File size: 2,196 Bytes
2cad162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
license: mit
language:
- en
tags:
- reranker
- retrieval
- runs
- trec
- information-retrieval
- rank1
- benchmark
---
# rank1-run-files: Pre-computed Run Files for Reranking Evaluation
📄 [Paper](https://arxiv.org/abs/2502.18418) | 🚀 [GitHub Repository](https://github.com/orionw/rank1)
This dataset contains pre-computed run files used by the rank1 family of models on various retrieval benchmarks. These files are what were used for top-k rereranking and also include the re-annotated DL19 qrels. These files are needed to download to reproduce our results.
## Benchmarks Included
The dataset includes run files for the following benchmarks:
- BEIR (multiple datasets including NFCorpus, SciFact, etc.)
- NevIR
- TREC-DL 2019
- BRIGHT
## Associated Models and Resources
| Resource | Description |
|:---------|:------------|
| [rank1-7b](https://huggingface.co/jhu-clsp/rank1-7b) | Base rank1 model (7B parameters) |
| [rank1-14b](https://huggingface.co/jhu-clsp/rank1-14b) | Larger rank1 variant (14B parameters) |
| [rank1-32b](https://huggingface.co/jhu-clsp/rank1-32b) | Largest rank1 variant (32B parameters) |
| [rank1-mistral-2501-24b](https://huggingface.co/jhu-clsp/rank1-mistral-2501-24b) | Mistral-based rank1 variant (24B parameters) |
| [rank1-llama3-8b](https://huggingface.co/jhu-clsp/rank1-llama3-8b) | Llama 3.1-based rank1 variant (8B parameters) |
| [rank1-r1-msmarco](https://huggingface.co/datasets/jhu-clsp/rank1-r1-msmarco) | All R1 output examples from MS MARCO |
| [rank1-training-data](https://huggingface.co/datasets/jhu-clsp/rank1-training-data) | Training data used for rank1 models |
## Citation
If you use these run files in your research, please cite:
```bibtex
@misc{weller2025rank1testtimecomputereranking,
title={Rank1: Test-Time Compute for Reranking in Information Retrieval},
author={Orion Weller and Kathryn Ricci and Eugene Yang and Andrew Yates and Dawn Lawrie and Benjamin Van Durme},
year={2025},
eprint={2502.18418},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2502.18418},
}
```
## License
[MIT License](https://github.com/orionw/rank1/blob/main/LICENSE) |