text
stringlengths
78
104k
score
float64
0
0.18
def socket_close(self): """Close our socket.""" if self.sock != NC.INVALID_SOCKET: self.sock.close() self.sock = NC.INVALID_SOCKET
0.012048
def unpack(self, fmt, length=1): """ Unpack the stream contents according to the specified format in `fmt`. For more information about the `fmt` format see: https://docs.python.org/3/library/struct.html Args: fmt (str): format string. length (int): amount of bytes to read. Returns: variable: the result according to the specified format. """ try: info = struct.unpack(fmt, self.stream.read(length))[0] except struct.error as e: raise SDKException(ErrorCode.unpack_error(e.args[0])) return info
0.004777
def login(self, username, password, email, url, config_path): """ If username and password are provided, authenticate with the registry. Otherwise, check the config file for existing authentication data. """ if username and password: try: self.client.login(username=username, password=password, email=email, registry=url, reauth=True) except docker_errors.APIError as exc: raise exceptions.AnsibleContainerConductorException( u"Error logging into registry: {}".format(exc) ) except Exception: raise self._update_config_file(username, password, email, url, config_path) username, password = self._get_registry_auth(url, config_path) if not username: raise exceptions.AnsibleContainerConductorException( u'Please provide login credentials for registry {}.'.format(url)) return username, password
0.004748
def get_params(degrees, translate, scale_ranges, shears, img_size): """Get parameters for affine transformation Returns: sequence: params to be passed to the affine transformation """ angle = random.uniform(degrees[0], degrees[1]) if translate is not None: max_dx = translate[0] * img_size[0] max_dy = translate[1] * img_size[1] translations = (np.round(random.uniform(-max_dx, max_dx)), np.round(random.uniform(-max_dy, max_dy))) else: translations = (0, 0) if scale_ranges is not None: scale = random.uniform(scale_ranges[0], scale_ranges[1]) else: scale = 1.0 if shears is not None: shear = random.uniform(shears[0], shears[1]) else: shear = 0.0 return angle, translations, scale, shear
0.002181
def log_error(self, error, message, detail=None, strip=4): "Add an error message and optional user message to the error list" if message: msg = message + ": " + error else: msg = error tb = traceback.format_stack() if sys.version_info >= (3, 0): tb = tb[:-strip] else: tb = tb[strip:] self.errors.append({ 'message': msg, 'traceback': tb, 'detail': detail })
0.003937
def optimize(self): """ Do an optimization. """ jmodel = callJavaFunc(self.value.optimize) from bigdl.nn.layer import Layer return Layer.of(jmodel)
0.010256
def simxGetInMessageInfo(clientID, infoType): ''' Please have a look at the function description/documentation in the V-REP user manual ''' info = ct.c_int() return c_GetInMessageInfo(clientID, infoType, ct.byref(info)), info.value
0.007968
def write_yum_repo(content, filename='ceph.repo'): """add yum repo file in /etc/yum.repos.d/""" repo_path = os.path.join('/etc/yum.repos.d', filename) if not isinstance(content, str): content = content.decode('utf-8') write_file(repo_path, content.encode('utf-8'))
0.003472
def est_entropy(self): r""" Estimates the entropy of the current particle distribution as :math:`-\sum_i w_i \log w_i` where :math:`\{w_i\}` is the set of particles with nonzero weight. """ nz_weights = self.particle_weights[self.particle_weights > 0] return -np.sum(np.log(nz_weights) * nz_weights)
0.005634
def memory(self): """Memory information in bytes Example: >>> print(ctx.device(0).memory()) {'total': 4238016512L, 'used': 434831360L, 'free': 3803185152L} Returns: total/used/free memory in bytes """ class GpuMemoryInfo(Structure): _fields_ = [ ('total', c_ulonglong), ('free', c_ulonglong), ('used', c_ulonglong), ] c_memory = GpuMemoryInfo() _check_return(_NVML.get_function( "nvmlDeviceGetMemoryInfo")(self.hnd, byref(c_memory))) return {'total': c_memory.total, 'free': c_memory.free, 'used': c_memory.used}
0.004286
def _update_ref(self, ref, delete=False): """Update a reference.""" cmd = ['git', 'update-ref'] if delete: cmd.extend(['-d', ref.refname]) action = 'deleted' else: cmd.extend([ref.refname, ref.hash]) action = 'updated to %s' % ref.hash try: self._exec(cmd, cwd=self.dirpath, env=self.gitenv) except RepositoryError as e: logger.warning("Git %s ref could not be %s during sync process in %s (%s); skipped", ref.refname, action, self.uri, self.dirpath) else: logger.debug("Git %s ref %s in %s (%s)", ref.refname, action, self.uri, self.dirpath)
0.004071
def params(self): """Get the params of response data from the API. Returns: - d (dict): Dictionary mapping of all configuration values """ payload = self.payload d = {} for i, p in enumerate(payload["currentConfiguration"]): type_name = p["typeName"] cp = payload["configurationParameters"][i]["message"] name = cp["parameterName"] if type_name == "BTMParameterQuantity": try: v = q(p["message"]["expression"]) except: v = q(p["message"]["value"], p["message"]["units"]) elif type_name == "BTMParameterBoolean": v = p["message"]["value"] elif type_name == "BTMParameterEnum": enum = p["message"]["value"] enum_map = {d['message']['option']: i for i, d in enumerate(cp['options'])} v = cp['options'][enum_map[enum]]['message']['optionName'] d[name] = v return d
0.003813
def identify_denonavr_receivers(): """ Identify DenonAVR using SSDP and SCPD queries. Returns a list of dictionaries which includes all discovered Denon AVR devices with keys "host", "modelName", "friendlyName", "presentationURL". """ # Sending SSDP broadcast message to get devices devices = send_ssdp_broadcast() # Check which responding device is a DenonAVR device and prepare output receivers = [] for device in devices: try: receiver = evaluate_scpd_xml(device["URL"]) except ConnectionError: continue if receiver: receivers.append(receiver) return receivers
0.001493
def solc_arguments(libraries=None, combined='bin,abi', optimize=True, extra_args=None): """ Build the arguments to call the solc binary. """ args = [ '--combined-json', combined, ] def str_of(address): """cast address to string. py2/3 compatability. """ try: return address.decode('utf8') except AttributeError: return address if optimize: args.append('--optimize') if extra_args: try: args.extend(shlex.split(extra_args)) except BaseException: # if not a parseable string then treat it as a list args.extend(extra_args) if libraries is not None and len(libraries): addresses = [ '{name}:{address}'.format( name=name, address=str_of(address)) for name, address in libraries.items() ] args.extend([ '--libraries', ','.join(addresses), ]) return args
0.002982
def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, verbose_logging, version_2_with_negative, null_score_diff_threshold): """Write final predictions to the json file and log-odds of null if needed.""" logger.info("Writing predictions to: %s" % (output_prediction_file)) logger.info("Writing nbest to: %s" % (output_nbest_file)) example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive min_null_feature_index = 0 # the paragraph slice with min null score null_start_logit = 0 # the start logit at the slice with min null score null_end_logit = 0 # the end logit at the slice with min null score for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) # if we could have irrelevant answers, get the min score of irrelevant if version_2_with_negative: feature_null_score = result.start_logits[0] + result.end_logits[0] if feature_null_score < score_null: score_null = feature_null_score min_null_feature_index = feature_index null_start_logit = result.start_logits[0] null_end_logit = result.end_logits[0] for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) if version_2_with_negative: prelim_predictions.append( _PrelimPrediction( feature_index=min_null_feature_index, start_index=0, end_index=0, start_logit=null_start_logit, end_logit=null_end_logit)) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # if we didn't include the empty option in the n-best, include it if version_2_with_negative: if "" not in seen_predictions: nbest.append( _NbestPrediction( text="", start_logit=null_start_logit, end_logit=null_end_logit)) # In very rare edge cases we could only have single null prediction. # So we just create a nonce prediction in this case to avoid failure. if len(nbest)==1: nbest.insert(0, _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 if not version_2_with_negative: all_predictions[example.qas_id] = nbest_json[0]["text"] else: # predict "" iff the null score - the score of best non-null > threshold score_diff = score_null - best_non_null_entry.start_logit - ( best_non_null_entry.end_logit) scores_diff_json[example.qas_id] = score_diff if score_diff > null_score_diff_threshold: all_predictions[example.qas_id] = "" else: all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json with open(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with open(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: with open(output_null_log_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
0.002503
def summarize(reintegrate=True, dist_tolerance=3, qranges=None, samples=None, raw=False, late_radavg=True, graph_ncols=3, std_multiplier=3, graph_extension='png', graph_dpi=80, correlmatrix_colormap='coolwarm', image_colormap='viridis', correlmatrix_logarithmic=True, cormaptest=True): """Summarize scattering patterns and curves for all samples defined by the global `allsamplenames`. Inputs: reintegrate (bool, default=True): if the curves are to be obained by reintegrating the patterns. Otherwise 1D curves are loaded. dist_tolerance (float, default=3): sample-to-detector distances nearer than this are considered the same qranges (dict): a dictionary mapping approximate sample-to-detector distances (within dist_tolerance) to one-dimensional np.ndarrays of the desired q-range of the reintegration. samples (list or None): the names of the samples to summarize. If None, all samples defined by ``allsamplenames`` are used. raw (bool, default=False): if raw images are to be treated instead the evaluated ones (default). late_radavg (bool, default=True): if the scattering curves are to be calculated from the summarized scattering pattern. If False, scattering curves are calculated from each pattern and will be averaged. graph_ncols: the number of columns in graphs (2D patterns, correlation matrices) std_multiplier: if the absolute value of the relative discrepancy is larger than this limit, the exposure is deemed an outlier. graph_extension: the extension of the produced hardcopy files. graph_dpi: resolution of the graphs correlmatrix_colormap: name of the colormap to be used for the correlation matrices (resolved by matplotlib.cm.get_cmap()) image_colormap: name of the colormap to be used for the scattering patterns (resolved by matplotlib.cm.get_cmap()) correlmatrix_logarithmic: if the correlation matrix has to be calculated from the logarithm of the intensity. """ if qranges is None: qranges = {} ip = get_ipython() data2d = {} data1d = {} headers_tosave = {} rowavg = {} if raw: writemarkdown('# Summarizing RAW images.') headers = ip.user_ns['_headers']['raw'] rawpart = '_raw' # this will be added in