Commit
·
388259c
1
Parent(s):
11e49b7
Update parquet files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- README.md +0 -104
- binding_affinity.py +0 -147
- bindingdb.ipynb +0 -1258
- bindingdb_single.ipynb +0 -1036
- biolip.ipynb +0 -586
- biolip.py +0 -41
- biolip.slurm +0 -10
- combine_dbs.ipynb +0 -1763
- combine_predictions.py +0 -10
- data/.gitattributes +0 -1
- data/all_ic50.parquet +0 -3
- data/all_nokras.parquet +0 -3
- data/bindingdb.parquet +0 -3
- data/biolip.parquet +0 -3
- data/biolip_complex.parquet +0 -3
- data/cov.parquet +0 -3
- data/dcoid.parquet +0 -3
- data/dcoid_predict.parquet +0 -3
- data/dcoid_rf2.parquet +0 -3
- data/deepcoy_dekois_predict.parquet +0 -3
- data/deepcoy_dude_predict.parquet +0 -3
- data/dude/_common_metadata +0 -3
- data/dude/_metadata +0 -3
- data/dude/part.0.parquet +0 -3
- data/dude/part.1.parquet +0 -3
- data/dude/part.10.parquet +0 -3
- data/dude/part.100.parquet +0 -3
- data/dude/part.101.parquet +0 -3
- data/dude/part.102.parquet +0 -3
- data/dude/part.103.parquet +0 -3
- data/dude/part.104.parquet +0 -3
- data/dude/part.105.parquet +0 -3
- data/dude/part.106.parquet +0 -3
- data/dude/part.107.parquet +0 -3
- data/dude/part.108.parquet +0 -3
- data/dude/part.109.parquet +0 -3
- data/dude/part.11.parquet +0 -3
- data/dude/part.110.parquet +0 -3
- data/dude/part.111.parquet +0 -3
- data/dude/part.112.parquet +0 -3
- data/dude/part.113.parquet +0 -3
- data/dude/part.114.parquet +0 -3
- data/dude/part.115.parquet +0 -3
- data/dude/part.116.parquet +0 -3
- data/dude/part.117.parquet +0 -3
- data/dude/part.118.parquet +0 -3
- data/dude/part.119.parquet +0 -3
- data/dude/part.12.parquet +0 -3
- data/dude/part.120.parquet +0 -3
.gitattributes
CHANGED
@@ -839,3 +839,5 @@ data/dcoid_decoys.parquet filter=lfs diff=lfs merge=lfs -text
|
|
839 |
data/moad_complex.parquet filter=lfs diff=lfs merge=lfs -text
|
840 |
data/pdbbind_complex.parquet filter=lfs diff=lfs merge=lfs -text
|
841 |
data/all_maccs.parquet filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
839 |
data/moad_complex.parquet filter=lfs diff=lfs merge=lfs -text
|
840 |
data/pdbbind_complex.parquet filter=lfs diff=lfs merge=lfs -text
|
841 |
data/all_maccs.parquet filter=lfs diff=lfs merge=lfs -text
|
842 |
+
default/binding_affinity-train.parquet filter=lfs diff=lfs merge=lfs -text
|
843 |
+
default/binding_affinity-no_kras.parquet filter=lfs diff=lfs merge=lfs -text
|
README.md
DELETED
@@ -1,104 +0,0 @@
|
|
1 |
-
---
|
2 |
-
tags:
|
3 |
-
- molecules
|
4 |
-
- chemistry
|
5 |
-
- SMILES
|
6 |
-
---
|
7 |
-
|
8 |
-
## How to use the data sets
|
9 |
-
|
10 |
-
This dataset contains 1.9M unique pairs of protein sequences and ligand SMILES with experimentally determined
|
11 |
-
binding affinities. It can be used for fine-tuning a language model.
|
12 |
-
|
13 |
-
The data comes from the following sources:
|
14 |
-
- BindingDB
|
15 |
-
- PDBbind-cn
|
16 |
-
- BioLIP
|
17 |
-
- BindingMOAD
|
18 |
-
|
19 |
-
### Use the already preprocessed data
|
20 |
-
|
21 |
-
Load a test/train split using
|
22 |
-
|
23 |
-
```
|
24 |
-
from datasets import load_dataset
|
25 |
-
train = load_dataset("jglaser/binding_affinity",split='train[:90%]')
|
26 |
-
validation = load_dataset("jglaser/binding_affinity",split='train[90%:]')
|
27 |
-
```
|
28 |
-
|
29 |
-
Optionally, datasets with certain protein sequences removed are available.
|
30 |
-
These can be used to test the predictive power for specific proteins even when
|
31 |
-
these are not part of the training data.
|
32 |
-
|
33 |
-
- `train_no_kras` (no KRAS proteins)
|
34 |
-
|
35 |
-
**Loading the data manually**
|
36 |
-
|
37 |
-
The file `data/all.parquet` contains the preprocessed data. To extract it,
|
38 |
-
you need download and install [git LFS support] https://git-lfs.github.com/].
|
39 |
-
|
40 |
-
### Pre-process yourself
|
41 |
-
|
42 |
-
To manually perform the preprocessing, download the data sets from
|
43 |
-
|
44 |
-
1. BindingDB
|
45 |
-
|
46 |
-
In `bindingdb`, download the database as tab separated values
|
47 |
-
<https://bindingdb.org> > Download > BindingDB_All_2021m4.tsv.zip
|
48 |
-
and extract the zip archive into `bindingdb/data`
|
49 |
-
|
50 |
-
Run the steps in `bindingdb.ipynb`
|
51 |
-
|
52 |
-
2. PDBBind-cn
|
53 |
-
|
54 |
-
Register for an account at <https://www.pdbbind.org.cn/>, confirm the validation
|
55 |
-
email, then login and download
|
56 |
-
|
57 |
-
- the Index files (1)
|
58 |
-
- the general protein-ligand complexes (2)
|
59 |
-
- the refined protein-ligand complexes (3)
|
60 |
-
|
61 |
-
Extract those files in `pdbbind/data`
|
62 |
-
|
63 |
-
Run the script `pdbbind.py` in a compute job on an MPI-enabled cluster
|
64 |
-
(e.g., `mpirun -n 64 pdbbind.py`).
|
65 |
-
|
66 |
-
Perform the steps in the notebook `pdbbind.ipynb`
|
67 |
-
|
68 |
-
3. BindingMOAD
|
69 |
-
|
70 |
-
Go to <https://bindingmoad.org> and download the files `every.csv`
|
71 |
-
(All of Binding MOAD, Binding Data) and the non-redundant biounits
|
72 |
-
(`nr_bind.zip`). Place and extract those files into `binding_moad`.
|
73 |
-
|
74 |
-
Run the script `moad.py` in a compute job on an MPI-enabled cluster
|
75 |
-
(e.g., `mpirun -n 64 moad.py`).
|
76 |
-
|
77 |
-
Perform the steps in the notebook `moad.ipynb`
|
78 |
-
|
79 |
-
4. BioLIP
|
80 |
-
|
81 |
-
Download from <https://zhanglab.ccmb.med.umich.edu/BioLiP/> the files
|
82 |
-
- receptor1.tar.bz2 (Receptor1, Non-redudant set)
|
83 |
-
- ligand_2013-03-6.tar.bz2 (Ligands)
|
84 |
-
- BioLiP.tar.bz2 (Annotations)
|
85 |
-
and extract them in `biolip/data`.
|
86 |
-
|
87 |
-
The following steps are **optional**, they **do not** result in additional binding affinity data.
|
88 |
-
|
89 |
-
Download the script
|
90 |
-
- download_all_sets.pl
|
91 |
-
from the Weekly update subpage.
|
92 |
-
|
93 |
-
Update the 2013 database to its current state
|
94 |
-
|
95 |
-
`perl download_all-sets.pl`
|
96 |
-
|
97 |
-
Run the script `biolip.py` in a compute job on an MPI-enabled cluster
|
98 |
-
(e.g., `mpirun -n 64 biolip.py`).
|
99 |
-
|
100 |
-
Perform the steps in the notebook `biolip.ipynb`
|
101 |
-
|
102 |
-
5. Final concatenation and filtering
|
103 |
-
|
104 |
-
Run the steps in the notebook `combine_dbs.ipynb`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
binding_affinity.py
DELETED
@@ -1,147 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""TODO: A dataset of protein sequences, ligand SMILES and binding affinities."""
|
16 |
-
|
17 |
-
import huggingface_hub
|
18 |
-
import os
|
19 |
-
import pyarrow.parquet as pq
|
20 |
-
import datasets
|
21 |
-
|
22 |
-
|
23 |
-
# TODO: Add BibTeX citation
|
24 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
25 |
-
_CITATION = """\
|
26 |
-
@InProceedings{huggingface:dataset,
|
27 |
-
title = {jglaser/binding_affinity},
|
28 |
-
author={Jens Glaser, ORNL
|
29 |
-
},
|
30 |
-
year={2021}
|
31 |
-
}
|
32 |
-
"""
|
33 |
-
|
34 |
-
# TODO: Add description of the dataset here
|
35 |
-
# You can copy an official description
|
36 |
-
_DESCRIPTION = """\
|
37 |
-
A dataset to fine-tune language models on protein-ligand binding affinity prediction.
|
38 |
-
"""
|
39 |
-
|
40 |
-
# TODO: Add a link to an official homepage for the dataset here
|
41 |
-
_HOMEPAGE = ""
|
42 |
-
|
43 |
-
# TODO: Add the licence for the dataset here if you can find it
|
44 |
-
_LICENSE = "BSD two-clause"
|
45 |
-
|
46 |
-
# TODO: Add link to the official dataset URLs here
|
47 |
-
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
48 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
49 |
-
_URL = "https://huggingface.co/datasets/jglaser/binding_affinity/resolve/main/"
|
50 |
-
_data_dir = "data/"
|
51 |
-
_file_names = {'default': _data_dir+'all.parquet',
|
52 |
-
'no_kras': _data_dir+'all_nokras.parquet',
|
53 |
-
'cov': _data_dir+'cov.parquet'}
|
54 |
-
|
55 |
-
_URLs = {name: _URL+_file_names[name] for name in _file_names}
|
56 |
-
|
57 |
-
|
58 |
-
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
59 |
-
class BindingAffinity(datasets.ArrowBasedBuilder):
|
60 |
-
"""List of protein sequences, ligand SMILES and binding affinities."""
|
61 |
-
|
62 |
-
VERSION = datasets.Version("1.4.1")
|
63 |
-
|
64 |
-
def _info(self):
|
65 |
-
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
66 |
-
#if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
67 |
-
# features = datasets.Features(
|
68 |
-
# {
|
69 |
-
# "sentence": datasets.Value("string"),
|
70 |
-
# "option1": datasets.Value("string"),
|
71 |
-
# "answer": datasets.Value("string")
|
72 |
-
# # These are the features of your dataset like images, labels ...
|
73 |
-
# }
|
74 |
-
# )
|
75 |
-
#else: # This is an example to show how to have different features for "first_domain" and "second_domain"
|
76 |
-
features = datasets.Features(
|
77 |
-
{
|
78 |
-
"seq": datasets.Value("string"),
|
79 |
-
"smiles": datasets.Value("string"),
|
80 |
-
"affinity_uM": datasets.Value("float"),
|
81 |
-
"neg_log10_affinity_M": datasets.Value("float"),
|
82 |
-
"smiles_can": datasets.Value("string"),
|
83 |
-
"affinity": datasets.Value("float"),
|
84 |
-
# These are the features of your dataset like images, labels ...
|
85 |
-
}
|
86 |
-
)
|
87 |
-
return datasets.DatasetInfo(
|
88 |
-
# This is the description that will appear on the datasets page.
|
89 |
-
description=_DESCRIPTION,
|
90 |
-
# This defines the different columns of the dataset and their types
|
91 |
-
features=features, # Here we define them above because they are different between the two configurations
|
92 |
-
# If there's a common (input, target) tuple from the features,
|
93 |
-
# specify them here. They'll be used if as_supervised=True in
|
94 |
-
# builder.as_dataset.
|
95 |
-
supervised_keys=None,
|
96 |
-
# Homepage of the dataset for documentation
|
97 |
-
homepage=_HOMEPAGE,
|
98 |
-
# License for the dataset if available
|
99 |
-
license=_LICENSE,
|
100 |
-
# Citation for the dataset
|
101 |
-
citation=_CITATION,
|
102 |
-
)
|
103 |
-
|
104 |
-
def _split_generators(self, dl_manager):
|
105 |
-
"""Returns SplitGenerators."""
|
106 |
-
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
107 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
108 |
-
|
109 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
110 |
-
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
111 |
-
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
112 |
-
files = dl_manager.download_and_extract(_URLs)
|
113 |
-
|
114 |
-
return [
|
115 |
-
datasets.SplitGenerator(
|
116 |
-
# These kwargs will be passed to _generate_examples
|
117 |
-
name=datasets.Split.TRAIN,
|
118 |
-
gen_kwargs={
|
119 |
-
'filepath': files["default"],
|
120 |
-
},
|
121 |
-
),
|
122 |
-
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name='no_kras',
|
125 |
-
# These kwargs will be passed to _generate_examples
|
126 |
-
gen_kwargs={
|
127 |
-
"filepath": files["no_kras"],
|
128 |
-
},
|
129 |
-
),
|
130 |
-
|
131 |
-
datasets.SplitGenerator(
|
132 |
-
name='covalent',
|
133 |
-
# These kwargs will be passed to _generate_examples
|
134 |
-
gen_kwargs={
|
135 |
-
"filepath": files["cov"],
|
136 |
-
},
|
137 |
-
),
|
138 |
-
]
|
139 |
-
|
140 |
-
def _generate_tables(
|
141 |
-
self, filepath
|
142 |
-
):
|
143 |
-
from pyarrow import fs
|
144 |
-
local = fs.LocalFileSystem()
|
145 |
-
|
146 |
-
for i, f in enumerate([filepath]):
|
147 |
-
yield i, pq.read_table(f,filesystem=local)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bindingdb.ipynb
DELETED
@@ -1,1258 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 2,
|
6 |
-
"id": "ecce356e-321b-441e-8a5d-a20bf72f8691",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"import dask.dataframe as dd"
|
11 |
-
]
|
12 |
-
},
|
13 |
-
{
|
14 |
-
"cell_type": "code",
|
15 |
-
"execution_count": 3,
|
16 |
-
"id": "89cbcd82-4ca2-4aba-95b7-e58c0ceed770",
|
17 |
-
"metadata": {},
|
18 |
-
"outputs": [],
|
19 |
-
"source": [
|
20 |
-
"cols = ['Ligand SMILES', 'IC50 (nM)','KEGG ID of Ligand','Ki (nM)', 'Kd (nM)','EC50 (nM)']"
|
21 |
-
]
|
22 |
-
},
|
23 |
-
{
|
24 |
-
"cell_type": "code",
|
25 |
-
"execution_count": 3,
|
26 |
-
"id": "a870d8d7-374b-4474-b9ee-305bbf9f17a9",
|
27 |
-
"metadata": {},
|
28 |
-
"outputs": [],
|
29 |
-
"source": [
|
30 |
-
"import tqdm.notebook"
|
31 |
-
]
|
32 |
-
},
|
33 |
-
{
|
34 |
-
"cell_type": "code",
|
35 |
-
"execution_count": 5,
|
36 |
-
"id": "e9f76b32-e8f0-47ee-b592-a91a88f4f93e",
|
37 |
-
"metadata": {},
|
38 |
-
"outputs": [
|
39 |
-
{
|
40 |
-
"data": {
|
41 |
-
"application/vnd.jupyter.widget-view+json": {
|
42 |
-
"model_id": "c988bc89781242ec8c8b7f8fd0b1c233",
|
43 |
-
"version_major": 2,
|
44 |
-
"version_minor": 0
|
45 |
-
},
|
46 |
-
"text/plain": [
|
47 |
-
" 0%| | 0/13 [00:00<?, ?it/s]"
|
48 |
-
]
|
49 |
-
},
|
50 |
-
"metadata": {},
|
51 |
-
"output_type": "display_data"
|
52 |
-
}
|
53 |
-
],
|
54 |
-
"source": [
|
55 |
-
"for i in tqdm.notebook.tqdm(range(0,13)):\n",
|
56 |
-
" mycol = 'BindingDB Target Chain Sequence.{}'.format(i)\n",
|
57 |
-
" allseq = ['BindingDB Target Chain Sequence']+['BindingDB Target Chain Sequence.{}'.format(j) for j in range(1,13)]\n",
|
58 |
-
" dtypes = {'BindingDB Target Chain Sequence.{}'.format(i): 'object' for i in range(1,13)}\n",
|
59 |
-
" dtypes.update({'BindingDB Target Chain Sequence': 'object',\n",
|
60 |
-
" 'IC50 (nM)': 'object',\n",
|
61 |
-
" 'KEGG ID of Ligand': 'object',\n",
|
62 |
-
" 'Ki (nM)': 'object',\n",
|
63 |
-
" 'Kd (nM)': 'object',\n",
|
64 |
-
" 'EC50 (nM)': 'object',\n",
|
65 |
-
" 'koff (s-1)': 'object'})\n",
|
66 |
-
" ddf = dd.read_csv('bindingdb/data/BindingDB_All.tsv',sep='\\t',error_bad_lines=False,blocksize=16*1024*1024,\n",
|
67 |
-
" usecols=cols+allseq,\n",
|
68 |
-
" dtype=dtypes)\n",
|
69 |
-
" ddf = ddf.reset_index()\n",
|
70 |
-
" ddf = ddf.rename(columns={'BindingDB Target Chain Sequence.{}'.format(j): 'seq_{}'.format(j) for j in range(1,13)})\n",
|
71 |
-
" ddf = ddf.rename(columns={'BindingDB Target Chain Sequence': 'seq_0'})\n",
|
72 |
-
" ddf = ddf.drop(columns={'seq_{}'.format(j) for j in range(0,13) if i != j})\n",
|
73 |
-
" ddf[cols+['seq_{}'.format(i)]].to_parquet('bindingdb/parquet_data/target{}'.format(i),schema='infer')"
|
74 |
-
]
|
75 |
-
},
|
76 |
-
{
|
77 |
-
"cell_type": "code",
|
78 |
-
"execution_count": 15,
|
79 |
-
"id": "be79bbcf-0622-4d1e-8f08-a723a4167d8b",
|
80 |
-
"metadata": {},
|
81 |
-
"outputs": [],
|
82 |
-
"source": [
|
83 |
-
"ddfs = []\n",
|
84 |
-
"for i in range(0,13):\n",
|
85 |
-
" ddf = dd.read_parquet('bindingdb/parquet_data/target{}'.format(i))\n",
|
86 |
-
" ddf = ddf.rename(columns={'seq_{}'.format(i): 'seq'})\n",
|
87 |
-
" ddfs.append(ddf)"
|
88 |
-
]
|
89 |
-
},
|
90 |
-
{
|
91 |
-
"cell_type": "code",
|
92 |
-
"execution_count": 16,
|
93 |
-
"id": "35ca09cb-6264-4526-b504-0d29236a03c1",
|
94 |
-
"metadata": {},
|
95 |
-
"outputs": [],
|
96 |
-
"source": [
|
97 |
-
"ddf = dd.concat(ddfs)"
|
98 |
-
]
|
99 |
-
},
|
100 |
-
{
|
101 |
-
"cell_type": "code",
|
102 |
-
"execution_count": 17,
|
103 |
-
"id": "ba518a9a-0d15-47be-977b-e2dfe2511529",
|
104 |
-
"metadata": {},
|
105 |
-
"outputs": [
|
106 |
-
{
|
107 |
-
"data": {
|
108 |
-
"text/html": [
|
109 |
-
"<div>\n",
|
110 |
-
"<style scoped>\n",
|
111 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
112 |
-
" vertical-align: middle;\n",
|
113 |
-
" }\n",
|
114 |
-
"\n",
|
115 |
-
" .dataframe tbody tr th {\n",
|
116 |
-
" vertical-align: top;\n",
|
117 |
-
" }\n",
|
118 |
-
"\n",
|
119 |
-
" .dataframe thead th {\n",
|
120 |
-
" text-align: right;\n",
|
121 |
-
" }\n",
|
122 |
-
"</style>\n",
|
123 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
124 |
-
" <thead>\n",
|
125 |
-
" <tr style=\"text-align: right;\">\n",
|
126 |
-
" <th></th>\n",
|
127 |
-
" <th>Ligand SMILES</th>\n",
|
128 |
-
" <th>IC50 (nM)</th>\n",
|
129 |
-
" <th>KEGG ID of Ligand</th>\n",
|
130 |
-
" <th>Ki (nM)</th>\n",
|
131 |
-
" <th>Kd (nM)</th>\n",
|
132 |
-
" <th>EC50 (nM)</th>\n",
|
133 |
-
" <th>seq</th>\n",
|
134 |
-
" </tr>\n",
|
135 |
-
" </thead>\n",
|
136 |
-
" <tbody>\n",
|
137 |
-
" <tr>\n",
|
138 |
-
" <th>0</th>\n",
|
139 |
-
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
140 |
-
" <td>None</td>\n",
|
141 |
-
" <td>None</td>\n",
|
142 |
-
" <td>0.24</td>\n",
|
143 |
-
" <td>None</td>\n",
|
144 |
-
" <td>None</td>\n",
|
145 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
146 |
-
" </tr>\n",
|
147 |
-
" <tr>\n",
|
148 |
-
" <th>1</th>\n",
|
149 |
-
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
|
150 |
-
" <td>None</td>\n",
|
151 |
-
" <td>None</td>\n",
|
152 |
-
" <td>0.25</td>\n",
|
153 |
-
" <td>None</td>\n",
|
154 |
-
" <td>None</td>\n",
|
155 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
156 |
-
" </tr>\n",
|
157 |
-
" <tr>\n",
|
158 |
-
" <th>2</th>\n",
|
159 |
-
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
|
160 |
-
" <td>None</td>\n",
|
161 |
-
" <td>None</td>\n",
|
162 |
-
" <td>0.41</td>\n",
|
163 |
-
" <td>None</td>\n",
|
164 |
-
" <td>None</td>\n",
|
165 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
166 |
-
" </tr>\n",
|
167 |
-
" <tr>\n",
|
168 |
-
" <th>3</th>\n",
|
169 |
-
" <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
|
170 |
-
" <td>None</td>\n",
|
171 |
-
" <td>None</td>\n",
|
172 |
-
" <td>0.8</td>\n",
|
173 |
-
" <td>None</td>\n",
|
174 |
-
" <td>None</td>\n",
|
175 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
176 |
-
" </tr>\n",
|
177 |
-
" <tr>\n",
|
178 |
-
" <th>4</th>\n",
|
179 |
-
" <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
|
180 |
-
" <td>None</td>\n",
|
181 |
-
" <td>None</td>\n",
|
182 |
-
" <td>0.99</td>\n",
|
183 |
-
" <td>None</td>\n",
|
184 |
-
" <td>None</td>\n",
|
185 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
186 |
-
" </tr>\n",
|
187 |
-
" </tbody>\n",
|
188 |
-
"</table>\n",
|
189 |
-
"</div>"
|
190 |
-
],
|
191 |
-
"text/plain": [
|
192 |
-
" Ligand SMILES IC50 (nM) \\\n",
|
193 |
-
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n",
|
194 |
-
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n",
|
195 |
-
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n",
|
196 |
-
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n",
|
197 |
-
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n",
|
198 |
-
"\n",
|
199 |
-
" KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n",
|
200 |
-
"0 None 0.24 None None \n",
|
201 |
-
"1 None 0.25 None None \n",
|
202 |
-
"2 None 0.41 None None \n",
|
203 |
-
"3 None 0.8 None None \n",
|
204 |
-
"4 None 0.99 None None \n",
|
205 |
-
"\n",
|
206 |
-
" seq \n",
|
207 |
-
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
208 |
-
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
209 |
-
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
210 |
-
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
211 |
-
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... "
|
212 |
-
]
|
213 |
-
},
|
214 |
-
"execution_count": 17,
|
215 |
-
"metadata": {},
|
216 |
-
"output_type": "execute_result"
|
217 |
-
}
|
218 |
-
],
|
219 |
-
"source": [
|
220 |
-
"ddf.head()"
|
221 |
-
]
|
222 |
-
},
|
223 |
-
{
|
224 |
-
"cell_type": "code",
|
225 |
-
"execution_count": 9,
|
226 |
-
"id": "f504d7aa-dfc1-4346-a136-8814c4b5d979",
|
227 |
-
"metadata": {},
|
228 |
-
"outputs": [],
|
229 |
-
"source": [
|
230 |
-
"ddf.repartition(partition_size='25MB').to_parquet('bindingdb/parquet_data/all_targets',schema='infer')"
|
231 |
-
]
|
232 |
-
},
|
233 |
-
{
|
234 |
-
"cell_type": "code",
|
235 |
-
"execution_count": 4,
|
236 |
-
"id": "d7eafa69-4606-4b34-ae8f-8c6462dcb004",
|
237 |
-
"metadata": {},
|
238 |
-
"outputs": [],
|
239 |
-
"source": [
|
240 |
-
"ddf = dd.read_parquet('../binding_affinity/bindingdb/parquet_data/all_targets')"
|
241 |
-
]
|
242 |
-
},
|
243 |
-
{
|
244 |
-
"cell_type": "code",
|
245 |
-
"execution_count": 5,
|
246 |
-
"id": "b151868a-0cd6-405e-8401-f79918fb0b07",
|
247 |
-
"metadata": {},
|
248 |
-
"outputs": [
|
249 |
-
{
|
250 |
-
"data": {
|
251 |
-
"text/html": [
|
252 |
-
"<div><strong>Dask DataFrame Structure:</strong></div>\n",
|
253 |
-
"<div>\n",
|
254 |
-
"<style scoped>\n",
|
255 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
256 |
-
" vertical-align: middle;\n",
|
257 |
-
" }\n",
|
258 |
-
"\n",
|
259 |
-
" .dataframe tbody tr th {\n",
|
260 |
-
" vertical-align: top;\n",
|
261 |
-
" }\n",
|
262 |
-
"\n",
|
263 |
-
" .dataframe thead th {\n",
|
264 |
-
" text-align: right;\n",
|
265 |
-
" }\n",
|
266 |
-
"</style>\n",
|
267 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
268 |
-
" <thead>\n",
|
269 |
-
" <tr style=\"text-align: right;\">\n",
|
270 |
-
" <th></th>\n",
|
271 |
-
" <th>Ligand SMILES</th>\n",
|
272 |
-
" <th>IC50 (nM)</th>\n",
|
273 |
-
" <th>KEGG ID of Ligand</th>\n",
|
274 |
-
" <th>Ki (nM)</th>\n",
|
275 |
-
" <th>Kd (nM)</th>\n",
|
276 |
-
" <th>EC50 (nM)</th>\n",
|
277 |
-
" <th>seq</th>\n",
|
278 |
-
" </tr>\n",
|
279 |
-
" <tr>\n",
|
280 |
-
" <th>npartitions=483</th>\n",
|
281 |
-
" <th></th>\n",
|
282 |
-
" <th></th>\n",
|
283 |
-
" <th></th>\n",
|
284 |
-
" <th></th>\n",
|
285 |
-
" <th></th>\n",
|
286 |
-
" <th></th>\n",
|
287 |
-
" <th></th>\n",
|
288 |
-
" </tr>\n",
|
289 |
-
" </thead>\n",
|
290 |
-
" <tbody>\n",
|
291 |
-
" <tr>\n",
|
292 |
-
" <th></th>\n",
|
293 |
-
" <td>object</td>\n",
|
294 |
-
" <td>object</td>\n",
|
295 |
-
" <td>object</td>\n",
|
296 |
-
" <td>object</td>\n",
|
297 |
-
" <td>object</td>\n",
|
298 |
-
" <td>object</td>\n",
|
299 |
-
" <td>object</td>\n",
|
300 |
-
" </tr>\n",
|
301 |
-
" <tr>\n",
|
302 |
-
" <th></th>\n",
|
303 |
-
" <td>...</td>\n",
|
304 |
-
" <td>...</td>\n",
|
305 |
-
" <td>...</td>\n",
|
306 |
-
" <td>...</td>\n",
|
307 |
-
" <td>...</td>\n",
|
308 |
-
" <td>...</td>\n",
|
309 |
-
" <td>...</td>\n",
|
310 |
-
" </tr>\n",
|
311 |
-
" <tr>\n",
|
312 |
-
" <th>...</th>\n",
|
313 |
-
" <td>...</td>\n",
|
314 |
-
" <td>...</td>\n",
|
315 |
-
" <td>...</td>\n",
|
316 |
-
" <td>...</td>\n",
|
317 |
-
" <td>...</td>\n",
|
318 |
-
" <td>...</td>\n",
|
319 |
-
" <td>...</td>\n",
|
320 |
-
" </tr>\n",
|
321 |
-
" <tr>\n",
|
322 |
-
" <th></th>\n",
|
323 |
-
" <td>...</td>\n",
|
324 |
-
" <td>...</td>\n",
|
325 |
-
" <td>...</td>\n",
|
326 |
-
" <td>...</td>\n",
|
327 |
-
" <td>...</td>\n",
|
328 |
-
" <td>...</td>\n",
