Commit
·
29c1346
1
Parent(s):
31dce0a
Upload dataset_infos.json with huggingface_hub
Browse files- dataset_infos.json +137 -0
dataset_infos.json
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"kapilchauhan--processed_bert_dataset_free_speech": {
|
2 |
+
"description": "This corpus contains preprocessed posts from the Reddit dataset.\nThe dataset consists of 3,848,330 posts with an average length of 270 words for content,\nand 28 words for the summary.\n\nFeatures includes strings: author, body, normalizedBody, content, summary, subreddit, subreddit_id.\nContent is used as document and summary is used as summary.",
|
3 |
+
"citation": "@inproceedings{volske-etal-2017-tl,\n title = {TL;DR: Mining {R}eddit to Learn Automatic Summarization},\n author = {V{\"o}lske, Michael and Potthast, Martin and Syed, Shahbaz and Stein, Benno},\n booktitle = {Proceedings of the Workshop on New Frontiers in Summarization},\n month = {sep},\n year = {2017},\n address = {Copenhagen, Denmark},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W17-4508},\n doi = {10.18653/v1/W17-4508},\n pages = {59--63},\n abstract = {Recent advances in automatic text summarization have used deep neural networks to generate high-quality abstractive summaries, but the performance of these models strongly depends on large amounts of suitable training data. We propose a new method for mining social media for author-provided summaries, taking advantage of the common practice of appending a {``}TL;DR{''} to long posts. A case study using a large Reddit crawl yields the Webis-TLDR-17 dataset, complementing existing corpora primarily from the news genre. Our technique is likely applicable to other social media sites and general web crawls.},\n}",
|
4 |
+
"homepage": "https://github.com/webis-de/webis-tldr-17-corpus",
|
5 |
+
"license": "",
|
6 |
+
"features": {
|
7 |
+
"author": {
|
8 |
+
"feature": {
|
9 |
+
"dtype": "string",
|
10 |
+
"id": null,
|
11 |
+
"_type": "Value"
|
12 |
+
},
|
13 |
+
"length": -1,
|
14 |
+
"id": null,
|
15 |
+
"_type": "Sequence"
|
16 |
+
},
|
17 |
+
"body": {
|
18 |
+
"feature": {
|
19 |
+
"dtype": "string",
|
20 |
+
"id": null,
|
21 |
+
"_type": "Value"
|
22 |
+
},
|
23 |
+
"length": -1,
|
24 |
+
"id": null,
|
25 |
+
"_type": "Sequence"
|
26 |
+
},
|
27 |
+
"normalizedBody": {
|
28 |
+
"feature": {
|
29 |
+
"dtype": "string",
|
30 |
+
"id": null,
|
31 |
+
"_type": "Value"
|
32 |
+
},
|
33 |
+
"length": -1,
|
34 |
+
"id": null,
|
35 |
+
"_type": "Sequence"
|
36 |
+
},
|
37 |
+
"subreddit": {
|
38 |
+
"feature": {
|
39 |
+
"dtype": "string",
|
40 |
+
"id": null,
|
41 |
+
"_type": "Value"
|
42 |
+
},
|
43 |
+
"length": -1,
|
44 |
+
"id": null,
|
45 |
+
"_type": "Sequence"
|
46 |
+
},
|
47 |
+
"subreddit_id": {
|
48 |
+
"feature": {
|
49 |
+
"dtype": "string",
|
50 |
+
"id": null,
|
51 |
+
"_type": "Value"
|
52 |
+
},
|
53 |
+
"length": -1,
|
54 |
+
"id": null,
|
55 |
+
"_type": "Sequence"
|
56 |
+
},
|
57 |
+
"id": {
|
58 |
+
"feature": {
|
59 |
+
"dtype": "string",
|
60 |
+
"id": null,
|
61 |
+
"_type": "Value"
|
62 |
+
},
|
63 |
+
"length": -1,
|
64 |
+
"id": null,
|
65 |
+
"_type": "Sequence"
|
66 |
+
},
|
67 |
+
"summary": {
|
68 |
+
"feature": {
|
69 |
+
"dtype": "string",
|
70 |
+
"id": null,
|
71 |
+
"_type": "Value"
|
72 |
+
},
|
73 |
+
"length": -1,
|
74 |
+
"id": null,
|
75 |
+
"_type": "Sequence"
|
76 |
+
},
|
77 |
+
"input_ids": {
|
78 |
+
"feature": {
|
79 |
+
"dtype": "int32",
|
80 |
+
"id": null,
|
81 |
+
"_type": "Value"
|
82 |
+
},
|
83 |
+
"length": -1,
|
84 |
+
"id": null,
|
85 |
+
"_type": "Sequence"
|
86 |
+
},
|
87 |
+
"token_type_ids": {
|
88 |
+
"feature": {
|
89 |
+
"dtype": "int8",
|
90 |
+
"id": null,
|
91 |
+
"_type": "Value"
|
92 |
+
},
|
93 |
+
"length": -1,
|
94 |
+
"id": null,
|
95 |
+
"_type": "Sequence"
|
96 |
+
},
|
97 |
+
"attention_mask": {
|
98 |
+
"feature": {
|
99 |
+
"dtype": "int8",
|
100 |
+
"id": null,
|
101 |
+
"_type": "Value"
|
102 |
+
},
|
103 |
+
"length": -1,
|
104 |
+
"id": null,
|
105 |
+
"_type": "Sequence"
|
106 |
+
},
|
107 |
+
"special_tokens_mask": {
|
108 |
+
"feature": {
|
109 |
+
"dtype": "int8",
|
110 |
+
"id": null,
|
111 |
+
"_type": "Value"
|
112 |
+
},
|
113 |
+
"length": -1,
|
114 |
+
"id": null,
|
115 |
+
"_type": "Sequence"
|
116 |
+
}
|
117 |
+
},
|
118 |
+
"post_processed": null,
|
119 |
+
"supervised_keys": null,
|
120 |
+
"task_templates": null,
|
121 |
+
"builder_name": null,
|
122 |
+
"config_name": null,
|
123 |
+
"version": null,
|
124 |
+
"splits": {
|
125 |
+
"train": {
|
126 |
+
"name": "train",
|
127 |
+
"num_bytes": 1570623293.0,
|
128 |
+
"num_examples": 78093,
|
129 |
+
"dataset_name": "processed_bert_dataset_free_speech"
|
130 |
+
}
|
131 |
+
},
|
132 |
+
"download_checksums": null,
|
133 |
+
"download_size": 253310712,
|
134 |
+
"post_processing_size": null,
|
135 |
+
"dataset_size": 1570623293.0,
|
136 |
+
"size_in_bytes": 1823934005.0
|
137 |
+
}}
|