the filenames saved else: writemarkdown('# Summarizing CORRECTED images.') headers = ip.user_ns['_headers']['processed'] rawpart = '' # nothing will be added in the filenames saved if samples is None: samples = sorted(ip.user_ns['allsamplenames']) for samplename in samples: writemarkdown('## ' + samplename) headers_sample = [h for h in headers if h.title == samplename] data2d[samplename] = {} rowavg[samplename] = {} data1d[samplename] = {} headers_tosave[samplename] = {} dists = get_different_distances([h for h in headers if h.title == samplename], dist_tolerance) if not dists: writemarkdown('No measurements from sample, skipping.') continue fig_2d = plt.figure() fig_curves = plt.figure() fig_correlmatrices = plt.figure() distaxes = {} correlmatrixaxes = {} ncols = min(len(dists), graph_ncols) nrows = int(np.ceil(len(dists) / ncols)) onedimaxes = fig_curves.add_axes((0.1, 0.3, 0.8, 0.5)) onedimstdaxes = fig_curves.add_axes((0.1, 0.1, 0.8, 0.2)) for distidx, dist in enumerate(dists): writemarkdown("### Distance " + str(dist) + " mm") headers_narrowed = [h for h in headers_sample if abs(float(h.distance) - dist) < dist_tolerance] distaxes[dist] = fig_2d.add_subplot( nrows, ncols, distidx + 1) correlmatrixaxes[dist] = fig_correlmatrices.add_subplot( nrows, ncols, distidx + 1) # determine the q-range to be used from the qranges argument. try: distkey_min = min([np.abs(k - dist) for k in qranges if np.abs(k - dist) < dist_tolerance]) except ValueError: # no matching key in qranges dict qrange = None # request auto-determination of q-range else: distkey = [ k for k in qranges if np.abs(k - dist) == distkey_min][0] qrange = qranges[distkey] (data1d[samplename][dist], data2d[samplename][dist], headers_tosave[samplename][dist]) = \ _collect_data_for_summarization(headers_narrowed, raw, reintegrate, qrange) badfsns, badfsns_datcmp, tab, rowavg[samplename][dist] = _stabilityassessment( headers_tosave[samplename][dist], data1d[samplename][dist], dist, fig_correlmatrices, correlmatrixaxes[dist], std_multiplier, correlmatrix_colormap, os.path.join(ip.user_ns['saveto_dir'], 'correlmatrix_%s_%s' % ( samplename, ('%.2f' % dist).replace('.', '_')) + rawpart + '.npz'), logarithmic_correlmatrix=correlmatrix_logarithmic, cormaptest=cormaptest) if 'badfsns' not in ip.user_ns: ip.user_ns['badfsns'] = {} elif 'badfsns_datcmp' not in ip.user_ns: ip.user_ns['badfsns_datcmp'] = {} ip.user_ns['badfsns'] = set(ip.user_ns['badfsns']).union(badfsns) ip.user_ns['badfsns_datcmp'] = set(ip.user_ns['badfsns_datcmp']).union(badfsns_datcmp) display(tab) # Plot the image try: data2d[samplename][dist].imshow(axes=distaxes[dist], show_crosshair=False, norm=matplotlib.colors.LogNorm(), cmap=matplotlib.cm.get_cmap(image_colormap)) except ValueError: print('Error plotting 2D image for sample %s, distance %.2f' % (samplename, dist)) distaxes[dist].set_xlabel('q (' + qunit() + ')') distaxes[dist].set_ylabel('q (' + qunit() + ')') distaxes[dist].set_title( '%.2f mm (%d curve%s)' % (dist, len(headers_tosave[samplename][dist]), ['', 's'][len(headers_tosave[samplename][dist]) > 1])) # Plot the curves Istd = np.stack([c.Intensity for c in data1d[samplename][dist]], axis=1) for c, h in zip(data1d[samplename][dist], headers_tosave[samplename][dist]): color = 'green' if h.fsn in badfsns_datcmp: color = 'magenta' if h.fsn in badfsns: color = 'red' c.loglog(axes=onedimaxes, color=color) if Istd.shape[1] > 1: onedimstdaxes.loglog(data1d[samplename][dist][0].q, Istd.std(axis=1) / Istd.mean(axis=1) * 100, 'b-') if not late_radavg: data1d[samplename][dist] = Curve.average( *data1d[samplename][dist]) else: data1d[samplename][dist] = ( data2d[samplename][dist].radial_average( qrange, errorpropagation=3, abscissa_errorpropagation=3, raw_result=False)) data1d[samplename][dist].loglog( label='Average', lw=2, color='k', axes=onedimaxes) ##Saving image, headers, mask and curve # data2d[samplename][dist].write( # os.path.join(ip.user_ns['saveto_dir'], # samplename + '_'+( # '%.2f' % dist).replace('.', '_') + # rawpart + '.npz'), plugin='CREDO Reduced') # data2d[samplename][dist].header.write( # os.path.join(ip.user_ns['saveto_dir'], ### samplename + '_'+( # '%.2f' % dist).replace('.', '_') + # rawpart +'.log'), plugin='CREDO Reduced') # data2d[samplename][dist].mask.write_to_mat( # os.path.join(ip.user_ns['saveto_dir'], # data2d[samplename][dist].mask.maskid+'.mat')) data1d[samplename][dist].save(os.path.join(ip.user_ns['saveto_dir'], samplename + '_' + ('%.2f' % dist).replace('.', '_') + rawpart + '.txt')) # Report on qrange and flux q_ = data1d[samplename][dist].q qmin = q_[q_ > 0].min() writemarkdown('#### Q-range & flux') writemarkdown( '- $q_{min}$: ' + print_abscissavalue(qmin, headers_tosave[samplename][dist][0].wavelength, dist)) writemarkdown('- $q_{max}$: ' + print_abscissavalue(data1d[samplename][dist].q.max(), headers_tosave[samplename][dist][0].wavelength, dist)) writemarkdown('- Number of $q$ points: ' + str(len(data1d[samplename][dist]))) meastime = sum([h.exposuretime for h in headers_tosave[samplename][dist]]) writemarkdown("- from %d exposures, total exposure time %.0f sec <=> %.2f hr" % ( len(headers_tosave[samplename][dist]), meastime, meastime / 3600.)) try: flux = [h.flux for h in headers_tosave[samplename][dist]] flux = ErrorValue(np.mean(flux), np.std(flux)) writemarkdown("- beam flux (photon/sec): %s" % flux) except KeyError: writemarkdown("- *No information on beam flux: dealing with raw data.*") onedimaxes.set_xlabel('') onedimaxes.set_ylabel('$d\\Sigma/d\\Omega$ (cm$^{-1}$ sr$^{-1}$)') # plt.legend(loc='best') onedimaxes.grid(True, which='both') onedimaxes.axis('tight') onedimaxes.set_title(samplename) onedimstdaxes.set_xlabel('q (' + qunit() + ')') onedimstdaxes.set_ylabel('Rel.std.dev. of intensity (%)') onedimstdaxes.grid(True, which='both') onedimstdaxes.set_xlim(*onedimaxes.get_xlim()) onedimstdaxes.set_xscale(onedimaxes.get_xscale()) putlogo(fig_curves) putlogo(fig_2d) fig_2d.tight_layout() fig_correlmatrices.suptitle(samplename) fig_correlmatrices.tight_layout() fig_2d.savefig( os.path.join(ip.user_ns['auximages_dir'], 'averaging2D_' + samplename + rawpart + '.' + graph_extension), dpi=graph_dpi) fig_curves.savefig( os.path.join(ip.user_ns['auximages_dir'], 'averaging1D_' + samplename + rawpart + '.' + graph_extension), dpi=graph_dpi) putlogo(fig_correlmatrices) fig_correlmatrices.savefig( os.path.join(ip.user_ns['auximages_dir'], 'correlation_' + samplename + rawpart + '.' + graph_extension), dpi=graph_dpi) writemarkdown("### Collected images from all distances") plt.show() writemarkdown("Updated badfsns list:") writemarkdown('[' + ', '.join(str(f) for f in ip.user_ns['badfsns']) + ']') writemarkdown("Updated badfsns list using datcmp:") writemarkdown('[' + ', '.join(str(f) for f in ip.user_ns['badfsns_datcmp']) + ']') ip.user_ns['_data1d'] = data1d ip.user_ns['_data2d'] = data2d ip.user_ns['_headers_sample'] = headers_tosave ip.user_ns['_rowavg'] = rowavg
0.002888
def node_has_namespace(node: BaseEntity, namespace: str) -> bool: """Pass for nodes that have the given namespace.""" ns = node.get(NAMESPACE) return ns is not None and ns == namespace
0.005102
def resolve_election_tie(self, candidates): """ call callback to resolve a tie between candidates """ sorted_candidate_ids = list(sorted(candidates, key=self.candidate_order_fn)) return sorted_candidate_ids[self.election_tie_cb(candidates)]
0.010714
def checksum_creation_action(target, source, env): """Create a linker command file for patching an application checksum into a firmware image""" # Important Notes: # There are apparently many ways to calculate a CRC-32 checksum, we use the following options # Initial seed value prepended to the input: 0xFFFFFFFF # Whether the input is fed into the shift register least-significant bit or most-significant bit first: LSB # Whether each data word is inverted: No # Whether the final CRC value is inverted: No # *These settings must agree between the executive and this function* import crcmod crc32_func = crcmod.mkCrcFun(0x104C11DB7, initCrc=0xFFFFFFFF, rev=False, xorOut=0) with open(str(source[0]), 'rb') as f: data = f.read() # Ignore the last four bytes of the file since that is where the checksum will go data = data[:-4] # Make sure the magic number is correct so that we're dealing with an actual firmware image magicbin = data[-4:] magic, = struct.unpack('<L', magicbin) if magic != 0xBAADDAAD: raise BuildError("Attempting to patch a file that is not a CDB binary or has the wrong size", reason="invalid magic number found", actual_magic=magic, desired_magic=0xBAADDAAD) # Calculate CRC32 in the same way as its done in the target microcontroller checksum = crc32_func(data) & 0xFFFFFFFF with open(str(target[0]), 'w') as f: # hex strings end with L on windows and possibly some other systems checkhex = hex(checksum) if checkhex[-1] == 'L': checkhex = checkhex[:-1] f.write("--defsym=__image_checksum=%s\n" % checkhex)
0.005248
def reboot(self, timeout=None, wait_polling_interval=None): """Reboot the device, waiting for the adb connection to become stable. :param timeout: Maximum time to wait for reboot. :param wait_polling_interval: Interval at which to poll for device readiness. """ if timeout is None: timeout = self._timeout if wait_polling_interval is None: wait_polling_interval = self._wait_polling_interval self._logger.info("Rebooting device") self.wait_for_device_ready(timeout, after_first=lambda:self.command_output(["reboot"]))
0.007788
def ipv6_acl_ipv6_access_list_standard_seq_action(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") ipv6_acl = ET.SubElement(config, "ipv6-acl", xmlns="urn:brocade.com:mgmt:brocade-ipv6-access-list") ipv6 = ET.SubElement(ipv6_acl, "ipv6") access_list = ET.SubElement(ipv6, "access-list") standard = ET.SubElement(access_list, "standard") name_key = ET.SubElement(standard, "name") name_key.text = kwargs.pop('name') seq = ET.SubElement(standard, "seq") seq_id_key = ET.SubElement(seq, "seq-id") seq_id_key.text = kwargs.pop('seq_id') action = ET.SubElement(seq, "action") action.text = kwargs.pop('action') callback = kwargs.pop('callback', self._callback) return callback(config)
0.003601
def handle_message(self, msg, host): """Processes messages that have been delivered from the listener. Args: msg (string): The raw packet data delivered from the listener. This data will be unserialized and then processed based on the packet's method. host (tuple): The (address, host) tuple of the source message. Returns: A response that will be sent back to the client via the listener. """ response = None # Unserialize the packet, and decrypt if the host has encryption enabled if host in self.encrypted_hosts: msg_data = unserialize_data(msg, self.compression, self.encryption) else: msg_data = unserialize_data(msg, self.compression) logger.debug("Packet received: " + pformat(msg_data)) # If the message data is blank, return none if not msg_data: return response # For debug purposes, check if the client is registered or not if self.is_registered(msg_data["cuuid"], host[0]): logger.debug("<%s> Client is currently registered" % msg_data["cuuid"]) else: logger.debug("<%s> Client is not registered" % msg_data["cuuid"]) if "method" in msg_data: if msg_data["method"] == "REGISTER": logger.debug("<%s> Register packet received" % msg_data["cuuid"]) response = self.register(msg_data, host) elif msg_data["method"] == "OHAI": if not self.discoverable: return False logger.debug("<%s> Autodiscover packet received" % msg_data["cuuid"]) response = self.autodiscover(msg_data) elif msg_data["method"] == "AUTH": logger.debug("<%s> Authentication packet recieved" % msg_data["cuuid"]) response = self.auth_server.verify_login(msg_data) if response: self.registry[host]["authenticated"] = True else: if self.auth_server: if self.registry[host]["authenticated"]: response = self.handle_message_registered(msg_data, host) else: response = self.handle_message_registered(msg_data, host) logger.debug("Packet processing completed") return response