|
329 |
-
" <td>...</td>\n",
|
330 |
-
" </tr>\n",
|
331 |
-
" <tr>\n",
|
332 |
-
" <th></th>\n",
|
333 |
-
" <td>...</td>\n",
|
334 |
-
" <td>...</td>\n",
|
335 |
-
" <td>...</td>\n",
|
336 |
-
" <td>...</td>\n",
|
337 |
-
" <td>...</td>\n",
|
338 |
-
" <td>...</td>\n",
|
339 |
-
" <td>...</td>\n",
|
340 |
-
" </tr>\n",
|
341 |
-
" </tbody>\n",
|
342 |
-
"</table>\n",
|
343 |
-
"</div>\n",
|
344 |
-
"<div>Dask Name: read-parquet, 483 tasks</div>"
|
345 |
-
],
|
346 |
-
"text/plain": [
|
347 |
-
"Dask DataFrame Structure:\n",
|
348 |
-
" Ligand SMILES IC50 (nM) KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) seq\n",
|
349 |
-
"npartitions=483 \n",
|
350 |
-
" object object object object object object object\n",
|
351 |
-
" ... ... ... ... ... ... ...\n",
|
352 |
-
"... ... ... ... ... ... ... ...\n",
|
353 |
-
" ... ... ... ... ... ... ...\n",
|
354 |
-
" ... ... ... ... ... ... ...\n",
|
355 |
-
"Dask Name: read-parquet, 483 tasks"
|
356 |
-
]
|
357 |
-
},
|
358 |
-
"execution_count": 5,
|
359 |
-
"metadata": {},
|
360 |
-
"output_type": "execute_result"
|
361 |
-
}
|
362 |
-
],
|
363 |
-
"source": [
|
364 |
-
"ddf"
|
365 |
-
]
|
366 |
-
},
|
367 |
-
{
|
368 |
-
"cell_type": "code",
|
369 |
-
"execution_count": 6,
|
370 |
-
"id": "c00102b8-f4be-4ebd-8d30-7a2c7fc2d05e",
|
371 |
-
"metadata": {},
|
372 |
-
"outputs": [],
|
373 |
-
"source": [
|
374 |
-
"ddf_nonnull = ddf[~ddf.seq.isnull()].copy()"
|
375 |
-
]
|
376 |
-
},
|
377 |
-
{
|
378 |
-
"cell_type": "code",
|
379 |
-
"execution_count": 8,
|
380 |
-
"id": "c5337e06-1e45-4180-90ed-49ac9ecdd24a",
|
381 |
-
"metadata": {},
|
382 |
-
"outputs": [
|
383 |
-
{
|
384 |
-
"data": {
|
385 |
-
"text/html": [
|
386 |
-
"<div>\n",
|
387 |
-
"<style scoped>\n",
|
388 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
389 |
-
" vertical-align: middle;\n",
|
390 |
-
" }\n",
|
391 |
-
"\n",
|
392 |
-
" .dataframe tbody tr th {\n",
|
393 |
-
" vertical-align: top;\n",
|
394 |
-
" }\n",
|
395 |
-
"\n",
|
396 |
-
" .dataframe thead th {\n",
|
397 |
-
" text-align: right;\n",
|
398 |
-
" }\n",
|
399 |
-
"</style>\n",
|
400 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
401 |
-
" <thead>\n",
|
402 |
-
" <tr style=\"text-align: right;\">\n",
|
403 |
-
" <th></th>\n",
|
404 |
-
" <th>Ligand SMILES</th>\n",
|
405 |
-
" <th>IC50 (nM)</th>\n",
|
406 |
-
" <th>KEGG ID of Ligand</th>\n",
|
407 |
-
" <th>Ki (nM)</th>\n",
|
408 |
-
" <th>Kd (nM)</th>\n",
|
409 |
-
" <th>EC50 (nM)</th>\n",
|
410 |
-
" <th>seq</th>\n",
|
411 |
-
" </tr>\n",
|
412 |
-
" </thead>\n",
|
413 |
-
" <tbody>\n",
|
414 |
-
" <tr>\n",
|
415 |
-
" <th>0</th>\n",
|
416 |
-
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
417 |
-
" <td>None</td>\n",
|
418 |
-
" <td>None</td>\n",
|
419 |
-
" <td>0.24</td>\n",
|
420 |
-
" <td>None</td>\n",
|
421 |
-
" <td>None</td>\n",
|
422 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
423 |
-
" </tr>\n",
|
424 |
-
" <tr>\n",
|
425 |
-
" <th>1</th>\n",
|
426 |
-
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
|
427 |
-
" <td>None</td>\n",
|
428 |
-
" <td>None</td>\n",
|
429 |
-
" <td>0.25</td>\n",
|
430 |
-
" <td>None</td>\n",
|
431 |
-
" <td>None</td>\n",
|
432 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
433 |
-
" </tr>\n",
|
434 |
-
" <tr>\n",
|
435 |
-
" <th>2</th>\n",
|
436 |
-
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
|
437 |
-
" <td>None</td>\n",
|
438 |
-
" <td>None</td>\n",
|
439 |
-
" <td>0.41</td>\n",
|
440 |
-
" <td>None</td>\n",
|
441 |
-
" <td>None</td>\n",
|
442 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
443 |
-
" </tr>\n",
|
444 |
-
" <tr>\n",
|
445 |
-
" <th>3</th>\n",
|
446 |
-
" <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
|
447 |
-
" <td>None</td>\n",
|
448 |
-
" <td>None</td>\n",
|
449 |
-
" <td>0.8</td>\n",
|
450 |
-
" <td>None</td>\n",
|
451 |
-
" <td>None</td>\n",
|
452 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
453 |
-
" </tr>\n",
|
454 |
-
" <tr>\n",
|
455 |
-
" <th>4</th>\n",
|
456 |
-
" <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
|
457 |
-
" <td>None</td>\n",
|
458 |
-
" <td>None</td>\n",
|
459 |
-
" <td>0.99</td>\n",
|
460 |
-
" <td>None</td>\n",
|
461 |
-
" <td>None</td>\n",
|
462 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
463 |
-
" </tr>\n",
|
464 |
-
" </tbody>\n",
|
465 |
-
"</table>\n",
|
466 |
-
"</div>"
|
467 |
-
],
|
468 |
-
"text/plain": [
|
469 |
-
" Ligand SMILES IC50 (nM) \\\n",
|
470 |
-
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n",
|
471 |
-
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n",
|
472 |
-
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n",
|
473 |
-
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n",
|
474 |
-
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n",
|
475 |
-
"\n",
|
476 |
-
" KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n",
|
477 |
-
"0 None 0.24 None None \n",
|
478 |
-
"1 None 0.25 None None \n",
|
479 |
-
"2 None 0.41 None None \n",
|
480 |
-
"3 None 0.8 None None \n",
|
481 |
-
"4 None 0.99 None None \n",
|
482 |
-
"\n",
|
483 |
-
" seq \n",
|
484 |
-
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
485 |
-
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
486 |
-
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
487 |
-
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
488 |
-
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... "
|
489 |
-
]
|
490 |
-
},
|
491 |
-
"execution_count": 8,
|
492 |
-
"metadata": {},
|
493 |
-
"output_type": "execute_result"
|
494 |
-
}
|
495 |
-
],
|
496 |
-
"source": [
|
497 |
-
"ddf_nonnull.head()"
|
498 |
-
]
|
499 |
-
},
|
500 |
-
{
|
501 |
-
"cell_type": "code",
|
502 |
-
"execution_count": 17,
|
503 |
-
"id": "7b423365-4989-4325-a5a5-845d852d52e9",
|
504 |
-
"metadata": {},
|
505 |
-
"outputs": [
|
506 |
-
{
|
507 |
-
"data": {
|
508 |
-
"text/plain": [
|
509 |
-
"2512985"
|
510 |
-
]
|
511 |
-
},
|
512 |
-
"execution_count": 17,
|
513 |
-
"metadata": {},
|
514 |
-
"output_type": "execute_result"
|
515 |
-
}
|
516 |
-
],
|
517 |
-
"source": [
|
518 |
-
"len(ddf_nonnull)"
|
519 |
-
]
|
520 |
-
},
|
521 |
-
{
|
522 |
-
"cell_type": "code",
|
523 |
-
"execution_count": 11,
|
524 |
-
"id": "872edb84-3459-43d9-8e0e-e2a6b5d281eb",
|
525 |
-
"metadata": {},
|
526 |
-
"outputs": [],
|
527 |
-
"source": [
|
528 |
-
"from pint import UnitRegistry\n",
|
529 |
-
"import numpy as np\n",
|
530 |
-
"import re\n",
|
531 |
-
"ureg = UnitRegistry()\n",
|
532 |
-
"\n",
|
533 |
-
"def to_uM(affinities):\n",
|
534 |
-
" ic50, Ki, Kd, ec50 = affinities\n",
|
535 |
-
"\n",
|
536 |
-
" vals = []\n",
|
537 |
-
" \n",
|
538 |
-
" try:\n",
|
539 |
-
" ic50 = ureg(str(ic50)+'nM').m_as(ureg.uM)\n",
|
540 |
-
" vals.append(ic50)\n",
|
541 |
-
" except:\n",
|
542 |
-
" pass\n",
|
543 |
-
"\n",
|
544 |
-
" try:\n",
|
545 |
-
" Ki = ureg(str(Ki)+'nM').m_as(ureg.uM)\n",
|
546 |
-
" vals.append(Ki)\n",
|
547 |
-
" except:\n",
|
548 |
-
" pass\n",
|
549 |
-
"\n",
|
550 |
-
" try:\n",
|
551 |
-
" Kd = ureg(str(Kd)+'nM').m_as(ureg.uM)\n",
|
552 |
-
" vals.append(Kd)\n",
|
553 |
-
" except:\n",
|
554 |
-
" pass\n",
|
555 |
-
"\n",
|
556 |
-
" try:\n",
|
557 |
-
" ec50 = ureg(str(ec50)+'nM').m_as(ureg.uM)\n",
|
558 |
-
" vals.append(ec50)\n",
|
559 |
-
" except:\n",
|
560 |
-
" pass\n",
|
561 |
-
"\n",
|
562 |
-
" if len(vals) > 0:\n",
|
563 |
-
" vals = np.array(vals)\n",
|
564 |
-
" return np.mean(vals[~np.isnan(vals)])\n",
|
565 |
-
" \n",
|
566 |
-
" return None"
|
567 |
-
]
|
568 |
-
},
|
569 |
-
{
|
570 |
-
"cell_type": "code",
|
571 |
-
"execution_count": 12,
|
572 |
-
"id": "b3cff13c-19b2-4413-a84b-d99062f516a7",
|
573 |
-
"metadata": {},
|
574 |
-
"outputs": [],
|
575 |
-
"source": [
|
576 |
-
"df_nonnull = ddf_nonnull.compute()"
|
577 |
-
]
|
578 |
-
},
|
579 |
-
{
|
580 |
-
"cell_type": "code",
|
581 |
-
"execution_count": 13,
|
582 |
-
"id": "ca9795de-e821-4dc3-a7bf-70ade9e4c7f0",
|
583 |
-
"metadata": {},
|
584 |
-
"outputs": [
|
585 |
-
{
|
586 |
-
"name": "stdout",
|
587 |
-
"output_type": "stream",
|
588 |
-
"text": [
|
589 |
-
"INFO: Pandarallel will run on 32 workers.\n",
|
590 |
-
"INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n"
|
591 |
-
]
|
592 |
-
}
|
593 |
-
],
|
594 |
-
"source": [
|
595 |
-
"from pandarallel import pandarallel\n",
|
596 |
-
"pandarallel.initialize()\n"
|
597 |
-
]
|
598 |
-
},
|
599 |
-
{
|
600 |
-
"cell_type": "code",
|
601 |
-
"execution_count": 14,
|
602 |
-
"id": "4356a3e2-fede-48e7-a486-343661fe0a0a",
|
603 |
-
"metadata": {},
|
604 |
-
"outputs": [],
|
605 |
-
"source": [
|
606 |
-
"df_affinity = df_nonnull.copy()\n",
|
607 |
-
"df_affinity['affinity_uM'] = df_affinity[['IC50 (nM)', 'Ki (nM)', 'Kd (nM)','EC50 (nM)']].parallel_apply(to_uM,axis=1)"
|
608 |
-
]
|
609 |
-
},
|
610 |
-
{
|
611 |
-
"cell_type": "code",
|
612 |
-
"execution_count": 15,
|
613 |
-
"id": "e91c3af8-84a5-42a2-9e25-49cb2f320b0b",
|
614 |
-
"metadata": {},
|
615 |
-
"outputs": [],
|
616 |
-
"source": [
|
617 |
-
"df_affinity[~df_affinity['affinity_uM'].isnull()].to_parquet('data/bindingdb.parquet')"
|
618 |
-
]
|
619 |
-
},
|
620 |
-
{
|
621 |
-
"cell_type": "code",
|
622 |
-
"execution_count": 1,
|
623 |
-
"id": "f3a9173e-d574-4314-9cea-f8c0a66766c0",
|
624 |
-
"metadata": {},
|
625 |
-
"outputs": [],
|
626 |
-
"source": [
|
627 |
-
"import pandas as pd\n",
|
628 |
-
"df_affinity = pd.read_parquet('data/bindingdb.parquet')"
|
629 |
-
]
|
630 |
-
},
|
631 |
-
{
|
632 |
-
"cell_type": "code",
|
633 |
-
"execution_count": 2,
|
634 |
-
"id": "f602fdbe-7083-436c-9eac-9d97fbc8be67",
|
635 |
-
"metadata": {},
|
636 |
-
"outputs": [
|
637 |
-
{
|
638 |
-
"data": {
|
639 |
-
"text/plain": [
|
640 |
-
"2510716"
|
641 |
-
]
|
642 |
-
},
|
643 |
-
"execution_count": 2,
|
644 |
-
"metadata": {},
|
645 |
-
"output_type": "execute_result"
|
646 |
-
}
|
647 |
-
],
|
648 |
-
"source": [
|
649 |
-
"len(df_affinity)"
|
650 |
-
]
|
651 |
-
},
|
652 |
-
{
|
653 |
-
"cell_type": "code",
|
654 |
-
"execution_count": 3,
|
655 |
-
"id": "27194288-cf3e-4c30-ad55-3b0998fdf939",
|
656 |
-
"metadata": {},
|
657 |
-
"outputs": [
|
658 |
-
{
|
659 |
-
"data": {
|
660 |
-
"text/html": [
|
661 |
-
"<div>\n",
|
662 |
-
"<style scoped>\n",
|
663 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
664 |
-
" vertical-align: middle;\n",
|
665 |
-
" }\n",
|
666 |
-
"\n",
|
667 |
-
" .dataframe tbody tr th {\n",
|
668 |
-
" vertical-align: top;\n",
|
669 |
-
" }\n",
|
670 |
-
"\n",
|
671 |
-
" .dataframe thead th {\n",
|
672 |
-
" text-align: right;\n",
|
673 |
-
" }\n",
|
674 |
-
"</style>\n",
|
675 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
676 |
-
" <thead>\n",
|
677 |
-
" <tr style=\"text-align: right;\">\n",
|
678 |
-
" <th></th>\n",
|
679 |
-
" <th>Ligand SMILES</th>\n",
|
680 |
-
" <th>IC50 (nM)</th>\n",
|
681 |
-
" <th>KEGG ID of Ligand</th>\n",
|
682 |
-
" <th>Ki (nM)</th>\n",
|
683 |
-
" <th>Kd (nM)</th>\n",
|
684 |
-
" <th>EC50 (nM)</th>\n",
|
685 |
-
" <th>seq</th>\n",
|
686 |
-
" <th>affinity_uM</th>\n",
|
687 |
-
" </tr>\n",
|
688 |
-
" </thead>\n",
|
689 |
-
" <tbody>\n",
|
690 |
-
" <tr>\n",
|
691 |
-
" <th>0</th>\n",
|
692 |
-
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
693 |
-
" <td>None</td>\n",
|
694 |
-
" <td>None</td>\n",
|
695 |
-
" <td>0.24</td>\n",
|
696 |
-
" <td>None</td>\n",
|
697 |
-
" <td>None</td>\n",
|
698 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
699 |
-
" <td>0.00024</td>\n",
|
700 |
-
" </tr>\n",
|
701 |
-
" <tr>\n",
|
702 |
-
" <th>1</th>\n",
|
703 |
-
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
|
704 |
-
" <td>None</td>\n",
|
705 |
-
" <td>None</td>\n",
|
706 |
-
" <td>0.25</td>\n",
|
707 |
-
" <td>None</td>\n",
|
708 |
-
" <td>None</td>\n",
|
709 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
710 |
-
" <td>0.00025</td>\n",
|
711 |
-
" </tr>\n",
|
712 |
-
" <tr>\n",
|
713 |
-
" <th>2</th>\n",
|
714 |
-
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
|
715 |
-
" <td>None</td>\n",
|
716 |
-
" <td>None</td>\n",
|
717 |
-
" <td>0.41</td>\n",
|
718 |
-
" <td>None</td>\n",
|
719 |
-
" <td>None</td>\n",
|
720 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
721 |
-
" <td>0.00041</td>\n",
|
722 |
-
" </tr>\n",
|
723 |
-
" <tr>\n",
|
724 |
-
" <th>3</th>\n",
|
725 |
-
" <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
|
726 |
-
" <td>None</td>\n",
|
727 |
-
" <td>None</td>\n",
|
728 |
-
" <td>0.8</td>\n",
|
729 |
-
" <td>None</td>\n",
|
730 |
-
" <td>None</td>\n",
|
731 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
732 |
-
" <td>0.00080</td>\n",
|
733 |
-
" </tr>\n",
|
734 |
-
" <tr>\n",
|
735 |
-
" <th>4</th>\n",
|
736 |
-
" <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
|
737 |
-
" <td>None</td>\n",
|
738 |
-
" <td>None</td>\n",
|
739 |
-
" <td>0.99</td>\n",
|
740 |
-
" <td>None</td>\n",
|
741 |
-
" <td>None</td>\n",
|
742 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
743 |
-
" <td>0.00099</td>\n",
|
744 |
-
" </tr>\n",
|
745 |
-
" </tbody>\n",
|
746 |
-
"</table>\n",
|
747 |
-
"</div>"
|
748 |
-
],
|
749 |
-
"text/plain": [
|
750 |
-
" Ligand SMILES IC50 (nM) \\\n",
|
751 |
-
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n",
|
752 |
-
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n",
|
753 |
-
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n",
|
754 |
-
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n",
|
755 |
-
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n",
|
756 |
-
"\n",
|
757 |
-
" KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n",
|
758 |
-
"0 None 0.24 None None \n",
|
759 |
-
"1 None 0.25 None None \n",
|
760 |
-
"2 None 0.41 None None \n",
|
761 |
-
"3 None 0.8 None None \n",
|
762 |
-
"4 None 0.99 None None \n",
|
763 |
-
"\n",
|
764 |
-
" seq affinity_uM \n",
|
765 |
-
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00024 \n",
|
766 |
-
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00025 \n",
|
767 |
-
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00041 \n",
|
768 |
-
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00080 \n",
|
769 |
-
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00099 "
|
770 |
-
]
|
771 |
-
},
|
772 |
-
"execution_count": 3,
|
773 |
-
"metadata": {},
|
774 |
-
"output_type": "execute_result"
|
775 |
-
}
|
776 |
-
],
|
777 |
-
"source": [
|
778 |
-
"df_affinity.head()"
|
779 |
-
]
|
780 |
-
},
|
781 |
-
{
|
782 |
-
"cell_type": "code",
|
783 |
-
"execution_count": 4,
|
784 |
-
"id": "603fd298-0aa6-4097-b298-c55db013548c",
|
785 |
-
"metadata": {},
|
786 |
-
"outputs": [
|
787 |
-
{
|
788 |
-
"data": {
|
789 |
-
"text/plain": [
|
790 |
-
"2510716"
|
791 |
-
]
|
792 |
-
},
|
793 |
-
"execution_count": 4,
|
794 |
-
"metadata": {},
|
795 |
-
"output_type": "execute_result"
|
796 |
-
}
|
797 |
-
],
|
798 |
-
"source": [
|
799 |
-
"len(df_affinity)"
|
800 |
-
]
|
801 |
-
},
|
802 |
-
{
|
803 |
-
"cell_type": "code",
|
804 |
-
"execution_count": 5,
|
805 |
-
"id": "d95ad9a9-d4ca-4679-8a33-235fe6e7047f",
|
806 |
-
"metadata": {},
|
807 |
-
"outputs": [
|
808 |
-
{
|
809 |
-
"data": {
|
810 |
-
"text/plain": [
|
811 |
-
"2510716"
|
812 |
-
]
|
813 |
-
},
|
814 |
-
"execution_count": 5,
|
815 |
-
"metadata": {},
|
816 |
-
"output_type": "execute_result"
|
817 |
-
}
|
818 |
-
],
|
819 |
-
"source": [
|
820 |
-
"len(df_affinity[~df_affinity['affinity_uM'].isnull()])"
|
821 |
-
]
|
822 |
-
},
|
823 |
-
{
|
824 |
-
"cell_type": "code",
|
825 |
-
"execution_count": 6,
|
826 |
-
"id": "b21c4683-0fe1-4a0a-a55c-c0dc80193f36",
|
827 |
-
"metadata": {},
|
828 |
-
"outputs": [
|
829 |
-
{
|
830 |
-
"data": {
|
831 |
-
"text/html": [
|
832 |
-
"<div>\n",
|
833 |
-
"<style scoped>\n",
|
834 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
835 |
-
" vertical-align: middle;\n",
|
836 |
-
" }\n",
|
837 |
-
"\n",
|
838 |
-
" .dataframe tbody tr th {\n",
|
839 |
-
" vertical-align: top;\n",
|
840 |
-
" }\n",
|
841 |
-
"\n",
|
842 |
-
" .dataframe thead th {\n",
|
843 |
-
" text-align: right;\n",
|
844 |
-
" }\n",
|
845 |
-
"</style>\n",
|
846 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
847 |
-
" <thead>\n",
|
848 |
-
" <tr style=\"text-align: right;\">\n",
|
849 |
-
" <th></th>\n",
|
850 |
-
" <th>Ligand SMILES</th>\n",
|
851 |
-
" <th>IC50 (nM)</th>\n",
|
852 |
-
" <th>KEGG ID of Ligand</th>\n",
|
853 |
-
" <th>Ki (nM)</th>\n",
|
854 |
-
" <th>Kd (nM)</th>\n",
|
855 |
-
" <th>EC50 (nM)</th>\n",
|
856 |
-
" <th>seq</th>\n",
|
857 |
-
" <th>affinity_uM</th>\n",
|
858 |
-
" </tr>\n",
|
859 |
-
" </thead>\n",
|
860 |
-
" <tbody>\n",
|
861 |
-
" <tr>\n",
|
862 |
-
" <th>0</th>\n",
|
863 |
-
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
864 |
-
" <td>None</td>\n",
|
865 |
-
" <td>None</td>\n",
|
866 |
-
" <td>0.24</td>\n",
|
867 |
-
" <td>None</td>\n",
|
868 |
-
" <td>None</td>\n",
|
869 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
870 |
-
" <td>0.00024</td>\n",
|
871 |
-
" </tr>\n",
|
872 |
-
" <tr>\n",
|
873 |
-
" <th>1</th>\n",
|
874 |
-
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
|
875 |
-
" <td>None</td>\n",
|
876 |
-
" <td>None</td>\n",
|
877 |
-
" <td>0.25</td>\n",
|
878 |
-
" <td>None</td>\n",
|
879 |
-
" <td>None</td>\n",
|
880 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
881 |
-
" <td>0.00025</td>\n",
|
882 |
-
" </tr>\n",
|
883 |
-
" <tr>\n",
|
884 |
-
" <th>2</th>\n",
|
885 |
-
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
|
886 |
-
" <td>None</td>\n",
|
887 |
-
" <td>None</td>\n",
|
888 |
-
" <td>0.41</td>\n",
|
889 |
-
" <td>None</td>\n",
|
890 |
-
" <td>None</td>\n",
|
891 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
892 |
-
" <td>0.00041</td>\n",
|
893 |
-
" </tr>\n",
|
894 |
-
" <tr>\n",
|
895 |
-
" <th>3</th>\n",
|
896 |
-
" <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
|
897 |
-
" <td>None</td>\n",
|
898 |
-
" <td>None</td>\n",
|
899 |
-
" <td>0.8</td>\n",
|
900 |
-
" <td>None</td>\n",
|
901 |
-
" <td>None</td>\n",
|
902 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
903 |
-
" <td>0.00080</td>\n",
|
904 |
-
" </tr>\n",
|
905 |
-
" <tr>\n",
|
906 |
-
" <th>4</th>\n",
|
907 |
-
" <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
|
908 |
-
" <td>None</td>\n",
|
909 |
-
" <td>None</td>\n",
|
910 |
-
" <td>0.99</td>\n",
|
911 |
-
" <td>None</td>\n",
|
912 |
-
" <td>None</td>\n",
|
913 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
914 |
-
" <td>0.00099</td>\n",
|
915 |
-
" </tr>\n",
|
916 |
-
" <tr>\n",
|
917 |
-
" <th>...</th>\n",
|
918 |
-
" <td>...</td>\n",
|
919 |
-
" <td>...</td>\n",
|
920 |
-
" <td>...</td>\n",
|
921 |
-
" <td>...</td>\n",
|
922 |
-
" <td>...</td>\n",
|
923 |
-
" <td>...</td>\n",
|
924 |
-
" <td>...</td>\n",
|
925 |
-
" <td>...</td>\n",
|
926 |
-
" </tr>\n",
|
927 |
-
" <tr>\n",
|
928 |
-
" <th>5112</th>\n",
|
929 |
-
" <td>COc1ccc(NC(=O)N2CCC(CC2)C(=O)N[C@@H](CC(C)C)C(...</td>\n",
|
930 |
-
" <td>17</td>\n",
|
931 |
-
" <td>None</td>\n",
|
932 |
-
" <td>None</td>\n",
|
933 |
-
" <td>None</td>\n",
|
934 |
-
" <td>None</td>\n",
|
935 |
-
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
936 |
-
" <td>0.01700</td>\n",
|
937 |
-
" </tr>\n",
|
938 |
-
" <tr>\n",
|
939 |
-
" <th>5113</th>\n",
|
940 |
-
" <td>CC(C)C[C@H](NC(=O)C1CCN(CC1)C(=O)Nc1cnccn1)C(=...</td>\n",
|
941 |
-
" <td>76</td>\n",
|
942 |
-
" <td>None</td>\n",
|
943 |
-
" <td>None</td>\n",
|
944 |
-
" <td>None</td>\n",
|
945 |
-
" <td>None</td>\n",
|
946 |
-
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
947 |
-
" <td>0.07600</td>\n",
|
948 |
-
" </tr>\n",
|
949 |
-
" <tr>\n",
|
950 |
-
" <th>5313</th>\n",
|
951 |
-
" <td>C[C@H](NC(=O)[C@H](Cc1ccccc1)NC(=O)OCc1ccccc1)...</td>\n",
|
952 |
-
" <td>>100000</td>\n",
|
953 |
-
" <td>None</td>\n",
|
954 |
-
" <td>None</td>\n",
|
955 |
-
" <td>None</td>\n",
|
956 |
-
" <td>None</td>\n",
|
957 |
-
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
958 |
-
" <td>100.00000</td>\n",
|
959 |
-
" </tr>\n",
|
960 |
-
" <tr>\n",
|
961 |
-
" <th>5314</th>\n",
|
962 |
-
" <td>FCC(=O)CNC(=O)[C@H](Cc1ccccc1)NC(=O)c1cccc2ccc...</td>\n",
|
963 |
-
" <td>>100000</td>\n",
|
964 |
-
" <td>None</td>\n",
|
965 |
-
" <td>None</td>\n",
|
966 |
-
" <td>None</td>\n",
|
967 |
-
" <td>None</td>\n",
|
968 |
-
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
969 |
-
" <td>100.00000</td>\n",
|
970 |
-
" </tr>\n",
|
971 |
-
" <tr>\n",
|
972 |
-
" <th>5361</th>\n",
|
973 |
-
" <td>FCC(=O)CNC(=O)[C@H](Cc1ccccc1)NC(=O)c1ccccc1</td>\n",
|
974 |
-
" <td>>100000</td>\n",
|
975 |
-
" <td>None</td>\n",
|
976 |
-
" <td>None</td>\n",
|
977 |
-
" <td>None</td>\n",
|
978 |
-
" <td>None</td>\n",
|
979 |
-
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
980 |
-
" <td>100.00000</td>\n",
|
981 |
-
" </tr>\n",
|
982 |
-
" </tbody>\n",
|
983 |
-
"</table>\n",
|
984 |
-
"<p>2510716 rows × 8 columns</p>\n",
|
985 |
-
"</div>"
|
986 |
-
],
|
987 |
-
"text/plain": [
|
988 |
-
" Ligand SMILES IC50 (nM) \\\n",
|
989 |
-
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n",
|
990 |
-
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n",
|
991 |
-
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n",
|
992 |
-
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n",
|
993 |
-
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n",
|
994 |
-
"... ... ... \n",
|
995 |
-
"5112 COc1ccc(NC(=O)N2CCC(CC2)C(=O)N[C@@H](CC(C)C)C(... 17 \n",
|
996 |
-
"5113 CC(C)C[C@H](NC(=O)C1CCN(CC1)C(=O)Nc1cnccn1)C(=... 76 \n",
|
997 |
-
"5313 C[C@H](NC(=O)[C@H](Cc1ccccc1)NC(=O)OCc1ccccc1)... >100000 \n",
|
998 |
-
"5314 FCC(=O)CNC(=O)[C@H](Cc1ccccc1)NC(=O)c1cccc2ccc... >100000 \n",
|
999 |
-
"5361 FCC(=O)CNC(=O)[C@H](Cc1ccccc1)NC(=O)c1ccccc1 >100000 \n",
|
1000 |
-
"\n",
|
1001 |
-
" KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n",
|
1002 |
-
"0 None 0.24 None None \n",
|
1003 |
-
"1 None 0.25 None None \n",
|
1004 |
-
"2 None 0.41 None None \n",
|
1005 |
-
"3 None 0.8 None None \n",
|
1006 |
-
"4 None 0.99 None None \n",
|
1007 |
-
"... ... ... ... ... \n",
|
1008 |
-
"5112 None None None None \n",
|
1009 |
-
"5113 None None None None \n",
|
1010 |
-
"5313 None None None None \n",
|
1011 |
-
"5314 None None None None \n",
|
1012 |
-
"5361 None None None None \n",
|
1013 |
-
"\n",
|
1014 |
-
" seq affinity_uM \n",
|
1015 |
-
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00024 \n",
|
1016 |
-
