extends VehicleBody3D class_name Cart var acceleration : float = 350 @onready var max_velocity = acceleration / mass * 40 @onready var ai_controller: AIController3D = $AIController3D @export var destination: Node3D @export var destination2: Node3D @export var item: Item var requested_acceleration: float var initial_position: Vector3 var times_restarted: int var item_collected: int func get_normalized_velocity(): return linear_velocity.normalized() * (linear_velocity.length() / max_velocity) func _ready(): initial_position = position ai_controller.init(self) func reset(): item_collected = 0 times_restarted += 1 position = Vector3(0, 0, randf_range(-8, 8)) rotation = Vector3.ZERO reset_item() linear_velocity = Vector3.ZERO angular_velocity = Vector3.ZERO pass func reset_item(): var item_position : Vector3 = Vector3(0, 20, randf_range(-0.0, 0.0)) item.position = item_position item.rotation = Vector3.ZERO item.linear_velocity = Vector3.ZERO item.angular_velocity = Vector3.ZERO item.apply_central_force(Vector3(0.0, 0.0, randf_range(-70.0, 70.0))) item.force_update_transform() item.sleeping = false item.set_category(randi_range(0, 1)) func _physics_process(delta): reset_if_needed() update_reward() if (ai_controller.heuristic != "human"): engine_force = (requested_acceleration) * acceleration else: engine_force = (int(Input.is_key_pressed(KEY_UP)) - int(Input.is_key_pressed(KEY_DOWN))) * acceleration restart_if_outside_boundaries() pass func restart_if_outside_boundaries(): if (position.y < -2 or abs(position.z) > 10): ai_controller.reward -= 1.0 ai_controller.needs_reset = true ai_controller.done = true func reset_if_needed(): if ai_controller.needs_reset: reset() ai_controller.reset() ## The reward function uses a simple form of curriculum learning, where initially ## a shaped reward tells the agent to move toward the item horizontally until it collects it, ## and after some episodes, only the sparse reward for collecting and delivering the item rewards. func update_reward(): if times_restarted < 50: if not item_collected: ai_controller.reward -= 0.00001 * (item.position.z - position.z) else: if item.item_category == 0: ai_controller.reward -= 0.00001 * (destination.position.z - position.z) else: ai_controller.reward -= 0.00001 * (destination2.position.z - position.z) if item_collected: if (position.distance_to(destination.position) < destination.scale.z): if item.item_category == 0: ai_controller.reward += 1.0 else: ai_controller.reward -= 1.0 reset_item() elif (position.distance_to(destination2.position) < destination2.scale.z): if item.item_category == 1: ai_controller.reward += 1.0 else: ai_controller.reward -= 1.0 reset_item() func _on_item_area_body_entered(body): ai_controller.reward += 1.0 item_collected = 1 func _on_item_area_body_exited(body): item_collected = 0 ## If the item falls to the ground, gives a negative reward and resets the item func _on_item_body_entered(body: PhysicsBody3D): if body.get_collision_layer_value(3): ai_controller.reward -= 0.05 reset_item()