0.004149
def update_ssl_termination(self, loadbalancer, securePort=None, enabled=None, secureTrafficOnly=None): """ Updates existing SSL termination information for the load balancer without affecting the existing certificates/keys. """ ssl_info = self.get_ssl_termination(loadbalancer) if not ssl_info: raise exc.NoSSLTerminationConfiguration("You must configure SSL " "termination on this load balancer before attempting " "to update it.") if securePort is None: securePort = ssl_info["securePort"] if enabled is None: enabled = ssl_info["enabled"] if secureTrafficOnly is None: secureTrafficOnly = ssl_info["secureTrafficOnly"] uri = "/loadbalancers/%s/ssltermination" % utils.get_id(loadbalancer) req_body = {"sslTermination": { "enabled": enabled, "secureTrafficOnly": secureTrafficOnly, "securePort": securePort, }} resp, body = self.api.method_put(uri, body=req_body) return body
0.004367
def set_cells(self, cells_location): """ Set self.cells to function :cells in file pathname.py :param cells_location: cells location, format 'pathname.py:cells' :return: """ if ':' in cells_location: pathname, func_name = cells_location.split(':') else: pathname = cells_location func_name = 'cells' check_isfile(pathname) try: self.cells = get_func(func_name, pathname) except SyntaxError as e: fatal(traceback.format_exc(limit=1)) return pathname, func_name
0.003273
def exit(status=0): """ Terminate the program with the given status code. """ if status == 0: lab.io.printf(lab.io.Colours.GREEN, "Done.") else: lab.io.printf(lab.io.Colours.RED, "Error {0}".format(status)) sys.exit(status)
0.003802
def _get_default_value(self, value): """ Format a value so that it can be used in "default" clauses. """ if isinstance(value, QueryExpression): return value if isinstance(value, bool): return "'%s'" % int(value) return "'%s'" % value
0.006515
def _handle_complete_reply(self, rep): """ Handle replies for tab completion. """ self.log.debug("complete: %s", rep.get('content', '')) cursor = self._get_cursor() info = self._request_info.get('complete') if info and info.id == rep['parent_header']['msg_id'] and \ info.pos == cursor.position(): text = '.'.join(self._get_context()) cursor.movePosition(QtGui.QTextCursor.Left, n=len(text)) self._complete_with_items(cursor, rep['content']['matches'])
0.003623
def on_pre_execution(**kwargs): """ Calls callbacks before execution. Note that any exception from callback will be logged but won't be propagated. :param kwargs: :return: None """ logging.debug("Calling callbacks: %s", __pre_exec_callbacks) for cb in __pre_exec_callbacks: try: cb(**kwargs) except Exception: logging.exception('Failed on pre-execution callback using %s', cb)
0.004464
def send_magic_packet(*macs, **kwargs): """ Wake up computers having any of the given mac addresses. Wake on lan must be enabled on the host device. Args: macs (str): One or more macaddresses of machines to wake. Keyword Args: ip_address (str): the ip address of the host to send the magic packet to (default "255.255.255.255") port (int): the port of the host to send the magic packet to (default 9) """ packets = [] ip = kwargs.pop('ip_address', BROADCAST_IP) port = kwargs.pop('port', DEFAULT_PORT) for k in kwargs: raise TypeError('send_magic_packet() got an unexpected keyword ' 'argument {!r}'.format(k)) for mac in macs: packet = create_magic_packet(mac) packets.append(packet) sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) sock.connect((ip, port)) for packet in packets: sock.send(packet) sock.close()
0.00094
def insert(self, task, args=[], kwargs={}, delay_seconds=0): """ Insert a task into an existing queue. """ body = { "payload": task.payload(), "queueName": self._queue_name, "groupByTag": True, "tag": task.__class__.__name__ } def cloud_insertion(): self._api.insert(body, delay_seconds) self._pool.spawn(cloud_insertion) return self
0.005025
def json(self): """Load response body as json. :raises: :class:`ContentDecodingError` """ try: return json.loads(self.text) except Exception as e: raise ContentDecodingError(e)
0.008299
def ConnectNoSSL(host='localhost', port=443, user='root', pwd='', service="hostd", adapter="SOAP", namespace=None, path="/sdk", version=None, keyFile=None, certFile=None, thumbprint=None, b64token=None, mechanism='userpass'): """ Provides a standard method for connecting to a specified server without SSL verification. Useful when connecting to servers with self-signed certificates or when you wish to ignore SSL altogether. Will attempt to create an unverified SSL context and then connect via the Connect method. """ if hasattr(ssl, '_create_unverified_context'): sslContext = ssl._create_unverified_context() else: sslContext = None return Connect(host=host, port=port, user=user, pwd=pwd, service=service, adapter=adapter, namespace=namespace, path=path, version=version, keyFile=keyFile, certFile=certFile, thumbprint=thumbprint, sslContext=sslContext, b64token=b64token, mechanism=mechanism)
0.007241
def _process_loaded_object(self, path): """process the :paramref:`path`. :param str path: the path to load an svg from """ file_name = os.path.basename(path) name = os.path.splitext(file_name)[0] with open(path) as file: string = file.read() self._instruction_type_to_file_content[name] = string
0.005435
def csv_column_cleaner(rows): """ clean csv columns parsed omitting empty/dirty rows. """ # check columns if there was empty columns result = [[] for x in range(0, len(rows))] for i_index in range(0, len(rows[0])): partial_values = [] for x_row in rows: partial_values.append( x_row[i_index] if len(x_row) > i_index else '') colum_rows = exclude_empty_values(partial_values) if len(colum_rows) > len(rows) / 5: # adjust this value for index in range(0, len(rows)): result[index].append( rows[index][i_index] if len(rows[index]) > i_index else '') return result
0.001425
def get_tiles(self): """Get all TileCoordinates contained in the region""" for x, y in griditer(self.root_tile.x, self.root_tile.y, ncol=self.tiles_per_row): yield TileCoordinate(self.root_tile.zoom, x, y)
0.012876
def make_related_protein_fasta_from_dataframe(self, input_df): ''' DataFrame should have ''' dirname = './group_fastas' if not os.path.exists(dirname): os.makedirs(dirname) unique_hit_queries = set(input_df.hit_query) for hq in unique_hit_queries: fasta = [] subdf = input_df[input_df.hit_query==hq].reset_index() for i in range(0, len(subdf)): fasta.append('>' + subdf.ix[i].org_name.replace(" ", "-") + "," + subdf.ix[i].hit_query + "," + subdf.ix[i].prot_acc + '\n' + subdf.ix[i].prot_translation + '\n') faastring = "".join(fasta) filename = './group_fastas/' + hq + '.fasta' write_fasta = open(filename, 'w') write_fasta.write(faastring) write_fasta.close()
0.005308
def receive( self, request: RequestType, user: UserType = None, sender_key_fetcher: Callable[[str], str] = None, skip_author_verification: bool = False) -> Tuple[str, dict]: """ Receive a request. For testing purposes, `skip_author_verification` can be passed. Authorship will not be verified. """ self.user = user self.get_contact_key = sender_key_fetcher self.payload = json.loads(decode_if_bytes(request.body)) self.request = request self.extract_actor() # Verify the message is from who it claims to be if not skip_author_verification: self.verify_signature() return self.actor, self.payload
0.003927
def list_huisnummers_by_perceel(self, perceel, sort=1): ''' List all `huisnummers` on a `Pereel`. Generally there will only be one, but multiples are possible. :param perceel: The :class:`Perceel` for which the \ `huisnummers` are wanted. :rtype: A :class: `list` of :class:`Huisnummer` ''' try: id = perceel.id except AttributeError: id = perceel def creator(): res = crab_gateway_request( self.client, 'ListHuisnummersWithStatusByIdentificatorPerceel', id, sort ) try: huisnummers= [] for r in res.HuisnummerWithStatusItem: h = self.get_huisnummer_by_id(r.HuisnummerId) h.clear_gateway() huisnummers.append(h) return huisnummers except AttributeError: return [] if self.caches['short'].is_configured: key = 'ListHuisnummersWithStatusByIdentificatorPerceel#%s%s' % (id, sort) huisnummers = self.caches['short'].get_or_create(key, creator) else: huisnummers = creator() for h in huisnummers: h.set_gateway(self) return huisnummers
0.003019
def forward(node, analysis): """Perform a given analysis on all functions within an AST.""" if not isinstance(analysis, Forward): raise TypeError('not a valid forward analysis object') for succ in gast.walk(node): if isinstance(succ, gast.FunctionDef): cfg_obj = CFG.build_cfg(succ) analysis.visit(cfg_obj.entry) return node
0.019886
def nearest_int(x): """ Return nearest long integer to x """ if x == 0: return np.int64(0) elif x > 0: return np.int64(x + 0.5) else: return np.int64(x - 0.5)
0.004854
def closest_point(triangles, points): """ Return the closest point on the surface of each triangle for a list of corresponding points. Implements the method from "Real Time Collision Detection" and use the same variable names as "ClosestPtPointTriangle" to avoid being any more confusing. Parameters ---------- triangles : (n, 3, 3) float Triangle vertices in space points : (n, 3) float Points in space Returns ---------- closest : (n, 3) float Point on each triangle closest to each point """ # check input triangles and points triangles = np.asanyarray(triangles, dtype=np.float64) points = np.asanyarray(points, dtype=np.float64) if not util.is_shape(triangles, (-1, 3, 3)): raise ValueError('triangles shape incorrect') if not util.is_shape(points, (len(triangles), 3)): raise ValueError('need same number of triangles and points!') # store the location of the closest point result = np.zeros_like(points) # which points still need to be handled remain = np.ones(len(points), dtype=np.bool) # if we dot product this against a (n, 3) # it is equivalent but faster than array.sum(axis=1) ones = [1.0, 1.0, 1.0] # get the three points of each triangle # use the same notation as RTCD to avoid confusion a = triangles[:, 0, :] b = triangles[:, 1, :] c = triangles[:, 2, :] # check if P is in vertex region outside A ab = b - a ac = c - a ap = points - a # this is a faster equivalent of: # util.diagonal_dot(ab, ap) d1 = np.dot(ab * ap, ones) d2 = np.dot(ac * ap, ones) # is the point at A is_a = np.logical_and(d1 < tol.zero, d2 < tol.zero) if is_a.any(): result[is_a] = a[is_a] remain[is_a] = False # check if P in vertex region outside B bp = points - b d3 = np.dot(ab * bp, ones) d4 = np.dot(ac * bp, ones) # do the logic check is_b = (d3 > -tol.zero) & (d4 <= d3) & remain if is_b.any(): result[is_b] = b[is_b] remain[is_b] = False # check if P in edge region of AB, if so return projection of P onto A vc = (d1 * d4) - (d3 * d2) is_ab = ((vc < tol.zero) & (d1 > -tol.zero) & (d3 < tol.zero) & remain) if is_ab.any(): v = (d1[is_ab] / (d1[is_ab] - d3[is_ab])).reshape((-1, 1)) result[is_ab] = a[is_ab] + (v * ab[is_ab]) remain[is_ab] = False # check if P in vertex region outside C cp = points - c d5 = np.dot(ab * cp, ones) d6 = np.dot(ac * cp, ones) is_c = (d6 > -tol.zero) & (d5 <= d6) & remain if is_c.any(): result[is_c] = c[is_c] remain[is_c] = False # check if P in edge region of AC, if so return projection of P onto AC vb = (d5 * d2) - (d1 * d6) is_ac = (vb < tol.zero) & (d2 > -tol.zero) & (d6 < tol.zero) & remain if is_ac.any(): w = (d2[is_ac] / (d2[is_ac] - d6[is_ac])).reshape((-1, 1)) result[is_ac] = a[is_ac] + w * ac[is_ac] remain[is_ac] = False # check if P in edge region of BC, if so return projection of P onto BC va = (d3 * d6) - (d5 * d4) is_bc = ((va < tol.zero) & ((d4 - d3) > - tol.zero) & ((d5 - d6) > -tol.zero) & remain) if is_bc.any(): d43 = d4[is_bc] - d3[is_bc] w = (d43 / (d43 + (d5[is_bc] - d6[is_bc]))).reshape((-1, 1)) result[is_bc] = b[is_bc] + w * (c[is_bc] - b[is_bc]) remain[is_bc] = False # any remaining points must be inside face region if remain.any(): # point is inside face region denom = 1.0 / (va[remain] + vb[remain] + vc[remain]) v = (vb[remain] * denom).reshape((-1, 1)) w = (vc[remain] * denom).reshape((-1, 1)) # compute Q through its barycentric coordinates result[remain] = a[remain] + (ab[remain] * v) + (ac[remain] * w) return result