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00025 \n",
|
1017 |
-
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00041 \n",
|
1018 |
-
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00080 \n",
|
1019 |
-
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00099 \n",
|
1020 |
-
"... ... ... \n",
|
1021 |
-
"5112 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... 0.01700 \n",
|
1022 |
-
"5113 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... 0.07600 \n",
|
1023 |
-
"5313 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... 100.00000 \n",
|
1024 |
-
"5314 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... 100.00000 \n",
|
1025 |
-
"5361 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... 100.00000 \n",
|
1026 |
-
"\n",
|
1027 |
-
"[2510716 rows x 8 columns]"
|
1028 |
-
]
|
1029 |
-
},
|
1030 |
-
"execution_count": 6,
|
1031 |
-
"metadata": {},
|
1032 |
-
"output_type": "execute_result"
|
1033 |
-
}
|
1034 |
-
],
|
1035 |
-
"source": [
|
1036 |
-
"df_affinity"
|
1037 |
-
]
|
1038 |
-
},
|
1039 |
-
{
|
1040 |
-
"cell_type": "code",
|
1041 |
-
"execution_count": 25,
|
1042 |
-
"id": "20690729",
|
1043 |
-
"metadata": {},
|
1044 |
-
"outputs": [],
|
1045 |
-
"source": [
|
1046 |
-
"import rdkit.Chem as Chem"
|
1047 |
-
]
|
1048 |
-
},
|
1049 |
-
{
|
1050 |
-
"cell_type": "code",
|
1051 |
-
"execution_count": 27,
|
1052 |
-
"id": "48114dcc",
|
1053 |
-
"metadata": {},
|
1054 |
-
"outputs": [],
|
1055 |
-
"source": [
|
1056 |
-
"df_pdb = df[~df['PDB ID(s) for Ligand-Target Complex'].isnull()][['PDB ID(s) for Ligand-Target Complex','Ligand SMILES']]"
|
1057 |
-
]
|
1058 |
-
},
|
1059 |
-
{
|
1060 |
-
"cell_type": "code",
|
1061 |
-
"execution_count": 28,
|
1062 |
-
"id": "caa0497c",
|
1063 |
-
"metadata": {},
|
1064 |
-
"outputs": [],
|
1065 |
-
"source": [
|
1066 |
-
"def make_canonical(smi):\n",
|
1067 |
-
" return Chem.MolToSmiles(Chem.MolFromSmiles(smi))\n",
|
1068 |
-
"\n",
|
1069 |
-
"df_pdb['can_smiles'] = df_pdb['Ligand SMILES'].apply(make_canonical)"
|
1070 |
-
]
|
1071 |
-
},
|
1072 |
-
{
|
1073 |
-
"cell_type": "code",
|
1074 |
-
"execution_count": 29,
|
1075 |
-
"id": "e82d64f3",
|
1076 |
-
"metadata": {},
|
1077 |
-
"outputs": [
|
1078 |
-
{
|
1079 |
-
"data": {
|
1080 |
-
"text/html": [
|
1081 |
-
"<div>\n",
|
1082 |
-
"<style scoped>\n",
|
1083 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
1084 |
-
" vertical-align: middle;\n",
|
1085 |
-
" }\n",
|
1086 |
-
"\n",
|
1087 |
-
" .dataframe tbody tr th {\n",
|
1088 |
-
" vertical-align: top;\n",
|
1089 |
-
" }\n",
|
1090 |
-
"\n",
|
1091 |
-
" .dataframe thead th {\n",
|
1092 |
-
" text-align: right;\n",
|
1093 |
-
" }\n",
|
1094 |
-
"</style>\n",
|
1095 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
1096 |
-
" <thead>\n",
|
1097 |
-
" <tr style=\"text-align: right;\">\n",
|
1098 |
-
" <th></th>\n",
|
1099 |
-
" <th>PDB ID(s) for Ligand-Target Complex</th>\n",
|
1100 |
-
" <th>Ligand SMILES</th>\n",
|
1101 |
-
" <th>can_smiles</th>\n",
|
1102 |
-
" </tr>\n",
|
1103 |
-
" </thead>\n",
|
1104 |
-
" <tbody>\n",
|
1105 |
-
" <tr>\n",
|
1106 |
-
" <th>0</th>\n",
|
1107 |
-
" <td>2IVU</td>\n",
|
1108 |
-
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
1109 |
-
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
1110 |
-
" </tr>\n",
|
1111 |
-
" <tr>\n",
|
1112 |
-
" <th>29</th>\n",
|
1113 |
-
" <td>1HWR</td>\n",
|
1114 |
-
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC=C)C(=O)...</td>\n",
|
1115 |
-
" <td>C=CCN1C(=O)N(CC=C)[C@H](Cc2ccccc2)[C@H](O)[C@@...</td>\n",
|
1116 |
-
" </tr>\n",
|
1117 |
-
" <tr>\n",
|
1118 |
-
" <th>34</th>\n",
|
1119 |
-
" <td>6DGY,6DH1,6DH4,6DH7,3O99</td>\n",
|
1120 |
-
" <td>CC[C@H](C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O...</td>\n",
|
1121 |
-
" <td>CC[C@H](C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O...</td>\n",
|
1122 |
-
" </tr>\n",
|
1123 |
-
" <tr>\n",
|
1124 |
-
" <th>129</th>\n",
|
1125 |
-
" <td>1MES,1MEU,1MET,1BVG,1BVE,3JVW,1QBS</td>\n",
|
1126 |
-
" <td>OCc1ccc(CN2[C@H](Cc3ccccc3)[C@H](O)[C@@H](O)[C...</td>\n",
|
1127 |
-
" <td>O=C1N(Cc2ccc(CO)cc2)[C@H](Cc2ccccc2)[C@H](O)[C...</td>\n",
|
1128 |
-
" </tr>\n",
|
1129 |
-
" <tr>\n",
|
1130 |
-
" <th>130</th>\n",
|
1131 |
-
" <td>1MER,1DMP,1RQ9</td>\n",
|
1132 |
-
" <td>Nc1cccc(CN2[C@H](Cc3ccccc3)[C@H](O)[C@@H](O)[C...</td>\n",
|
1133 |
-
" <td>Nc1cccc(CN2C(=O)N(Cc3cccc(N)c3)[C@H](Cc3ccccc3...</td>\n",
|
1134 |
-
" </tr>\n",
|
1135 |
-
" <tr>\n",
|
1136 |
-
" <th>...</th>\n",
|
1137 |
-
" <td>...</td>\n",
|
1138 |
-
" <td>...</td>\n",
|
1139 |
-
" <td>...</td>\n",
|
1140 |
-
" </tr>\n",
|
1141 |
-
" <tr>\n",
|
1142 |
-
" <th>2333375</th>\n",
|
1143 |
-
" <td>1MUI,2RKG,2RKF,1RV7,2Q5K,2O4S,6DJ1,6DJ2,3OGQ,2...</td>\n",
|
1144 |
-
" <td>CC(C)[C@H](N1CCCNC1=O)C(=O)N[C@H](C[C@H](O)[C@...</td>\n",
|
1145 |
-
" <td>Cc1cccc(C)c1OCC(=O)N[C@@H](Cc1ccccc1)[C@@H](O)...</td>\n",
|
1146 |
-
" </tr>\n",
|
1147 |
-
" <tr>\n",
|
1148 |
-
" <th>2333376</th>\n",
|
1149 |
-
" <td>4NPT,4DQH,4DQE,5E5J,3JW2,6OPU,6OPX,2HS2,2HS1,2...</td>\n",
|
1150 |
-
" <td>CC(C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O[C@H]...</td>\n",
|
1151 |
-
" <td>CC(C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O[C@H]...</td>\n",
|
1152 |
-
" </tr>\n",
|
1153 |
-
" <tr>\n",
|
1154 |
-
" <th>2333380</th>\n",
|
1155 |
-
" <td>6EKZ,1DY4,5FUK,6PS5</td>\n",
|
1156 |
-
" <td>CC(C)NCC(O)COc1cccc2ccccc12</td>\n",
|
1157 |
-
" <td>CC(C)NCC(O)COc1cccc2ccccc12</td>\n",
|
1158 |
-
" </tr>\n",
|
1159 |
-
" <tr>\n",
|
1160 |
-
" <th>2333384</th>\n",
|
1161 |
-
" <td>6EKZ,1DY4,5FUK,6PS5</td>\n",
|
1162 |
-
" <td>CC(C)NCC(O)COc1cccc2ccccc12</td>\n",
|
1163 |
-
" <td>CC(C)NCC(O)COc1cccc2ccccc12</td>\n",
|
1164 |
-
" </tr>\n",
|
1165 |
-
" <tr>\n",
|
1166 |
-
" <th>2333385</th>\n",
|
1167 |
-
" <td>6A60,3DCT</td>\n",
|
1168 |
-
" <td>CC(C)c1onc(c1COc1ccc(\\C=C\\c2cccc(c2)C(O)=O)c(C...</td>\n",
|
1169 |
-
" <td>CC(C)c1onc(-c2c(Cl)cccc2Cl)c1COc1ccc(/C=C/c2cc...</td>\n",
|
1170 |
-
" </tr>\n",
|
1171 |
-
" </tbody>\n",
|
1172 |
-
"</table>\n",
|
1173 |
-
"<p>123385 rows × 3 columns</p>\n",
|
1174 |
-
"</div>"
|
1175 |
-
],
|
1176 |
-
"text/plain": [
|
1177 |
-
" PDB ID(s) for Ligand-Target Complex \\\n",
|
1178 |
-
"0 2IVU \n",
|
1179 |
-
"29 1HWR \n",
|
1180 |
-
"34 6DGY,6DH1,6DH4,6DH7,3O99 \n",
|
1181 |
-
"129 1MES,1MEU,1MET,1BVG,1BVE,3JVW,1QBS \n",
|
1182 |
-
"130 1MER,1DMP,1RQ9 \n",
|
1183 |
-
"... ... \n",
|
1184 |
-
"2333375 1MUI,2RKG,2RKF,1RV7,2Q5K,2O4S,6DJ1,6DJ2,3OGQ,2... \n",
|
1185 |
-
"2333376 4NPT,4DQH,4DQE,5E5J,3JW2,6OPU,6OPX,2HS2,2HS1,2... \n",
|
1186 |
-
"2333380 6EKZ,1DY4,5FUK,6PS5 \n",
|
1187 |
-
"2333384 6EKZ,1DY4,5FUK,6PS5 \n",
|
1188 |
-
"2333385 6A60,3DCT \n",
|
1189 |
-
"\n",
|
1190 |
-
" Ligand SMILES \\\n",
|
1191 |
-
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 \n",
|
1192 |
-
"29 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC=C)C(=O)... \n",
|
1193 |
-
"34 CC[C@H](C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O... \n",
|
1194 |
-
"129 OCc1ccc(CN2[C@H](Cc3ccccc3)[C@H](O)[C@@H](O)[C... \n",
|
1195 |
-
"130 Nc1cccc(CN2[C@H](Cc3ccccc3)[C@H](O)[C@@H](O)[C... \n",
|
1196 |
-
"... ... \n",
|
1197 |
-
"2333375 CC(C)[C@H](N1CCCNC1=O)C(=O)N[C@H](C[C@H](O)[C@... \n",
|
1198 |
-
"2333376 CC(C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O[C@H]... \n",
|
1199 |
-
"2333380 CC(C)NCC(O)COc1cccc2ccccc12 \n",
|
1200 |
-
"2333384 CC(C)NCC(O)COc1cccc2ccccc12 \n",
|
1201 |
-
"2333385 CC(C)c1onc(c1COc1ccc(\\C=C\\c2cccc(c2)C(O)=O)c(C... \n",
|
1202 |
-
"\n",
|
1203 |
-
" can_smiles \n",
|
1204 |
-
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 \n",
|
1205 |
-
"29 C=CCN1C(=O)N(CC=C)[C@H](Cc2ccccc2)[C@H](O)[C@@... \n",
|
1206 |
-
"34 CC[C@H](C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O... \n",
|
1207 |
-
"129 O=C1N(Cc2ccc(CO)cc2)[C@H](Cc2ccccc2)[C@H](O)[C... \n",
|
1208 |
-
"130 Nc1cccc(CN2C(=O)N(Cc3cccc(N)c3)[C@H](Cc3ccccc3... \n",
|
1209 |
-
"... ... \n",
|
1210 |
-
"2333375 Cc1cccc(C)c1OCC(=O)N[C@@H](Cc1ccccc1)[C@@H](O)... \n",
|
1211 |
-
"2333376 CC(C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O[C@H]... \n",
|
1212 |
-
"2333380 CC(C)NCC(O)COc1cccc2ccccc12 \n",
|
1213 |
-
"2333384 CC(C)NCC(O)COc1cccc2ccccc12 \n",
|
1214 |
-
"2333385 CC(C)c1onc(-c2c(Cl)cccc2Cl)c1COc1ccc(/C=C/c2cc... \n",
|
1215 |
-
"\n",
|
1216 |
-
"[123385 rows x 3 columns]"
|
1217 |
-
]
|
1218 |
-
},
|
1219 |
-
"execution_count": 29,
|
1220 |
-
"metadata": {},
|
1221 |
-
"output_type": "execute_result"
|
1222 |
-
}
|
1223 |
-
],
|
1224 |
-
"source": [
|
1225 |
-
"df_pdb"
|
1226 |
-
]
|
1227 |
-
},
|
1228 |
-
{
|
1229 |
-
"cell_type": "code",
|
1230 |
-
"execution_count": null,
|
1231 |
-
"id": "593c9aec",
|
1232 |
-
"metadata": {},
|
1233 |
-
"outputs": [],
|
1234 |
-
"source": []
|
1235 |
-
}
|
1236 |
-
],
|
1237 |
-
"metadata": {
|
1238 |
-
"kernelspec": {
|
1239 |
-
"display_name": "Python 3",
|
1240 |
-
"language": "python",
|
1241 |
-
"name": "python3"
|
1242 |
-
},
|
1243 |
-
"language_info": {
|
1244 |
-
"codemirror_mode": {
|
1245 |
-
"name": "ipython",
|
1246 |
-
"version": 3
|
1247 |
-
},
|
1248 |
-
"file_extension": ".py",
|
1249 |
-
"mimetype": "text/x-python",
|
1250 |
-
"name": "python",
|
1251 |
-
"nbconvert_exporter": "python",
|
1252 |
-
"pygments_lexer": "ipython3",
|
1253 |
-
"version": "3.9.4"
|
1254 |
-
}
|
1255 |
-
},
|
1256 |
-
"nbformat": 4,
|
1257 |
-
"nbformat_minor": 5
|
1258 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bindingdb_single.ipynb
DELETED
@@ -1,1036 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 1,
|
6 |
-
"id": "ecce356e-321b-441e-8a5d-a20bf72f8691",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"import pandas as pd\n",
|
11 |
-
"import dask.dataframe as dd"
|
12 |
-
]
|
13 |
-
},
|
14 |
-
{
|
15 |
-
"cell_type": "code",
|
16 |
-
"execution_count": 2,
|
17 |
-
"id": "89cbcd82-4ca2-4aba-95b7-e58c0ceed770",
|
18 |
-
"metadata": {},
|
19 |
-
"outputs": [],
|
20 |
-
"source": [
|
21 |
-
"cols = ['Ligand SMILES', 'IC50 (nM)','KEGG ID of Ligand','Ki (nM)', 'Kd (nM)','EC50 (nM)']"
|
22 |
-
]
|
23 |
-
},
|
24 |
-
{
|
25 |
-
"cell_type": "code",
|
26 |
-
"execution_count": 3,
|
27 |
-
"id": "1b923f02-e858-4737-ab5e-4c98c2def1b6",
|
28 |
-
"metadata": {},
|
29 |
-
"outputs": [],
|
30 |
-
"source": [
|
31 |
-
"allseq = ['BindingDB Target Chain Sequence']+['BindingDB Target Chain Sequence.{}'.format(j) for j in range(1,13)]"
|
32 |
-
]
|
33 |
-
},
|
34 |
-
{
|
35 |
-
"cell_type": "code",
|
36 |
-
"execution_count": 4,
|
37 |
-
"id": "54f0721e-1e36-48cc-a635-a1617a04f9e5",
|
38 |
-
"metadata": {},
|
39 |
-
"outputs": [],
|
40 |
-
"source": [
|
41 |
-
"dtypes = {'BindingDB Target Chain Sequence.{}'.format(i): 'object' for i in range(1,13)}"
|
42 |
-
]
|
43 |
-
},
|
44 |
-
{
|
45 |
-
"cell_type": "code",
|
46 |
-
"execution_count": 5,
|
47 |
-
"id": "c1843c65-a5ef-4604-adca-40fb18bc2991",
|
48 |
-
"metadata": {},
|
49 |
-
"outputs": [],
|
50 |
-
"source": [
|
51 |
-
"dtypes.update({'BindingDB Target Chain Sequence': 'object',\n",
|
52 |
-
" 'IC50 (nM)': 'object',\n",
|
53 |
-
" 'KEGG ID of Ligand': 'object',\n",
|
54 |
-
" 'Ki (nM)': 'object',\n",
|
55 |
-
" 'Kd (nM)': 'object',\n",
|
56 |
-
" 'EC50 (nM)': 'object',\n",
|
57 |
-
" 'koff (s-1)': 'object'})"
|
58 |
-
]
|
59 |
-
},
|
60 |
-
{
|
61 |
-
"cell_type": "code",
|
62 |
-
"execution_count": 6,
|
63 |
-
"id": "aa337ac3-4ca1-4369-a9c7-ab705221a137",
|
64 |
-
"metadata": {},
|
65 |
-
"outputs": [],
|
66 |
-
"source": [
|
67 |
-
"seq_name = 'BindingDB Target Chain Sequence'"
|
68 |
-
]
|
69 |
-
},
|
70 |
-
{
|
71 |
-
"cell_type": "code",
|
72 |
-
"execution_count": 7,
|
73 |
-
"id": "a870d8d7-374b-4474-b9ee-305bbf9f17a9",
|
74 |
-
"metadata": {},
|
75 |
-
"outputs": [],
|
76 |
-
"source": [
|
77 |
-
"import tqdm.notebook"
|
78 |
-
]
|
79 |
-
},
|
80 |
-
{
|
81 |
-
"cell_type": "code",
|
82 |
-
"execution_count": 8,
|
83 |
-
"id": "e97d29e6-d153-480e-a1ee-c216c22af8d2",
|
84 |
-
"metadata": {},
|
85 |
-
"outputs": [],
|
86 |
-
"source": [
|
87 |
-
"ddf = dd.read_csv('bindingdb/data/BindingDB_All.tsv',sep='\\t',\n",
|
88 |
-
" error_bad_lines=False,\n",
|
89 |
-
" usecols=cols+allseq,\n",
|
90 |
-
" dtype=dtypes)"
|
91 |
-
]
|
92 |
-
},
|
93 |
-
{
|
94 |
-
"cell_type": "code",
|
95 |
-
"execution_count": 11,
|
96 |
-
"id": "a4b381c0-968b-4248-a24f-9609acb12136",
|
97 |
-
"metadata": {},
|
98 |
-
"outputs": [
|
99 |
-
{
|
100 |
-
"data": {
|
101 |
-
"text/plain": [
|
102 |
-
"0.04789522637942933"
|
103 |
-
]
|
104 |
-
},
|
105 |
-
"execution_count": 11,
|
106 |
-
"metadata": {},
|
107 |
-
"output_type": "execute_result"
|
108 |
-
}
|
109 |
-
],
|
110 |
-
"source": [
|
111 |
-
"len(ddf[~ddf['BindingDB Target Chain Sequence.1'].isnull()])/len(ddf[~ddf['BindingDB Target Chain Sequence'].isnull()])"
|
112 |
-
]
|
113 |
-
},
|
114 |
-
{
|
115 |
-
"cell_type": "code",
|
116 |
-
"execution_count": 18,
|
117 |
-
"id": "7a8efd3f-c9c4-4f6a-83e5-9e9610deb17f",
|
118 |
-
"metadata": {},
|
119 |
-
"outputs": [],
|
120 |
-
"source": [
|
121 |
-
"# remove rows with more than one target\n",
|
122 |
-
"ddf_prune = ddf[ddf['BindingDB Target Chain Sequence.1'].isnull()]\n",
|
123 |
-
"ddf_prune = ddf_prune.rename(columns={'BindingDB Target Chain Sequence': 'seq'})"
|
124 |
-
]
|
125 |
-
},
|
126 |
-
{
|
127 |
-
"cell_type": "code",
|
128 |
-
"execution_count": 19,
|
129 |
-
"id": "c00102b8-f4be-4ebd-8d30-7a2c7fc2d05e",
|
130 |
-
"metadata": {},
|
131 |
-
"outputs": [],
|
132 |
-
"source": [
|
133 |
-
"ddf_nonnull = ddf_prune[~ddf_prune.seq.isnull()].copy()"
|
134 |
-
]
|
135 |
-
},
|
136 |
-
{
|
137 |
-
"cell_type": "code",
|
138 |
-
"execution_count": 20,
|
139 |
-
"id": "c5337e06-1e45-4180-90ed-49ac9ecdd24a",
|
140 |
-
"metadata": {},
|
141 |
-
"outputs": [
|
142 |
-
{
|
143 |
-
"data": {
|
144 |
-
"text/html": [
|
145 |
-
"<div>\n",
|
146 |
-
"<style scoped>\n",
|
147 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
148 |
-
" vertical-align: middle;\n",
|
149 |
-
" }\n",
|
150 |
-
"\n",
|
151 |
-
" .dataframe tbody tr th {\n",
|
152 |
-
" vertical-align: top;\n",
|
153 |
-
" }\n",
|
154 |
-
"\n",
|
155 |
-
" .dataframe thead th {\n",
|
156 |
-
" text-align: right;\n",
|
157 |
-
" }\n",
|
158 |
-
"</style>\n",
|
159 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
160 |
-
" <thead>\n",
|
161 |
-
" <tr style=\"text-align: right;\">\n",
|
162 |
-
" <th></th>\n",
|
163 |
-
" <th>Ligand SMILES</th>\n",
|
164 |
-
" <th>Ki (nM)</th>\n",
|
165 |
-
" <th>IC50 (nM)</th>\n",
|
166 |
-
" <th>Kd (nM)</th>\n",
|
167 |
-
" <th>EC50 (nM)</th>\n",
|
168 |
-
" <th>KEGG ID of Ligand</th>\n",
|
169 |
-
" <th>seq</th>\n",
|
170 |
-
" <th>BindingDB Target Chain Sequence.1</th>\n",
|
171 |
-
" <th>BindingDB Target Chain Sequence.2</th>\n",
|
172 |
-
" <th>BindingDB Target Chain Sequence.3</th>\n",
|
173 |
-
" <th>BindingDB Target Chain Sequence.4</th>\n",
|
174 |
-
" <th>BindingDB Target Chain Sequence.5</th>\n",
|
175 |
-
" <th>BindingDB Target Chain Sequence.6</th>\n",
|
176 |
-
" <th>BindingDB Target Chain Sequence.7</th>\n",
|
177 |
-
" <th>BindingDB Target Chain Sequence.8</th>\n",
|
178 |
-
" <th>BindingDB Target Chain Sequence.9</th>\n",
|
179 |
-
" <th>BindingDB Target Chain Sequence.10</th>\n",
|
180 |
-
" <th>BindingDB Target Chain Sequence.11</th>\n",
|
181 |
-
" <th>BindingDB Target Chain Sequence.12</th>\n",
|
182 |
-
" </tr>\n",
|
183 |
-
" </thead>\n",
|
184 |
-
" <tbody>\n",
|
185 |
-
" <tr>\n",
|
186 |
-
" <th>0</th>\n",
|
187 |
-
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
188 |
-
" <td>0.24</td>\n",
|
189 |
-
" <td>NaN</td>\n",
|
190 |
-
" <td>NaN</td>\n",
|
191 |
-
" <td>NaN</td>\n",
|
192 |
-
" <td>NaN</td>\n",
|
193 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
194 |
-
" <td>NaN</td>\n",
|
195 |
-
" <td>NaN</td>\n",
|
196 |
-
" <td>NaN</td>\n",
|
197 |
-
" <td>NaN</td>\n",
|
198 |
-
" <td>NaN</td>\n",
|
199 |
-
" <td>NaN</td>\n",
|
200 |
-
" <td>NaN</td>\n",
|
201 |
-
" <td>NaN</td>\n",
|
202 |
-
" <td>NaN</td>\n",
|
203 |
-
" <td>NaN</td>\n",
|
204 |
-
" <td>NaN</td>\n",
|
205 |
-
" <td>NaN</td>\n",
|
206 |
-
" </tr>\n",
|
207 |
-
" <tr>\n",
|
208 |
-
" <th>1</th>\n",
|
209 |
-
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
|
210 |
-
" <td>0.25</td>\n",
|
211 |
-
" <td>NaN</td>\n",
|
212 |
-
" <td>NaN</td>\n",
|
213 |
-
" <td>NaN</td>\n",
|
214 |
-
" <td>NaN</td>\n",
|
215 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
216 |
-
" <td>NaN</td>\n",
|
217 |
-
" <td>NaN</td>\n",
|
218 |
-
" <td>NaN</td>\n",
|
219 |
-
" <td>NaN</td>\n",
|
220 |
-
" <td>NaN</td>\n",
|
221 |
-
" <td>NaN</td>\n",
|
222 |
-
" <td>NaN</td>\n",
|
223 |
-
" <td>NaN</td>\n",
|
224 |
-
" <td>NaN</td>\n",
|
225 |
-
" <td>NaN</td>\n",
|
226 |
-
" <td>NaN</td>\n",
|
227 |
-
" <td>NaN</td>\n",
|
228 |
-
" </tr>\n",
|
229 |
-
" <tr>\n",
|
230 |
-
" <th>2</th>\n",
|
231 |
-
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
|
232 |
-
" <td>0.41</td>\n",
|
233 |
-
" <td>NaN</td>\n",
|
234 |
-
" <td>NaN</td>\n",
|
235 |
-
" <td>NaN</td>\n",
|
236 |
-
" <td>NaN</td>\n",
|
237 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
238 |
-
" <td>NaN</td>\n",
|
239 |
-
" <td>NaN</td>\n",
|
240 |
-
" <td>NaN</td>\n",
|
241 |
-
" <td>NaN</td>\n",
|
242 |
-
" <td>NaN</td>\n",
|
243 |
-
" <td>NaN</td>\n",
|
244 |
-
" <td>NaN</td>\n",
|
245 |
-
" <td>NaN</td>\n",
|
246 |
-
" <td>NaN</td>\n",
|
247 |
-
" <td>NaN</td>\n",
|
248 |
-
" <td>NaN</td>\n",
|
249 |
-
" <td>NaN</td>\n",
|
250 |
-
" </tr>\n",
|
251 |
-
" <tr>\n",
|
252 |
-
" <th>3</th>\n",
|
253 |
-
" <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
|
254 |
-
" <td>0.8</td>\n",
|
255 |
-
" <td>NaN</td>\n",
|
256 |
-
" <td>NaN</td>\n",
|
257 |
-
" <td>NaN</td>\n",
|
258 |
-
" <td>NaN</td>\n",
|
259 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
260 |
-
" <td>NaN</td>\n",
|
261 |
-
" <td>NaN</td>\n",
|
262 |
-
" <td>NaN</td>\n",
|
263 |
-
" <td>NaN</td>\n",
|
264 |
-
" <td>NaN</td>\n",
|
265 |
-
" <td>NaN</td>\n",
|
266 |
-
" <td>NaN</td>\n",
|
267 |
-
" <td>NaN</td>\n",
|
268 |
-
" <td>NaN</td>\n",
|
269 |
-
" <td>NaN</td>\n",
|
270 |
-
" <td>NaN</td>\n",
|
271 |
-
" <td>NaN</td>\n",
|
272 |
-
" </tr>\n",
|
273 |
-
" <tr>\n",
|
274 |
-
" <th>4</th>\n",
|
275 |
-
" <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
|
276 |
-
" <td>0.99</td>\n",
|
277 |
-
" <td>NaN</td>\n",
|
278 |
-
" <td>NaN</td>\n",
|
279 |
-
" <td>NaN</td>\n",
|
280 |
-
" <td>NaN</td>\n",
|
281 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
282 |
-
" <td>NaN</td>\n",
|
283 |
-
" <td>NaN</td>\n",
|
284 |
-
" <td>NaN</td>\n",
|
285 |
-
" <td>NaN</td>\n",
|
286 |
-
" <td>NaN</td>\n",
|
287 |
-
" <td>NaN</td>\n",
|
288 |
-
" <td>NaN</td>\n",
|
289 |
-
" <td>NaN</td>\n",
|
290 |
-
" <td>NaN</td>\n",
|
291 |
-
" <td>NaN</td>\n",
|
292 |
-
" <td>NaN</td>\n",
|
293 |
-
" <td>NaN</td>\n",
|
294 |
-
" </tr>\n",
|
295 |
-
" </tbody>\n",
|
296 |
-
"</table>\n",
|
297 |
-
"</div>"
|
298 |
-
],
|
299 |
-
"text/plain": [
|
300 |
-
" Ligand SMILES Ki (nM) IC50 (nM) \\\n",
|
301 |
-
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 0.24 NaN \n",
|
302 |
-
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... 0.25 NaN \n",
|
303 |
-
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... 0.41 NaN \n",
|
304 |
-
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... 0.8 NaN \n",
|
305 |
-
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... 0.99 NaN \n",
|
306 |
-
"\n",
|
307 |
-
" Kd (nM) EC50 (nM) KEGG ID of Ligand \\\n",
|
308 |
-
"0 NaN NaN NaN \n",
|
309 |
-
"1 NaN NaN NaN \n",
|
310 |
-
"2 NaN NaN NaN \n",
|
311 |
-
"3 NaN NaN NaN \n",
|
312 |
-
"4 NaN NaN NaN \n",
|
313 |
-
"\n",
|
314 |
-
" seq \\\n",
|
315 |
-
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
316 |
-
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
317 |
-
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
318 |
-
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
319 |
-
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
320 |
-
"\n",
|
321 |
-
" BindingDB Target Chain Sequence.1 BindingDB Target Chain Sequence.2 \\\n",
|
322 |
-
"0 NaN NaN \n",
|
323 |
-
"1 NaN NaN \n",
|
324 |
-
"2 NaN NaN \n",
|
325 |
-
"3 NaN NaN \n",
|
326 |
-
"4 NaN NaN \n",
|
327 |
-
"\n",
|
328 |
-
" BindingDB Target Chain Sequence.3 BindingDB Target Chain Sequence.4 \\\n",
|
329 |
-
"0 NaN NaN \n",
|
330 |
-
"1 NaN NaN \n",
|
331 |
-
"2 NaN NaN \n",
|
332 |
-
"3 NaN NaN \n",
|
333 |
-
"4 NaN NaN \n",
|
334 |
-
"\n",
|
335 |
-
" BindingDB Target Chain Sequence.5 BindingDB Target Chain Sequence.6 \\\n",
|
336 |
-
"0 NaN NaN \n",
|
337 |
-
"1 NaN NaN \n",
|
338 |
-
"2 NaN NaN \n",
|
339 |
-
"3 NaN NaN \n",
|
340 |
-
"4 NaN NaN \n",
|
341 |
-
"\n",
|
342 |
-
" BindingDB Target Chain Sequence.7 BindingDB Target Chain Sequence.8 \\\n",
|
343 |
-
"0 NaN NaN \n",
|
344 |
-
"1 NaN NaN \n",
|
345 |
-
"2 NaN NaN \n",
|
346 |
-
"3 NaN NaN \n",
|
347 |
-
"4 NaN NaN \n",
|
348 |
-
"\n",
|
349 |
-
" BindingDB Target Chain Sequence.9 BindingDB Target Chain Sequence.10 \\\n",
|
350 |
-
"0 NaN NaN \n",
|
351 |
-
"1 NaN NaN \n",
|
352 |
-
"2 NaN NaN \n",
|
353 |
-
"3 NaN NaN \n",
|
354 |
-
"4 NaN NaN \n",
|
355 |
-
"\n",
|
356 |
-
" BindingDB Target Chain Sequence.11 BindingDB Target Chain Sequence.12 \n",
|
357 |
-
"0 NaN NaN \n",
|
358 |
-
"1 NaN NaN \n",
|
359 |
-
"2 NaN NaN \n",
|
360 |
-
"3 NaN NaN \n",
|
361 |
-
"4 NaN NaN "
|
362 |
-
]
|
363 |
-
},
|
364 |
-
"execution_count": 20,
|
365 |
-
"metadata": {},
|
366 |
-
"output_type": "execute_result"
|
367 |
-
}
|
368 |
-
],
|
369 |
-
"source": [
|
370 |
-
"ddf_nonnull.head()"
|
371 |
-
]
|
372 |
-
},
|
373 |
-
{
|
374 |
-
"cell_type": "code",
|
375 |
-
"execution_count": 21,
|
376 |
-
"id": "7b423365-4989-4325-a5a5-845d852d52e9",
|
377 |
-
"metadata": {},
|
378 |
-
"outputs": [
|
379 |
-
{
|
380 |
-
"data": {
|
381 |
-
"text/plain": [
|
382 |
-
"2221761"
|
383 |
-
]
|
384 |
-
},
|
385 |
-
"execution_count": 21,
|
386 |
-
"metadata": {},
|
387 |
-
"output_type": "execute_result"
|
388 |
-
}
|
389 |
-
],
|
390 |
-
"source": [
|
391 |
-
"len(ddf_nonnull)"
|
392 |
-
]
|
393 |
-
},
|
394 |
-
{
|
395 |
-
"cell_type": "code",
|
396 |
-
"execution_count": 22,
|
397 |
-
"id": "872edb84-3459-43d9-8e0e-e2a6b5d281eb",
|
398 |
-
"metadata": {},
|
399 |
-
"outputs": [],
|
400 |
-
"source": [
|
401 |
-
"from pint import UnitRegistry\n",
|
402 |
