File size: 3,172 Bytes
dcf6a71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f42714
 
 
 
dcf6a71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
license: cc-by-4.0
dataset_info:
  features:
  - name: id
    dtype: string
  - name: Date
    dtype: string
  - name: Drone
    dtype: string
  - name: Timestamp_start
    dtype: string
  - name: Timestamp_end
    dtype: string
  - name: Frame
    dtype: string
  - name: Image
    dtype: image
  - name: Annotation_json
    dtype: string
  splits:
  - name: train
    num_bytes: 4720274306.0
    num_examples: 2000
  download_size: 4745590616
  dataset_size: 4720274306.0
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

Original dataset: https://zenodo.org/records/7426506

# ORD for the Sciences Hackathon - Vehicles Detection

[![launch - renku](https://renkulab.io/renku-badge.svg)](https://renkulab.io/v2/projects/hackathon-team-1/pneuma-vehicles-detection) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sdsc-ordes/ordfts-hackathon-vehicles-detection/blob/main/002_vehicles_detection.ipynb)
 [![GitHub](https://badgen.net/badge/icon/github?icon=github&label)](https://github.com/sdsc-ordes/ordfts-hackathon-vehicles-detection) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.12751861.svg)](https://doi.org/10.5281/zenodo.12751861) [![Dataset on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md.svg)](https://huggingface.co/datasets/katospiegel/ordfts-hackathon-pneuma-vehicles-segmentation)


> [!CAUTION]
> This project is an example of a hackathon project. The quality of the data produced has not been evaluated. Its goal is to provide an example on how a dataset can be update to Hugginface. 

This is an example of a hackathon project presented to `ORD for the sciences hackathon` using the openly available [pNeuma vision dataset](https://zenodo.org/records/7426506). 

- [Go here if you wanna know more about the hackathon](https://sdsc-hackathons.ch/)
- [EPFL pNEUMA project](https://open-traffic.epfl.ch)


## Description

The goal of this project is to create a training dataset derived from the publicly available pNeuma Vision dataset, which contains drone footage and coordinates of vehicles. By leveraging machine learning techniques, specifically the "Segment Anything" model by Meta, we will accurately segment and mask the pixels corresponding to each vehicle within the footage. The resulting dataset, stored in the efficient Parquet format, will be shared on Hugging Face as a new, open-access resource for the research community. Additionally, we will document our methodology in a detailed Jupyter notebook, which will be hosted in a public GitHub repository. Our work will be registered as a derived contribution in the pNeuma RDI Hub prototype, ensuring proper attribution and fostering further research and development.

![alt text](https://github.com/sdsc-ordes/ordfts-hackathon-vehicles-detection/raw/main/assets/summary.png)

Datasets created:

- [pneuma-vision-parquet](https://huggingface.co/datasets/katospiegel/pneuma-vision-parquet)
- [ordfts-hackathon-pneuma-vehicles-segmentation](https://huggingface.co/datasets/katospiegel/ordfts-hackathon-pneuma-vehicles-segmentation)