0.000253
def _FindInFileEntry(self, file_entry, find_specs, search_depth): """Searches for matching file entries within the file entry. Args: file_entry (FileEntry): file entry. find_specs (list[FindSpec]): find specifications. search_depth (int): number of location path segments to compare. Yields: PathSpec: path specification of a matching file entry. """ sub_find_specs = [] for find_spec in find_specs: match, location_match = find_spec.Matches(file_entry, search_depth) if match: yield file_entry.path_spec # pylint: disable=singleton-comparison if location_match != False and not find_spec.AtMaximumDepth(search_depth): sub_find_specs.append(find_spec) if not sub_find_specs: return search_depth += 1 try: for sub_file_entry in file_entry.sub_file_entries: for matching_path_spec in self._FindInFileEntry( sub_file_entry, sub_find_specs, search_depth): yield matching_path_spec except errors.AccessError: pass
0.011268
def map(self, func, axis=(0,), value_shape=None, dtype=None, with_keys=False): """ Apply a function across an axis. Array will be aligned so that the desired set of axes are in the keys, which may incur a swap. Parameters ---------- func : function Function of a single array to apply. If with_keys=True, function should be of a (tuple, array) pair. axis : tuple or int, optional, default=(0,) Axis or multiple axes to apply function along. value_shape : tuple, optional, default=None Known shape of values resulting from operation dtype: numpy.dtype, optional, default=None Known dtype of values resulting from operation with_keys : bool, optional, default=False Include keys as an argument to the function Returns ------- BoltArraySpark """ axis = tupleize(axis) swapped = self._align(axis) if with_keys: test_func = lambda x: func(((0,), x)) else: test_func = func if value_shape is None or dtype is None: # try to compute the size of each mapped element by applying func to a random array try: mapped = test_func(random.randn(*swapped.values.shape).astype(self.dtype)) except Exception: first = swapped._rdd.first() if first: # eval func on the first element mapped = test_func(first[1]) if value_shape is None: value_shape = mapped.shape if dtype is None: dtype = mapped.dtype shape = tuple([swapped._shape[ax] for ax in range(len(axis))]) + tupleize(value_shape) if with_keys: rdd = swapped._rdd.map(lambda kv: (kv[0], func(kv))) else: rdd = swapped._rdd.mapValues(func) # reshaping will fail if the elements aren't uniformly shaped def check(v): if len(v.shape) > 0 and v.shape != tupleize(value_shape): raise Exception("Map operation did not produce values of uniform shape.") return v rdd = rdd.mapValues(lambda v: check(v)) return self._constructor(rdd, shape=shape, dtype=dtype, split=swapped.split).__finalize__(swapped)
0.003331
def _compute_distance(self, rup, dists, C): """ Compute the distance function, equation (5). """ rval = np.sqrt(dists.repi ** 2 + C['h'] ** 2) return C['c1'] * np.log10(rval)
0.009346
def subtract_params(param_list_left, param_list_right): """Subtract two lists of parameters :param param_list_left: list of numpy arrays :param param_list_right: list of numpy arrays :return: list of numpy arrays """ res = [] for x, y in zip(param_list_left, param_list_right): res.append(x - y) return res
0.002882
def draw_clusters(data, clusters, noise = [], marker_descr = '.', hide_axes = False, axes = None, display_result = True): """! @brief Displays clusters for data in 2D or 3D. @param[in] data (list): Points that are described by coordinates represented. @param[in] clusters (list): Clusters that are represented by lists of indexes where each index corresponds to point in data. @param[in] noise (list): Points that are regarded to noise. @param[in] marker_descr (string): Marker for displaying points. @param[in] hide_axes (bool): If True - axes is not displayed. @param[in] axes (ax) Matplotlib axes where clusters should be drawn, if it is not specified (None) then new plot will be created. @param[in] display_result (bool): If specified then matplotlib axes will be used for drawing and plot will not be shown. @return (ax) Matplotlib axes where drawn clusters are presented. """ # Get dimension dimension = 0; if ( (data is not None) and (clusters is not None) ): dimension = len(data[0]); elif ( (data is None) and (clusters is not None) ): dimension = len(clusters[0][0]); else: raise NameError('Data or clusters should be specified exactly.'); "Draw clusters" colors = [ 'red', 'blue', 'darkgreen', 'brown', 'violet', 'deepskyblue', 'darkgrey', 'lightsalmon', 'deeppink', 'yellow', 'black', 'mediumspringgreen', 'orange', 'darkviolet', 'darkblue', 'silver', 'lime', 'pink', 'gold', 'bisque' ]; if (len(clusters) > len(colors)): raise NameError('Impossible to represent clusters due to number of specified colors.'); fig = plt.figure(); if (axes is None): # Check for dimensions if ((dimension) == 1 or (dimension == 2)): axes = fig.add_subplot(111); elif (dimension == 3): axes = fig.gca(projection='3d'); else: raise NameError('Drawer supports only 2d and 3d data representation'); color_index = 0; for cluster in clusters: color = colors[color_index]; for item in cluster: if (dimension == 1): if (data is None): axes.plot(item[0], 0.0, color = color, marker = marker_descr); else: axes.plot(data[item][0], 0.0, color = color, marker = marker_descr); if (dimension == 2): if (data is None): axes.plot(item[0], item[1], color = color, marker = marker_descr); else: axes.plot(data[item][0], data[item][1], color = color, marker = marker_descr); elif (dimension == 3): if (data is None): axes.scatter(item[0], item[1], item[2], c = color, marker = marker_descr); else: axes.scatter(data[item][0], data[item][1], data[item][2], c = color, marker = marker_descr); color_index += 1; for item in noise: if (dimension == 1): if (data is None): axes.plot(item[0], 0.0, 'w' + marker_descr); else: axes.plot(data[item][0], 0.0, 'w' + marker_descr); if (dimension == 2): if (data is None): axes.plot(item[0], item[1], 'w' + marker_descr); else: axes.plot(data[item][0], data[item][1], 'w' + marker_descr); elif (dimension == 3): if (data is None): axes.scatter(item[0], item[1], item[2], c = 'w', marker = marker_descr); else: axes.scatter(data[item][0], data[item][1], data[item][2], c = 'w', marker = marker_descr); axes.grid(True); if (hide_axes is True): axes.xaxis.set_ticklabels([]); axes.yaxis.set_ticklabels([]); if (dimension == 3): axes.zaxis.set_ticklabels([]); if (display_result is True): plt.show(); return axes;
0.026925
def transfer_matrix(self, superoperator): """ Compute the transfer matrix :math:`R_{jk} = \tr[P_j sop(P_k)]`. :param qutip.Qobj superoperator: The superoperator to transform. :return: The transfer matrix in sparse form. :rtype: scipy.sparse.csr_matrix """ if not self.is_orthonormal(): # pragma no coverage raise ValueError("transfer_matrix() only implemented for orthonormal operator bases.") return self.basis_transform.H * superoperator.data * self.basis_transform
0.007339
def connect(self, protocolFactory): """Starts a process and connect a protocol to it. """ deferred = self._startProcess() deferred.addCallback(self._connectRelay, protocolFactory) deferred.addCallback(self._startRelay) return deferred
0.007092
def justify(texts, max_len, mode='right'): """ Perform ljust, center, rjust against string or list-like """ if mode == 'left': return [x.ljust(max_len) for x in texts] elif mode == 'center': return [x.center(max_len) for x in texts] else: return [x.rjust(max_len) for x in texts]
0.003058
def _update_linecache(self, path, data): """ The Python 2.4 linecache module, used to fetch source code for tracebacks and :func:`inspect.getsource`, does not support PEP-302, meaning it needs extra help to for Mitogen-loaded modules. Directly populate its cache if a loaded module belongs to the Mitogen package. """ if PY24 and 'mitogen' in path: linecache.cache[path] = ( len(data), 0.0, [line+'\n' for line in data.splitlines()], path, )
0.003419
def load_model_class(repo, content_type): """ Return a model class for a content type in a repository. :param Repo repo: The git repository. :param str content_type: The content type to list :returns: class """ schema = get_schema(repo, content_type).to_json() return deserialize(schema, module_name=schema['namespace'])
0.00271
def generate_version_file(self, schema_filename, binding_filename): """Given a DataONE schema, generates a file that contains version information about the schema.""" version_filename = binding_filename + '_version.txt' version_path = os.path.join(self.binding_dir, version_filename) schema_path = os.path.join(self.schema_dir, schema_filename) try: tstamp, svnpath, svnrev, version = self.get_version_info_from_svn( schema_path ) except TypeError: pass else: self.write_version_file(version_path, tstamp, svnpath, svnrev, version)
0.00607
def manage_initial_host_status_brok(self, b): """Prepare the known hosts cache""" host_name = b.data['host_name'] logger.debug("got initial host status: %s", host_name) self.hosts_cache[host_name] = { 'realm_name': sanitize_name(b.data.get('realm_name', b.data.get('realm', 'All'))), } if 'customs' in b.data: self.hosts_cache[host_name]['_GRAPHITE_PRE'] = \ sanitize_name(b.data['customs'].get('_GRAPHITE_PRE', None)) self.hosts_cache[host_name]['_GRAPHITE_GROUP'] = \ sanitize_name(b.data['customs'].get('_GRAPHITE_GROUP', None)) logger.debug("initial host status received: %s", host_name)
0.004098