-
"import numpy as np\n",
|
403 |
-
"import re\n",
|
404 |
-
"ureg = UnitRegistry()\n",
|
405 |
-
"\n",
|
406 |
-
"def to_uM(affinities):\n",
|
407 |
-
" ic50, Ki, Kd, ec50 = affinities\n",
|
408 |
-
"\n",
|
409 |
-
" vals = []\n",
|
410 |
-
" \n",
|
411 |
-
" try:\n",
|
412 |
-
" ic50 = ureg(str(ic50)+'nM').m_as(ureg.uM)\n",
|
413 |
-
" vals.append(ic50)\n",
|
414 |
-
" except:\n",
|
415 |
-
" pass\n",
|
416 |
-
"\n",
|
417 |
-
" try:\n",
|
418 |
-
" Ki = ureg(str(Ki)+'nM').m_as(ureg.uM)\n",
|
419 |
-
" vals.append(Ki)\n",
|
420 |
-
" except:\n",
|
421 |
-
" pass\n",
|
422 |
-
"\n",
|
423 |
-
" try:\n",
|
424 |
-
" Kd = ureg(str(Kd)+'nM').m_as(ureg.uM)\n",
|
425 |
-
" vals.append(Kd)\n",
|
426 |
-
" except:\n",
|
427 |
-
" pass\n",
|
428 |
-
"\n",
|
429 |
-
" try:\n",
|
430 |
-
" ec50 = ureg(str(ec50)+'nM').m_as(ureg.uM)\n",
|
431 |
-
" vals.append(ec50)\n",
|
432 |
-
" except:\n",
|
433 |
-
" pass\n",
|
434 |
-
"\n",
|
435 |
-
" if len(vals) > 0:\n",
|
436 |
-
" vals = np.array(vals)\n",
|
437 |
-
" return np.mean(vals[~np.isnan(vals)])\n",
|
438 |
-
" \n",
|
439 |
-
" return None"
|
440 |
-
]
|
441 |
-
},
|
442 |
-
{
|
443 |
-
"cell_type": "code",
|
444 |
-
"execution_count": 23,
|
445 |
-
"id": "b3cff13c-19b2-4413-a84b-d99062f516a7",
|
446 |
-
"metadata": {},
|
447 |
-
"outputs": [],
|
448 |
-
"source": [
|
449 |
-
"df_nonnull = ddf_nonnull.compute()"
|
450 |
-
]
|
451 |
-
},
|
452 |
-
{
|
453 |
-
"cell_type": "code",
|
454 |
-
"execution_count": 24,
|
455 |
-
"id": "ca9795de-e821-4dc3-a7bf-70ade9e4c7f0",
|
456 |
-
"metadata": {},
|
457 |
-
"outputs": [
|
458 |
-
{
|
459 |
-
"name": "stdout",
|
460 |
-
"output_type": "stream",
|
461 |
-
"text": [
|
462 |
-
"INFO: Pandarallel will run on 32 workers.\n",
|
463 |
-
"INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n"
|
464 |
-
]
|
465 |
-
}
|
466 |
-
],
|
467 |
-
"source": [
|
468 |
-
"from pandarallel import pandarallel\n",
|
469 |
-
"pandarallel.initialize()\n"
|
470 |
-
]
|
471 |
-
},
|
472 |
-
{
|
473 |
-
"cell_type": "code",
|
474 |
-
"execution_count": 25,
|
475 |
-
"id": "4356a3e2-fede-48e7-a486-343661fe0a0a",
|
476 |
-
"metadata": {},
|
477 |
-
"outputs": [],
|
478 |
-
"source": [
|
479 |
-
"df_affinity = df_nonnull.copy()\n",
|
480 |
-
"df_affinity['affinity_uM'] = df_affinity[['IC50 (nM)', 'Ki (nM)', 'Kd (nM)','EC50 (nM)']].parallel_apply(to_uM,axis=1)"
|
481 |
-
]
|
482 |
-
},
|
483 |
-
{
|
484 |
-
"cell_type": "code",
|
485 |
-
"execution_count": 26,
|
486 |
-
"id": "e91c3af8-84a5-42a2-9e25-49cb2f320b0b",
|
487 |
-
"metadata": {},
|
488 |
-
"outputs": [],
|
489 |
-
"source": [
|
490 |
-
"df_affinity[~df_affinity['affinity_uM'].isnull()].to_parquet('data/bindingdb.parquet')"
|
491 |
-
]
|
492 |
-
},
|
493 |
-
{
|
494 |
-
"cell_type": "code",
|
495 |
-
"execution_count": 27,
|
496 |
-
"id": "f3a9173e-d574-4314-9cea-f8c0a66766c0",
|
497 |
-
"metadata": {},
|
498 |
-
"outputs": [],
|
499 |
-
"source": [
|
500 |
-
"import pandas as pd\n",
|
501 |
-
"df_affinity = pd.read_parquet('data/bindingdb.parquet')"
|
502 |
-
]
|
503 |
-
},
|
504 |
-
{
|
505 |
-
"cell_type": "code",
|
506 |
-
"execution_count": 28,
|
507 |
-
"id": "f602fdbe-7083-436c-9eac-9d97fbc8be67",
|
508 |
-
"metadata": {},
|
509 |
-
"outputs": [
|
510 |
-
{
|
511 |
-
"data": {
|
512 |
-
"text/plain": [
|
513 |
-
"2219812"
|
514 |
-
]
|
515 |
-
},
|
516 |
-
"execution_count": 28,
|
517 |
-
"metadata": {},
|
518 |
-
"output_type": "execute_result"
|
519 |
-
}
|
520 |
-
],
|
521 |
-
"source": [
|
522 |
-
"len(df_affinity)"
|
523 |
-
]
|
524 |
-
},
|
525 |
-
{
|
526 |
-
"cell_type": "code",
|
527 |
-
"execution_count": 29,
|
528 |
-
"id": "27194288-cf3e-4c30-ad55-3b0998fdf939",
|
529 |
-
"metadata": {},
|
530 |
-
"outputs": [
|
531 |
-
{
|
532 |
-
"data": {
|
533 |
-
"text/html": [
|
534 |
-
"<div>\n",
|
535 |
-
"<style scoped>\n",
|
536 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
537 |
-
" vertical-align: middle;\n",
|
538 |
-
" }\n",
|
539 |
-
"\n",
|
540 |
-
" .dataframe tbody tr th {\n",
|
541 |
-
" vertical-align: top;\n",
|
542 |
-
" }\n",
|
543 |
-
"\n",
|
544 |
-
" .dataframe thead th {\n",
|
545 |
-
" text-align: right;\n",
|
546 |
-
" }\n",
|
547 |
-
"</style>\n",
|
548 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
549 |
-
" <thead>\n",
|
550 |
-
" <tr style=\"text-align: right;\">\n",
|
551 |
-
" <th></th>\n",
|
552 |
-
" <th>Ligand SMILES</th>\n",
|
553 |
-
" <th>Ki (nM)</th>\n",
|
554 |
-
" <th>IC50 (nM)</th>\n",
|
555 |
-
" <th>Kd (nM)</th>\n",
|
556 |
-
" <th>EC50 (nM)</th>\n",
|
557 |
-
" <th>KEGG ID of Ligand</th>\n",
|
558 |
-
" <th>seq</th>\n",
|
559 |
-
" <th>BindingDB Target Chain Sequence.1</th>\n",
|
560 |
-
" <th>BindingDB Target Chain Sequence.2</th>\n",
|
561 |
-
" <th>BindingDB Target Chain Sequence.3</th>\n",
|
562 |
-
" <th>BindingDB Target Chain Sequence.4</th>\n",
|
563 |
-
" <th>BindingDB Target Chain Sequence.5</th>\n",
|
564 |
-
" <th>BindingDB Target Chain Sequence.6</th>\n",
|
565 |
-
" <th>BindingDB Target Chain Sequence.7</th>\n",
|
566 |
-
" <th>BindingDB Target Chain Sequence.8</th>\n",
|
567 |
-
" <th>BindingDB Target Chain Sequence.9</th>\n",
|
568 |
-
" <th>BindingDB Target Chain Sequence.10</th>\n",
|
569 |
-
" <th>BindingDB Target Chain Sequence.11</th>\n",
|
570 |
-
" <th>BindingDB Target Chain Sequence.12</th>\n",
|
571 |
-
" <th>affinity_uM</th>\n",
|
572 |
-
" </tr>\n",
|
573 |
-
" </thead>\n",
|
574 |
-
" <tbody>\n",
|
575 |
-
" <tr>\n",
|
576 |
-
" <th>0</th>\n",
|
577 |
-
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
578 |
-
" <td>0.24</td>\n",
|
579 |
-
" <td>None</td>\n",
|
580 |
-
" <td>None</td>\n",
|
581 |
-
" <td>None</td>\n",
|
582 |
-
" <td>None</td>\n",
|
583 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
584 |
-
" <td>None</td>\n",
|
585 |
-
" <td>None</td>\n",
|
586 |
-
" <td>None</td>\n",
|
587 |
-
" <td>None</td>\n",
|
588 |
-
" <td>None</td>\n",
|
589 |
-
" <td>None</td>\n",
|
590 |
-
" <td>None</td>\n",
|
591 |
-
" <td>None</td>\n",
|
592 |
-
" <td>None</td>\n",
|
593 |
-
" <td>None</td>\n",
|
594 |
-
" <td>None</td>\n",
|
595 |
-
" <td>None</td>\n",
|
596 |
-
" <td>0.00024</td>\n",
|
597 |
-
" </tr>\n",
|
598 |
-
" <tr>\n",
|
599 |
-
" <th>1</th>\n",
|
600 |
-
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
|
601 |
-
" <td>0.25</td>\n",
|
602 |
-
" <td>None</td>\n",
|
603 |
-
" <td>None</td>\n",
|
604 |
-
" <td>None</td>\n",
|
605 |
-
" <td>None</td>\n",
|
606 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
607 |
-
" <td>None</td>\n",
|
608 |
-
" <td>None</td>\n",
|
609 |
-
" <td>None</td>\n",
|
610 |
-
" <td>None</td>\n",
|
611 |
-
" <td>None</td>\n",
|
612 |
-
" <td>None</td>\n",
|
613 |
-
" <td>None</td>\n",
|
614 |
-
" <td>None</td>\n",
|
615 |
-
" <td>None</td>\n",
|
616 |
-
" <td>None</td>\n",
|
617 |
-
" <td>None</td>\n",
|
618 |
-
" <td>None</td>\n",
|
619 |
-
" <td>0.00025</td>\n",
|
620 |
-
" </tr>\n",
|
621 |
-
" <tr>\n",
|
622 |
-
" <th>2</th>\n",
|
623 |
-
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
|
624 |
-
" <td>0.41</td>\n",
|
625 |
-
" <td>None</td>\n",
|
626 |
-
" <td>None</td>\n",
|
627 |
-
" <td>None</td>\n",
|
628 |
-
" <td>None</td>\n",
|
629 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
630 |
-
" <td>None</td>\n",
|
631 |
-
" <td>None</td>\n",
|
632 |
-
" <td>None</td>\n",
|
633 |
-
" <td>None</td>\n",
|
634 |
-
" <td>None</td>\n",
|
635 |
-
" <td>None</td>\n",
|
636 |
-
" <td>None</td>\n",
|
637 |
-
" <td>None</td>\n",
|
638 |
-
" <td>None</td>\n",
|
639 |
-
" <td>None</td>\n",
|
640 |
-
" <td>None</td>\n",
|
641 |
-
" <td>None</td>\n",
|
642 |
-
" <td>0.00041</td>\n",
|
643 |
-
" </tr>\n",
|
644 |
-
" <tr>\n",
|
645 |
-
" <th>3</th>\n",
|
646 |
-
" <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
|
647 |
-
" <td>0.8</td>\n",
|
648 |
-
" <td>None</td>\n",
|
649 |
-
" <td>None</td>\n",
|
650 |
-
" <td>None</td>\n",
|
651 |
-
" <td>None</td>\n",
|
652 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
653 |
-
" <td>None</td>\n",
|
654 |
-
" <td>None</td>\n",
|
655 |
-
" <td>None</td>\n",
|
656 |
-
" <td>None</td>\n",
|
657 |
-
" <td>None</td>\n",
|
658 |
-
" <td>None</td>\n",
|
659 |
-
" <td>None</td>\n",
|
660 |
-
" <td>None</td>\n",
|
661 |
-
" <td>None</td>\n",
|
662 |
-
" <td>None</td>\n",
|
663 |
-
" <td>None</td>\n",
|
664 |
-
" <td>None</td>\n",
|
665 |
-
" <td>0.00080</td>\n",
|
666 |
-
" </tr>\n",
|
667 |
-
" <tr>\n",
|
668 |
-
" <th>4</th>\n",
|
669 |
-
" <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
|
670 |
-
" <td>0.99</td>\n",
|
671 |
-
" <td>None</td>\n",
|
672 |
-
" <td>None</td>\n",
|
673 |
-
" <td>None</td>\n",
|
674 |
-
" <td>None</td>\n",
|
675 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
676 |
-
" <td>None</td>\n",
|
677 |
-
" <td>None</td>\n",
|
678 |
-
" <td>None</td>\n",
|
679 |
-
" <td>None</td>\n",
|
680 |
-
" <td>None</td>\n",
|
681 |
-
" <td>None</td>\n",
|
682 |
-
" <td>None</td>\n",
|
683 |
-
" <td>None</td>\n",
|
684 |
-
" <td>None</td>\n",
|
685 |
-
" <td>None</td>\n",
|
686 |
-
" <td>None</td>\n",
|
687 |
-
" <td>None</td>\n",
|
688 |
-
" <td>0.00099</td>\n",
|
689 |
-
" </tr>\n",
|
690 |
-
" </tbody>\n",
|
691 |
-
"</table>\n",
|
692 |
-
"</div>"
|
693 |
-
],
|
694 |
-
"text/plain": [
|
695 |
-
" Ligand SMILES Ki (nM) IC50 (nM) \\\n",
|
696 |
-
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 0.24 None \n",
|
697 |
-
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... 0.25 None \n",
|
698 |
-
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... 0.41 None \n",
|
699 |
-
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... 0.8 None \n",
|
700 |
-
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... 0.99 None \n",
|
701 |
-
"\n",
|
702 |
-
" Kd (nM) EC50 (nM) KEGG ID of Ligand \\\n",
|
703 |
-
"0 None None None \n",
|
704 |
-
"1 None None None \n",
|
705 |
-
"2 None None None \n",
|
706 |
-
"3 None None None \n",
|
707 |
-
"4 None None None \n",
|
708 |
-
"\n",
|
709 |
-
" seq \\\n",
|
710 |
-
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
711 |
-
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
712 |
-
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
713 |
-
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
714 |
-
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
715 |
-
"\n",
|
716 |
-
" BindingDB Target Chain Sequence.1 BindingDB Target Chain Sequence.2 \\\n",
|
717 |
-
"0 None None \n",
|
718 |
-
"1 None None \n",
|
719 |
-
"2 None None \n",
|
720 |
-
"3 None None \n",
|
721 |
-
"4 None None \n",
|
722 |
-
"\n",
|
723 |
-
" BindingDB Target Chain Sequence.3 BindingDB Target Chain Sequence.4 \\\n",
|
724 |
-
"0 None None \n",
|
725 |
-
"1 None None \n",
|
726 |
-
"2 None None \n",
|
727 |
-
"3 None None \n",
|
728 |
-
"4 None None \n",
|
729 |
-
"\n",
|
730 |
-
" BindingDB Target Chain Sequence.5 BindingDB Target Chain Sequence.6 \\\n",
|
731 |
-
"0 None None \n",
|
732 |
-
"1 None None \n",
|
733 |
-
"2 None None \n",
|
734 |
-
"3 None None \n",
|
735 |
-
"4 None None \n",
|
736 |
-
"\n",
|
737 |
-
" BindingDB Target Chain Sequence.7 BindingDB Target Chain Sequence.8 \\\n",
|
738 |
-
"0 None None \n",
|
739 |
-
"1 None None \n",
|
740 |
-
"2 None None \n",
|
741 |
-
"3 None None \n",
|
742 |
-
"4 None None \n",
|
743 |
-
"\n",
|
744 |
-
" BindingDB Target Chain Sequence.9 BindingDB Target Chain Sequence.10 \\\n",
|
745 |
-
"0 None None \n",
|
746 |
-
"1 None None \n",
|
747 |
-
"2 None None \n",
|
748 |
-
"3 None None \n",
|
749 |
-
"4 None None \n",
|
750 |
-
"\n",
|
751 |
-
" BindingDB Target Chain Sequence.11 BindingDB Target Chain Sequence.12 \\\n",
|
752 |
-
"0 None None \n",
|
753 |
-
"1 None None \n",
|
754 |
-
"2 None None \n",
|
755 |
-
"3 None None \n",
|
756 |
-
"4 None None \n",
|
757 |
-
"\n",
|
758 |
-
" affinity_uM \n",
|
759 |
-
"0 0.00024 \n",
|
760 |
-
"1 0.00025 \n",
|
761 |
-
"2 0.00041 \n",
|
762 |
-
"3 0.00080 \n",
|
763 |
-
"4 0.00099 "
|
764 |
-
]
|
765 |
-
},
|
766 |
-
"execution_count": 29,
|
767 |
-
"metadata": {},
|
768 |
-
"output_type": "execute_result"
|
769 |
-
}
|
770 |
-
],
|
771 |
-
"source": [
|
772 |
-
"df_affinity.head()"
|
773 |
-
]
|
774 |
-
},
|
775 |
-
{
|
776 |
-
"cell_type": "code",
|
777 |
-
"execution_count": 30,
|
778 |
-
"id": "603fd298-0aa6-4097-b298-c55db013548c",
|
779 |
-
"metadata": {},
|
780 |
-
"outputs": [
|
781 |
-
{
|
782 |
-
"data": {
|
783 |
-
"text/plain": [
|
784 |
-
"2219812"
|
785 |
-
]
|
786 |
-
},
|
787 |
-
"execution_count": 30,
|
788 |
-
"metadata": {},
|
789 |
-
"output_type": "execute_result"
|
790 |
-
}
|
791 |
-
],
|
792 |
-
"source": [
|
793 |
-
"len(df_affinity)"
|
794 |
-
]
|
795 |
-
},
|
796 |
-
{
|
797 |
-
"cell_type": "code",
|
798 |
-
"execution_count": 31,
|
799 |
-
"id": "d95ad9a9-d4ca-4679-8a33-235fe6e7047f",
|
800 |
-
"metadata": {},
|
801 |
-
"outputs": [
|
802 |
-
{
|
803 |
-
"data": {
|
804 |
-
"text/plain": [
|
805 |
-
"2219812"
|
806 |
-
]
|
807 |
-
},
|
808 |
-
"execution_count": 31,
|
809 |
-
"metadata": {},
|
810 |
-
"output_type": "execute_result"
|
811 |
-
}
|
812 |
-
],
|
813 |
-
"source": [
|
814 |
-
"len(df_affinity[~df_affinity['affinity_uM'].isnull()])"
|
815 |
-
]
|
816 |
-
},
|
817 |
-
{
|
818 |
-
"cell_type": "code",
|
819 |
-
"execution_count": 25,
|
820 |
-
"id": "20690729",
|
821 |
-
"metadata": {},
|
822 |
-
"outputs": [],
|
823 |
-
"source": [
|
824 |
-
"import rdkit.Chem as Chem"
|
825 |
-
]
|
826 |
-
},
|
827 |
-
{
|
828 |
-
"cell_type": "code",
|
829 |
-
"execution_count": 27,
|
830 |
-
"id": "48114dcc",
|
831 |
-
"metadata": {},
|
832 |
-
"outputs": [],
|
833 |
-
"source": [
|
834 |
-
"df_pdb = df[~df['PDB ID(s) for Ligand-Target Complex'].isnull()][['PDB ID(s) for Ligand-Target Complex','Ligand SMILES']]"
|
835 |
-
]
|
836 |
-
},
|
837 |
-
{
|
838 |
-
"cell_type": "code",
|
839 |
-
"execution_count": 28,
|
840 |
-
"id": "caa0497c",
|
841 |
-
"metadata": {},
|
842 |
-
"outputs": [],
|
843 |
-
"source": [
|
844 |
-
"def make_canonical(smi):\n",
|
845 |
-
" return Chem.MolToSmiles(Chem.MolFromSmiles(smi))\n",
|
846 |
-
"\n",
|
847 |
-
"df_pdb['can_smiles'] = df_pdb['Ligand SMILES'].apply(make_canonical)"
|
848 |
-
]
|
849 |
-
},
|
850 |
-
{
|
851 |
-
"cell_type": "code",
|
852 |
-
"execution_count": 29,
|
853 |
-
"id": "e82d64f3",
|
854 |
-
"metadata": {},
|
855 |
-
"outputs": [
|
856 |
-
{
|
857 |
-
"data": {
|
858 |
-
"text/html": [
|
859 |
-
"<div>\n",
|
860 |
-
"<style scoped>\n",
|
861 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
862 |
-
" vertical-align: middle;\n",
|
863 |
-
" }\n",
|
864 |
-
"\n",
|
865 |
-
" .dataframe tbody tr th {\n",
|
866 |
-
" vertical-align: top;\n",
|
867 |
-
" }\n",
|
868 |
-
"\n",
|
869 |
-
" .dataframe thead th {\n",
|
870 |
-
" text-align: right;\n",
|
871 |
-
" }\n",
|
872 |
-
"</style>\n",
|
873 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
874 |
-
" <thead>\n",
|
875 |
-
" <tr style=\"text-align: right;\">\n",
|
876 |
-
" <th></th>\n",
|
877 |
-
" <th>PDB ID(s) for Ligand-Target Complex</th>\n",
|
878 |
-
" <th>Ligand SMILES</th>\n",
|
879 |
-
" <th>can_smiles</th>\n",
|
880 |
-
" </tr>\n",
|
881 |
-
" </thead>\n",
|
882 |
-
" <tbody>\n",
|
883 |
-
" <tr>\n",
|
884 |
-
" <th>0</th>\n",
|
885 |
-
" <td>2IVU</td>\n",
|
886 |
-
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
887 |
-
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
888 |
-
" </tr>\n",
|
889 |
-
" <tr>\n",
|
890 |
-
" <th>29</th>\n",
|
891 |
-
" <td>1HWR</td>\n",
|
892 |
-
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC=C)C(=O)...</td>\n",
|
893 |
-
" <td>C=CCN1C(=O)N(CC=C)[C@H](Cc2ccccc2)[C@H](O)[C@@...</td>\n",
|
894 |
-
" </tr>\n",
|
895 |
-
" <tr>\n",
|
896 |
-
" <th>34</th>\n",
|
897 |
-
" <td>6DGY,6DH1,6DH4,6DH7,3O99</td>\n",
|
898 |
-
" <td>CC[C@H](C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O...</td>\n",
|
899 |
-
" <td>CC[C@H](C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O...</td>\n",
|
900 |
-
" </tr>\n",
|
901 |
-
" <tr>\n",
|
902 |
-
" <th>129</th>\n",
|
903 |
-
" <td>1MES,1MEU,1MET,1BVG,1BVE,3JVW,1QBS</td>\n",
|
904 |
-
" <td>OCc1ccc(CN2[C@H](Cc3ccccc3)[C@H](O)[C@@H](O)[C...</td>\n",
|
905 |
-
" <td>O=C1N(Cc2ccc(CO)cc2)[C@H](Cc2ccccc2)[C@H](O)[C...</td>\n",
|
906 |
-
" </tr>\n",
|
907 |
-
" <tr>\n",
|
908 |
-
" <th>130</th>\n",
|
909 |
-
" <td>1MER,1DMP,1RQ9</td>\n",
|
910 |
-
" <td>Nc1cccc(CN2[C@H](Cc3ccccc3)[C@H](O)[C@@H](O)[C...</td>\n",
|
911 |
-
" <td>Nc1cccc(CN2C(=O)N(Cc3cccc(N)c3)[C@H](Cc3ccccc3...</td>\n",
|
912 |
-
" </tr>\n",
|
913 |
-
" <tr>\n",
|
914 |
-
" <th>...</th>\n",
|
915 |
-
" <td>...</td>\n",
|
916 |
-
" <td>...</td>\n",
|
917 |
-
" <td>...</td>\n",
|
918 |
-
" </tr>\n",
|
919 |
-
" <tr>\n",
|
920 |
-
" <th>2333375</th>\n",
|
921 |
-
" <td>1MUI,2RKG,2RKF,1RV7,2Q5K,2O4S,6DJ1,6DJ2,3OGQ,2...</td>\n",
|
922 |
-
" <td>CC(C)[C@H](N1CCCNC1=O)C(=O)N[C@H](C[C@H](O)[C@...</td>\n",
|
923 |
-
" <td>Cc1cccc(C)c1OCC(=O)N[C@@H](Cc1ccccc1)[C@@H](O)...</td>\n",
|
924 |
-
" </tr>\n",
|
925 |
-
" <tr>\n",
|
926 |
-
" <th>2333376</th>\n",
|
927 |
-
" <td>4NPT,4DQH,4DQE,5E5J,3JW2,6OPU,6OPX,2HS2,2HS1,2...</td>\n",
|
928 |
-
" <td>CC(C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O[C@H]...</td>\n",
|
929 |
-
" <td>CC(C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O[C@H]...</td>\n",
|
930 |
-
" </tr>\n",
|
931 |
-
" <tr>\n",
|
932 |
-
" <th>2333380</th>\n",
|
933 |
-
" <td>6EKZ,1DY4,5FUK,6PS5</td>\n",
|
934 |
-
" <td>CC(C)NCC(O)COc1cccc2ccccc12</td>\n",
|
935 |
-
" <td>CC(C)NCC(O)COc1cccc2ccccc12</td>\n",
|
936 |
-
" </tr>\n",
|
937 |
-
" <tr>\n",
|
938 |
-
" <th>2333384</th>\n",
|
939 |
-
" <td>6EKZ,1DY4,5FUK,6PS5</td>\n",
|
940 |
-
" <td>CC(C)NCC(O)COc1cccc2ccccc12</td>\n",
|
941 |
-
" <td>CC(C)NCC(O)COc1cccc2ccccc12</td>\n",
|
942 |
-
" </tr>\n",
|
943 |
-
" <tr>\n",
|
944 |
-
" <th>2333385</th>\n",
|
945 |
-
" <td>6A60,3DCT</td>\n",
|
946 |
-
" <td>CC(C)c1onc(c1COc1ccc(\\C=C\\c2cccc(c2)C(O)=O)c(C...</td>\n",
|
947 |
-
" <td>CC(C)c1onc(-c2c(Cl)cccc2Cl)c1COc1ccc(/C=C/c2cc...</td>\n",
|
948 |
-
" </tr>\n",
|
949 |
-
" </tbody>\n",
|
950 |
-
"</table>\n",
|
951 |
-
"<p>123385 rows × 3 columns</p>\n",
|
952 |
-
"</div>"
|
953 |
-
],
|
954 |
-
"text/plain": [
|
955 |
-
" PDB ID(s) for Ligand-Target Complex \\\n",
|
956 |
-
"0 2IVU \n",
|
957 |
-
"29 1HWR \n",
|
958 |
-
"34 6DGY,6DH1,6DH4,6DH7,3O99 \n",
|
959 |
-
"129 1MES,1MEU,1MET,1BVG,1BVE,3JVW,1QBS \n",
|
960 |
-
"130 1MER,1DMP,1RQ9 \n",
|
961 |
-
"... ... \n",
|
962 |
-
"2333375 1MUI,2RKG,2RKF,1RV7,2Q5K,2O4S,6DJ1,6DJ2,3OGQ,2... \n",
|
963 |
-
"2333376 4NPT,4DQH,4DQE,5E5J,3JW2,6OPU,6OPX,2HS2,2HS1,2... \n",
|
964 |
-
"2333380 6EKZ,1DY4,5FUK,6PS5 \n",
|
965 |
-
"2333384 6EKZ,1DY4,5FUK,6PS5 \n",
|
966 |
-
"2333385 6A60,3DCT \n",
|
967 |
-
"\n",
|
968 |
-
" Ligand SMILES \\\n",
|
969 |
-
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 \n",
|
970 |
-
"29 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC=C)C(=O)... \n",
|
971 |
-
"34 CC[C@H](C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O... \n",
|
972 |
-
"129 OCc1ccc(CN2[C@H](Cc3ccccc3)[C@H](O)[C@@H](O)[C... \n",
|
973 |
-
"130 Nc1cccc(CN2[C@H](Cc3ccccc3)[C@H](O)[C@@H](O)[C... \n",
|
974 |
-
"... ... \n",
|
975 |
-
"2333375 CC(C)[C@H](N1CCCNC1=O)C(=O)N[C@H](C[C@H](O)[C@... \n",
|
976 |
-
"2333376 CC(C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O[C@H]... \n",
|
977 |
-
"2333380 CC(C)NCC(O)COc1cccc2ccccc12 \n",
|
978 |
-
"2333384 CC(C)NCC(O)COc1cccc2ccccc12 \n",
|
979 |
-
"2333385 CC(C)c1onc(c1COc1ccc(\\C=C\\c2cccc(c2)C(O)=O)c(C... \n",
|
980 |
-
"\n",
|
981 |
-
" can_smiles \n",
|
982 |
-
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 \n",
|
983 |
-
"29 C=CCN1C(=O)N(CC=C)[C@H](Cc2ccccc2)[C@H](O)[C@@... \n",
|
984 |
-
"34 CC[C@H](C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O... \n",
|
985 |
-
"129 O=C1N(Cc2ccc(CO)cc2)[C@H](Cc2ccccc2)[C@H](O)[C... \n",
|
986 |
-
"130 Nc1cccc(CN2C(=O)N(Cc3cccc(N)c3)[C@H](Cc3ccccc3... \n",
|
987 |
-
"... ... \n",
|
988 |
-
"2333375 Cc1cccc(C)c1OCC(=O)N[C@@H](Cc1ccccc1)[C@@H](O)... \n",
|
989 |
-
"2333376 CC(C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O[C@H]... \n",
|
990 |
-
"2333380 CC(C)NCC(O)COc1cccc2ccccc12 \n",
|
991 |
-
"2333384 CC(C)NCC(O)COc1cccc2ccccc12 \n",
|
992 |
-
"2333385 CC(C)c1onc(-c2c(Cl)cccc2Cl)c1COc1ccc(/C=C/c2cc... \n",
|
993 |
-
"\n",
|
994 |
-
"[123385 rows x 3 columns]"
|
995 |
-
]
|
996 |
-
},
|
997 |
-
"execution_count": 29,
|
998 |
-
"metadata": {},
|
999 |
-
"output_type": "execute_result"
|
1000 |
-
}
|
1001 |
-
],
|
1002 |
-
"source": [
|
1003 |
-
"df_pdb"
|
1004 |
-
]
|
1005 |
-
},
|
1006 |
-
{
|
1007 |
-
"cell_type": "code",
|
1008 |
-
"execution_count": null,
|
1009 |
-
"id": "593c9aec",
|
1010 |
-
"metadata": {},
|
1011 |
-
"outputs": [],
|
1012 |
-
"source": []
|
1013 |
-
}
|
1014 |
-
],
|
1015 |
-
"metadata": {
|
1016 |
-
"kernelspec": {
|
1017 |
-
"display_name": "Python 3",
|
1018 |
-
"language": "python",
|
1019 |
-
"name": "python3"
|
1020 |
-
},
|
1021 |
-
"language_info": {
|
1022 |
-
"codemirror_mode": {
|
1023 |
-
"name": "ipython",
|
1024 |
-
"version": 3
|
1025 |
-
},
|
1026 |
-
"file_extension": ".py",
|
1027 |
-
"mimetype": "text/x-python",
|
1028 |
-
"name": "python",
|
1029 |
-
"nbconvert_exporter": "python",
|
1030 |
-
"pygments_lexer": "ipython3",
|
1031 |
-
"version": "3.9.4"
|
1032 |
-
}
|
1033 |
-
},
|
1034 |
-
"nbformat": 4,
|
1035 |
-
"nbformat_minor": 5
|
1036 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
biolip.ipynb
DELETED
@@ -1,586 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 3,
|
6 |
-
"id": "26bc18a2-a6eb-49d3-be80-876ddc7dd8e1",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"import pandas as pd"
|
11 |
-
]
|
12 |
-
},
|
13 |
-
{
|
14 |
-
"cell_type": "markdown",
|
15 |
-
"id": "dbef8a5d-8603-4f40-aa98-fe50aa1160f6",
|
16 |
-
"metadata": {},
|
17 |
-
"source": [
|
18 |
-
"the binding affinities are **only** present in the 2013 snapshot, not in the updated ones"
|
19 |
-
]
|
20 |
-
},
|
21 |
-
{
|
22 |
-
"cell_type": "code",
|
23 |
-
"execution_count": 48,
|
24 |
-
"id": "3b59cfb4-c42a-425d-9653-44f07f9e864e",
|
25 |
-
"metadata": {},
|
26 |
-
"outputs": [],
|
27 |
-
"source": [
|
28 |
-
"df = pd.read_table('biolip/data/BioLiP_2013-03-6_nr.txt',sep='\\t',header=None,usecols=[0,4,5,6,13,14,15,16,19])\n",
|
29 |
-
"df = df.rename(columns={0:'pdb',4:'chain',5:'l_id',6:'l_chain',\n",
|
30 |
-
