58cc2541ba487b95b341ac5602
3
- size 10147480
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0db60626633eee91d7b129a83c2274b462c41942313a95f693021e233d9747f
3
+ size 10161697