def sum_by_n(d, w, n): """A utility function to summarize a data array into n values after weighting the array with another weight array w Parameters ---------- d : array (t, 1), numerical values w : array (t, 1), numerical values for weighting n : integer the number of groups t = c*n (c is a constant) Returns ------- : array (n, 1), an array with summarized values Examples -------- Creating an array including four integers. We will compute weighted means for every two elements. >>> d = np.array([10, 9, 20, 30]) Here is another array with the weight values for d's elements. >>> w = np.array([0.5, 0.1, 0.3, 0.8]) We specify the number of groups for which the weighted mean is computed. >>> n = 2 Applying sum_by_n function >>> sum_by_n(d, w, n) array([ 5.9, 30. ]) """ t = len(d) h = t // n #must be floor! d = d * w return np.array([sum(d[i: i + h]) for i in range(0, t, h)])
0.002657
def create_module_rst_file(module_name): """Function for creating content in each .rst file for a module. :param module_name: name of the module. :type module_name: str :returns: A content for auto module. :rtype: str """ return_text = 'Module: ' + module_name dash = '=' * len(return_text) return_text += '\n' + dash + '\n\n' return_text += '.. automodule:: ' + module_name + '\n' return_text += ' :members:\n\n' return return_text
0.002053
def fetch(self, max=None): """ Fetch all collection by pages of `max` items. Parameters ---------- max : int, None (optional) The number of item per page. If None, retrieve all collection. Returns ------- self Collection, the fetched collection """ if max: self.max = max n_pages = 0 while not self._total_pages or n_pages < self._total_pages: self.fetch_next_page(True) n_pages += 1 return self else: return self._fetch()
0.003231
def set_attr(obj, path, value): """ SAME AS object.__setattr__(), BUT USES DOT-DELIMITED path RETURN OLD VALUE """ try: return _set_attr(obj, split_field(path), value) except Exception as e: Log = get_logger() if PATH_NOT_FOUND in e: Log.warning(PATH_NOT_FOUND + ": {{path}}", path=path, cause=e) else: Log.error("Problem setting value", cause=e)
0.002347
def Record(self, value, fields=None): """Records the given observation in a distribution.""" key = _FieldsToKey(fields) metric_value = self._metric_values.get(key) if metric_value is None: metric_value = self._DefaultValue() self._metric_values[key] = metric_value metric_value.Record(value)
0.009288
def to_bytes(value): """Get a byte array representing the value""" if isinstance(value, unicode): return value.encode('utf8') elif not isinstance(value, str): return str(value) return value
0.004525
def _find_local_signals(cls, signals, namespace): """Add name info to every "local" (present in the body of this class) signal and add it to the mapping. Also complete signal initialization as member of the class by injecting its name. """ from . import Signal signaller = cls._external_signaller_and_handler for aname, avalue in namespace.items(): if isinstance(avalue, Signal): if avalue.name: aname = avalue.name else: avalue.name = aname assert ((aname not in signals) or (aname in signals and avalue is not signals[aname])), \ ("The same signal {name!r} was found " "two times".format(name=aname)) if signaller: avalue.external_signaller = signaller signals[aname] = avalue
0.003122
def _median(imageObjectList, paramDict): """Create a median image from the list of image Objects that has been given. """ newmasks = paramDict['median_newmasks'] comb_type = paramDict['combine_type'].lower() nlow = paramDict['combine_nlow'] nhigh = paramDict['combine_nhigh'] grow = paramDict['combine_grow'] if 'minmed' in comb_type else 0 maskpt = paramDict['combine_maskpt'] proc_units = paramDict['proc_unit'] compress = paramDict['compress'] bufsizeMB = paramDict['combine_bufsize'] sigma = paramDict["combine_nsigma"] sigmaSplit = sigma.split() nsigma1 = float(sigmaSplit[0]) nsigma2 = float(sigmaSplit[1]) if paramDict['combine_lthresh'] is None: lthresh = None else: lthresh = float(paramDict['combine_lthresh']) if paramDict['combine_hthresh'] is None: hthresh = None else: hthresh = float(paramDict['combine_hthresh']) # the name of the output median file isdefined in the output wcs object and # stuck in the image.outputValues["outMedian"] dict of every imageObject medianfile = imageObjectList[0].outputNames["outMedian"] # Build combined array from single drizzled images. # Start by removing any previous products... if os.access(medianfile, os.F_OK): os.remove(medianfile) # Define lists for instrument specific parameters, these should be in # the image objects need to be passed to the minmed routine readnoiseList = [] exposureTimeList = [] backgroundValueList = [] # list of MDRIZSKY *platescale values singleDrizList = [] # these are the input images singleWeightList = [] # pointers to the data arrays wht_mean = [] # Compute the mean value of each wht image single_hdr = None virtual = None # for each image object for image in imageObjectList: if virtual is None: virtual = image.inmemory det_gain = image.getGain(1) img_exptime = image._image['sci', 1]._exptime native_units = image.native_units native_units_lc = native_units.lower() if proc_units.lower() == 'native': if native_units_lc not in ['counts', 'electrons', 'counts/s', 'electrons/s']: raise ValueError("Unexpected native units: '{}'" .format(native_units)) if lthresh is not None: if native_units_lc.startswith('counts'): lthresh *= det_gain if native_units_lc.endswith('/s'): lthresh *= img_exptime if hthresh is not None: if native_units_lc.startswith('counts'): hthresh *= det_gain if native_units_lc.endswith('/s'): hthresh *= img_exptime singleDriz = image.getOutputName("outSingle") singleDriz_name = image.outputNames['outSingle'] singleWeight = image.getOutputName("outSWeight") singleWeight_name = image.outputNames['outSWeight'] # If compression was used, reference ext=1 as CompImageHDU only writes # out MEF files, not simple FITS. if compress: wcs_ext = '[1]' wcs_extnum = 1 else: wcs_ext = '[0]' wcs_extnum = 0 if not virtual: if isinstance(singleDriz, str): iter_singleDriz = singleDriz + wcs_ext iter_singleWeight = singleWeight + wcs_ext else: iter_singleDriz = singleDriz[wcs_extnum] iter_singleWeight = singleWeight[wcs_extnum] else: iter_singleDriz = singleDriz_name + wcs_ext iter_singleWeight = singleWeight_name + wcs_ext # read in WCS from first single drizzle image to use as WCS for # median image if single_hdr is None: if virtual: single_hdr = singleDriz[wcs_extnum].header else: single_hdr = fits.getheader(singleDriz_name, ext=wcs_extnum, memmap=False) single_image = iterfile.IterFitsFile(iter_singleDriz) if virtual: single_image.handle = singleDriz single_image.inmemory = True singleDrizList.append(single_image) # add to an array for bookkeeping # If it exists, extract the corresponding weight images if (not virtual and os.access(singleWeight, os.F_OK)) or ( virtual and singleWeight): weight_file = iterfile.IterFitsFile(iter_singleWeight) if virtual: weight_file.handle = singleWeight weight_file.inmemory = True singleWeightList.append(weight_file) try: tmp_mean_value = ImageStats(weight_file.data, lower=1e-8, fields="mean", nclip=0).mean except ValueError: tmp_mean_value = 0.0 wht_mean.append(tmp_mean_value * maskpt) # Extract instrument specific parameters and place in lists # If an image has zero exposure time we will # redefine that value as '1'. Although this will cause inaccurate # scaling of the data to occur in the 'minmed' combination # algorith, this is a necessary evil since it avoids divide by # zero exceptions. It is more important that the divide by zero # exceptions not cause AstroDrizzle to crash in the pipeline than # it is to raise an exception for this obviously bad data even # though this is not the type of data you would wish to process # with AstroDrizzle. # # Get the exposure time from the InputImage object # # MRD 19-May-2011 # Changed exposureTimeList to take exposure time from img_exptime # variable instead of hte image._exptime attribute, since # image._exptime was just giving 1. # exposureTimeList.append(img_exptime) # Use only "commanded" chips to extract subtractedSky and rdnoise: rdnoise = 0.0 nchips = 0 bsky = None # minimum sky across **used** chips for chip in image.returnAllChips(extname=image.scienceExt): # compute sky value as sky/pixel using the single_drz # pixel scale: if bsky is None or bsky > chip.subtractedSky: bsky = chip.subtractedSky * chip._conversionFactor # Extract the readnoise value for the chip rdnoise += chip._rdnoise**2 nchips += 1 if bsky is None: bsky = 0.0 if nchips > 0: rdnoise = math.sqrt(rdnoise/nchips) backgroundValueList.append(bsky) readnoiseList.append(rdnoise) print("reference sky value for image '{}' is {}" .format(image._filename, backgroundValueList[-1])) # # END Loop over input image list # # create an array for the median output image, use the size of the first # image in the list. Store other useful image characteristics: single_driz_data = singleDrizList[0].data data_item_size = single_driz_data.itemsize single_data_dtype = single_driz_data.dtype imrows, imcols = single_driz_data.shape medianImageArray = np.zeros_like(single_driz_data) del single_driz_data if comb_type == "minmed" and not newmasks: # Issue a warning if minmed is being run with newmasks turned off. print('\nWARNING: Creating median image without the application of ' 'bad pixel masks!\n') # The overlap value needs to be set to 2*grow in order to # avoid edge effects when scrolling down the image, and to # insure that the last section returned from the iterator # has enough rows to span the kernel used in the boxcar method # within minmed. overlap = 2 * grow buffsize = BUFSIZE if bufsizeMB is None else (BUFSIZE * bufsizeMB) section_nrows = min(imrows, int(buffsize / (imcols * data_item_size))) if section_nrows == 0: buffsize = imcols * data_item_size print("WARNING: Buffer size is too small to hold a single row.