" 13: 'affinity_lit',14: 'affinity_moad',15: 'affinity_pdbbind-cn',16:'affinity_bindingdb',\n",
|
31 |
-
" 19: 'seq'})"
|
32 |
-
]
|
33 |
-
},
|
34 |
-
{
|
35 |
-
"cell_type": "code",
|
36 |
-
"execution_count": 49,
|
37 |
-
"id": "01123edd-2b98-4fcc-a2e9-28213b9bed82",
|
38 |
-
"metadata": {},
|
39 |
-
"outputs": [],
|
40 |
-
"source": [
|
41 |
-
"base = 'biolip/data/ligand/'\n",
|
42 |
-
"df['ligand_fn'] = base + df['pdb']+'_'+df['chain']+'_'+df['l_id'].astype(str)+'_'+df['l_chain'].astype(str)+'.pdb'"
|
43 |
-
]
|
44 |
-
},
|
45 |
-
{
|
46 |
-
"cell_type": "code",
|
47 |
-
"execution_count": 50,
|
48 |
-
"id": "bd8671da-66ad-40ad-b221-e33228be65f4",
|
49 |
-
"metadata": {},
|
50 |
-
"outputs": [],
|
51 |
-
"source": [
|
52 |
-
"df_complex = pd.read_parquet('data/biolip_complex.parquet')"
|
53 |
-
]
|
54 |
-
},
|
55 |
-
{
|
56 |
-
"cell_type": "code",
|
57 |
-
"execution_count": 51,
|
58 |
-
"id": "08b04d75-c01e-4b26-ae2d-622efae3bd1f",
|
59 |
-
"metadata": {},
|
60 |
-
"outputs": [],
|
61 |
-
"source": [
|
62 |
-
"df_affinity = df_complex[~df_complex['affinity_lit'].isnull() | ~df_complex['affinity_moad'].isnull() \n",
|
63 |
-
" | ~df_complex['affinity_pdbbind-cn'].isnull() | ~df_complex['affinity_bindingdb'].isnull()].copy()"
|
64 |
-
]
|
65 |
-
},
|
66 |
-
{
|
67 |
-
"cell_type": "code",
|
68 |
-
"execution_count": 57,
|
69 |
-
"id": "97af5533-10fe-4419-a998-ed80b7d26690",
|
70 |
-
"metadata": {},
|
71 |
-
"outputs": [],
|
72 |
-
"source": [
|
73 |
-
"from pint import UnitRegistry\n",
|
74 |
-
"import numpy as np\n",
|
75 |
-
"import re\n",
|
76 |
-
"ureg = UnitRegistry()\n",
|
77 |
-
"\n",
|
78 |
-
"quantities = ['ki','kd','ka','k1/2','kb','ic50','ec50','km']\n",
|
79 |
-
"\n",
|
80 |
-
"others = set()\n",
|
81 |
-
"def to_uM(affinities):\n",
|
82 |
-
" lit, moad, pdbbind, bindingdb = affinities\n",
|
83 |
-
"\n",
|
84 |
-
" vals = []\n",
|
85 |
-
" try:\n",
|
86 |
-
" q = re.split('[=~<>]',str(lit))[0].lower()\n",
|
87 |
-
" if q not in quantities:\n",
|
88 |
-
" others.add(q)\n",
|
89 |
-
" raise\n",
|
90 |
-
" val = re.split('[=~<>]',str(lit))[1].split(' ')[0]\n",
|
91 |
-
" val = ureg(val).m_as(ureg.uM)\n",
|
92 |
-
" vals.append(val)\n",
|
93 |
-
" except:\n",
|
94 |
-
" pass\n",
|
95 |
-
"\n",
|
96 |
-
" try:\n",
|
97 |
-
" q = re.split('[=~<>]',str(lit))[0].lower()\n",
|
98 |
-
" if q not in quantities:\n",
|
99 |
-
" others.add(q)\n",
|
100 |
-
" raise\n",
|
101 |
-
" val = re.split('[=~<>]',str(lit))[1].split(' ')[0]\n",
|
102 |
-
" val = ureg(val).m_as(1/ureg.uM)\n",
|
103 |
-
" vals.append(1/val)\n",
|
104 |
-
" except:\n",
|
105 |
-
" pass\n",
|
106 |
-
"\n",
|
107 |
-
" try:\n",
|
108 |
-
" q = re.split('[=~<>]',str(moad))[0].lower()\n",
|
109 |
-
" if q not in quantities:\n",
|
110 |
-
" others.add(q)\n",
|
111 |
-
" raise\n",
|
112 |
-
" val = re.split('[=~<>]',str(moad))[1].split(' ')[0]\n",
|
113 |
-
" val = ureg(val).m_as(ureg.uM)\n",
|
114 |
-
" vals.append(val)\n",
|
115 |
-
" except:\n",
|
116 |
-
" pass\n",
|
117 |
-
"\n",
|
118 |
-
" try:\n",
|
119 |
-
" q = re.split('[=~<>]',str(moad))[0].lower()\n",
|
120 |
-
" if q not in quantities:\n",
|
121 |
-
" others.add(q)\n",
|
122 |
-
" raise\n",
|
123 |
-
" val = re.split('[=~<>]',str(moad))[1].split(' ')[0]\n",
|
124 |
-
" val = ureg(val).m_as(1/ureg.uM)\n",
|
125 |
-
" vals.append(1/moad)\n",
|
126 |
-
" except:\n",
|
127 |
-
" pass\n",
|
128 |
-
"\n",
|
129 |
-
" try:\n",
|
130 |
-
" q = re.split('[=~<>]',str(pdbbind))[0].lower()\n",
|
131 |
-
" if q not in quantities:\n",
|
132 |
-
" others.add(q)\n",
|
133 |
-
" raise\n",
|
134 |
-
" val = re.split('[=~<>]',str(pdbbind))[1].split(' ')[0]\n",
|
135 |
-
" val = ureg(val).m_as(ureg.uM)\n",
|
136 |
-
" vals.append(val)\n",
|
137 |
-
" except:\n",
|
138 |
-
" pass\n",
|
139 |
-
"\n",
|
140 |
-
" try:\n",
|
141 |
-
" q = re.split('[=~<>]',str(pdbbind))[0].lower()\n",
|
142 |
-
" if q not in quantities:\n",
|
143 |
-
" others.add(q)\n",
|
144 |
-
" raise\n",
|
145 |
-
" val = re.split('[=~<>]',str(pdbbind))[1].split(' ')[0]\n",
|
146 |
-
" val = ureg(val).m_as(1/ureg.uM)\n",
|
147 |
-
" vals.append(1/val)\n",
|
148 |
-
" except:\n",
|
149 |
-
" pass\n",
|
150 |
-
"\n",
|
151 |
-
" try:\n",
|
152 |
-
" q = re.split('[=~<>]',str(bindingdb))[0].lower()\n",
|
153 |
-
" if q not in quantities:\n",
|
154 |
-
" others.add(q)\n",
|
155 |
-
" raise\n",
|
156 |
-
" val = re.split('[=~<>]',str(bindingdb))[1].split(' ')[0]\n",
|
157 |
-
" val = ureg(val).m_as(ureg.uM)\n",
|
158 |
-
" vals.append(val)\n",
|
159 |
-
" except:\n",
|
160 |
-
" pass\n",
|
161 |
-
"\n",
|
162 |
-
" try:\n",
|
163 |
-
" q = re.split('[=~<>]',str(bindingdb))[0].lower()\n",
|
164 |
-
" if q not in quantities:\n",
|
165 |
-
" others.add(q)\n",
|
166 |
-
" raise\n",
|
167 |
-
" val = re.split('[=~<>]',str(bindingdb))[1].split(' ')[0]\n",
|
168 |
-
" val = ureg(val).m_as(1/ureg.uM)\n",
|
169 |
-
" vals.append(1/val)\n",
|
170 |
-
" except:\n",
|
171 |
-
" pass\n",
|
172 |
-
"\n",
|
173 |
-
" if len(vals) > 0:\n",
|
174 |
-
" vals = np.array(vals)\n",
|
175 |
-
" return np.mean(vals[~np.isnan(vals)])\n",
|
176 |
-
" \n",
|
177 |
-
" return None"
|
178 |
-
]
|
179 |
-
},
|
180 |
-
{
|
181 |
-
"cell_type": "code",
|
182 |
-
"execution_count": 58,
|
183 |
-
"id": "d2fab1e6-ec5b-46f9-a4a2-f3744128c777",
|
184 |
-
"metadata": {},
|
185 |
-
"outputs": [
|
186 |
-
{
|
187 |
-
"data": {
|
188 |
-
"text/plain": [
|
189 |
-
"Index(['pdb', 'chain', 'l_id', 'l_chain', 'affinity_lit', 'affinity_moad',\n",
|
190 |
-
" 'affinity_pdbbind-cn', 'affinity_bindingdb', 'seq', 'ligand_fn',\n",
|
191 |
-
" 'smiles', 'affinity_uM'],\n",
|
192 |
-
" dtype='object')"
|
193 |
-
]
|
194 |
-
},
|
195 |
-
"execution_count": 58,
|
196 |
-
"metadata": {},
|
197 |
-
"output_type": "execute_result"
|
198 |
-
}
|
199 |
-
],
|
200 |
-
"source": [
|
201 |
-
"df_affinity.columns"
|
202 |
-
]
|
203 |
-
},
|
204 |
-
{
|
205 |
-
"cell_type": "code",
|
206 |
-
"execution_count": 59,
|
207 |
-
"id": "e21154a9-d3a0-4aa3-986f-cfeebc280da6",
|
208 |
-
"metadata": {},
|
209 |
-
"outputs": [],
|
210 |
-
"source": [
|
211 |
-
"df_affinity['affinity_uM'] = df_affinity[['affinity_lit','affinity_moad','affinity_pdbbind-cn','affinity_bindingdb']].apply(to_uM,axis=1)"
|
212 |
-
]
|
213 |
-
},
|
214 |
-
{
|
215 |
-
"cell_type": "code",
|
216 |
-
"execution_count": 60,
|
217 |
-
"id": "6b9526ec-b134-4ecb-8fea-b493c3fdac22",
|
218 |
-
"metadata": {},
|
219 |
-
"outputs": [
|
220 |
-
{
|
221 |
-
"data": {
|
222 |
-
"text/plain": [
|
223 |
-
"{'deltag', 'deltah', 'none'}"
|
224 |
-
]
|
225 |
-
},
|
226 |
-
"execution_count": 60,
|
227 |
-
"metadata": {},
|
228 |
-
"output_type": "execute_result"
|
229 |
-
}
|
230 |
-
],
|
231 |
-
"source": [
|
232 |
-
"others"
|
233 |
-
]
|
234 |
-
},
|
235 |
-
{
|
236 |
-
"cell_type": "code",
|
237 |
-
"execution_count": 61,
|
238 |
-
"id": "0fc94de0-823d-4f4f-9904-1c4d1e722c2e",
|
239 |
-
"metadata": {},
|
240 |
-
"outputs": [
|
241 |
-
{
|
242 |
-
"data": {
|
243 |
-
"text/html": [
|
244 |
-
"<div>\n",
|
245 |
-
"<style scoped>\n",
|
246 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
247 |
-
" vertical-align: middle;\n",
|
248 |
-
" }\n",
|
249 |
-
"\n",
|
250 |
-
" .dataframe tbody tr th {\n",
|
251 |
-
" vertical-align: top;\n",
|
252 |
-
" }\n",
|
253 |
-
"\n",
|
254 |
-
" .dataframe thead th {\n",
|
255 |
-
" text-align: right;\n",
|
256 |
-
" }\n",
|
257 |
-
"</style>\n",
|
258 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
259 |
-
" <thead>\n",
|
260 |
-
" <tr style=\"text-align: right;\">\n",
|
261 |
-
" <th></th>\n",
|
262 |
-
" <th>pdb</th>\n",
|
263 |
-
" <th>chain</th>\n",
|
264 |
-
" <th>l_id</th>\n",
|
265 |
-
" <th>l_chain</th>\n",
|
266 |
-
" <th>affinity_lit</th>\n",
|
267 |
-
" <th>affinity_moad</th>\n",
|
268 |
-
" <th>affinity_pdbbind-cn</th>\n",
|
269 |
-
" <th>affinity_bindingdb</th>\n",
|
270 |
-
" <th>seq</th>\n",
|
271 |
-
" <th>ligand_fn</th>\n",
|
272 |
-
" <th>smiles</th>\n",
|
273 |
-
" <th>affinity_uM</th>\n",
|
274 |
-
" </tr>\n",
|
275 |
-
" </thead>\n",
|
276 |
-
" <tbody>\n",
|
277 |
-
" <tr>\n",
|
278 |
-
" <th>38</th>\n",
|
279 |
-
" <td>11gs</td>\n",
|
280 |
-
" <td>EAA</td>\n",
|
281 |
-
" <td>A</td>\n",
|
282 |
-
" <td>1</td>\n",
|
283 |
-
" <td>None</td>\n",
|
284 |
-
" <td>ki=1.5uM (GTT EAA)</td>\n",
|
285 |
-
" <td>Ki=1.5uM (GTT-EAA)</td>\n",
|
286 |
-
" <td>None</td>\n",
|
287 |
-
" <td>PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC...</td>\n",
|
288 |
-
" <td>biolip/data/ligand/11gs_EAA_A_1.pdb</td>\n",
|
289 |
-
" <td>CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C</td>\n",
|
290 |
-
" <td>1.5000</td>\n",
|
291 |
-
" </tr>\n",
|
292 |
-
" <tr>\n",
|
293 |
-
" <th>43</th>\n",
|
294 |
-
" <td>13gs</td>\n",
|
295 |
-
" <td>SAS</td>\n",
|
296 |
-
" <td>A</td>\n",
|
297 |
-
" <td>1</td>\n",
|
298 |
-
" <td>None</td>\n",
|
299 |
-
" <td>ki=24uM (SAS)</td>\n",
|
300 |
-
" <td>Ki=24uM (SAS)</td>\n",
|
301 |
-
" <td>None</td>\n",
|
302 |
-
" <td>MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA...</td>\n",
|
303 |
-
" <td>biolip/data/ligand/13gs_SAS_A_1.pdb</td>\n",
|
304 |
-
" <td>OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c...</td>\n",
|
305 |
-
" <td>24.0000</td>\n",
|
306 |
-
" </tr>\n",
|
307 |
-
" <tr>\n",
|
308 |
-
" <th>53</th>\n",
|
309 |
-
" <td>16pk</td>\n",
|
310 |
-
" <td>BIS</td>\n",
|
311 |
-
" <td>A</td>\n",
|
312 |
-
" <td>1</td>\n",
|
313 |
-
" <td>None</td>\n",
|
314 |
-
" <td>None</td>\n",
|
315 |
-
" <td>Ki=6uM (BIS)</td>\n",
|
316 |
-
" <td>None</td>\n",
|
317 |
-
" <td>EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKV...</td>\n",
|
318 |
-
" <td>biolip/data/ligand/16pk_BIS_A_1.pdb</td>\n",
|
319 |
-
" <td>O[C@@H]1[C@@H](CO[P@](=O)(O[P@@](=O)(C(CCCC(P(...</td>\n",
|
320 |
-
" <td>6.0000</td>\n",
|
321 |
-
" </tr>\n",
|
322 |
-
" <tr>\n",
|
323 |
-
" <th>54</th>\n",
|
324 |
-
" <td>17gs</td>\n",
|
325 |
-
" <td>GTX</td>\n",
|
326 |
-
" <td>A</td>\n",
|
327 |
-
" <td>1</td>\n",
|
328 |
-
" <td>None</td>\n",
|
329 |
-
" <td>None</td>\n",
|
330 |
-
" <td>None</td>\n",
|
331 |
-
" <td>Kd=10000nM</td>\n",
|
332 |
-
" <td>MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA...</td>\n",
|
333 |
-
" <td>biolip/data/ligand/17gs_GTX_A_1.pdb</td>\n",
|
334 |
-
" <td>CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(...</td>\n",
|
335 |
-
" <td>10.0000</td>\n",
|
336 |
-
" </tr>\n",
|
337 |
-
" <tr>\n",
|
338 |
-
" <th>55</th>\n",
|
339 |
-
" <td>181l</td>\n",
|
340 |
-
" <td>BNZ</td>\n",
|
341 |
-
" <td>A</td>\n",
|
342 |
-
" <td>1</td>\n",
|
343 |
-
" <td>None</td>\n",
|
344 |
-
" <td>Ka=5700M^-1 (BNZ)</td>\n",
|
345 |
-
" <td>None</td>\n",
|
346 |
-
" <td>Kd=175000nM</td>\n",
|
347 |
-
" <td>MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL...</td>\n",
|
348 |
-
" <td>biolip/data/ligand/181l_BNZ_A_1.pdb</td>\n",
|
349 |
-
" <td>c1ccccc1</td>\n",
|
350 |
-
" <td>175.0000</td>\n",
|
351 |
-
" </tr>\n",
|
352 |
-
" <tr>\n",
|
353 |
-
" <th>...</th>\n",
|
354 |
-
" <td>...</td>\n",
|
355 |
-
" <td>...</td>\n",
|
356 |
-
" <td>...</td>\n",
|
357 |
-
" <td>...</td>\n",
|
358 |
-
" <td>...</td>\n",
|
359 |
-
" <td>...</td>\n",
|
360 |
-
" <td>...</td>\n",
|
361 |
-
" <td>...</td>\n",
|
362 |
-
" <td>...</td>\n",
|
363 |
-
" <td>...</td>\n",
|
364 |
-
" <td>...</td>\n",
|
365 |
-
" <td>...</td>\n",
|
366 |
-
" </tr>\n",
|
367 |
-
" <tr>\n",
|
368 |
-
" <th>105118</th>\n",
|
369 |
-
" <td>9hvp</td>\n",
|
370 |
-
" <td>0E9</td>\n",
|
371 |
-
" <td>A</td>\n",
|
372 |
-
" <td>1</td>\n",
|
373 |
-
" <td>None</td>\n",
|
374 |
-
" <td>None</td>\n",
|
375 |
-
" <td>Ki=4.5nM (5-mer)</td>\n",
|
376 |
-
" <td>None</td>\n",
|
377 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
|
378 |
-
" <td>biolip/data/ligand/9hvp_0E9_A_1.pdb</td>\n",
|
379 |
-
" <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
|
380 |
-
" <td>0.0045</td>\n",
|
381 |
-
" </tr>\n",
|
382 |
-
" <tr>\n",
|
383 |
-
" <th>105119</th>\n",
|
384 |
-
" <td>9hvp</td>\n",
|
385 |
-
" <td>0E9</td>\n",
|
386 |
-
" <td>A</td>\n",
|
387 |
-
" <td>1</td>\n",
|
388 |
-
" <td>None</td>\n",
|
389 |
-
" <td>None</td>\n",
|
390 |
-
" <td>Ki=4.5nM (5-mer)</td>\n",
|
391 |
-
" <td>None</td>\n",
|
392 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
|
393 |
-
" <td>biolip/data/ligand/9hvp_0E9_A_1.pdb</td>\n",
|
394 |
-
" <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
|
395 |
-
" <td>0.0045</td>\n",
|
396 |
-
" </tr>\n",
|
397 |
-
" <tr>\n",
|
398 |
-
" <th>105124</th>\n",
|
399 |
-
" <td>9icd</td>\n",
|
400 |
-
" <td>NAP</td>\n",
|
401 |
-
" <td>A</td>\n",
|
402 |
-
" <td>1</td>\n",
|
403 |
-
" <td>None</td>\n",
|
404 |
-
" <td>kd=125uM (NAP)</td>\n",
|
405 |
-
" <td>Kd=125uM (NAP)</td>\n",
|
406 |
-
" <td>None</td>\n",
|
407 |
-
" <td>SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV...</td>\n",
|
408 |
-
" <td>biolip/data/ligand/9icd_NAP_A_1.pdb</td>\n",
|
409 |
-
" <td>O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O...</td>\n",
|
410 |
-
" <td>125.0000</td>\n",
|
411 |
-
" </tr>\n",
|
412 |
-
" <tr>\n",
|
413 |
-
" <th>105133</th>\n",
|
414 |
-
" <td>9lpr</td>\n",
|
415 |
-
" <td>III</td>\n",
|
416 |
-
" <td>P</td>\n",
|
417 |
-
" <td>1</td>\n",
|
418 |
-
" <td>None</td>\n",
|
419 |
-
" <td>None</td>\n",
|
420 |
-
" <td>Ki=2000nM (4-mer)</td>\n",
|
421 |
-
" <td>None</td>\n",
|
422 |
-
" <td>ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI...</td>\n",
|
423 |
-
" <td>biolip/data/ligand/9lpr_III_P_1.pdb</td>\n",
|
424 |
-
" <td>CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]...</td>\n",
|
425 |
-
" <td>2.0000</td>\n",
|
426 |
-
" </tr>\n",
|
427 |
-
" <tr>\n",
|
428 |
-
" <th>105138</th>\n",
|
429 |
-
" <td>9nse</td>\n",
|
430 |
-
" <td>ISU</td>\n",
|
431 |
-
" <td>B</td>\n",
|
432 |
-
" <td>2</td>\n",
|
433 |
-
" <td>None</td>\n",
|
434 |
-
" <td>Ki=0.039uM (ISU)</td>\n",
|
435 |
-
" <td>None</td>\n",
|
436 |
-
" <td>None</td>\n",
|
437 |
-
" <td>KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR...</td>\n",
|
438 |
-
" <td>biolip/data/ligand/9nse_ISU_B_2.pdb</td>\n",
|
439 |
-
" <td>CC[Se]C(=N)N</td>\n",
|
440 |
-
" <td>0.0390</td>\n",
|
441 |
-
" </tr>\n",
|
442 |
-
" </tbody>\n",
|
443 |
-
"</table>\n",
|
444 |
-
"<p>12851 rows × 12 columns</p>\n",
|
445 |
-
"</div>"
|
446 |
-
],
|
447 |
-
"text/plain": [
|
448 |
-
" pdb chain l_id l_chain affinity_lit affinity_moad \\\n",
|
449 |
-
"38 11gs EAA A 1 None ki=1.5uM (GTT EAA) \n",
|
450 |
-
"43 13gs SAS A 1 None ki=24uM (SAS) \n",
|
451 |
-
"53 16pk BIS A 1 None None \n",
|
452 |
-
"54 17gs GTX A 1 None None \n",
|
453 |
-
"55 181l BNZ A 1 None Ka=5700M^-1 (BNZ) \n",
|
454 |
-
"... ... ... ... ... ... ... \n",
|
455 |
-
"105118 9hvp 0E9 A 1 None None \n",
|
456 |
-
"105119 9hvp 0E9 A 1 None None \n",
|
457 |
-
"105124 9icd NAP A 1 None kd=125uM (NAP) \n",
|
458 |
-
"105133 9lpr III P 1 None None \n",
|
459 |
-
"105138 9nse ISU B 2 None Ki=0.039uM (ISU) \n",
|
460 |
-
"\n",
|
461 |
-
" affinity_pdbbind-cn affinity_bindingdb \\\n",
|
462 |
-
"38 Ki=1.5uM (GTT-EAA) None \n",
|
463 |
-
"43 Ki=24uM (SAS) None \n",
|
464 |
-
"53 Ki=6uM (BIS) None \n",
|
465 |
-
"54 None Kd=10000nM \n",
|
466 |
-
"55 None Kd=175000nM \n",
|
467 |
-
"... ... ... \n",
|
468 |
-
"105118 Ki=4.5nM (5-mer) None \n",
|
469 |
-
"105119 Ki=4.5nM (5-mer) None \n",
|
470 |
-
"105124 Kd=125uM (NAP) None \n",
|
471 |
-
"105133 Ki=2000nM (4-mer) None \n",
|
472 |
-
"105138 None None \n",
|
473 |
-
"\n",
|
474 |
-
" seq \\\n",
|
475 |
-
"38 PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC... \n",
|
476 |
-
"43 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
|
477 |
-
"53 EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKV... \n",
|
478 |
-
"54 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
|
479 |
-
"55 MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... \n",
|
480 |
-
"... ... \n",
|
481 |
-
"105118 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
|
482 |
-
"105119 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
|
483 |
-
"105124 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
|
484 |
-
"105133 ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... \n",
|
485 |
-
"105138 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
|
486 |
-
"\n",
|
487 |
-
" ligand_fn \\\n",
|
488 |
-
"38 biolip/data/ligand/11gs_EAA_A_1.pdb \n",
|
489 |
-
"43 biolip/data/ligand/13gs_SAS_A_1.pdb \n",
|
490 |
-
"53 biolip/data/ligand/16pk_BIS_A_1.pdb \n",
|
491 |
-
"54 biolip/data/ligand/17gs_GTX_A_1.pdb \n",
|
492 |
-
"55 biolip/data/ligand/181l_BNZ_A_1.pdb \n",
|
493 |
-
"... ... \n",
|
494 |
-
"105118 biolip/data/ligand/9hvp_0E9_A_1.pdb \n",
|
495 |
-
"105119 biolip/data/ligand/9hvp_0E9_A_1.pdb \n",
|
496 |
-
"105124 biolip/data/ligand/9icd_NAP_A_1.pdb \n",
|
497 |
-
"105133 biolip/data/ligand/9lpr_III_P_1.pdb \n",
|
498 |
-
"105138 biolip/data/ligand/9nse_ISU_B_2.pdb \n",
|
499 |
-
"\n",
|
500 |
-
" smiles affinity_uM \n",
|
501 |
-
"38 CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C 1.5000 \n",
|
502 |
-
"43 OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c... 24.0000 \n",
|
503 |
-
"53 O[C@@H]1[C@@H](CO[P@](=O)(O[P@@](=O)(C(CCCC(P(... 6.0000 \n",
|
504 |
-
"54 CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(... 10.0000 \n",
|
505 |
-
"55 c1ccccc1 175.0000 \n",
|
506 |
-
"... ... ... \n",
|
507 |
-
"105118 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
|
508 |
-
"105119 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
|
509 |
-
"105124 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.0000 \n",
|
510 |
-
"105133 CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... 2.0000 \n",
|
511 |
-
"105138 CC[Se]C(=N)N 0.0390 \n",
|
512 |
-
"\n",
|
513 |
-
"[12851 rows x 12 columns]"
|
514 |
-
]
|
515 |
-
},
|
516 |
-
"execution_count": 61,
|
517 |
-
"metadata": {},
|
518 |
-
"output_type": "execute_result"
|
519 |
-
}
|
520 |
-
],
|
521 |
-
"source": [
|
522 |
-
"df_affinity[~df_affinity['affinity_uM'].isnull()]"
|
523 |
-
]
|
524 |
-
},
|
525 |
-
{
|
526 |
-
"cell_type": "code",
|
527 |
-
"execution_count": 63,
|
528 |
-
"id": "2b483565-3c99-4c42-b2a9-f7b97cd8e80e",
|
529 |
-
"metadata": {},
|
530 |
-
"outputs": [],
|
531 |
-
"source": [
|
532 |
-
"df_affinity.to_parquet('data/biolip.parquet')"
|
533 |
-
]
|
534 |
-
},
|
535 |
-
{
|
536 |
-
"cell_type": "code",
|
537 |
-
"execution_count": 64,
|
538 |
-
"id": "68dd5e45-b31d-492d-a47e-39072b67fa72",
|
539 |
-
"metadata": {},
|
540 |
-
"outputs": [
|
541 |
-
{
|
542 |
-
"data": {
|
543 |
-
"text/plain": [
|
544 |
-
"13645"
|
545 |
-
]
|
546 |
-
},
|
547 |
-
"execution_count": 64,
|
548 |
-
"metadata": {},
|
549 |
-
"output_type": "execute_result"
|
550 |
-
}
|
551 |
-
],
|
552 |
-
"source": [
|
553 |
-
"len(df_affinity)"
|
554 |
-
]
|
555 |
-
},
|
556 |
-
{
|
557 |
-
"cell_type": "code",
|
558 |
-
"execution_count": null,
|
559 |
-
"id": "cf11317d-bbab-40f1-a8a2-b6fd6126e998",
|
560 |
-
"metadata": {},
|
561 |
-
"outputs": [],
|
562 |
-
"source": []
|
563 |
-
}
|
564 |
-
],
|
565 |
-
"metadata": {
|
566 |
-
"kernelspec": {
|
567 |
-
"display_name": "Python 3",
|
568 |
-
"language": "python",
|
569 |
-
"name": "python3"
|
570 |
-
},
|
571 |
-
"language_info": {
|
572 |
-
"codemirror_mode": {
|
573 |
-
"name": "ipython",
|
574 |
-
"version": 3
|
575 |
-
},
|
576 |
-
"file_extension": ".py",
|
577 |
-
"mimetype": "text/x-python",
|
578 |
-
"name": "python",
|
579 |
-
"nbconvert_exporter": "python",
|
580 |
-
"pygments_lexer": "ipython3",
|
581 |
-
"version": "3.9.4"
|
582 |
-
}
|
583 |
-
},
|
584 |
-
"nbformat": 4,
|
585 |
-
"nbformat_minor": 5
|
586 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
biolip.py
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
from mpi4py import MPI
|
2 |
-
from mpi4py.futures import MPICommExecutor
|
3 |
-
|
4 |
-
from openbabel import pybel
|
5 |
-
from Bio.PDB import *
|
6 |
-
parser = PDBParser()
|
7 |
-
|
8 |
-
import os
|
9 |
-
molecular_weight_cutoff = 2500
|
10 |
-
def parse_ligand(fn):
|
11 |
-
print(fn)
|
12 |
-
try:
|
13 |
-
struct = parser.get_structure('lig',fn)
|
14 |
-
if len(list(struct.get_atoms())) > molecular_weight_cutoff:
|
15 |
-
raise ValueError
|
16 |
-
mol = next(pybel.readfile('pdb',fn))
|
17 |
-
if mol.molwt > molecular_weight_cutoff:
|
18 |
-
raise ValueError
|
19 |
-
smi = mol.write('can').split('\t')[0]
|
20 |
-
return smi
|
21 |
-
except:
|
22 |
-
return None
|
23 |
-
|
24 |
-
|
25 |
-
if __name__ == '__main__':
|
26 |
-
import glob
|
27 |
-
|
28 |
-
comm = MPI.COMM_WORLD
|
29 |
-
with MPICommExecutor(comm, root=0) as executor:
|
30 |
-
if executor is not None:
|
31 |
-
import pandas as pd
|
32 |
-
|
33 |
-
df = pd.read_table('biolip/data/BioLiP_2013-03-6_nr.txt',sep='\t',header=None,usecols=[0,4,5,6,13,14,15,16,19])
|
34 |
-
df = df.rename(columns={0:'pdb',4:'chain',5:'l_id',6:'l_chain',
|
35 |
-
13: 'affinity_lit',14: 'affinity_moad',15: 'affinity_pdbbind-cn',16:'affinity_bindingdb',
|
36 |
-
19: 'seq'})
|
37 |
-
base = 'biolip/data/ligand/'
|
38 |
-
df['ligand_fn'] = base + df['pdb']+'_'+df['chain']+'_'+df['l_id'].astype(str)+'_'+df['l_chain'].astype(str)+'.pdb'
|
39 |
-
smiles = list(executor.map(parse_ligand, df['ligand_fn']))
|
40 |
-
df['smiles'] = smiles
|
41 |
-
df.to_parquet('data/biolip_complex.parquet')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
biolip.slurm
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
#SBATCH -J preprocess_biolip
|
3 |
-
#SBATCH -p batch
|
4 |
-
#SBATCH -A BIP214
|
5 |
-
#SBATCH -t 3:00:00
|
6 |
-
#SBATCH -N 11
|
7 |
-
#SBATCH --ntasks-per-node=32
|
8 |
-
|
9 |
-
export PYTHONUNBUFFERED=1
|
10 |
-
srun python biolip.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
combine_dbs.ipynb
DELETED
@@ -1,1763 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 2,
|
6 |
-
"id": "95bd761a-fe51-4a8e-bc70-1365260ba5f8",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"import pandas as pd"
|
11 |
-
]
|
12 |
-
},
|
13 |
-
{
|
14 |
-
"cell_type": "code",
|
15 |
-
"execution_count": 2,
|
16 |
-
"id": "b0859483-5e19-4280-9f53-0d00a6f22d34",
|
17 |
-
"metadata": {},
|
18 |
-
"outputs": [],
|
19 |
-
"source": [
|
20 |
-
"df_pdbbind = pd.read_parquet('data/pdbbind.parquet')\n",
|
21 |
-
"df_pdbbind = df_pdbbind[['seq','smiles','affinity_uM']]"
|
22 |
-
]
|
23 |
-
},
|
24 |
-
{
|
25 |
-
"cell_type": "code",
|
26 |
-
"execution_count": 3,
|
27 |
-
"id": "f30732b7-7444-47ad-84e7-566e7a6f2f8e",
|
28 |
-
"metadata": {},
