Update ucf_crime.py
Browse files- ucf_crime.py +71 -26
ucf_crime.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import datasets
|
2 |
|
3 |
|
@@ -57,21 +58,21 @@ _DATA_URLS = {
|
|
57 |
}
|
58 |
_SPLIT_PATH = "UCF_Crimes-Train-Test-Split/"
|
59 |
_SPLIT_FILES = {
|
60 |
-
"
|
61 |
-
"train":
|
62 |
-
_SPLIT_PATH + f"Action_Recognition_splits/train_{i:03}.txt"
|
63 |
for i in range(1, 5)
|
64 |
-
|
65 |
-
"test":
|
66 |
-
_SPLIT_PATH + f"Action_Recognition_splits/test_{i:03}.txt"
|
67 |
for i in range(1, 5)
|
68 |
-
|
69 |
},
|
70 |
"anomaly_detection": {
|
71 |
"train": [_SPLIT_PATH + "Anomaly_Detection_splits/Anomaly_Train.txt"],
|
72 |
"test": [_SPLIT_PATH + "Anomaly_Detection_splits/Anomaly_Test.txt"],
|
73 |
},
|
74 |
-
"
|
75 |
"train": [_SPLIT_PATH + "Temporal_Anomaly_Annotation_for_Testing_Videos.txt"],
|
76 |
},
|
77 |
}
|
@@ -100,8 +101,7 @@ class UCFCrime(datasets.GeneratorBasedBuilder):
|
|
100 |
BUILDER_CONFIGS = [
|
101 |
UCFCrimeConfig(name="all"),
|
102 |
UCFCrimeConfig(name="anomaly"),
|
103 |
-
UCFCrimeConfig(name="
|
104 |
-
UCFCrimeConfig(name="event"),
|
105 |
UCFCrimeConfig(name="test"), # For speed-loading
|
106 |
]
|
107 |
|
@@ -116,21 +116,66 @@ class UCFCrime(datasets.GeneratorBasedBuilder):
|
|
116 |
|
117 |
def _split_generators(self, dl_manager):
|
118 |
"""Return SplitGenerators."""
|
119 |
-
|
120 |
-
if self.config.name
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
def _generate_examples(self,
|
132 |
"""Yields example."""
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import datasets
|
3 |
|
4 |
|
|
|
58 |
}
|
59 |
_SPLIT_PATH = "UCF_Crimes-Train-Test-Split/"
|
60 |
_SPLIT_FILES = {
|
61 |
+
"event_recognition": {
|
62 |
+
"train": {
|
63 |
+
f"event{i}": _SPLIT_PATH + f"Action_Recognition_splits/train_{i:03}.txt"
|
64 |
for i in range(1, 5)
|
65 |
+
},
|
66 |
+
"test": {
|
67 |
+
f"event{i}": _SPLIT_PATH + f"Action_Recognition_splits/test_{i:03}.txt"
|
68 |
for i in range(1, 5)
|
69 |
+
},
|
70 |
},
|
71 |
"anomaly_detection": {
|
72 |
"train": [_SPLIT_PATH + "Anomaly_Detection_splits/Anomaly_Train.txt"],
|
73 |
"test": [_SPLIT_PATH + "Anomaly_Detection_splits/Anomaly_Test.txt"],
|
74 |
},
|
75 |
+
"temporal_anomaly": {
|
76 |
"train": [_SPLIT_PATH + "Temporal_Anomaly_Annotation_for_Testing_Videos.txt"],
|
77 |
},
|
78 |
}
|
|
|
101 |
BUILDER_CONFIGS = [
|
102 |
UCFCrimeConfig(name="all"),
|
103 |
UCFCrimeConfig(name="anomaly"),
|
104 |
+
*[UCFCrimeConfig(name=f"event{i}") for i in range(1, 5)],
|
|
|
105 |
UCFCrimeConfig(name="test"), # For speed-loading
|
106 |
]
|
107 |
|
|
|
116 |
|
117 |
def _split_generators(self, dl_manager):
|
118 |
"""Return SplitGenerators."""
|
119 |
+
data_urls = self.config.data_urls
|
120 |
+
if self.config.name != "test":
|
121 |
+
data_urls.pop("test")
|
122 |
+
if "event" in self.config.name:
|
123 |
+
data_urls.pop("normal-train-part1")
|
124 |
+
data_urls.pop("normal-train-part2")
|
125 |
+
data_urls.pop("normal-test")
|
126 |
+
split_url = _SPLIT_FILES["event_recognition"]
|
127 |
+
elif "anomaly" == self.config.name:
|
128 |
+
data_urls.pop("normal-event-recognition")
|
129 |
+
split_url = _SPLIT_FILES["anomaly_detection"]
|
130 |
+
data_url = data_urls
|
131 |
+
else:
|
132 |
+
data_url = data_urls["test"]
|
133 |
+
|
134 |
+
path = dl_manager.download(data_url)
|
135 |
+
if split_url is not None:
|
136 |
+
split_path = dl_manager.download(split_url)
|
137 |
+
if self.config.name in ("all", "test"):
|
138 |
+
return [
|
139 |
+
datasets.SplitGenerator(
|
140 |
+
name=datasets.Split.TRAIN,
|
141 |
+
# These kwargs will be passed to _generate_examples
|
142 |
+
gen_kwargs={
|
143 |
+
"extracted_path": dl_manager.extract(path),
|
144 |
+
"split_path": None,
|
145 |
+
},
|
146 |
+
),
|
147 |
+
]
|
148 |
+
elif self.config.name in ("anomaly", *[f"event{i}" for i in range(1, 5)]):
|
149 |
+
return [
|
150 |
+
datasets.SplitGenerator(
|
151 |
+
name=datasets.Split.TRAIN,
|
152 |
+
# These kwargs will be passed to _generate_examples
|
153 |
+
gen_kwargs={
|
154 |
+
"extracted_path": dl_manager.extract(path),
|
155 |
+
"split_path": split_path["train"][self.config.name],
|
156 |
+
},
|
157 |
+
),
|
158 |
+
datasets.SplitGenerator(
|
159 |
+
name=datasets.Split.TEST,
|
160 |
+
# These kwargs will be passed to _generate_examples
|
161 |
+
gen_kwargs={
|
162 |
+
"extracted_path": dl_manager.extract(path),
|
163 |
+
"split_path": split_path["test"][self.config.name],
|
164 |
+
},
|
165 |
+
),
|
166 |
+
]
|
167 |
|
168 |
+
def _generate_examples(self, extracted_path: str, split_path: dict):
|
169 |
"""Yields example."""
|
170 |
+
idx = 0
|
171 |
+
split_files = []
|
172 |
+
with open(split_path, "r") as f:
|
173 |
+
for line in f.readlines():
|
174 |
+
split_files.append(line.strip().split("/")[-1])
|
175 |
+
for root, _, files in os.walk(extracted_path, topdown=False):
|
176 |
+
relative_dir_path = root.replace(os.path.abspath(extracted_path) + os.sep, "")
|
177 |
+
for name in files:
|
178 |
+
relative_file_path = os.path.join(relative_dir_path, name)
|
179 |
+
if relative_file_path.endswith(".mp4") and name in split_files:
|
180 |
+
yield idx, {"video_path": relative_file_path}
|
181 |
+
idx += 1
|