\n" " Buffer size size will be increased to minimal " "required: {}MB".format(float(buffsize) / 1048576.0)) section_nrows = 1 if section_nrows < overlap + 1: new_grow = int((section_nrows - 1) / 2) if section_nrows == imrows: print("'grow' parameter is too large for actual image size. " "Reducing 'grow' to {}".format(new_grow)) else: print("'grow' parameter is too large for requested buffer size. " "Reducing 'grow' to {}".format(new_grow)) grow = new_grow overlap = 2 * grow nbr = section_nrows - overlap nsec = (imrows - overlap) // nbr if (imrows - overlap) % nbr > 0: nsec += 1 for k in range(nsec): e1 = k * nbr e2 = e1 + section_nrows u1 = grow u2 = u1 + nbr if k == 0: # first section u1 = 0 if k == nsec - 1: # last section e2 = min(e2, imrows) e1 = min(e1, e2 - overlap - 1) u2 = e2 - e1 imdrizSectionsList = np.empty( (len(singleDrizList), e2 - e1, imcols), dtype=single_data_dtype ) for i, w in enumerate(singleDrizList): imdrizSectionsList[i, :, :] = w[e1:e2] if singleWeightList: weightSectionsList = np.empty( (len(singleWeightList), e2 - e1, imcols), dtype=single_data_dtype ) for i, w in enumerate(singleWeightList): weightSectionsList[i, :, :] = w[e1:e2] else: weightSectionsList = None weight_mask_list = None if newmasks and weightSectionsList is not None: # Build new masks from single drizzled images. # Generate new pixel mask file for median step. # This mask will be created from the single-drizzled # weight image for this image. # The mean of the weight array will be computed and all # pixels with values less than 0.7 of the mean will be flagged # as bad in this mask. This mask will then be used when # creating the median image. # 0 means good, 1 means bad here... weight_mask_list = np.less( weightSectionsList, np.asarray(wht_mean)[:, None, None] ).astype(np.uint8) if 'minmed' in comb_type: # Do MINMED # set up use of 'imedian'/'imean' in minmed algorithm fillval = comb_type.startswith('i') # Create the combined array object using the minmed algorithm result = min_med( imdrizSectionsList, weightSectionsList, readnoiseList, exposureTimeList, backgroundValueList, weight_masks=weight_mask_list, combine_grow=grow, combine_nsigma1=nsigma1, combine_nsigma2=nsigma2, fillval=fillval ) else: # DO NUMCOMBINE # Create the combined array object using the numcombine task result = numcombine.num_combine( imdrizSectionsList, masks=weight_mask_list, combination_type=comb_type, nlow=nlow, nhigh=nhigh, upper=hthresh, lower=lthresh ) # Write out the processed image sections to the final output array: medianImageArray[e1+u1:e1+u2, :] = result[u1:u2, :] # Write out the combined image # use the header from the first single drizzled image in the list pf = _writeImage(medianImageArray, inputHeader=single_hdr) if virtual: mediandict = {} mediandict[medianfile] = pf for img in imageObjectList: img.saveVirtualOutputs(mediandict) else: try: print("Saving output median image to: '{}'".format(medianfile)) pf.writeto(medianfile) except IOError: msg = "Problem writing file '{}'".format(medianfile) print(msg) raise IOError(msg) # Always close any files opened to produce median image; namely, # single drizzle images and singly-drizzled weight images # for img in singleDrizList: if not virtual: img.close() # Close all singly drizzled weight images used to create median image. for img in singleWeightList: if not virtual: img.close()
0.000076
def aliased_as(self, name): """ Create an alias of this stream. Returns an alias of this stream with name `name`. When invocation of an SPL operator requires an :py:class:`~streamsx.spl.op.Expression` against an input port this can be used to ensure expression matches the input port alias regardless of the name of the actual stream. Example use where the filter expression for a ``Filter`` SPL operator uses ``IN`` to access input tuple attribute ``seq``:: s = ... s = s.aliased_as('IN') params = {'filter': op.Expression.expression('IN.seq % 4ul == 0ul')} f = op.Map('spl.relational::Filter', stream, params = params) Args: name(str): Name for returned stream. Returns: Stream: Alias of this stream with ``name`` equal to `name`. .. versionadded:: 1.9 """ stream = copy.copy(self) stream._alias = name return stream
0.003839
def _new_stream(self, idx): '''Randomly select and create a new stream. Parameters ---------- idx : int, [0:n_streams - 1] The stream index to replace ''' # Don't activate the stream if the weight is 0 or None if self.stream_weights_[idx]: self.streams_[idx] = self.streamers[idx].iterate() else: self.streams_[idx] = None # Reset the sample count to zero self.stream_counts_[idx] = 0
0.003984
def iteration(self, node_status=True): """ Execute a single model iteration :return: Iteration_id, Incremental node status (dictionary node->status) """ # One iteration changes the opinion of N agent pairs using the following procedure: # - first one agent is selected # - then a second agent is selected based on a probability that decreases with the distance to the first agent # - if the two agents have a distance smaller than epsilon, then they change their status to the average of # their previous statuses self.clean_initial_status(None) actual_status = {node: nstatus for node, nstatus in future.utils.iteritems(self.status)} if self.actual_iteration == 0: self.actual_iteration += 1 delta, node_count, status_delta = self.status_delta(self.status) if node_status: return {"iteration": 0, "status": self.status.copy(), "node_count": node_count.copy(), "status_delta": status_delta.copy()} else: return {"iteration": 0, "status": {}, "node_count": node_count.copy(), "status_delta": status_delta.copy()} # interact with peers for i in range(0, self.graph.number_of_nodes()): # select a random node n1 = list(self.graph.nodes())[np.random.randint(0, self.graph.number_of_nodes())] # select all of the node's neighbours (no digraph possible) neighbours = list(self.graph.neighbors(n1)) if len(neighbours) == 0: continue # compute probabilities to select a second node among the neighbours selection_prob = np.array([self.prob(np.abs(actual_status[neighbours[i]]-actual_status[n1]), self.params['model']['gamma'],0.00001) for i in range(len(neighbours))]) selection_prob = selection_prob/np.sum(selection_prob) cumulative_selection_probability = np.cumsum(selection_prob) # select second nodebased on selection probabilities above r = np.random.random_sample() n2 = 0 while cumulative_selection_probability[n2] < r: n2 = n2+1 n2 = neighbours[n2] # update status of n1 and n2 diff = np.abs(actual_status[n1]-actual_status[n2]) if diff < self.params['model']['epsilon']: avg = (actual_status[n1]+actual_status[n2])/2.0 actual_status[n1] = avg actual_status[n2] = avg delta, node_count, status_delta = self.status_delta(actual_status) self.status = actual_status self.actual_iteration += 1 if node_status: return {"iteration": self.actual_iteration - 1, "status": delta.copy(), "node_count": node_count.copy(), "status_delta": status_delta.copy()} else: return {"iteration": self.actual_iteration - 1, "status": {}, "node_count": node_count.copy(), "status_delta": status_delta.copy()}
0.006266
def qualified_note_rate(pianoroll, threshold=2): """Return the ratio of the number of the qualified notes (notes longer than `threshold` (in time step)) to the total number of notes in a pianoroll.""" _validate_pianoroll(pianoroll) if np.issubdtype(pianoroll.dtype, np.bool_): pianoroll = pianoroll.astype(np.uint8) padded = np.pad(pianoroll, ((1, 1), (0, 0)), 'constant') diff = np.diff(padded, axis=0).reshape(-1) onsets = (diff > 0).nonzero()[0] offsets = (diff < 0).nonzero()[0] n_qualified_notes = np.count_nonzero(offsets - onsets >= threshold) return n_qualified_notes / len(onsets)
0.00157
def format_results(self, results): """ Format the ldap results object into somthing that is reasonable """ if not results: return None userdn = results[0][0] userobj = results[0][1] userobj['dn'] = userdn keymap = self.config.get('KEY_MAP') if keymap: return {key:scalar(userobj.get(value)) for key, value in keymap.items() if _is_utf8(scalar(userobj.get(value))) } else: return {key:scalar(value) for key, value in userobj.items() if _is_utf8(scalar(value)) }
0.013865
def twopercent(station_code): """Two percent high design temperature for a location. Degrees in Celcius Args: station_code (str): Weather Station Code Returns: float degrees Celcius """ # (DB=>MWB) 2%, MaxDB= temp = None try: fin = open('%s/%s' % (env.WEATHER_DATA_PATH, _basename(station_code, 'ddy'))) for line in fin: value = re.search("""2%, MaxDB=(\\d+\\.\\d*)""", line) if value: temp = float(value.groups()[0]) except IOError: pass if not temp: # (DB=>MWB) 2%, MaxDB= try: fin = open('%s/%s' % (env.WEATHER_DATA_PATH, _basename(station_code, 'stat'))) flag = 0 tdata = [] for line in fin: if line.find('2%') is not -1: flag = 3 if flag > 0: tdata.append(line.split('\t')) flag -= 1 temp = float(tdata[2][5].strip()) except IOError: pass if temp: return temp else: raise Exception("Error: 2% High Temperature not found")
0.000816
def overrepresented_sequences (self): """Sum the percentages of overrepresented sequences and display them in a bar plot""" data = dict() for s_name in self.fastqc_data: data[s_name] = dict() try: max_pcnt = max( [ float(d['percentage']) for d in self.fastqc_data[s_name]['overrepresented_sequences']] ) total_pcnt = sum( [ float(d['percentage']) for d in self.fastqc_data[s_name]['overrepresented_sequences']] ) data[s_name]['total_overrepresented'] = total_pcnt data[s_name]['top_overrepresented'] = max_pcnt data[s_name]['remaining_overrepresented'] = total_pcnt - max_pcnt except KeyError: if self.fastqc_data[s_name]['statuses']['overrepresented_sequences'] == 'pass': data[s_name]['total_overrepresented'] = 0 data[s_name]['top_overrepresented'] = 0 data[s_name]['remaining_overrepresented'] = 0 else: log.debug("Couldn't find data for {}, invalid Key".format(s_name)) cats = OrderedDict() cats['top_overrepresented'] = { 'name': 'Top over-represented sequence' } cats['remaining_overrepresented'] = { 'name': 'Sum of remaining over-represented sequences' } # Config for the plot pconfig = { 'id': 'fastqc_overrepresented_sequencesi_plot', 'title': 'FastQC: Overrepresented sequences', 'ymin': 0, 'yCeiling': 100, 'yMinRange': 20, 'tt_decimals': 2, 'tt_suffix': '%', 'tt_percentages': False, 'ylab_format': '{value}%', 'cpswitch': False, 'ylab': 'Percentage of Total Sequences' } # Check if any samples have more than 1% overrepresented sequences, else don't make plot. if max([ x['total_overrepresented'] for x in data.values()]) < 1: plot_html = '<div class="alert alert-info">{} samples had less than 1% of reads made up of overrepresented sequences</div>'.format(len(data)) else: plot_html = bargraph.plot(data, cats, pconfig) self.add_section ( name = 'Overrepresented sequences', anchor = 'fastqc_overrepresented_sequences', description = 'The total amount of overrepresented sequences found in each library.', helptext = ''' FastQC calculates and lists overrepresented sequences in FastQ files. It would not be possible to show this for all samples in a MultiQC report, so instead this plot shows the _number of sequences_ categorized as over represented. Sometimes, a single sequence may account for a large number of reads in a dataset. To show this, the bars are split into two: the first shows the overrepresented reads that come from the single most common sequence. The second shows the total count from all remaining overrepresented sequences. From the [FastQC Help](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/9%20Overrepresented%20Sequences.html): _A normal high-throughput library will contain a diverse set of sequences, with no individual sequence making up a tiny fraction of the whole. Finding that a single sequence is very overrepresented in the set either means that it is highly biologically significant, or indicates that the library is contaminated, or not as diverse as you expected._ _FastQC lists all of the sequences which make up more than 0.1% of the total. To conserve memory only sequences which appear in the first 100,000 sequences are tracked to the end of the file. It is therefore possible that a sequence which is overrepresented but doesn't appear at the start of the file for some reason could be missed by this module._ ''', plot = plot_html )
0.012661
def tuple_to_schema(tuple_): """Convert a tuple representing an XML data structure into a schema tuple that can be used in the ``.schema`` property of a sub-class of PREMISElement. """ schema = [] for element in tuple_: if isinstance(element, (tuple, list)): try: if isinstance(element[1], six.string_types): schema.append((element[0],)) else: schema.append(tuple_to_schema(element)) except IndexError: schema.append((element[0],)) else: schema.append(element) return tuple(schema)
0.001541