|
29 |
-
"outputs": [
|
30 |
-
{
|
31 |
-
"data": {
|
32 |
-
"text/html": [
|
33 |
-
"<div>\n",
|
34 |
-
"<style scoped>\n",
|
35 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
36 |
-
" vertical-align: middle;\n",
|
37 |
-
" }\n",
|
38 |
-
"\n",
|
39 |
-
" .dataframe tbody tr th {\n",
|
40 |
-
" vertical-align: top;\n",
|
41 |
-
" }\n",
|
42 |
-
"\n",
|
43 |
-
" .dataframe thead th {\n",
|
44 |
-
" text-align: right;\n",
|
45 |
-
" }\n",
|
46 |
-
"</style>\n",
|
47 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
48 |
-
" <thead>\n",
|
49 |
-
" <tr style=\"text-align: right;\">\n",
|
50 |
-
" <th></th>\n",
|
51 |
-
" <th>seq</th>\n",
|
52 |
-
" <th>smiles</th>\n",
|
53 |
-
" <th>affinity_uM</th>\n",
|
54 |
-
" </tr>\n",
|
55 |
-
" </thead>\n",
|
56 |
-
" <tbody>\n",
|
57 |
-
" <tr>\n",
|
58 |
-
" <th>0</th>\n",
|
59 |
-
" <td>MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE...</td>\n",
|
60 |
-
" <td>CCCCCCCCCCCCCCCCCCCC(=O)O</td>\n",
|
61 |
-
" <td>0.026</td>\n",
|
62 |
-
" </tr>\n",
|
63 |
-
" <tr>\n",
|
64 |
-
" <th>1</th>\n",
|
65 |
-
" <td>APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE...</td>\n",
|
66 |
-
" <td>OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]...</td>\n",
|
67 |
-
" <td>500.000</td>\n",
|
68 |
-
" </tr>\n",
|
69 |
-
" <tr>\n",
|
70 |
-
" <th>2</th>\n",
|
71 |
-
" <td>VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE...</td>\n",
|
72 |
-
" <td>COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)...</td>\n",
|
73 |
-
" <td>0.023</td>\n",
|
74 |
-
" </tr>\n",
|
75 |
-
" <tr>\n",
|
76 |
-
" <th>3</th>\n",
|
77 |
-
" <td>AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM...</td>\n",
|
78 |
-
" <td>OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)...</td>\n",
|
79 |
-
" <td>6.430</td>\n",
|
80 |
-
" </tr>\n",
|
81 |
-
" <tr>\n",
|
82 |
-
" <th>4</th>\n",
|
83 |
-
" <td>YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL...</td>\n",
|
84 |
-
" <td>CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1...</td>\n",
|
85 |
-
" <td>0.185</td>\n",
|
86 |
-
" </tr>\n",
|
87 |
-
" </tbody>\n",
|
88 |
-
"</table>\n",
|
89 |
-
"</div>"
|
90 |
-
],
|
91 |
-
"text/plain": [
|
92 |
-
" seq \\\n",
|
93 |
-
"0 MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... \n",
|
94 |
-
"1 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
|
95 |
-
"2 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
|
96 |
-
"3 AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... \n",
|
97 |
-
"4 YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... \n",
|
98 |
-
"\n",
|
99 |
-
" smiles affinity_uM \n",
|
100 |
-
"0 CCCCCCCCCCCCCCCCCCCC(=O)O 0.026 \n",
|
101 |
-
"1 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.000 \n",
|
102 |
-
"2 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.023 \n",
|
103 |
-
"3 OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... 6.430 \n",
|
104 |
-
"4 CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... 0.185 "
|
105 |
-
]
|
106 |
-
},
|
107 |
-
"execution_count": 3,
|
108 |
-
"metadata": {},
|
109 |
-
"output_type": "execute_result"
|
110 |
-
}
|
111 |
-
],
|
112 |
-
"source": [
|
113 |
-
"df_pdbbind.head()"
|
114 |
-
]
|
115 |
-
},
|
116 |
-
{
|
117 |
-
"cell_type": "code",
|
118 |
-
"execution_count": 4,
|
119 |
-
"id": "2787b9fd-3d6f-4ae3-a3ad-d3539b72782b",
|
120 |
-
"metadata": {},
|
121 |
-
"outputs": [],
|
122 |
-
"source": [
|
123 |
-
"from rdkit import Chem\n",
|
124 |
-
"from rdkit.Chem import MACCSkeys\n",
|
125 |
-
"import numpy as np\n",
|
126 |
-
"\n",
|
127 |
-
"def get_maccs(smi):\n",
|
128 |
-
" try:\n",
|
129 |
-
" mol = Chem.MolFromSmiles(smi)\n",
|
130 |
-
" arr = np.packbits([0 if c=='0' else 1 for c in MACCSkeys.GenMACCSKeys(mol).ToBitString()])\n",
|
131 |
-
" return np.pad(arr,(0,3)).view(np.uint32)\n",
|
132 |
-
" except Exception:\n",
|
133 |
-
" pass"
|
134 |
-
]
|
135 |
-
},
|
136 |
-
{
|
137 |
-
"cell_type": "code",
|
138 |
-
"execution_count": 5,
|
139 |
-
"id": "d1abe1c8-ac66-4289-8964-367a5b18528d",
|
140 |
-
"metadata": {},
|
141 |
-
"outputs": [],
|
142 |
-
"source": [
|
143 |
-
"df_bindingdb = pd.read_parquet('data/bindingdb.parquet')\n",
|
144 |
-
"df_bindingdb = df_bindingdb[['seq','Ligand SMILES','affinity_uM']].rename(columns={'Ligand SMILES': 'smiles'})"
|
145 |
-
]
|
146 |
-
},
|
147 |
-
{
|
148 |
-
"cell_type": "code",
|
149 |
-
"execution_count": 6,
|
150 |
-
"id": "988bab9c-5147-44e2-92ef-902eaf3c5a90",
|
151 |
-
"metadata": {},
|
152 |
-
"outputs": [
|
153 |
-
{
|
154 |
-
"data": {
|
155 |
-
"text/html": [
|
156 |
-
"<div>\n",
|
157 |
-
"<style scoped>\n",
|
158 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
159 |
-
" vertical-align: middle;\n",
|
160 |
-
" }\n",
|
161 |
-
"\n",
|
162 |
-
" .dataframe tbody tr th {\n",
|
163 |
-
" vertical-align: top;\n",
|
164 |
-
" }\n",
|
165 |
-
"\n",
|
166 |
-
" .dataframe thead th {\n",
|
167 |
-
" text-align: right;\n",
|
168 |
-
" }\n",
|
169 |
-
"</style>\n",
|
170 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
171 |
-
" <thead>\n",
|
172 |
-
" <tr style=\"text-align: right;\">\n",
|
173 |
-
" <th></th>\n",
|
174 |
-
" <th>seq</th>\n",
|
175 |
-
" <th>smiles</th>\n",
|
176 |
-
" <th>affinity_uM</th>\n",
|
177 |
-
" </tr>\n",
|
178 |
-
" </thead>\n",
|
179 |
-
" <tbody>\n",
|
180 |
-
" <tr>\n",
|
181 |
-
" <th>0</th>\n",
|
182 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
183 |
-
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
184 |
-
" <td>0.00024</td>\n",
|
185 |
-
" </tr>\n",
|
186 |
-
" <tr>\n",
|
187 |
-
" <th>1</th>\n",
|
188 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
189 |
-
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
|
190 |
-
" <td>0.00025</td>\n",
|
191 |
-
" </tr>\n",
|
192 |
-
" <tr>\n",
|
193 |
-
" <th>2</th>\n",
|
194 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
195 |
-
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
|
196 |
-
" <td>0.00041</td>\n",
|
197 |
-
" </tr>\n",
|
198 |
-
" <tr>\n",
|
199 |
-
" <th>3</th>\n",
|
200 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
201 |
-
" <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
|
202 |
-
" <td>0.00080</td>\n",
|
203 |
-
" </tr>\n",
|
204 |
-
" <tr>\n",
|
205 |
-
" <th>4</th>\n",
|
206 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
207 |
-
" <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
|
208 |
-
" <td>0.00099</td>\n",
|
209 |
-
" </tr>\n",
|
210 |
-
" </tbody>\n",
|
211 |
-
"</table>\n",
|
212 |
-
"</div>"
|
213 |
-
],
|
214 |
-
"text/plain": [
|
215 |
-
" seq \\\n",
|
216 |
-
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
217 |
-
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
218 |
-
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
219 |
-
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
220 |
-
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
221 |
-
"\n",
|
222 |
-
" smiles affinity_uM \n",
|
223 |
-
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 0.00024 \n",
|
224 |
-
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... 0.00025 \n",
|
225 |
-
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... 0.00041 \n",
|
226 |
-
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... 0.00080 \n",
|
227 |
-
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... 0.00099 "
|
228 |
-
]
|
229 |
-
},
|
230 |
-
"execution_count": 6,
|
231 |
-
"metadata": {},
|
232 |
-
"output_type": "execute_result"
|
233 |
-
}
|
234 |
-
],
|
235 |
-
"source": [
|
236 |
-
"df_bindingdb.head()"
|
237 |
-
]
|
238 |
-
},
|
239 |
-
{
|
240 |
-
"cell_type": "code",
|
241 |
-
"execution_count": 7,
|
242 |
-
"id": "d7bfee2a-c4e6-48c9-b0c6-52f6a69c7453",
|
243 |
-
"metadata": {},
|
244 |
-
"outputs": [],
|
245 |
-
"source": [
|
246 |
-
"df_moad = pd.read_parquet('data/moad.parquet')\n",
|
247 |
-
"df_moad = df_moad[['seq','smiles','affinity_uM']]"
|
248 |
-
]
|
249 |
-
},
|
250 |
-
{
|
251 |
-
"cell_type": "code",
|
252 |
-
"execution_count": 8,
|
253 |
-
"id": "25553199-1715-40fb-9260-427bdd6c3706",
|
254 |
-
"metadata": {},
|
255 |
-
"outputs": [
|
256 |
-
{
|
257 |
-
"data": {
|
258 |
-
"text/html": [
|
259 |
-
"<div>\n",
|
260 |
-
"<style scoped>\n",
|
261 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
262 |
-
" vertical-align: middle;\n",
|
263 |
-
" }\n",
|
264 |
-
"\n",
|
265 |
-
" .dataframe tbody tr th {\n",
|
266 |
-
" vertical-align: top;\n",
|
267 |
-
" }\n",
|
268 |
-
"\n",
|
269 |
-
" .dataframe thead th {\n",
|
270 |
-
" text-align: right;\n",
|
271 |
-
" }\n",
|
272 |
-
"</style>\n",
|
273 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
274 |
-
" <thead>\n",
|
275 |
-
" <tr style=\"text-align: right;\">\n",
|
276 |
-
" <th></th>\n",
|
277 |
-
" <th>seq</th>\n",
|
278 |
-
" <th>smiles</th>\n",
|
279 |
-
" <th>affinity_uM</th>\n",
|
280 |
-
" </tr>\n",
|
281 |
-
" </thead>\n",
|
282 |
-
" <tbody>\n",
|
283 |
-
" <tr>\n",
|
284 |
-
" <th>0</th>\n",
|
285 |
-
" <td>NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE...</td>\n",
|
286 |
-
" <td>NP(=O)(N)O</td>\n",
|
287 |
-
" <td>0.000620</td>\n",
|
288 |
-
" </tr>\n",
|
289 |
-
" <tr>\n",
|
290 |
-
" <th>1</th>\n",
|
291 |
-
" <td>NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE...</td>\n",
|
292 |
-
" <td>CC(=O)NO</td>\n",
|
293 |
-
" <td>2.600000</td>\n",
|
294 |
-
" </tr>\n",
|
295 |
-
" <tr>\n",
|
296 |
-
" <th>2</th>\n",
|
297 |
-
" <td>MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE...</td>\n",
|
298 |
-
" <td>C#CCCOP(=O)(O)OP(=O)(O)O</td>\n",
|
299 |
-
" <td>0.580000</td>\n",
|
300 |
-
" </tr>\n",
|
301 |
-
" <tr>\n",
|
302 |
-
" <th>3</th>\n",
|
303 |
-
" <td>MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE...</td>\n",
|
304 |
-
" <td>C#CCOP(=O)(O)OP(=O)(O)O</td>\n",
|
305 |
-
" <td>0.770000</td>\n",
|
306 |
-
" </tr>\n",
|
307 |
-
" <tr>\n",
|
308 |
-
" <th>4</th>\n",
|
309 |
-
" <td>MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV...</td>\n",
|
310 |
-
" <td>c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3...</td>\n",
|
311 |
-
" <td>15.000000</td>\n",
|
312 |
-
" </tr>\n",
|
313 |
-
" <tr>\n",
|
314 |
-
" <th>...</th>\n",
|
315 |
-
" <td>...</td>\n",
|
316 |
-
" <td>...</td>\n",
|
317 |
-
" <td>...</td>\n",
|
318 |
-
" </tr>\n",
|
319 |
-
" <tr>\n",
|
320 |
-
" <th>25420</th>\n",
|
321 |
-
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
322 |
-
" <td>None</td>\n",
|
323 |
-
" <td>127.226463</td>\n",
|
324 |
-
" </tr>\n",
|
325 |
-
" <tr>\n",
|
326 |
-
" <th>25421</th>\n",
|
327 |
-
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
328 |
-
" <td>None</td>\n",
|
329 |
-
" <td>127.226463</td>\n",
|
330 |
-
" </tr>\n",
|
331 |
-
" <tr>\n",
|
332 |
-
" <th>25422</th>\n",
|
333 |
-
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
334 |
-
" <td>None</td>\n",
|
335 |
-
" <td>169.204738</td>\n",
|
336 |
-
" </tr>\n",
|
337 |
-
" <tr>\n",
|
338 |
-
" <th>25423</th>\n",
|
339 |
-
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
340 |
-
" <td>None</td>\n",
|
341 |
-
" <td>169.204738</td>\n",
|
342 |
-
" </tr>\n",
|
343 |
-
" <tr>\n",
|
344 |
-
" <th>25424</th>\n",
|
345 |
-
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
346 |
-
" <td>None</td>\n",
|
347 |
-
" <td>169.204738</td>\n",
|
348 |
-
" </tr>\n",
|
349 |
-
" </tbody>\n",
|
350 |
-
"</table>\n",
|
351 |
-
"<p>25425 rows × 3 columns</p>\n",
|
352 |
-
"</div>"
|
353 |
-
],
|
354 |
-
"text/plain": [
|
355 |
-
" seq \\\n",
|
356 |
-
"0 NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... \n",
|
357 |
-
"1 NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... \n",
|
358 |
-
"2 MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... \n",
|
359 |
-
"3 MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... \n",
|
360 |
-
"4 MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV... \n",
|
361 |
-
"... ... \n",
|
362 |
-
"25420 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
363 |
-
"25421 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
364 |
-
"25422 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
365 |
-
"25423 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
366 |
-
"25424 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
367 |
-
"\n",
|
368 |
-
" smiles affinity_uM \n",
|
369 |
-
"0 NP(=O)(N)O 0.000620 \n",
|
370 |
-
"1 CC(=O)NO 2.600000 \n",
|
371 |
-
"2 C#CCCOP(=O)(O)OP(=O)(O)O 0.580000 \n",
|
372 |
-
"3 C#CCOP(=O)(O)OP(=O)(O)O 0.770000 \n",
|
373 |
-
"4 c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3... 15.000000 \n",
|
374 |
-
"... ... ... \n",
|
375 |
-
"25420 None 127.226463 \n",
|
376 |
-
"25421 None 127.226463 \n",
|
377 |
-
"25422 None 169.204738 \n",
|
378 |
-
"25423 None 169.204738 \n",
|
379 |
-
"25424 None 169.204738 \n",
|
380 |
-
"\n",
|
381 |
-
"[25425 rows x 3 columns]"
|
382 |
-
]
|
383 |
-
},
|
384 |
-
"execution_count": 8,
|
385 |
-
"metadata": {},
|
386 |
-
"output_type": "execute_result"
|
387 |
-
}
|
388 |
-
],
|
389 |
-
"source": [
|
390 |
-
"df_moad"
|
391 |
-
]
|
392 |
-
},
|
393 |
-
{
|
394 |
-
"cell_type": "code",
|
395 |
-
"execution_count": 9,
|
396 |
-
"id": "b2c936bc-cdc8-4bc1-b92d-f8755fd65f0a",
|
397 |
-
"metadata": {},
|
398 |
-
"outputs": [],
|
399 |
-
"source": [
|
400 |
-
"df_biolip = pd.read_parquet('data/biolip.parquet')\n",
|
401 |
-
"df_biolip = df_biolip[['seq','smiles','affinity_uM']]"
|
402 |
-
]
|
403 |
-
},
|
404 |
-
{
|
405 |
-
"cell_type": "code",
|
406 |
-
"execution_count": 10,
|
407 |
-
"id": "cee93018-601d-458b-af44-bd978da7a2bc",
|
408 |
-
"metadata": {},
|
409 |
-
"outputs": [
|
410 |
-
{
|
411 |
-
"data": {
|
412 |
-
"text/html": [
|
413 |
-
"<div>\n",
|
414 |
-
"<style scoped>\n",
|
415 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
416 |
-
" vertical-align: middle;\n",
|
417 |
-
" }\n",
|
418 |
-
"\n",
|
419 |
-
" .dataframe tbody tr th {\n",
|
420 |
-
" vertical-align: top;\n",
|
421 |
-
" }\n",
|
422 |
-
"\n",
|
423 |
-
" .dataframe thead th {\n",
|
424 |
-
" text-align: right;\n",
|
425 |
-
" }\n",
|
426 |
-
"</style>\n",
|
427 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
428 |
-
" <thead>\n",
|
429 |
-
" <tr style=\"text-align: right;\">\n",
|
430 |
-
" <th></th>\n",
|
431 |
-
" <th>seq</th>\n",
|
432 |
-
" <th>smiles</th>\n",
|
433 |
-
" <th>affinity_uM</th>\n",
|
434 |
-
" </tr>\n",
|
435 |
-
" </thead>\n",
|
436 |
-
" <tbody>\n",
|
437 |
-
" <tr>\n",
|
438 |
-
" <th>38</th>\n",
|
439 |
-
" <td>PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC...</td>\n",
|
440 |
-
" <td>CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C</td>\n",
|
441 |
-
" <td>1.5000</td>\n",
|
442 |
-
" </tr>\n",
|
443 |
-
" <tr>\n",
|
444 |
-
" <th>43</th>\n",
|
445 |
-
" <td>MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA...</td>\n",
|
446 |
-
" <td>OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c...</td>\n",
|
447 |
-
" <td>24.0000</td>\n",
|
448 |
-
" </tr>\n",
|
449 |
-
" <tr>\n",
|
450 |
-
" <th>53</th>\n",
|
451 |
-
" <td>EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKV...</td>\n",
|
452 |
-
" <td>O[C@@H]1[C@@H](CO[P@](=O)(O[P@@](=O)(C(CCCC(P(...</td>\n",
|
453 |
-
" <td>6.0000</td>\n",
|
454 |
-
" </tr>\n",
|
455 |
-
" <tr>\n",
|
456 |
-
" <th>54</th>\n",
|
457 |
-
" <td>MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA...</td>\n",
|
458 |
-
" <td>CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(...</td>\n",
|
459 |
-
" <td>10.0000</td>\n",
|
460 |
-
" </tr>\n",
|
461 |
-
" <tr>\n",
|
462 |
-
" <th>55</th>\n",
|
463 |
-
" <td>MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL...</td>\n",
|
464 |
-
" <td>c1ccccc1</td>\n",
|
465 |
-
" <td>175.0000</td>\n",
|
466 |
-
" </tr>\n",
|
467 |
-
" <tr>\n",
|
468 |
-
" <th>...</th>\n",
|
469 |
-
" <td>...</td>\n",
|
470 |
-
" <td>...</td>\n",
|
471 |
-
" <td>...</td>\n",
|
472 |
-
" </tr>\n",
|
473 |
-
" <tr>\n",
|
474 |
-
" <th>105118</th>\n",
|
475 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
|
476 |
-
" <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
|
477 |
-
" <td>0.0045</td>\n",
|
478 |
-
" </tr>\n",
|
479 |
-
" <tr>\n",
|
480 |
-
" <th>105119</th>\n",
|
481 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
|
482 |
-
" <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
|
483 |
-
" <td>0.0045</td>\n",
|
484 |
-
" </tr>\n",
|
485 |
-
" <tr>\n",
|
486 |
-
" <th>105124</th>\n",
|
487 |
-
" <td>SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV...</td>\n",
|
488 |
-
" <td>O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O...</td>\n",
|
489 |
-
" <td>125.0000</td>\n",
|
490 |
-
" </tr>\n",
|
491 |
-
" <tr>\n",
|
492 |
-
" <th>105133</th>\n",
|
493 |
-
" <td>ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI...</td>\n",
|
494 |
-
" <td>CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]...</td>\n",
|
495 |
-
" <td>2.0000</td>\n",
|
496 |
-
" </tr>\n",
|
497 |
-
" <tr>\n",
|
498 |
-
" <th>105138</th>\n",
|
499 |
-
" <td>KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR...</td>\n",
|
500 |
-
" <td>CC[Se]C(=N)N</td>\n",
|
501 |
-
" <td>0.0390</td>\n",
|
502 |
-
" </tr>\n",
|
503 |
-
" </tbody>\n",
|
504 |
-
"</table>\n",
|
505 |
-
"<p>13645 rows × 3 columns</p>\n",
|
506 |
-
"</div>"
|
507 |
-
],
|
508 |
-
"text/plain": [
|
509 |
-
" seq \\\n",
|
510 |
-
"38 PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC... \n",
|
511 |
-
"43 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
|
512 |
-
"53 EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKV... \n",
|
513 |
-
"54 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
|
514 |
-
"55 MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... \n",
|
515 |
-
"... ... \n",
|
516 |
-
"105118 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
|
517 |
-
"105119 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
|
518 |
-
"105124 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
|
519 |
-
"105133 ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... \n",
|
520 |
-
"105138 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
|
521 |
-
"\n",
|
522 |
-
" smiles affinity_uM \n",
|
523 |
-
"38 CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C 1.5000 \n",
|
524 |
-
"43 OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c... 24.0000 \n",
|
525 |
-
"53 O[C@@H]1[C@@H](CO[P@](=O)(O[P@@](=O)(C(CCCC(P(... 6.0000 \n",
|
526 |
-
"54 CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(... 10.0000 \n",
|
527 |
-
"55 c1ccccc1 175.0000 \n",
|
528 |
-
"... ... ... \n",
|
529 |
-
"105118 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
|
530 |
-
"105119 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
|
531 |
-
"105124 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.0000 \n",
|
532 |
-
"105133 CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... 2.0000 \n",
|
533 |
-
"105138 CC[Se]C(=N)N 0.0390 \n",
|
534 |
-
"\n",
|
535 |
-
"[13645 rows x 3 columns]"
|
536 |
-
]
|
537 |
-
},
|
538 |
-
"execution_count": 10,
|
539 |
-
"metadata": {},
|
540 |
-
"output_type": "execute_result"
|
541 |
-
}
|
542 |
-
],
|
543 |
-
"source": [
|
544 |
-
"df_biolip"
|
545 |
-
]
|
546 |
-
},
|
547 |
-
{
|
548 |
-
"cell_type": "code",
|
549 |
-
"execution_count": 11,
|
550 |
-
"id": "195f92db-fe06-4d03-8500-8d6c310a3347",
|
551 |
-
"metadata": {},
|
552 |
-
"outputs": [],
|
553 |
-
"source": [
|
554 |
-
"df_all = pd.concat([df_pdbbind,df_bindingdb,df_moad,df_biolip]).reset_index()"
|
555 |
-
]
|
556 |
-
},
|
557 |
-
{
|
558 |
-
"cell_type": "code",
|
559 |
-
"execution_count": 12,
|
560 |
-
"id": "d25c1e24-6566-4944-a0b4-944b3c8dbc6f",
|
561 |
-
"metadata": {},
|
562 |
-
"outputs": [
|
563 |
-
{
|
564 |
-
"data": {
|
565 |
-
"text/plain": [
|
566 |
-
"2283641"
|
567 |
-
]
|
568 |
-
},
|
569 |
-
"execution_count": 12,
|
570 |
-
"metadata": {},
|
571 |
-
"output_type": "execute_result"
|
572 |
-
}
|
573 |
-
],
|
574 |
-
"source": [
|
575 |
-
"len(df_all)"
|
576 |
-
]
|
577 |
-
},
|
578 |
-
{
|
579 |
-
"cell_type": "code",
|
580 |
-
"execution_count": 13,
|
581 |
-
"id": "c8287da2-cfdf-4d89-b175-f4c6b38ff8ac",
|
582 |
-
"metadata": {},
|
583 |
-
"outputs": [
|
584 |
-
{
|
585 |
-
"name": "stdout",
|
586 |
-
"output_type": "stream",
|
587 |
-
"text": [
|
588 |
-
"INFO: Pandarallel will run on 32 workers.\n",
|
589 |
-
"INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n"
|
590 |
-
]
|
591 |
-
}
|
592 |
-
],
|
593 |
-
"source": [
|
594 |
-
"from pandarallel import pandarallel\n",
|
595 |
-
"pandarallel.initialize()"
|
596 |
-
]
|
597 |
-
},
|
598 |
-
{
|
599 |
-
"cell_type": "code",
|
600 |
-
"execution_count": null,
|
601 |
-
"id": "de5ffc4a-afb7-4a26-8d57-509c2278d750",
|
602 |
-
"metadata": {},
|
603 |
-
"outputs": [],
|
604 |
-
"source": [
|
605 |
-
"df_all['maccs'] = df_all['smiles'].parallel_apply(get_maccs)"
|
606 |
-
]
|
607 |
-
},
|
608 |
-
{
|
609 |
-
"cell_type": "code",
|
610 |
-
"execution_count": 16,
|
611 |
-
"id": "59a6706d-dab9-4ee0-8ef6-33537a3622a4",
|
612 |
-
"metadata": {},
|
613 |
-
"outputs": [],
|
614 |
-
"source": [
|
615 |
-
"df_all.to_parquet('data/all_maccs.parquet')"
|
616 |
-
]
|
617 |
-
},
|
618 |
-
{
|
619 |
-
"cell_type": "code",
|
620 |
-
"execution_count": 17,
|
621 |
-
"id": "4ccf2ee5-d369-4c0e-bb91-792765d661bf",
|
622 |
-
"metadata": {},
|
623 |
-
"outputs": [],
|
624 |
-
"source": [
|
625 |
-
"import numpy as np"
|
626 |
-
]
|
627 |
-
},
|
628 |
-
{
|
629 |
-
"cell_type": "code",
|
630 |
-
"execution_count": 18,
|
631 |
-
"id": "399f4ace-6dc3-441f-972a-f7b3a103e239",
|
632 |
-
"metadata": {},
|
633 |
-
"outputs": [
|
634 |
-
{
|
635 |
-
"data": {
|
636 |
-
"text/plain": [
|
637 |
-
"2283641"
|
638 |
-
]
|
639 |
-
},
|
640 |
-
"execution_count": 18,
|
641 |
-
"metadata": {},
|
642 |
-
"output_type": "execute_result"
|
643 |
-
}
|
644 |
-
],
|
645 |
-
"source": [
|
646 |
-
"len(df_all)"
|
647 |
-
]
|
648 |
-
},
|
649 |
-
{
|
650 |
-
"cell_type": "code",
|
651 |
-
"execution_count": 19,
|
652 |
-
"id": "8a4bbb18-e62f-4774-ac6b-8a1be68204c1",
|
653 |
-
"metadata": {},
|
654 |
-
"outputs": [],
|
655 |
-
"source": [
|
656 |
-
"df_all = pd.read_parquet('data/all_maccs.parquet')\n",
|
657 |
-
"df_all = df_all.dropna().reset_index(drop=True)"
|
658 |
-
]
|
659 |
-
},
|
660 |
-
{
|
661 |
-
"cell_type": "code",
|
662 |
-
"execution_count": 25,
|
663 |
-
"id": "d210fe56-a7eb-4adc-a77a-14c0c6d0034e",
|
664 |
-
"metadata": {},
|
665 |
-
"outputs": [
|
666 |
-
{
|
667 |
-
"data": {
|
668 |
-