def colors(lang="en"): """This resource returns all dyes in the game, including localized names and their color component information. :param lang: The language to query the names for. The response is a dictionary where color ids are mapped to an dictionary containing the following properties: name (string): The name of the dye. base_rgb (list): The base RGB values. cloth (object): Detailed information on its appearance when applied on cloth armor. leather (object): Detailed information on its appearance when applied on leather armor. metal (object): Detailed information on its appearance when applied on metal armor. The detailed information object contains the following properties: brightness (number): The brightness. contrast (number): The contrast. hue (number): The hue in the HSL colorspace. saturation (number): The saturation in the HSL colorspace. lightness (number): The lightness in the HSL colorspace. rgb (list): A list containing precalculated RGB values. """ cache_name = "colors.%s.json" % lang data = get_cached("colors.json", cache_name, params=dict(lang=lang)) return data["colors"]
0.000771
def get_changelog(project_dir=os.curdir, bugtracker_url='', rpm_format=False): """ Retrieves the changelog, from the CHANGELOG file (if in a package) or generates it from the git history. Optionally in rpm-compatible format. :param project_dir: Path to the git repo of the project. :type project_dir: str :param bugtracker_url: Url to the bug tracker for the issues. :type bugtracker_url: str :param rpm_format: if set to True, will make the changelog rpm-compatible :returns: changelog :rtype: str :rises RuntimeError: If the changelog could not be retrieved """ changelog = '' pkg_info_file = os.path.join(project_dir, 'PKG-INFO') changelog_file = os.path.join(project_dir, 'CHANGELOG') if os.path.exists(pkg_info_file) and os.path.exists(changelog_file): with open(changelog_file) as changelog_fd: changelog = changelog_fd.read() else: changelog = api.get_changelog( repo_path=project_dir, bugtracker_url=bugtracker_url, rpm_format=rpm_format, ) return changelog
0.000899
def main(command, argument, argument2, paths_to_mutate, backup, runner, tests_dir, test_time_multiplier, test_time_base, swallow_output, use_coverage, dict_synonyms, cache_only, version, suspicious_policy, untested_policy, pre_mutation, post_mutation, use_patch_file): """return exit code, after performing an mutation test run. :return: the exit code from executing the mutation tests :rtype: int """ if version: print("mutmut version %s" % __version__) return 0 if use_coverage and use_patch_file: raise click.BadArgumentUsage("You can't combine --use-coverage and --use-patch") valid_commands = ['run', 'results', 'apply', 'show', 'junitxml'] if command not in valid_commands: raise click.BadArgumentUsage('%s is not a valid command, must be one of %s' % (command, ', '.join(valid_commands))) if command == 'results' and argument: raise click.BadArgumentUsage('The %s command takes no arguments' % command) dict_synonyms = [x.strip() for x in dict_synonyms.split(',')] if command in ('show', 'diff'): if not argument: print_result_cache() return 0 if argument == 'all': print_result_cache(show_diffs=True, dict_synonyms=dict_synonyms, print_only_filename=argument2) return 0 print(get_unified_diff(argument, dict_synonyms)) return 0 if use_coverage and not exists('.coverage'): raise FileNotFoundError('No .coverage file found. You must generate a coverage file to use this feature.') if command == 'results': print_result_cache() return 0 if command == 'junitxml': print_result_cache_junitxml(dict_synonyms, suspicious_policy, untested_policy) return 0 if command == 'apply': do_apply(argument, dict_synonyms, backup) return 0 paths_to_mutate = get_or_guess_paths_to_mutate(paths_to_mutate) if not isinstance(paths_to_mutate, (list, tuple)): paths_to_mutate = [x.strip() for x in paths_to_mutate.split(',')] if not paths_to_mutate: raise click.BadOptionUsage('--paths-to-mutate', 'You must specify a list of paths to mutate. Either as a command line argument, or by setting paths_to_mutate under the section [mutmut] in setup.cfg') tests_dirs = [] for p in tests_dir.split(':'): tests_dirs.extend(glob(p, recursive=True)) for p in paths_to_mutate: for pt in tests_dir.split(':'): tests_dirs.extend(glob(p + '/**/' + pt, recursive=True)) del tests_dir os.environ['PYTHONDONTWRITEBYTECODE'] = '1' # stop python from creating .pyc files using_testmon = '--testmon' in runner print(""" - Mutation testing starting - These are the steps: 1. A full test suite run will be made to make sure we can run the tests successfully and we know how long it takes (to detect infinite loops for example) 2. Mutants will be generated and checked Results are stored in .mutmut-cache. Print found mutants with `mutmut results`. Legend for output: 🎉 Killed mutants. The goal is for everything to end up in this bucket. ⏰ Timeout. Test suite took 10 times as long as the baseline so were killed. 🤔 Suspicious. Tests took a long time, but not long enough to be fatal. 🙁 Survived. This means your tests needs to be expanded. """) baseline_time_elapsed = time_test_suite( swallow_output=not swallow_output, test_command=runner, using_testmon=using_testmon ) if using_testmon: copy('.testmondata', '.testmondata-initial') # if we're running in a mode with externally whitelisted lines if use_coverage or use_patch_file: covered_lines_by_filename = {} if use_coverage: coverage_data = read_coverage_data() else: assert use_patch_file covered_lines_by_filename = read_patch_data(use_patch_file) coverage_data = None def _exclude(context): try: covered_lines = covered_lines_by_filename[context.filename] except KeyError: if coverage_data is not None: covered_lines = coverage_data.lines(os.path.abspath(context.filename)) covered_lines_by_filename[context.filename] = covered_lines else: covered_lines = None if covered_lines is None: return True current_line = context.current_line_index + 1 if current_line not in covered_lines: return True return False else: def _exclude(context): del context return False if command != 'run': raise click.BadArgumentUsage("Invalid command %s" % command) mutations_by_file = {} if argument is None: for path in paths_to_mutate: for filename in python_source_files(path, tests_dirs): update_line_numbers(filename) add_mutations_by_file(mutations_by_file, filename, _exclude, dict_synonyms) else: filename, mutation_id = filename_and_mutation_id_from_pk(int(argument)) mutations_by_file[filename] = [mutation_id] total = sum(len(mutations) for mutations in mutations_by_file.values()) print() print('2. Checking mutants') config = Config( swallow_output=not swallow_output, test_command=runner, exclude_callback=_exclude, baseline_time_elapsed=baseline_time_elapsed, backup=backup, dict_synonyms=dict_synonyms, total=total, using_testmon=using_testmon, cache_only=cache_only, tests_dirs=tests_dirs, hash_of_tests=hash_of_tests(tests_dirs), test_time_multiplier=test_time_multiplier, test_time_base=test_time_base, pre_mutation=pre_mutation, post_mutation=post_mutation, ) try: run_mutation_tests(config=config, mutations_by_file=mutations_by_file) except Exception as e: traceback.print_exc() return compute_exit_code(config, e) else: return compute_exit_code(config) finally: print()
0.002069
def live_scores(self, live_scores): """Store output of live scores to a CSV file""" headers = ['League', 'Home Team Name', 'Home Team Goals', 'Away Team Goals', 'Away Team Name'] result = [headers] result.extend([game['league'], game['homeTeamName'], game['goalsHomeTeam'], game['goalsAwayTeam'], game['awayTeamName']] for game in live_scores['games']) self.generate_output(result)
0.004115
def new_inner_member(self, name=None, params=None): """Create a CheckModulation object and add it to items :param name: CheckModulation name :type name: str :param params: parameters to init CheckModulation :type params: dict :return: None TODO: Remove this default mutable argument. Usually result in unexpected behavior """ if name is None: name = 'Generated_checkmodulation_%s' % uuid.uuid4() if params is None: params = {} params['checkmodulation_name'] = name checkmodulation = CheckModulation(params) self.add_item(checkmodulation)
0.004491
def command(func_or_args=None): """Decorator to tell Skal that the method/function is a command. """ def decorator(f): f.__args__ = args return f if type(func_or_args) == type(decorator): args = {} return decorator(func_or_args) args = func_or_args return decorator
0.003106
def data_manipulation_sh(network): """ Adds missing components to run calculations with SH scenarios. Parameters ---------- network : :class:`pypsa.Network Overall container of PyPSA """ from shapely.geometry import Point, LineString, MultiLineString from geoalchemy2.shape import from_shape, to_shape # add connection from Luebeck to Siems new_bus = str(network.buses.index.astype(np.int64).max() + 1) new_trafo = str(network.transformers.index.astype(np.int64).max() + 1) new_line = str(network.lines.index.astype(np.int64).max() + 1) network.add("Bus", new_bus, carrier='AC', v_nom=220, x=10.760835, y=53.909745) network.add("Transformer", new_trafo, bus0="25536", bus1=new_bus, x=1.29960, tap_ratio=1, s_nom=1600) network.add("Line", new_line, bus0="26387", bus1=new_bus, x=0.0001, s_nom=1600) network.lines.loc[new_line, 'cables'] = 3.0 # bus geom point_bus1 = Point(10.760835, 53.909745) network.buses.set_value(new_bus, 'geom', from_shape(point_bus1, 4326)) # line geom/topo network.lines.set_value(new_line, 'geom', from_shape(MultiLineString( [LineString([to_shape(network. buses.geom['26387']), point_bus1])]), 4326)) network.lines.set_value(new_line, 'topo', from_shape(LineString( [to_shape(network.buses.geom['26387']), point_bus1]), 4326)) # trafo geom/topo network.transformers.set_value(new_trafo, 'geom', from_shape(MultiLineString( [LineString( [to_shape(network .buses.geom['25536']), point_bus1])]), 4326)) network.transformers.set_value(new_trafo, 'topo', from_shape( LineString([to_shape(network.buses.geom['25536']), point_bus1]), 4326)) return
0.001494
def EnumerateFilesystemsFromClient(args): """List all local filesystems mounted on this system.""" del args # Unused. for fs_struct in client_utils_osx.GetFileSystems(): yield rdf_client_fs.Filesystem( device=fs_struct.f_mntfromname, mount_point=fs_struct.f_mntonname, type=fs_struct.f_fstypename) drive_re = re.compile("r?disk[0-9].*") for drive in os.listdir("/dev"): if not drive_re.match(drive): continue path = os.path.join("/dev", drive) try: img_inf = pytsk3.Img_Info(path) # This is a volume or a partition - we send back a TSK device. yield rdf_client_fs.Filesystem(device=path) vol_inf = pytsk3.Volume_Info(img_inf) for volume in vol_inf: if volume.flags == pytsk3.TSK_VS_PART_FLAG_ALLOC: offset = volume.start * vol_inf.info.block_size yield rdf_client_fs.Filesystem( device="{path}:{offset}".format(path=path, offset=offset), type="partition") except (IOError, RuntimeError): continue
0.014231
def _check_items(items): ''' Check: - that the list of items is iterable and finite. - that the list is not empty ''' num_items = 0 # Check that the list is iterable and finite try: num_items = len(items) except: raise TypeError("The item list ({}) is not a finite iterable (has no length)".format(items)) # Check that the list has items if num_items == 0: raise ValueError("The item list is empty.")