"text/plain": [
|
669 |
-
"2277323"
|
670 |
-
]
|
671 |
-
},
|
672 |
-
"execution_count": 25,
|
673 |
-
"metadata": {},
|
674 |
-
"output_type": "execute_result"
|
675 |
-
}
|
676 |
-
],
|
677 |
-
"source": [
|
678 |
-
"len(df_all)"
|
679 |
-
]
|
680 |
-
},
|
681 |
-
{
|
682 |
-
"cell_type": "code",
|
683 |
-
"execution_count": 26,
|
684 |
-
"id": "d12b365d-98bd-4b61-b836-1a08d2e55418",
|
685 |
-
"metadata": {},
|
686 |
-
"outputs": [],
|
687 |
-
"source": [
|
688 |
-
"maccs = df_all['maccs'].to_numpy()\n",
|
689 |
-
"#df_reindex[df_reindex.duplicated(keep='first')].reset_index()"
|
690 |
-
]
|
691 |
-
},
|
692 |
-
{
|
693 |
-
"cell_type": "code",
|
694 |
-
"execution_count": 27,
|
695 |
-
"id": "80c15210-1af3-436e-970b-f81fc596fb41",
|
696 |
-
"metadata": {},
|
697 |
-
"outputs": [],
|
698 |
-
"source": [
|
699 |
-
"df_maccs = pd.DataFrame(np.vstack(maccs))"
|
700 |
-
]
|
701 |
-
},
|
702 |
-
{
|
703 |
-
"cell_type": "code",
|
704 |
-
"execution_count": 28,
|
705 |
-
"id": "30c314b8-8fe7-48ae-a2b8-149de1471b0c",
|
706 |
-
"metadata": {},
|
707 |
-
"outputs": [
|
708 |
-
{
|
709 |
-
"data": {
|
710 |
-
"text/plain": [
|
711 |
-
"0 int64\n",
|
712 |
-
"1 int64\n",
|
713 |
-
"2 int64\n",
|
714 |
-
"3 int64\n",
|
715 |
-
"4 int64\n",
|
716 |
-
"5 int64\n",
|
717 |
-
"dtype: object"
|
718 |
-
]
|
719 |
-
},
|
720 |
-
"execution_count": 28,
|
721 |
-
"metadata": {},
|
722 |
-
"output_type": "execute_result"
|
723 |
-
}
|
724 |
-
],
|
725 |
-
"source": [
|
726 |
-
"df_maccs.dtypes"
|
727 |
-
]
|
728 |
-
},
|
729 |
-
{
|
730 |
-
"cell_type": "code",
|
731 |
-
"execution_count": 29,
|
732 |
-
"id": "70a0a820-4d0c-4472-af96-9c301c0ab204",
|
733 |
-
"metadata": {},
|
734 |
-
"outputs": [],
|
735 |
-
"source": [
|
736 |
-
"df_expand = pd.concat([df_all[['seq','smiles','affinity_uM']],df_maccs],axis=1)"
|
737 |
-
]
|
738 |
-
},
|
739 |
-
{
|
740 |
-
"cell_type": "code",
|
741 |
-
"execution_count": 30,
|
742 |
-
"id": "13d092fa-5625-40d0-b7ec-e3405ea20279",
|
743 |
-
"metadata": {},
|
744 |
-
"outputs": [
|
745 |
-
{
|
746 |
-
"data": {
|
747 |
-
"text/html": [
|
748 |
-
"<div>\n",
|
749 |
-
"<style scoped>\n",
|
750 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
751 |
-
" vertical-align: middle;\n",
|
752 |
-
" }\n",
|
753 |
-
"\n",
|
754 |
-
" .dataframe tbody tr th {\n",
|
755 |
-
" vertical-align: top;\n",
|
756 |
-
" }\n",
|
757 |
-
"\n",
|
758 |
-
" .dataframe thead th {\n",
|
759 |
-
" text-align: right;\n",
|
760 |
-
" }\n",
|
761 |
-
"</style>\n",
|
762 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
763 |
-
" <thead>\n",
|
764 |
-
" <tr style=\"text-align: right;\">\n",
|
765 |
-
" <th></th>\n",
|
766 |
-
" <th>seq</th>\n",
|
767 |
-
" <th>smiles</th>\n",
|
768 |
-
" <th>affinity_uM</th>\n",
|
769 |
-
" <th>0</th>\n",
|
770 |
-
" <th>1</th>\n",
|
771 |
-
" <th>2</th>\n",
|
772 |
-
" <th>3</th>\n",
|
773 |
-
" <th>4</th>\n",
|
774 |
-
" <th>5</th>\n",
|
775 |
-
" </tr>\n",
|
776 |
-
" </thead>\n",
|
777 |
-
" <tbody>\n",
|
778 |
-
" <tr>\n",
|
779 |
-
" <th>0</th>\n",
|
780 |
-
" <td>MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE...</td>\n",
|
781 |
-
" <td>CCCCCCCCCCCCCCCCCCCC(=O)O</td>\n",
|
782 |
-
" <td>0.0260</td>\n",
|
783 |
-
" <td>0</td>\n",
|
784 |
-
" <td>0</td>\n",
|
785 |
-
" <td>805306368</td>\n",
|
786 |
-
" <td>272271360</td>\n",
|
787 |
-
" <td>890245320</td>\n",
|
788 |
-
" <td>136</td>\n",
|
789 |
-
" </tr>\n",
|
790 |
-
" <tr>\n",
|
791 |
-
" <th>1</th>\n",
|
792 |
-
" <td>APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE...</td>\n",
|
793 |
-
" <td>OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]...</td>\n",
|
794 |
-
" <td>500.0000</td>\n",
|
795 |
-
" <td>2147483648</td>\n",
|
796 |
-
" <td>3242590208</td>\n",
|
797 |
-
" <td>1914732547</td>\n",
|
798 |
-
" <td>994116706</td>\n",
|
799 |
-
" <td>3748288829</td>\n",
|
800 |
-
" <td>124</td>\n",
|
801 |
-
" </tr>\n",
|
802 |
-
" <tr>\n",
|
803 |
-
" <th>2</th>\n",
|
804 |
-
" <td>VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE...</td>\n",
|
805 |
-
" <td>COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)...</td>\n",
|
806 |
-
" <td>0.0230</td>\n",
|
807 |
-
" <td>131072</td>\n",
|
808 |
-
" <td>1109655552</td>\n",
|
809 |
-
" <td>2123376961</td>\n",
|
810 |
-
" <td>3477340882</td>\n",
|
811 |
-
" <td>2951175957</td>\n",
|
812 |
-
" <td>252</td>\n",
|
813 |
-
" </tr>\n",
|
814 |
-
" <tr>\n",
|
815 |
-
" <th>3</th>\n",
|
816 |
-
" <td>AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM...</td>\n",
|
817 |
-
" <td>OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)...</td>\n",
|
818 |
-
" <td>6.4300</td>\n",
|
819 |
-
" <td>0</td>\n",
|
820 |
-
" <td>6685696</td>\n",
|
821 |
-
" <td>2033191680</td>\n",
|
822 |
-
" <td>1345701844</td>\n",
|
823 |
-
" <td>2133187096</td>\n",
|
824 |
-
" <td>220</td>\n",
|
825 |
-
" </tr>\n",
|
826 |
-
" <tr>\n",
|
827 |
-
" <th>4</th>\n",
|
828 |
-
" <td>YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL...</td>\n",
|
829 |
-
" <td>CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1...</td>\n",
|
830 |
-
" <td>0.1850</td>\n",
|
831 |
-
" <td>1048576</td>\n",
|
832 |
-
" <td>1107427332</td>\n",
|
833 |
-
" <td>2109513024</td>\n",
|
834 |
-
" <td>4081492984</td>\n",
|
835 |
-
" <td>4026260436</td>\n",
|
836 |
-
" <td>252</td>\n",
|
837 |
-
" </tr>\n",
|
838 |
-
" <tr>\n",
|
839 |
-
" <th>...</th>\n",
|
840 |
-
" <td>...</td>\n",
|
841 |
-
" <td>...</td>\n",
|
842 |
-
" <td>...</td>\n",
|
843 |
-
" <td>...</td>\n",
|
844 |
-
" <td>...</td>\n",
|
845 |
-
" <td>...</td>\n",
|
846 |
-
" <td>...</td>\n",
|
847 |
-
" <td>...</td>\n",
|
848 |
-
" <td>...</td>\n",
|
849 |
-
" </tr>\n",
|
850 |
-
" <tr>\n",
|
851 |
-
" <th>2277318</th>\n",
|
852 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
|
853 |
-
" <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
|
854 |
-
" <td>0.0045</td>\n",
|
855 |
-
" <td>65536</td>\n",
|
856 |
-
" <td>393216</td>\n",
|
857 |
-
" <td>964698368</td>\n",
|
858 |
-
" <td>369403648</td>\n",
|
859 |
-
" <td>4284858000</td>\n",
|
860 |
-
" <td>252</td>\n",
|
861 |
-
" </tr>\n",
|
862 |
-
" <tr>\n",
|
863 |
-
" <th>2277319</th>\n",
|
864 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
|
865 |
-
" <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
|
866 |
-
" <td>0.0045</td>\n",
|
867 |
-
" <td>65536</td>\n",
|
868 |
-
" <td>393216</td>\n",
|
869 |
-
" <td>964698368</td>\n",
|
870 |
-
" <td>369403648</td>\n",
|
871 |
-
" <td>4284858000</td>\n",
|
872 |
-
" <td>252</td>\n",
|
873 |
-
" </tr>\n",
|
874 |
-
" <tr>\n",
|
875 |
-
" <th>2277320</th>\n",
|
876 |
-
" <td>SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV...</td>\n",
|
877 |
-
" <td>O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O...</td>\n",
|
878 |
-
" <td>125.0000</td>\n",
|
879 |
-
" <td>67108864</td>\n",
|
880 |
-
" <td>1115688962</td>\n",
|
881 |
-
" <td>1771869508</td>\n",
|
882 |
-
" <td>4018431718</td>\n",
|
883 |
-
" <td>3744193341</td>\n",
|
884 |
-
" <td>124</td>\n",
|
885 |
-
" </tr>\n",
|
886 |
-
" <tr>\n",
|
887 |
-
" <th>2277321</th>\n",
|
888 |
-
" <td>ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI...</td>\n",
|
889 |
-
" <td>CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]...</td>\n",
|
890 |
-
" <td>2.0000</td>\n",
|
891 |
-
" <td>2097152</td>\n",
|
892 |
-
" <td>137216</td>\n",
|
893 |
-
" <td>958148868</td>\n",
|
894 |
-
" <td>1746307978</td>\n",
|
895 |
-
" <td>2067783280</td>\n",
|
896 |
-
" <td>204</td>\n",
|
897 |
-
" </tr>\n",
|
898 |
-
" <tr>\n",
|
899 |
-
" <th>2277322</th>\n",
|
900 |
-
" <td>KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR...</td>\n",
|
901 |
-
" <td>CC[Se]C(=N)N</td>\n",
|
902 |
-
" <td>0.0390</td>\n",
|
903 |
-
" <td>16</td>\n",
|
904 |
-
" <td>6144</td>\n",
|
905 |
-
" <td>537396736</td>\n",
|
906 |
-
" <td>2170880</td>\n",
|
907 |
-
" <td>1510015504</td>\n",
|
908 |
-
" <td>192</td>\n",
|
909 |
-
" </tr>\n",
|
910 |
-
" </tbody>\n",
|
911 |
-
"</table>\n",
|
912 |
-
"<p>2277323 rows × 9 columns</p>\n",
|
913 |
-
"</div>"
|
914 |
-
],
|
915 |
-
"text/plain": [
|
916 |
-
" seq \\\n",
|
917 |
-
"0 MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... \n",
|
918 |
-
"1 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
|
919 |
-
"2 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
|
920 |
-
"3 AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... \n",
|
921 |
-
"4 YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... \n",
|
922 |
-
"... ... \n",
|
923 |
-
"2277318 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
|
924 |
-
"2277319 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
|
925 |
-
"2277320 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
|
926 |
-
"2277321 ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... \n",
|
927 |
-
"2277322 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
|
928 |
-
"\n",
|
929 |
-
" smiles affinity_uM \\\n",
|
930 |
-
"0 CCCCCCCCCCCCCCCCCCCC(=O)O 0.0260 \n",
|
931 |
-
"1 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.0000 \n",
|
932 |
-
"2 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.0230 \n",
|
933 |
-
"3 OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... 6.4300 \n",
|
934 |
-
"4 CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... 0.1850 \n",
|
935 |
-
"... ... ... \n",
|
936 |
-
"2277318 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
|
937 |
-
"2277319 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
|
938 |
-
"2277320 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.0000 \n",
|
939 |
-
"2277321 CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... 2.0000 \n",
|
940 |
-
"2277322 CC[Se]C(=N)N 0.0390 \n",
|
941 |
-
"\n",
|
942 |
-
" 0 1 2 3 4 5 \n",
|
943 |
-
"0 0 0 805306368 272271360 890245320 136 \n",
|
944 |
-
"1 2147483648 3242590208 1914732547 994116706 3748288829 124 \n",
|
945 |
-
"2 131072 1109655552 2123376961 3477340882 2951175957 252 \n",
|
946 |
-
"3 0 6685696 2033191680 1345701844 2133187096 220 \n",
|
947 |
-
"4 1048576 1107427332 2109513024 4081492984 4026260436 252 \n",
|
948 |
-
"... ... ... ... ... ... ... \n",
|
949 |
-
"2277318 65536 393216 964698368 369403648 4284858000 252 \n",
|
950 |
-
"2277319 65536 393216 964698368 369403648 4284858000 252 \n",
|
951 |
-
"2277320 67108864 1115688962 1771869508 4018431718 3744193341 124 \n",
|
952 |
-
"2277321 2097152 137216 958148868 1746307978 2067783280 204 \n",
|
953 |
-
"2277322 16 6144 537396736 2170880 1510015504 192 \n",
|
954 |
-
"\n",
|
955 |
-
"[2277323 rows x 9 columns]"
|
956 |
-
]
|
957 |
-
},
|
958 |
-
"execution_count": 30,
|
959 |
-
"metadata": {},
|
960 |
-
"output_type": "execute_result"
|
961 |
-
}
|
962 |
-
],
|
963 |
-
"source": [
|
964 |
-
"df_expand"
|
965 |
-
]
|
966 |
-
},
|
967 |
-
{
|
968 |
-
"cell_type": "code",
|
969 |
-
"execution_count": 31,
|
970 |
-
"id": "30f7fff7-3cfe-41c8-97c9-666f3e256222",
|
971 |
-
"metadata": {},
|
972 |
-
"outputs": [
|
973 |
-
{
|
974 |
-
"data": {
|
975 |
-
"text/plain": [
|
976 |
-
"Index(['seq', 'smiles', 'affinity_uM', 0, 1, 2, 3, 4, 5], dtype='object')"
|
977 |
-
]
|
978 |
-
},
|
979 |
-
"execution_count": 31,
|
980 |
-
"metadata": {},
|
981 |
-
"output_type": "execute_result"
|
982 |
-
}
|
983 |
-
],
|
984 |
-
"source": [
|
985 |
-
"df_expand.columns"
|
986 |
-
]
|
987 |
-
},
|
988 |
-
{
|
989 |
-
"cell_type": "code",
|
990 |
-
"execution_count": 32,
|
991 |
-
"id": "16d2b26e-984f-4c71-af19-a3e711ed9ca2",
|
992 |
-
"metadata": {},
|
993 |
-
"outputs": [],
|
994 |
-
"source": [
|
995 |
-
"df_reindex = df_expand.set_index([0,1,2,3,4,5,'seq'])"
|
996 |
-
]
|
997 |
-
},
|
998 |
-
{
|
999 |
-
"cell_type": "code",
|
1000 |
-
"execution_count": 33,
|
1001 |
-
"id": "27fa2150-8152-444b-ba5b-24bea39fc098",
|
1002 |
-
"metadata": {},
|
1003 |
-
"outputs": [
|
1004 |
-
{
|
1005 |
-
"data": {
|
1006 |
-
"text/plain": [
|
1007 |
-
"Index(['smiles', 'affinity_uM'], dtype='object')"
|
1008 |
-
]
|
1009 |
-
},
|
1010 |
-
"execution_count": 33,
|
1011 |
-
"metadata": {},
|
1012 |
-
"output_type": "execute_result"
|
1013 |
-
}
|
1014 |
-
],
|
1015 |
-
"source": [
|
1016 |
-
"df_reindex.columns"
|
1017 |
-
]
|
1018 |
-
},
|
1019 |
-
{
|
1020 |
-
"cell_type": "code",
|
1021 |
-
"execution_count": 34,
|
1022 |
-
"id": "89edacbc-52f3-4a76-90b0-95273f5e53b3",
|
1023 |
-
"metadata": {},
|
1024 |
-
"outputs": [],
|
1025 |
-
"source": [
|
1026 |
-
"df_nr = df_reindex[~df_reindex.duplicated(keep='first')].reset_index()\n",
|
1027 |
-
"df_nr = df_nr.drop(columns=[0,1,2,3,4,5])"
|
1028 |
-
]
|
1029 |
-
},
|
1030 |
-
{
|
1031 |
-
"cell_type": "code",
|
1032 |
-
"execution_count": 36,
|
1033 |
-
"id": "6a704c5e-68a6-418f-bcad-8688a13ca1d6",
|
1034 |
-
"metadata": {},
|
1035 |
-
"outputs": [],
|
1036 |
-
"source": [
|
1037 |
-
"# final sanity checks"
|
1038 |
-
]
|
1039 |
-
},
|
1040 |
-
{
|
1041 |
-
"cell_type": "code",
|
1042 |
-
"execution_count": 37,
|
1043 |
-
"id": "0cad3882-975d-4693-aad1-63ec26646bd0",
|
1044 |
-
"metadata": {},
|
1045 |
-
"outputs": [
|
1046 |
-
{
|
1047 |
-
"name": "stderr",
|
1048 |
-
"output_type": "stream",
|
1049 |
-
"text": [
|
1050 |
-
"/ccs/proj/stf006/glaser/conda-envs/dask/lib/python3.9/site-packages/pandas/core/arraylike.py:358: RuntimeWarning: divide by zero encountered in log\n",
|
1051 |
-
" result = getattr(ufunc, method)(*inputs, **kwargs)\n"
|
1052 |
-
]
|
1053 |
-
}
|
1054 |
-
],
|
1055 |
-
"source": [
|
1056 |
-
"df_nr['neg_log10_affinity_M'] = 6-np.log(df_nr['affinity_uM'])/np.log(10)"
|
1057 |
-
]
|
1058 |
-
},
|
1059 |
-
{
|
1060 |
-
"cell_type": "code",
|
1061 |
-
"execution_count": 38,
|
1062 |
-
"id": "c200e29a-3f14-41f4-b620-ccce0eb0d5ce",
|
1063 |
-
"metadata": {},
|
1064 |
-
"outputs": [
|
1065 |
-
{
|
1066 |
-
"data": {
|
1067 |
-
"text/html": [
|
1068 |
-
"<div>\n",
|
1069 |
-
"<style scoped>\n",
|
1070 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
1071 |
-
" vertical-align: middle;\n",
|
1072 |
-
" }\n",
|
1073 |
-
"\n",
|
1074 |
-
" .dataframe tbody tr th {\n",
|
1075 |
-
" vertical-align: top;\n",
|
1076 |
-
" }\n",
|
1077 |
-
"\n",
|
1078 |
-
" .dataframe thead th {\n",
|
1079 |
-
" text-align: right;\n",
|
1080 |
-
" }\n",
|
1081 |
-
"</style>\n",
|
1082 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
1083 |
-
" <thead>\n",
|
1084 |
-
" <tr style=\"text-align: right;\">\n",
|
1085 |
-
" <th></th>\n",
|
1086 |
-
" <th>seq</th>\n",
|
1087 |
-
" <th>smiles</th>\n",
|
1088 |
-
" <th>affinity_uM</th>\n",
|
1089 |
-
" <th>neg_log10_affinity_M</th>\n",
|
1090 |
-
" </tr>\n",
|
1091 |
-
" </thead>\n",
|
1092 |
-
" <tbody>\n",
|
1093 |
-
" <tr>\n",
|
1094 |
-
" <th>0</th>\n",
|
1095 |
-
" <td>MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE...</td>\n",
|
1096 |
-
" <td>CCCCCCCCCCCCCCCCCCCC(=O)O</td>\n",
|
1097 |
-
" <td>0.0260</td>\n",
|
1098 |
-
" <td>7.585027</td>\n",
|
1099 |
-
" </tr>\n",
|
1100 |
-
" <tr>\n",
|
1101 |
-
" <th>1</th>\n",
|
1102 |
-
" <td>APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE...</td>\n",
|
1103 |
-
" <td>OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]...</td>\n",
|
1104 |
-
" <td>500.0000</td>\n",
|
1105 |
-
" <td>3.301030</td>\n",
|
1106 |
-
" </tr>\n",
|
1107 |
-
" <tr>\n",
|
1108 |
-
" <th>2</th>\n",
|
1109 |
-
" <td>VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE...</td>\n",
|
1110 |
-
" <td>COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)...</td>\n",
|
1111 |
-
" <td>0.0230</td>\n",
|
1112 |
-
" <td>7.638272</td>\n",
|
1113 |
-
" </tr>\n",
|
1114 |
-
" <tr>\n",
|
1115 |
-
" <th>3</th>\n",
|
1116 |
-
" <td>AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM...</td>\n",
|
1117 |
-
" <td>OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)...</td>\n",
|
1118 |
-
" <td>6.4300</td>\n",
|
1119 |
-
" <td>5.191789</td>\n",
|
1120 |
-
" </tr>\n",
|
1121 |
-
" <tr>\n",
|
1122 |
-
" <th>4</th>\n",
|
1123 |
-
" <td>YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL...</td>\n",
|
1124 |
-
" <td>CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1...</td>\n",
|
1125 |
-
" <td>0.1850</td>\n",
|
1126 |
-
" <td>6.732828</td>\n",
|
1127 |
-
" </tr>\n",
|
1128 |
-
" <tr>\n",
|
1129 |
-
" <th>...</th>\n",
|
1130 |
-
" <td>...</td>\n",
|
1131 |
-
" <td>...</td>\n",
|
1132 |
-
" <td>...</td>\n",
|
1133 |
-
" <td>...</td>\n",
|
1134 |
-
" </tr>\n",
|
1135 |
-
" <tr>\n",
|
1136 |
-
" <th>1838495</th>\n",
|
1137 |
-
" <td>IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL...</td>\n",
|
1138 |
-
" <td>O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(...</td>\n",
|
1139 |
-
" <td>8.0000</td>\n",
|
1140 |
-
" <td>5.096910</td>\n",
|
1141 |
-
" </tr>\n",
|
1142 |
-
" <tr>\n",
|
1143 |
-
" <th>1838496</th>\n",
|
1144 |
-
" <td>IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL...</td>\n",
|
1145 |
-
" <td>CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H...</td>\n",
|
1146 |
-
" <td>8.0000</td>\n",
|
1147 |
-
" <td>5.096910</td>\n",
|
1148 |
-
" </tr>\n",
|
1149 |
-
" <tr>\n",
|
1150 |
-
" <th>1838497</th>\n",
|
1151 |
-
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
|
1152 |
-
" <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
|
1153 |
-
" <td>0.0045</td>\n",
|
1154 |
-
" <td>8.346787</td>\n",
|
1155 |
-
" </tr>\n",
|
1156 |
-
" <tr>\n",
|
1157 |
-
" <th>1838498</th>\n",
|
1158 |
-
" <td>ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI...</td>\n",
|
1159 |
-
" <td>CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]...</td>\n",
|
1160 |
-
" <td>2.0000</td>\n",
|
1161 |
-
" <td>5.698970</td>\n",
|
1162 |
-
" </tr>\n",
|
1163 |
-
" <tr>\n",
|
1164 |
-
" <th>1838499</th>\n",
|
1165 |
-
" <td>KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR...</td>\n",
|
1166 |
-
" <td>CC[Se]C(=N)N</td>\n",
|
1167 |
-
" <td>0.0390</td>\n",
|
1168 |
-
" <td>7.408935</td>\n",
|
1169 |
-
" </tr>\n",
|
1170 |
-
" </tbody>\n",
|
1171 |
-
"</table>\n",
|
1172 |
-
"<p>1838500 rows × 4 columns</p>\n",
|
1173 |
-
"</div>"
|
1174 |
-
],
|
1175 |
-
"text/plain": [
|
1176 |
-
" seq \\\n",
|
1177 |
-
"0 MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... \n",
|
1178 |
-
"1 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
|
1179 |
-
"2 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
|
1180 |
-
"3 AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... \n",
|
1181 |
-
"4 YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... \n",
|
1182 |
-
"... ... \n",
|
1183 |
-
"1838495 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
|
1184 |
-
"1838496 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
|
1185 |
-
"1838497 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
|
1186 |
-
"1838498 ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... \n",
|
1187 |
-
"1838499 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
|
1188 |
-
"\n",
|
1189 |
-
" smiles affinity_uM \\\n",
|
1190 |
-
"0 CCCCCCCCCCCCCCCCCCCC(=O)O 0.0260 \n",
|
1191 |
-
"1 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.0000 \n",
|
1192 |
-
"2 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.0230 \n",
|
1193 |
-
"3 OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... 6.4300 \n",
|
1194 |
-
"4 CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... 0.1850 \n",
|
1195 |
-
"... ... ... \n",
|
1196 |
-
"1838495 O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(... 8.0000 \n",
|
1197 |
-
"1838496 CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H... 8.0000 \n",
|
1198 |
-
"1838497 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
|
1199 |
-
"1838498 CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... 2.0000 \n",
|
1200 |
-
"1838499 CC[Se]C(=N)N 0.0390 \n",
|
1201 |
-
"\n",
|
1202 |
-
" neg_log10_affinity_M \n",
|
1203 |
-
"0 7.585027 \n",
|
1204 |
-
"1 3.301030 \n",
|
1205 |
-
"2 7.638272 \n",
|
1206 |
-
"3 5.191789 \n",
|
1207 |
-
"4 6.732828 \n",
|
1208 |
-
"... ... \n",
|
1209 |
-
"1838495 5.096910 \n",
|
1210 |
-
"1838496 5.096910 \n",
|
1211 |
-
"1838497 8.346787 \n",
|
1212 |
-
"1838498 5.698970 \n",
|
1213 |
-
"1838499 7.408935 \n",
|
1214 |
-
"\n",
|
1215 |
-
"[1838500 rows x 4 columns]"
|
1216 |
-
]
|
1217 |
-
},
|
1218 |
-
"execution_count": 38,
|
1219 |
-
"metadata": {},
|
1220 |
-
"output_type": "execute_result"
|
1221 |
-
}
|
1222 |
-
],
|
1223 |
-
"source": [
|
1224 |
-
"df_nr"
|
1225 |
-
]
|
1226 |
-
},
|
1227 |
-
{
|
1228 |
-
"cell_type": "code",
|
1229 |
-
"execution_count": 52,
|
1230 |
-
"id": "7f4027a2-0a5f-47bf-8a34-0c6a73b9b112",
|
1231 |
-
"metadata": {},
|
1232 |
-
"outputs": [],
|
1233 |
-
"source": [
|
1234 |
-
"df = df_nr[np.isfinite(df_nr['neg_log10_affinity_M'])].copy()"
|
1235 |
-
]
|
1236 |
-
},
|
1237 |
-
{
|
1238 |
-
"cell_type": "code",
|
1239 |
-
"execution_count": 53,
|
1240 |
-
"id": "eb99774f-9bcc-454d-b5e5-a8470223d6ca",
|
1241 |
-
"metadata": {},
|
1242 |
-
"outputs": [],
|
1243 |
-
"source": [
|
1244 |
-
"from rdkit import Chem\n",
|
1245 |
-
"def make_canonical(smi):\n",
|
1246 |
-
" try:\n",
|
1247 |
-
" return Chem.MolToSmiles(Chem.MolFromSmiles(smi))\n",
|
1248 |
-
" except:\n",
|
1249 |
-
" return smi"
|
1250 |
-
]
|
1251 |
-
},
|
1252 |
-
{
|
1253 |
-
"cell_type": "code",
|
1254 |
-
"execution_count": 54,
|
1255 |
-
"id": "4d44bd8e-f2e1-44b4-aea7-40b4437baf44",
|
1256 |
-
"metadata": {},
|
1257 |
-
"outputs": [],
|
1258 |
-
"source": [
|
1259 |
-
"df['smiles_can'] = df['smiles'].parallel_apply(make_canonical)"
|
1260 |
-
]
|
1261 |
-
},
|
1262 |
-
{
|
1263 |
-
"cell_type": "code",
|
1264 |
-
"execution_count": 55,
|
1265 |
-
"id": "07ffdeb1-f4fa-4776-9fea-a18439e03d2e",
|
1266 |
-
"metadata": {},
|
1267 |
-
"outputs": [],
|
1268 |
-
"source": [
|
1269 |
-
"df = df[(df['neg_log10_affinity_M']>0) & (df['neg_log10_affinity_M']<15)].reset_index()"
|
1270 |
-
]
|
1271 |
-
},
|
1272 |
-
{
|
1273 |
-
"cell_type": "code",
|
1274 |
-
"execution_count": 56,
|
1275 |
-
"id": "8f949038-d07d-4d3a-a47e-b825cc9018ca",
|
1276 |
-
"metadata": {},
|
1277 |
-
"outputs": [],
|
1278 |
-
"source": [
|
1279 |
-
"from sklearn.preprocessing import StandardScaler"
|
1280 |
-
]
|
1281 |
-
},
|
1282 |
-
{
|
1283 |
-
"cell_type": "code",
|
1284 |
-
"execution_count": 57,
|
1285 |
-
"id": "0c027988-0b44-4010-ad61-7d70eead1654",
|
1286 |
-
"metadata": {},
|
1287 |
-
"outputs": [],
|
1288 |
-
"source": [
|
1289 |
-
"scaler = StandardScaler()"
|
1290 |
-
]
|
1291 |
-
},
|
1292 |
-
{
|
1293 |
-
"cell_type": "code",
|
1294 |
-