0.006383
def add_user(self, group, username): """ Add a user to the specified LDAP group. Args: group: Name of group to update username: Username of user to add Raises: ldap_tools.exceptions.InvalidResult: Results of the query were invalid. The actual exception raised inherits from InvalidResult. See #lookup_id for more info. """ try: self.lookup_id(group) except ldap_tools.exceptions.InvalidResult as err: # pragma: no cover raise err from None operation = {'memberUid': [(ldap3.MODIFY_ADD, [username])]} self.client.modify(self.__distinguished_name(group), operation)
0.002725
def release_node(self, node): """ release a single redis node """ # use the lua script to release the lock in a safe way try: node._release_script(keys=[self.resource], args=[self.lock_key]) except (redis.exceptions.ConnectionError, redis.exceptions.TimeoutError): pass
0.008798
def factorize(self): """ Factorize s.t. CUR = data Updated Values -------------- .C : updated values for C. .U : updated values for U. .R : updated values for R. """ [prow, pcol] = self.sample_probability() self._rid = self.sample(self._rrank, prow) self._cid = self.sample(self._crank, pcol) self._cmdinit() self.computeUCR()
0.004474
def delete_existing_policy(self, scaling_policy, server_group): """Given a scaling_policy and server_group, deletes the existing scaling_policy. Scaling policies need to be deleted instead of upserted for consistency. Args: scaling_policy (json): the scaling_policy json from Spinnaker that should be deleted server_group (str): the affected server_group """ self.log.info("Deleting policy %s on %s", scaling_policy['policyName'], server_group) delete_dict = { "application": self.app, "description": "Delete scaling policy", "job": [{ "policyName": scaling_policy['policyName'], "serverGroupName": server_group, "credentials": self.env, "region": self.region, "provider": "aws", "type": "deleteScalingPolicy", "user": "foremast-autoscaling-policy" }] } wait_for_task(json.dumps(delete_dict))
0.005634
def listing(self): "Return a list of filename entries currently in the archive" return ['.'.join([f,ext]) if ext else f for (f,ext) in self._files.keys()]
0.029412
def shape(self): """Returns the shape of the data.""" # TODO cache first = self.first().shape shape = self._rdd.map(lambda x: x.shape[0]).sum() return (shape,) + first[1:]
0.009479
def mass_2d(self, r, rho0, Ra, Rs): """ mass enclosed projected 2d sphere of radius r :param r: :param rho0: :param Ra: :param Rs: :return: """ Ra, Rs = self._sort_ra_rs(Ra, Rs) sigma0 = self.rho2sigma(rho0, Ra, Rs) m_2d = 2 * np.pi * sigma0 * Ra * Rs / (Rs - Ra) * (np.sqrt(Ra ** 2 + r ** 2) - Ra - np.sqrt(Rs ** 2 + r ** 2) + Rs) return m_2d
0.006834
def debye_temperature(self, volume): """ Calculates the debye temperature. Eq(6) in doi.org/10.1016/j.comphy.2003.12.001. Thanks to Joey. Eq(6) above is equivalent to Eq(3) in doi.org/10.1103/PhysRevB.37.790 which does not consider anharmonic effects. Eq(20) in the same paper and Eq(18) in doi.org/10.1016/j.commatsci.2009.12.006 both consider anharmonic contributions to the Debye temperature through the Gruneisen parameter at 0K (Gruneisen constant). The anharmonic contribution is toggled by setting the anharmonic_contribution to True or False in the QuasiharmonicDebyeApprox constructor. Args: volume (float): in Ang^3 Returns: float: debye temperature in K """ term1 = (2./3. * (1. + self.poisson) / (1. - 2. * self.poisson))**1.5 term2 = (1./3. * (1. + self.poisson) / (1. - self.poisson))**1.5 f = (3. / (2. * term1 + term2))**(1. / 3.) debye = 2.9772e-11 * (volume / self.natoms) ** (-1. / 6.) * f * \ np.sqrt(self.bulk_modulus/self.avg_mass) if self.anharmonic_contribution: gamma = self.gruneisen_parameter(0, self.ev_eos_fit.v0) # 0K equilibrium Gruneisen parameter return debye * (self.ev_eos_fit.v0 / volume) ** (gamma) else: return debye
0.003605
def list_all_currencies(cls, **kwargs): """List Currencies Return a list of Currencies This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.list_all_currencies(async=True) >>> result = thread.get() :param async bool :param int page: page number :param int size: page size :param str sort: page order :return: page[Currency] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return cls._list_all_currencies_with_http_info(**kwargs) else: (data) = cls._list_all_currencies_with_http_info(**kwargs) return data
0.002307
def files(self, absolute=False): """Returns an expanded list of all valid paths that were passed in.""" _paths = [] for arg in self.all: for path in _expand_path(arg): if os.path.exists(path): if absolute: _paths.append(os.path.abspath(path)) else: _paths.append(path) return _paths
0.004619
def revoke_token(self, token, token_type_hint, request, *args, **kwargs): """Revoke an access or refresh token. """ if token_type_hint: tok = self._tokengetter(**{token_type_hint: token}) else: tok = self._tokengetter(access_token=token) if not tok: tok = self._tokengetter(refresh_token=token) if tok: request.client_id = tok.client_id request.user = tok.user tok.delete() return True msg = 'Invalid token supplied.' log.debug(msg) request.error_message = msg return False
0.003091
def show_lbaas_l7rule(self, l7rule, l7policy, **_params): """Fetches information of a certain L7 policy's rule.""" return self.get(self.lbaas_l7rule_path % (l7policy, l7rule), params=_params)
0.008658
def add_pipers(self, pipers, *args, **kwargs): """ Adds a sequence of ``Pipers`` instances to the ``Dagger`` in the specified order. Takes optional arguments for ``Dagger.add_piper``. Arguments: - pipers(sequence of valid ``add_piper`` arguments) Sequence of ``Pipers`` or valid ``Dagger.add_piper`` arguments to be added to the ``Dagger`` in the left to right order. """ for piper in pipers: self.add_piper(piper, *args, **kwargs)
0.014311
def _flush_message_buffer(self): """ Loops through the transport message_buffer until there are no messages left in the queue. Each response is assigned to the Request object based on the message_id which are then available in self.outstanding_requests """ while True: message_bytes = self.transport.receive() # there were no messages receives, so break from the loop if message_bytes is None: break # check if the message is encrypted and decrypt if necessary if message_bytes[:4] == b"\xfdSMB": message = SMB2TransformHeader() message.unpack(message_bytes) message_bytes = self._decrypt(message) # now retrieve message(s) from response is_last = False session_id = None while not is_last: next_command = struct.unpack("<L", message_bytes[20:24])[0] header_length = \ next_command if next_command != 0 else len(message_bytes) header_bytes = message_bytes[:header_length] message = SMB2HeaderResponse() message.unpack(header_bytes) flags = message['flags'] if not flags.has_flag(Smb2Flags.SMB2_FLAGS_RELATED_OPERATIONS): session_id = message['session_id'].get_value() self._verify(message, session_id) message_id = message['message_id'].get_value() request = self.outstanding_requests.get(message_id, None) if not request: error_msg = "Received response with an unknown message " \ "ID: %d" % message_id raise smbprotocol.exceptions.SMBException(error_msg) # add the upper credit limit based on the credits granted by # the server credit_response = message['credit_response'].get_value() self.sequence_window['high'] += \ credit_response if credit_response > 0 else 1 request.response = message self.outstanding_requests[message_id] = request message_bytes = message_bytes[header_length:] is_last = next_command == 0
0.000838
async def get_capability_report(self): """ This method retrieves the Firmata capability report. Refer to http://firmata.org/wiki/Protocol#Capability_Query The command format is: {"method":"get_capability_report","params":["null"]} :returns: {"method": "capability_report_reply", "params": [RAW_CAPABILITY_REPORT]} """ value = await self.core.get_capability_report() await asyncio.sleep(.1) if value: reply = json.dumps({"method": "capability_report_reply", "params": value}) else: reply = json.dumps({"method": "capability_report_reply", "params": "None"}) await self.websocket.send(reply)
0.008523
def _generate_citation_dict(graph: BELGraph) -> Mapping[str, Mapping[Tuple[BaseEntity, BaseEntity], str]]: """Prepare a citation data dictionary from a graph. :return: A dictionary of dictionaries {citation type: {(source, target): citation reference} """ results = defaultdict(lambda: defaultdict(set)) for u, v, data in graph.edges(data=True): if CITATION not in data: continue results[data[CITATION][CITATION_TYPE]][u, v].add(data[CITATION][CITATION_REFERENCE].strip()) return dict(results)
0.007299
def to_short_time_string(self) -> str: """ Return the iso time string only """ hour = self.time.hour minute = self.time.minute return f"{hour:02}:{minute:02}"
0.010526
async def postback_send(msg: BaseMessage, platform: Platform) -> Response: """ Injects the POST body into the FSM as a Postback message. """ await platform.inject_message(msg) return json_response({ 'status': 'ok', })
0.003984
def _defrag_list(lst, defrag, missfrag): """Internal usage only. Part of the _defrag_logic""" p = lst[0] lastp = lst[-1] if p.frag > 0 or lastp.flags.MF: # first or last fragment missing missfrag.append(lst) return p = p.copy() if conf.padding_layer in p: del(p[conf.padding_layer].underlayer.payload) ip = p[IP] if ip.len is None or ip.ihl is None: clen = len(ip.payload) else: clen = ip.len - (ip.ihl << 2) txt = conf.raw_layer() for q in lst[1:]: if clen != q.frag << 3: # Wrong fragmentation offset if clen > q.frag << 3: warning("Fragment overlap (%i > %i) %r || %r || %r" % (clen, q.frag << 3, p, txt, q)) # noqa: E501 missfrag.append(lst) break if q[IP].len is None or q[IP].ihl is None: clen += len(q[IP].payload) else: clen += q[IP].len - (q[IP].ihl << 2) if conf.padding_layer in q: del(q[conf.padding_layer].underlayer.payload) txt.add_payload(q[IP].payload.copy()) if q.time > p.time: p.time = q.time else: ip.flags.MF = False del(ip.chksum) del(ip.len) p = p / txt p._defrag_pos = max(x._defrag_pos for x in lst) defrag.append(p)
0.000752
def search(self, pattern="*", raw=True, search_raw=True, output=False): """Search the database using unix glob-style matching (wildcards * and ?). Parameters ---------- pattern : str The wildcarded pattern to match when searching search_raw : bool If True, search the raw input, otherwise, the parsed input raw, output : bool See :meth:`get_range` Returns ------- Tuples as :meth:`get_range` """ tosearch = "source_raw" if search_raw else "source" if output: tosearch = "history." + tosearch self.writeout_cache() return self._run_sql("WHERE %s GLOB ?" % tosearch, (pattern,), raw=raw, output=output)
0.004673
def _get_current_context(self): """Returns the current ZipkinAttrs and generates new ones if needed. :returns: (report_root_timestamp, zipkin_attrs) :rtype: (bool, ZipkinAttrs) """ # This check is technically not necessary since only root spans will have # sample_rate, zipkin_attrs or a transport set. But it helps making the # code clearer by separating the logic for a root span from the one for a # child span. if self._is_local_root_span: # If sample_rate is set, we need to (re)generate a trace context. # If zipkin_attrs (trace context) were passed in as argument there are # 2 possibilities: # is_sampled = False --> we keep the same trace_id but re-roll the dice # for is_sampled. # is_sampled = True --> we don't want to stop sampling halfway through # a sampled trace, so we do nothing. # If no zipkin_attrs were passed in, we generate new ones and start a # new trace. if self.sample_rate is not None: # If this trace is not sampled, we re-roll the dice. if self.zipkin_attrs_override and \ not self.zipkin_attrs_override.is_sampled: # This will be the root span of the trace, so we should # set timestamp and duration. return True, create_attrs_for_span( sample_rate=self.sample_rate, trace_id=self.zipkin_attrs_override.trace_id, ) # If zipkin_attrs_override was not passed in, we simply generate # new zipkin_attrs to start a new trace. elif not self.zipkin_attrs_override: return True, create_attrs_for_span( sample_rate=self.sample_rate, use_128bit_trace_id=self.use_128bit_trace_id, ) if self.firehose_handler and not self.zipkin_attrs_override: # If it has gotten here, the only thing that is # causing a trace is the firehose. So we force a trace # with sample rate of 0 return True, create_attrs_for_span( sample_rate=0.0, use_128bit_trace_id=self.use_128bit_trace_id, ) # If we arrive here it means the sample_rate was not set while # zipkin_attrs_override was, so let's simply return that. return False, self.zipkin_attrs_override else: # Check if there's already a trace context in _context_stack. existing_zipkin_attrs = self.get_tracer().get_zipkin_attrs() # If there's an existing context, let's create new zipkin_attrs # with that context as parent. if existing_zipkin_attrs: return False, ZipkinAttrs( trace_id=existing_zipkin_attrs.trace_id, span_id=generate_random_64bit_string(), parent_span_id=existing_zipkin_attrs.span_id, flags=existing_zipkin_attrs.flags, is_sampled=existing_zipkin_attrs.is_sampled, ) return False, None
0.002646
def long_to_bytes(n, blocksize=0): """Convert an integer to a byte string. In Python 3.2+, use the native method instead:: >>> n.to_bytes(blocksize, 'big') For instance:: >>> n = 80 >>> n.to_bytes(2, 'big') b'\x00P' If the optional :data:`blocksize` is provided and greater than zero, the byte string is padded with binary zeros (on the front) so that the total length of the output is a multiple of blocksize. If :data:`blocksize` is zero or not provided, the byte string will be of minimal length. """ # after much testing, this algorithm was deemed to be the fastest s = b'' n = int(n) pack = struct.pack while n > 0: s = pack('>I', n & 0xffffffff) + s n = n >> 32 # strip off leading zeros for i in range(len(s)): if s[i] != b'\000'[0]: break else: # only happens when n == 0 s = b'\000' i = 0 s = s[i:] # add back some pad bytes. this could be done more efficiently w.r.t. the # de-padding being done above, but sigh... if blocksize > 0 and len(s) % blocksize: s = (blocksize - len(s) % blocksize) * b'\000' + s return s
0.00082