"execution_count": 58,
|
1295 |
-
"id": "6aeba020-b6ff-4633-902e-4df74463eb2f",
|
1296 |
-
"metadata": {},
|
1297 |
-
"outputs": [],
|
1298 |
-
"source": [
|
1299 |
-
"df['affinity'] = scaler.fit_transform(df['neg_log10_affinity_M'].values.reshape(-1,1))"
|
1300 |
-
]
|
1301 |
-
},
|
1302 |
-
{
|
1303 |
-
"cell_type": "code",
|
1304 |
-
"execution_count": 59,
|
1305 |
-
"id": "91196eee-5fd0-4aa4-927a-5c1a3f436ac8",
|
1306 |
-
"metadata": {},
|
1307 |
-
"outputs": [
|
1308 |
-
{
|
1309 |
-
"data": {
|
1310 |
-
"text/plain": [
|
1311 |
-
"(array([6.50604534]), array([2.43319576]))"
|
1312 |
-
]
|
1313 |
-
},
|
1314 |
-
"execution_count": 59,
|
1315 |
-
"metadata": {},
|
1316 |
-
"output_type": "execute_result"
|
1317 |
-
}
|
1318 |
-
],
|
1319 |
-
"source": [
|
1320 |
-
"scaler.mean_, scaler.var_"
|
1321 |
-
]
|
1322 |
-
},
|
1323 |
-
{
|
1324 |
-
"cell_type": "code",
|
1325 |
-
"execution_count": 60,
|
1326 |
-
"id": "56269dcb-e691-4759-949d-7bfdd02f5fd4",
|
1327 |
-
"metadata": {},
|
1328 |
-
"outputs": [],
|
1329 |
-
"source": [
|
1330 |
-
"df = df.drop(columns='index')"
|
1331 |
-
]
|
1332 |
-
},
|
1333 |
-
{
|
1334 |
-
"cell_type": "code",
|
1335 |
-
"execution_count": 7,
|
1336 |
-
"id": "c6c64066-4032-4247-a8b9-00388176cc7b",
|
1337 |
-
"metadata": {},
|
1338 |
-
"outputs": [],
|
1339 |
-
"source": [
|
1340 |
-
"df = df.astype({'affinity_uM': 'float32', 'neg_log10_affinity_M': 'float32', 'affinity': 'float32'})\n",
|
1341 |
-
"df.to_parquet('data/all.parquet')\n",
|
1342 |
-
"\n",
|
1343 |
-
"#df = pd.read_parquet('data/all.parquet')"
|
1344 |
-
]
|
1345 |
-
},
|
1346 |
-
{
|
1347 |
-
"cell_type": "code",
|
1348 |
-
"execution_count": 14,
|
1349 |
-
"id": "469cf0dd-7b87-4245-973c-2a445e1fcca9",
|
1350 |
-
"metadata": {},
|
1351 |
-
"outputs": [
|
1352 |
-
{
|
1353 |
-
"data": {
|
1354 |
-
"text/plain": [
|
1355 |
-
"Index(['seq', 'smiles', 'affinity_uM', 'neg_log10_affinity_M', 'smiles_can',\n",
|
1356 |
-
" 'affinity'],\n",
|
1357 |
-
" dtype='object')"
|
1358 |
-
]
|
1359 |
-
},
|
1360 |
-
"execution_count": 14,
|
1361 |
-
"metadata": {},
|
1362 |
-
"output_type": "execute_result"
|
1363 |
-
}
|
1364 |
-
],
|
1365 |
-
"source": [
|
1366 |
-
"df.columns"
|
1367 |
-
]
|
1368 |
-
},
|
1369 |
-
{
|
1370 |
-
"cell_type": "code",
|
1371 |
-
"execution_count": 63,
|
1372 |
-
"id": "d91c0d91-474c-4ab2-9a5e-3b7861f7a832",
|
1373 |
-
"metadata": {},
|
1374 |
-
"outputs": [
|
1375 |
-
{
|
1376 |
-
"data": {
|
1377 |
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfwElEQVR4nO3dfZwcVZ3v8c+XRC4xURCRQRIgqGFd1oiaEVC4MqPiDeg1uOIKRiBgjFEj4gXXKC6Cyl18Ka5PYMwiRhQcd0Uw10SQBUf0ArshPjCAgDGJOgkQeTAyIYKR3/5RNaHodM9U9fRU10y+79erX91V55zq3zz++pyqOkcRgZmZWR67tDsAMzMbO5w0zMwsNycNMzPLzUnDzMxyc9IwM7PcJrY7gNG21157xfTp05tqu2XLFiZPntzagFqo6vGBY2yFqscH1Y+x6vFBtWJcvXr1AxHxnLqFETGuH7NmzYpm/ehHP2q6bRmqHl+EY2yFqscXUf0Yqx5fRLViBG6NBv9TPTxlZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuY37aURs/Ji+eMX21+sveH0bIzHbebmnYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5VZ60pA0W9LdktZIWlynfI6k2yT9QtKtko7M29bMzEZXqUlD0gTgIuAY4GDgREkH11S7HjgkIl4CnAZcUqCtmZmNorJ7GocCayJibUQ8DvQAc7IVImIgIiLdnAxE3rZmZja6yk4aU4HfZ7b7031PIelNku4CVpD0NnK3NTOz0aMnP9SX8GbSW4D/FRHz0+2TgEMj4n0N6r8KOCciXlukraQFwAKAjo6OWT09PU3FOzAwwJQpU5pqW4aqxwetjbFvw+btr2dO3b0lx4Tqfx+rHh9UP8aqxwfVirG7u3t1RHTWKyt75b5+YL/M9jRgY6PKEXGjpOdL2qtI24hYCiwF6OzsjK6urqaC7e3tpdm2Zah6fNDaGOdlV+6b25pjQvW/j1WPD6ofY9Xjg7ERI5Q/PLUKmCHpQEm7AicAy7MVJL1AktLXLwN2BR7M09bMzEZXqT2NiNgmaRFwLTABuDQi7pC0MC1fArwZOFnSX4CtwFvTE+N125YZv41PfRs2b+/FeO1xs6GVPTxFRKwEVtbsW5J5/SngU3nbmplZeXxHuJmZ5eakYWZmuTlpmJlZbk4aZmaWW+knws3Gq+nZ+0h8FZaNU+5pmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpZb6UlD0mxJd0taI2lxnfK5km5LHzdJOiRTtl5Sn6RfSLq13MjNzKzUNcIlTQAuAo4G+oFVkpZHxJ2ZauuAoyLiYUnHAEuBwzLl3RHxQGlBm5nZdmX3NA4F1kTE2oh4HOgB5mQrRMRNEfFwunkLMK3kGM3MrAFFRHlvJh0PzI6I+en2ScBhEbGoQf2zgBdm6q8DHgYC+EpELG3QbgGwAKCjo2NWT09PU/EODAwwZcqUptqWoerxQWtj7NuwefvrmVN3b8kxATY9tJn7t478uI3iG2ncO9vPeTRUPT6oVozd3d2rI6KzXlmpw1OA6uyrm7UkdQPvAI7M7D4iIjZK2hu4TtJdEXHjDgdMkslSgM7Ozujq6moq2N7eXpptW4aqxwetjXHe4hXbX6+f25pjAnzx8u9xYd/EER+3UXwjjXtn+zmPhqrHB2MjRih/eKof2C+zPQ3YWFtJ0ouBS4A5EfHg4P6I2Jg+bwKuIhnuMjOzkpSdNFYBMyQdKGlX4ARgebaCpP2B7wInRcQ9mf2TJT1j8DXwOuD20iI3M7Nyh6ciYpukRcC1wATg0oi4Q9LCtHwJcA7wbOBiSQDb0rG1DuCqdN9E4IqIuKbM+M3MdnZln9MgIlYCK2v2Lcm8ng/Mr9NuLXBI7X4zMyuP7wg3M7PcnDTMzCw3Jw0zM8vNScPMzHJz0jAzs9wKJQ1JR49WIGZmVn1FL7m9VtJa4CvAsoj4wyjEZFYJ07PTf1zw+jZGYlYdRYenXk1yV/cngN9LukLSUa0Py8zMqqhQTyMieoFeSc8GTgPeCZwg6W5gCXBZZlpzszEn27swsx01dSI8Ih6MiE9HxEEkCyo9AHwW2CBpmaSZrQzSzMyqYURXT0k6FjgdOBzYBFwGHAX8TNK7Rx6emZlVSeGkIWkfSWenCyJ9H9gDeDuwX0QsBF5AcqL8nFYGarYzmr54BX0bNnvYzCqj0DkNSVcCbwD+DHwTuDgi7sjWiYi/SroCeE/LojQzs0ooesntDOAM4BsRMTBEvT6gu9mgzMysmoomjTcA90bEX2oLJE0E9o2I30XEI8CPWxGgmZlVR9GksQ54BfBfdcoOSfdPGGlQZlXmm/5sZ1Y0aWiIsqcBT4wgFrOm+J+4WXmGTRqS9gD2zOyaKul5NdUmAacA97UuNDMzq5o8PY33Ax8DIn18p0E9pfXMzGycypM0rgbWkySFS4FPAr+pqfMYcGdE3NbK4MzMrFqGTRoR8UvglwCSAlgREQ+MdmBmZlY9RScs/PpoBWJmZtWX50T4DcB7IuKu9PVQIiJe05rQzKrD03iYJfLMPZW9zHaXdLvRY9jjSZot6W5JayQtrlM+V9Jt6eMmSYfkbWtmZqMrzzmN7szrrpG8maQJwEUk06n3A6skLY+IOzPV1gFHRcTDko4BlgKH5WxrVglFeya+18TGiqI3943UocCaiFgLIKkHmANs/8cfETdl6t8CTMvb1mws8ZCXjUWKiKErSK8qcsCIuHGIYx0PzI6I+en2ScBhEbGoQf2zgBdGxPwibSUtABYAdHR0zOrp6SnyJWw3MDDAlClTmmpbhqrHB62NsW/D5u2vZ07dfdj9eW16aDP3b20upkZxjKR+bZ2OSXD/1ua+trJU/Xex6vFBtWLs7u5eHRGd9cry9DR6SW7qG47SekPNPVVvGpK6x5bUDbwDOLJo24hYSjKsRWdnZ3R1dQ0RUmO9vb0027YMVY8PWhvjvOwQztyuYffn9cXLv8eFfc11uhvF0VDflsxG/fesPeaZM7dxYd/Epr62slT9d7Hq8cHYiBHyJY1WTnHeD+yX2Z4GbKytJOnFwCXAMRHxYJG2ZmY2evKcCG/lFOergBmSDgQ2ACcAb8tWkLQ/8F3gpIi4p0hbs7L5vITtbEo9ER4R2yQtAq4lGca6NCLukLQwLV9Cskzss4GLJQFsi4jORm3LjN/MbGdX+s19EbESWFmzb0nm9Xxgft62Zo34Mlaz1svT06i9uW+ok+JDrbdhZmZjXKk395mZ2diWZxoRMzMzoIkT4elKfh8gWSt8KsmVTDcBn4uIP7YyODMzq5ZCPY108sBfAx8GdiOZwmM34CPAPZJmtjxCMzOrjKI9jS8ADwKdEfHbwZ2SpgPXAF8EuloVnJmZVUvRpPFy4JRswgCIiPWSPgZ8rWWRmTXBN9uZja6iJ8IfJFkPvJ4/p+VmZjZOFU0aXwY+KGm37E5Jk4CzSNa7MDOzcSrPHeEfz24CBwC/k7QSuB/oAI4FtgJPH40gzeypfLe7tUuecxofbbD/5Dr7ziaZO8rMzMahPHeE+wZAMzMDfEe4mZkV4KRhZma5FU4akhZI+rmkRyX9tfYxGkGamVk1FJ1G5GSSu75XkUwf8jXgm8CfgN8AH2/c2szMxrqiPY0zgH8G3p1uXxwRpwDPI7nk1jf3mZmNY0WnEZkB3Ag8kT52BYiIhyWdD5wPfKmlEZq1wFDTi5zpaTbNciuaNLYCu0RESLqPpIdxS1o2AOzbyuDMGvEcU2btUTRp9AEvAP4D+AnwEUnrgG3AucBdLY3OzMwqpWjSWErSuwD4J5Lk8dN0+xHguNaEZWZmVVQoaUTEtzOv10j6O+CVwCTgpoh4oMXxme10PPRmVVZ4udesiNgCXNeiWMzMrOKaublvgqRTJS2VtCJ9nidpQs72syXdLWmNpMV1yl8o6WZJj0k6q6ZsvaQ+Sb+QdGvR2M3MbGQK9TQkHQBcCxwE9JNMjT4TmA98SNLs2lX9atpPIFlz4+i0/SpJyyPizky1h4DTaXx+pNvDYLYz8rCVVUHRnsaXgGcCR0bE/hHx8ojYH/ifwO4kd4sP5VBgTUSsjYjHgR5gTrZCRGyKiFXAXwrGZmZmo0wRkb+ytAV4T0R8vU7ZPOBLETFliPbHA7MjYn66fRJwWEQsqlP3XGAgIj6T2bcOeBgI4CsRsbTB+ywAFgB0dHTM6unpyf01Zg0MDDBlSsMvp+2qHh+0Nsa+DZtbcpxaHZPg/q2jcuiWGC6+mVN3Ly+YBqr+u1j1+KBaMXZ3d6+OiM56ZUVPhA8AmxqUbQIeHaa96uzLn7XgiIjYKGlv4DpJd0XEjTscMEkmSwE6Ozujq6urwFs8qbe3l2bblqHq8UFrY5w3SsMzZ87cxoV9I7omZFQNF9/6uV3lBdNA1X8Xqx4fjI0Yofjw1DeBhQ3K3gVcNkz7fmC/zPY0YGPeN4+IjenzJuAqkuEuq6Dpi1cwffGKUesdmFl75Fkj/LTM5q+Bt0jqA67kyTXCjweeAfxgmMOtAmZIOhDYAJwAvC1PoJImk0xh8kj6+nV4Vl0zs1Ll6ZNfUmffNODv6uy/CFjS6EARsU3SIpIrsCYAl0bEHZIWpuVLJO0D3Epywv0JSWcABwN7AVdJGoz7ioi4Jkf8ViHZK4DWX/D6NkZiZs3IkzQObOUbRsRKYGXNviWZ1/eRJKVafwIOaWUsZmZWzLBJY6j7LsxaxT0Qs7GhqUtGJL0IOArYk2ThpRsj4vZWBmY7LycQs+oqekf4RGAZcCJPvXw2JF0BzIsIrxNuZjZOFb3k9mPAPwDnkJzrmJQ+nwO8NX02M7Nxqujw1NuBT0TE+Zl9vwXOT+eVOpUksZiZ2ThUtKexL3Bzg7Kb8HKvZmbjWtGksRE4okHZKylwd7eZmY09RYenLgfOlvRE+vpeYB+SO7vPBj7V2vDMzKxKiiaNc0nWCD8vfT1IwLfS/WZmNk4VXSN8G/A2SecDryK5T+Mh4Mc1CymZWRv4HhcbbbmThqRdgftI7sVYDtwxalGZmVkl5U4aEfG4pG3An0cxHjMryMvAWpmKXj11Nck06GZmthMqeiL8B8AXJH2HJIHcS83KexFxQ2tCMzOzqimaNK5Mn/8+fQwKkiuogmSdDDMzG4eKJo3uUYnCrAGP15tVS9FLbn8MIOmZwIuAqSTLtt4eEX9qfXhmZlYlhdfTkHQOcCYwhSeHpAYkfToiPtni+MzMrEKKrqdxHvBPJOuG9wD3Ax0k62ucJ2liRJzb6iDNzKwaivY03glcGBEfzOy7A7hB0mZgAU+dXsTMzMaRovdp7A5c26DsmrTczMzGqaJJ4z+Blzcoe3labmZm41TRpHE6cJqkD0qaLmlS+vyPwGnAIkm7DD7qHUDSbEl3S1ojaXGd8hdKulnSY5LOKtLWzMxGV9FzGrelzxekjywBfZntqD1+uiTsRcDRQD+wStLymhlyHyJJTsc10dbMzEZR0aTxcWqmDSnoUGBNRKwFkNQDzAG2/+OPiE3AJkm18zoP29bMhufp020kFDGSHFDwzaTjgdkRMT/dPgk4LCIW1al7LjAQEZ9pou0Ckiu56OjomNXT09NUvAMDA0yZMqWptmWocnx9GzYD0DEJ9t5z9x32A8ycWn9/2Tomwf1b2/b2w2o2vuz3N6vRz2Akqvy7CNWPD6oVY3d39+qI6KxXVvjmvhFSnX15s1buthGxFFgK0NnZGV1dXTnf4ql6e3tptm0ZqhzfvPTT7Jkzt/EPmRjnZacF6duSaVH2r+KTzpy5jQv72vf+w2k2vvVzu+ruz/4MGtUpqsq/i1D9+GBsxAjFT4SPVD+wX2Z7GrCxhLZmZtYCZSeNVcAMSQemKwGeACwvoa2ZmbVAqX3yiNgmaRHJDYITgEsj4g5JC9PyJZL2AW4Fngk8IekM4OCI+FO9tmXGb2a2syt9IDciVgIra/Ytyby+j2ToKVdbMzMrT9nDU2ZmNoY5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aZmaWW3Un3LFxIzurqpmNbe5pmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluvnrKbJzyWuA2GtzTMDOz3NzTMNsJ+F4ZaxX3NMzMLDcnDTMzy81Jw8zMcnPSMDOz3Jw0zMwsNycNMzPLzUnDzMxyK/0+DUmzgc8DE4BLIuKCmnKl5ccCjwLzIuJnadl64BHgr8C2iOgsMXSzccd3jVtRpSYNSROAi4CjgX5glaTlEXFnptoxwIz0cRjw5fR5UHdEPFBSyGZmllH28NShwJqIWBsRjwM9wJyaOnOAyyJxC7CHpOeWHKeZmdWhiCjvzaTjgdkRMT/dPgk4LCIWZep8H7ggIn6abl8PfCgibpW0DngYCOArEbG0wfssABYAdHR0zOrp6Wkq3oGBAaZMmdJU2zJUOb6+DZsB6JgE929tczDDqHqM7Ypv5tTdc9et8u8iVD8+qFaM3d3dqxsN/5d9TkN19tVmraHqHBERGyXtDVwn6a6IuHGHykkyWQrQ2dkZXV1dTQXb29tLs23LUOX45qVj5WfO3MaFfdWe4qzqMbYrvvVzu3LXrfLvIlQ/PhgbMUL5w1P9wH6Z7WnAxrx1ImLweRNwFclwl5mZlaTspLEKmCHpQEm7AicAy2vqLAdOVuJwYHNE3CtpsqRnAEiaDLwOuL3M4M3Mdnal9nkjYpukRcC1JJfcXhoRd0hamJYvAVaSXG67huSS21PT5h3AVckVuUwEroiIa8qM38xsZ1f6QGlErCRJDNl9SzKvA3hvnXZrgUNGPUArxNf5m+1cfEe4mZnlVt1LRqyyvAqc2c7LScNaxsnEbPxz0jCzuny+yurxOQ0zM8vNPQ0zG5Z7HTbIPQ0zM8vNScPMzHJz0jAzs9ycNMzMLDefCLenaHTC0/dgmBm4p2FmZgU4aZiZWW4enjKzpk3PrNDY1d5QrCTuaZiZWW7uaZhZIb4oYufmnoaZmeXmpGFmZrk5aZiZWW4+p2ENeezaivBMuDsHJw0zazknkPHLw1NmZpabexpj1PTFKzhz5jbmLV6R+5Oc55Wydmj0++UeyNhUetKQNBv4PDABuCQiLqgpV1p+LPAoMC8ifpanreUfFnCisHbL8yHGiaV6Sk0akiYAFwFHA/3AKknLI+LOTLVjgBnp4zDgy8BhOdvulBolACcGM2u1snsahwJrImItgKQeYA6Q/cc/B7gsIgK4RdIekp4LTM/RtqX6NmxmXvqPdySfePzP22xorfrg0+jvtFV/y1Z+0pgK/D6z3U/SmxiuztScbQGQtABYkG4OSLq7yXj3Ah4A0KeaPMIoOj0TX1U5xpGrenxQnRiH+Dut9N9yqhLfw9QBjQrKThqqsy9y1snTNtkZsRRYWiy0HUm6NSI6R3qc0VL1+MAxtkLV44Pqx1j1+GBsxAjlJ41+YL/M9jRgY846u+Zoa2Zmo6js+zRWATMkHShpV+AEYHlNneXAyUocDmyOiHtztjUzs1FUak8jIrZJWgRcS3LZ7KURcYekhWn5EmAlyeW2a0guuT11qLajHPKIh7hGWdXjA8fYClWPD6ofY9Xjg7ERI0ouUjIzMxuepxExM7PcnDTMzCw3J406JM2WdLekNZIWtzueWpL2k/QjSb+SdIek97c7pnokTZD0c0nfb3cs9aQ3jn5H0l3p9/IV7Y6plqQPpD/j2yV9S9JubY7nUkmbJN2e2benpOsk/Tp9flYFY/x0+nO+TdJVkvZoY4h1Y8yUnSUpJO3VjtiG46RRIzNdyTHAwcCJkg5ub1Q72AacGRF/CxwOvLeCMQK8H/hVu4MYwueBayLihcAhVCxWSVOB04HOiHgRyQUgJ7Q3KpYBs2v2LQauj4gZwPXpdjstY8cYrwNeFBEvBu4BPlx2UDWWsWOMSNqPZKqk35UdUF5OGjvaPtVJRDwODE5XUhkRce/gJI4R8QjJP7up7Y3qqSRNA14PXNLuWOqR9EzgVcBXASLi8Yj4Y1uDqm8iMEnSRODptPnepIi4EXioZvcc4Ovp668Dx5UZU616MUbEDyNiW7p5C8l9Xm3T4PsI8C/AP9LgxuUqcNLYUaNpTCpJ0nTgpcB/tjmUWp8j+eV/os1xNPI84A/A19IhtEskTW53UFkRsQH4DMmnzntJ7ln6YXujqqsjvZeK9HnvNscznNOAH7Q7iFqS3ghsiIhftjuWoThp7Cj3dCXtJmkKcCVwRkT8qd3xDJL0BmBTRKxudyxDmAi8DPhyRLwU2EL7h1WeIj03MAc4ENgXmCzp7e2NamyTdDbJ8O7l7Y4lS9LTgbOBc9ody3CcNHaUZ6qTtpP0NJKEcXlEfLfd8dQ4AnijpPUkw3uvlvTN9oa0g36gPyIGe2jfIUkiVfJaYF1E/CEi/gJ8F3hlm2Oq5/50JmrS501tjqcuSacAbwDmRvVuUHs+yYeDX6Z/N9OAn0nap61R1eGksaPKT1eSLlT1VeBXEfHZdsdTKyI+HBHTImI6yffvhoio1CfkiLgP+L2kv0l3vYZRnGa/Sb8DDpf09PRn/hoqdrI+tRw4JX19CvC9NsZSV7qA24eAN0bEo+2Op1ZE9EXE3hExPf276Qdelv6eVoqTRo30ZNngdCW/Av6thOlKijoCOInkE/wv0sex7Q5qDHofcLmk24CXAP+3veE8VdoL+g7wM6CP5O+1rVNNSPoWcDPwN5L6Jb0DuAA4WtKvSa78aeuKmg1i/BLwDOC69O9lSQVjHBM8jYiZmeXmnoaZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aVimSzpU0Lm8eknRauubE45L+ONT+Zr8P9dpJOk7S/2ky5mXp2g4hqbembF6m7KA6bbsy5a9N9300s6+/mZisvZw0zEogaV+Su7lvAl5NMq9Uw/0kU8o3syhUvXbHAU0ljdR96THf06D8EZIZCmqdnJZlfS091soRxGNtNLHdAZjtJGaQLKL09Yj46XD7I6KfZP6hQpptN4zHIuKWIcq/C7xd0jmDEwFKmgS8mWRSzXmZ+DYAGyT9ocUxWknc07AxQckSvDdL2ipps6SrM5MNZuudmC7r+WdJfZLeKKm3dmilxbG9QNI3JK1L41sr6cuDy55KWgYMvv/16dDMskb70zZPGWYa3JY0Q9IKSQOSfivpHEm71NbLbC8jmURwamZYaL2k49PXh9T5enol3VzgW/AN4ADgyMy+N5EkwysLHMfGAPc0rPLSGUpXADcAbwWmAB8HfirpJemnVyQdTbJOwnLgTGAvksWgdiNZ4nO07Evy6f4M4GGSBZ4+QjIE8wrgE8Bq4AvAe0kmIBz8pN1ofyNXkQzx/Avwv4HzSBYN+1qD+p8AngO8HHhjuu8xkgkQNwLvIjPslCbio4BTh4kj67fAjSRDVD9J952cxjpQ4Dg2Bjhp2FjwSWAtcMzgkp3pJ+F7SJLD4Hj9eSTTm78pM0zSR/KPedSSRrp0542D25JuAtYAP5H00oj4uaTBKc3vzA71NNo/hAsjYjBB/IekVwMn0iBpRMRv0qGgx2uPL+lfgQ9I+mBEbEl3vwv4I/DtHLFkXQZcKOl04Fkk52aOKXgMGwM8PGVtocTE7KNBvckkiyN9O7PGMxGxDvj/JJ+KkTQB6ASuzC6wk66lvq7mmB+RdLekJyQdV1P2fEk/lXSPkmVgO3N8Lbumx7xL0lbgLzz5iXuHIbQRWlGzfTuwf5PHWkqy7viJAJJ2IxnKuiwithY81r8D/4Ok9zOX5OT59U3GZRXmpGHtchTJP9fso55nkSzBe2+dsvuAPdPXewFPo/6qcffXbF8PHEumd5CxBFgWEQeRrHF+uaR6SwBn/TNwLvBN4PXAocDfp2W7DdO2qIdqth9r9j0iYiPJgkkL011vIfl+fqWJYz0CXE0yRHUyyYqSVV0f3kbAw1PWLqtJxtmH8zDJGu31lr3cB3gwff0ASeLZu069DpJV8IDtixtRmwskPQc4nCShEBHXpXVmAbcOEeMJJJ/OP5k51pQh6lfJxSQn4WeRDE39JCKaXcHwMpKe0C6kvRcbf9zTsLaIiEci4tbso0G9LSQJ5i3pEBQAkg4gWS/7x2m9v5L8Y39ztmeQ/jM8MGdY+wMb0/W4B/2W4Yd/ns6OPaUiJ5JH22PApHoFEXEDyQqVnyVZEXIkK9pdB/wbsKSCq11ai7inYWPBP5F8gv2+pItJrp46D9gMXJip9zHgh8BVkpaSDFmdSzKM1exQyXBDUwDXAKekJ93XkAxNvbLJ9xsNdwJ7Sno3SWL9c0T0ZcqXAJ8n6a01fYlsmrjdwxjn3NOwyouIa0jOFexB+kmW5NPxkem4/GC960hOwv4tyeWeHyK5uuo+kgQznN8B+0p6WmbfAWSGthp4H8llvueTXHX0DKr1z/MSoIdkDfT/Av5fTfm/p8/LIuKxMgOzscdrhNu4Jmkayaf/8yPiEzVlvcDnIuLqzL7rgZ6I+Nf0vo+LgYNiHP+hSHonycnvgyJiTU3ZMqALeAEQaW9iJO8lkpv+vgq8JiKmjeR4Vj73NGzckDQpvRP7zZKOknQqyTj7oySftgfrfTSdLO8VwCWS+iUNnmhfCJwq6R7g08Dc8ZowJB0safAGwatrE0bGASTnbFpxCe3Z6bFObsGxrA3c07BxQ9KuJMNDhwPPBraQ3C/xkYi4vZ2xVVHa03olyWSJb8sO9WXqTCc5NwTwSETcPcL3fC4wNd18PCJuG8nxrHxOGmZmlpuHp8zMLDcnDTMzy81Jw8zMcnPSMDOz3Jw0zMwsNycNMzPLzUnDzMxy+29GVQvyP63mDAAAAABJRU5ErkJggg==\n",
|
1378 |
-
"text/plain": [
|
1379 |
-
"<Figure size 432x288 with 1 Axes>"
|
1380 |
-
]
|
1381 |
-
},
|
1382 |
-
"metadata": {
|
1383 |
-
"needs_background": "light"
|
1384 |
-
},
|
1385 |
-
"output_type": "display_data"
|
1386 |
-
}
|
1387 |
-
],
|
1388 |
-
"source": [
|
1389 |
-
"ax = df['neg_log10_affinity_M'].hist(bins=100,density=True)\n",
|
1390 |
-
"ax.set_xlabel('-$\\log_{10}$ affinity[M]',fontsize=16)\n",
|
1391 |
-
"ax.set_ylabel('probability',fontsize=16)\n",
|
1392 |
-
"ax.figure.savefig('affinity_neglog10_M.pdf')"
|
1393 |
-
]
|
1394 |
-
},
|
1395 |
-
{
|
1396 |
-
"cell_type": "code",
|
1397 |
-
"execution_count": 64,
|
1398 |
-
"id": "0e895ef5-1812-46c7-a4c2-dd6619b49157",
|
1399 |
-
"metadata": {},
|
1400 |
-
"outputs": [
|
1401 |
-
{
|
1402 |
-
"data": {
|
1403 |
-
"text/plain": [
|
1404 |
-
"1836729"
|
1405 |
-
]
|
1406 |
-
},
|
1407 |
-
"execution_count": 64,
|
1408 |
-
"metadata": {},
|
1409 |
-
"output_type": "execute_result"
|
1410 |
-
}
|
1411 |
-
],
|
1412 |
-
"source": [
|
1413 |
-
"len(df)"
|
1414 |
-
]
|
1415 |
-
},
|
1416 |
-
{
|
1417 |
-
"cell_type": "code",
|
1418 |
-
"execution_count": 65,
|
1419 |
-
"id": "3af855d3-a943-4574-985c-540d3f6b6f80",
|
1420 |
-
"metadata": {},
|
1421 |
-
"outputs": [
|
1422 |
-
{
|
1423 |
-
"data": {
|
1424 |
-
"text/plain": [
|
1425 |
-
"{'with_mean': True,\n",
|
1426 |
-
" 'with_std': True,\n",
|
1427 |
-
" 'copy': True,\n",
|
1428 |
-
" 'n_features_in_': 1,\n",
|
1429 |
-
" 'n_samples_seen_': 1836729,\n",
|
1430 |
-
" 'mean_': array([6.50604534]),\n",
|
1431 |
-
" 'var_': array([2.43319576]),\n",
|
1432 |
-
" 'scale_': array([1.55987043])}"
|
1433 |
-
]
|
1434 |
-
},
|
1435 |
-
"execution_count": 65,
|
1436 |
-
"metadata": {},
|
1437 |
-
"output_type": "execute_result"
|
1438 |
-
}
|
1439 |
-
],
|
1440 |
-
"source": [
|
1441 |
-
"scaler.__dict__"
|
1442 |
-
]
|
1443 |
-
},
|
1444 |
-
{
|
1445 |
-
"cell_type": "code",
|
1446 |
-
"execution_count": 66,
|
1447 |
-
"id": "15f8d5b9-37d5-453e-a6df-df6510cc5c81",
|
1448 |
-
"metadata": {},
|
1449 |
-
"outputs": [],
|
1450 |
-
"source": [
|
1451 |
-
"# output the normalization\n",
|
1452 |
-
"\n",
|
1453 |
-
"import json\n",
|
1454 |
-
"\n",
|
1455 |
-
"class NumpyEncoder(json.JSONEncoder):\n",
|
1456 |
-
" def default(self, obj):\n",
|
1457 |
-
" if isinstance(obj, np.ndarray):\n",
|
1458 |
-
" return obj.tolist()\n",
|
1459 |
-
" if isinstance(obj, np.int64):\n",
|
1460 |
-
" return int(obj)\n",
|
1461 |
-
" return json.JSONEncoder.default(self, obj)\n",
|
1462 |
-
" \n",
|
1463 |
-
"json.dump(scaler.__dict__,open('data/scaling.json','w'),cls=NumpyEncoder)"
|
1464 |
-
]
|
1465 |
-
},
|
1466 |
-
{
|
1467 |
-
"cell_type": "markdown",
|
1468 |
-
"id": "210b39d3-505b-4a6e-b186-35e660f4d510",
|
1469 |
-
"metadata": {},
|
1470 |
-
"source": [
|
1471 |
-
"**without KRAS**"
|
1472 |
-
]
|
1473 |
-
},
|
1474 |
-
{
|
1475 |
-
"cell_type": "code",
|
1476 |
-
"execution_count": 67,
|
1477 |
-
"id": "8dec95dc-a014-4d39-ae51-8de981173573",
|
1478 |
-
"metadata": {},
|
1479 |
-
"outputs": [],
|
1480 |
-
"source": [
|
1481 |
-
"smiles_sotorasib = 'C=CC(=O)N1CCN(c2nc(=O)n(-c3c(C)ccnc3C(C)C)c3nc(-c4c(O)cccc4F)c(F)cc23)[C@@H](C)C1'\n",
|
1482 |
-
"seq_kras_wt = 'MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAGQEEYSAMRDQYMRTGEGFLCVFAINNTKSFEDIHHYREQIKRVKDSEDVPMVLVGNKCDLPSRTVDTKQAQDLARSYGIPFIETSAKTRQRVEDAFYTLVREIRQYRLKKISKEEKTPGCVKIKKCIIM'"
|
1483 |
-
]
|
1484 |
-
},
|
1485 |
-
{
|
1486 |
-
"cell_type": "code",
|
1487 |
-
"execution_count": 68,
|
1488 |
-
"id": "3f90eadd-d7e4-4104-961f-adaf5437e24b",
|
1489 |
-
"metadata": {},
|
1490 |
-
"outputs": [],
|
1491 |
-
"source": [
|
1492 |
-
"df_nokras = df[~df.seq.str.startswith(seq_kras_wt[:20])]"
|
1493 |
-
]
|
1494 |
-
},
|
1495 |
-
{
|
1496 |
-
"cell_type": "code",
|
1497 |
-
"execution_count": 69,
|
1498 |
-
"id": "f5f5335a-8f28-4058-8647-fcc8f7d2f841",
|
1499 |
-
"metadata": {},
|
1500 |
-
"outputs": [
|
1501 |
-
{
|
1502 |
-
"data": {
|
1503 |
-
"text/plain": [
|
1504 |
-
"1836326"
|
1505 |
-
]
|
1506 |
-
},
|
1507 |
-
"execution_count": 69,
|
1508 |
-
"metadata": {},
|
1509 |
-
"output_type": "execute_result"
|
1510 |
-
}
|
1511 |
-
],
|
1512 |
-
"source": [
|
1513 |
-
"len(df_nokras)"
|
1514 |
-
]
|
1515 |
-
},
|
1516 |
-
{
|
1517 |
-
"cell_type": "code",
|
1518 |
-
"execution_count": 10,
|
1519 |
-
"id": "47966268-c97c-4bd9-9c90-eb568249f2ef",
|
1520 |
-
"metadata": {},
|
1521 |
-
"outputs": [],
|
1522 |
-
"source": [
|
1523 |
-
"#df_nokras = df_nokras.astype({'affinity_uM': 'float32', 'neg_log10_affinity_M': 'float32', 'affinity': 'float32'})\n",
|
1524 |
-
"#df_nokras.to_parquet('data/all_nokras.parquet')\n",
|
1525 |
-
"#df_nokras = pd.read_parquet('data/all_nokras.parquet')"
|
1526 |
-
]
|
1527 |
-
},
|
1528 |
-
{
|
1529 |
-
"cell_type": "markdown",
|
1530 |
-
"id": "4838f164-aed7-4f2d-a047-df647dfb8ea6",
|
1531 |
-
"metadata": {},
|
1532 |
-
"source": [
|
1533 |
-
"**with covalently binding ligands only**"
|
1534 |
-
]
|
1535 |
-
},
|
1536 |
-
{
|
1537 |
-
"cell_type": "code",
|
1538 |
-
"execution_count": 89,
|
1539 |
-
"id": "c0d250a3-5680-446c-9c98-7d6623643304",
|
1540 |
-
"metadata": {},
|
1541 |
-
"outputs": [],
|
1542 |
-
"source": [
|
1543 |
-
"from rdkit.Chem import SDMolSupplier\n",
|
1544 |
-
"suppl = SDMolSupplier('data/CovPDB_ligands.sdf')\n"
|
1545 |
-
]
|
1546 |
-
},
|
1547 |
-
{
|
1548 |
-
"cell_type": "code",
|
1549 |
-
"execution_count": 90,
|
1550 |
-
"id": "0c7c0b26-1f2a-4b80-8117-f1e02719aac9",
|
1551 |
-
"metadata": {},
|
1552 |
-
"outputs": [
|
1553 |
-
{
|
1554 |
-
"name": "stderr",
|
1555 |
-
"output_type": "stream",
|
1556 |
-
"text": [
|
1557 |
-
"RDKit WARNING: [13:44:45] Warning: molecule is tagged as 3D, but all Z coords are zero\n",
|
1558 |
-
"RDKit WARNING: [13:44:45] Warning: molecule is tagged as 3D, but all Z coords are zero\n",
|
1559 |
-
"RDKit WARNING: [13:44:45] Warning: molecule is tagged as 3D, but all Z coords are zero\n",
|
1560 |
-
"RDKit WARNING: [13:44:45] Warning: molecule is tagged as 3D, but all Z coords are zero\n",
|
1561 |
-
"RDKit WARNING: [13:44:45] Warning: molecule is tagged as 3D, but all Z coords are zero\n",
|
1562 |
-
"RDKit WARNING: [13:44:45] Warning: molecule is tagged as 3D, but all Z coords are zero\n",
|
1563 |
-
"RDKit WARNING: [13:44:45] Warning: molecule is tagged as 3D, but all Z coords are zero\n",
|
1564 |
-
"RDKit WARNING: [13:44:45] Warning: molecule is tagged as 3D, but all Z coords are zero\n"
|
1565 |
-
]
|
1566 |
-
}
|
1567 |
-
],
|
1568 |
-
"source": [
|
1569 |
-
"from rdkit import Chem\n",
|
1570 |
-
"cov_smiles = [Chem.MolToSmiles(m) for m in suppl]"
|
1571 |
-
]
|
1572 |
-
},
|
1573 |
-
{
|
1574 |
-
"cell_type": "code",
|
1575 |
-
"execution_count": 74,
|
1576 |
-
"id": "258f593c-1cba-45cb-936e-8c1360075926",
|
1577 |
-
"metadata": {},
|
1578 |
-
"outputs": [],
|
1579 |
-
"source": [
|
1580 |
-
"df_cov = df[df['smiles'].isin(cov_smiles)]"
|
1581 |
-
]
|
1582 |
-
},
|
1583 |
-
{
|
1584 |
-
"cell_type": "code",
|
1585 |
-
"execution_count": 12,
|
1586 |
-
"id": "ee3fa0bc-9ad3-4ea7-9393-cbc7504f634c",
|
1587 |
-
"metadata": {},
|
1588 |
-
"outputs": [],
|
1589 |
-
"source": [
|
1590 |
-
"df_cov = df_cov.astype({'affinity_uM': 'float32', 'neg_log10_affinity_M': 'float32', 'affinity': 'float32'})\n",
|
1591 |
-
"#df_cov.reset_index(drop=True).to_parquet('data/cov.parquet')\n",
|
1592 |
-
"#df_cov = pd.read_parquet('data/cov.parquet')"
|
1593 |
-
]
|
1594 |
-
},
|
1595 |
-
{
|
1596 |
-
"cell_type": "code",
|
1597 |
-
"execution_count": 77,
|
1598 |
-
"id": "5c12fedc-4236-4587-a744-c0c9ec21ceaa",
|
1599 |
-
"metadata": {},
|
1600 |
-
"outputs": [
|
1601 |
-
{
|
1602 |
-
"data": {
|
1603 |
-
"text/plain": [
|
1604 |
-
"346"
|
1605 |
-
]
|
1606 |
-
},
|
1607 |
-
"execution_count": 77,
|
1608 |
-
"metadata": {},
|
1609 |
-
"output_type": "execute_result"
|
1610 |
-
}
|
1611 |
-
],
|
1612 |
-
"source": [
|
1613 |
-
"len(df_cov)"
|
1614 |
-
]
|
1615 |
-
},
|
1616 |
-
{
|
1617 |
-
"cell_type": "code",
|
1618 |
-
"execution_count": 78,
|
1619 |
-
"id": "1b73cea5-e6d9-427f-a31e-7ab38b5e6e4e",
|
1620 |
-
"metadata": {},
|
1621 |
-
"outputs": [
|
1622 |
-
{
|
1623 |
-
"data": {
|
1624 |
-
"text/plain": [
|
1625 |
-
"2.703125"
|
1626 |
-
]
|
1627 |
-
},
|
1628 |
-
"execution_count": 78,
|
1629 |
-
"metadata": {},
|
1630 |
-
"output_type": "execute_result"
|
1631 |
-
}
|
1632 |
-
],
|
1633 |
-
"source": [
|
1634 |
-
"346/128"
|
1635 |
-
]
|
1636 |
-
},
|
1637 |
-
{
|
1638 |
-
"cell_type": "code",
|
1639 |
-
"execution_count": 80,
|
1640 |
-
"id": "2d1d2955-7839-45e0-9a11-07dda2d51b24",
|
1641 |
-
"metadata": {},
|
1642 |
-
"outputs": [
|
1643 |
-
{
|
1644 |
-
"data": {
|
1645 |
-
"text/plain": [
|
1646 |
-
"<AxesSubplot:>"
|
1647 |
-
]
|
1648 |
-
},
|
1649 |
-
"execution_count": 80,
|
1650 |
-
"metadata": {},
|
1651 |
-
"output_type": "execute_result"
|
1652 |
-
},
|
1653 |
-
{
|
1654 |
-
"data": {
|
1655 |
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAPIUlEQVR4nO3dX4xcd3nG8e/TGEqSLbGj0JVxom4qpUCKRSErGoiEdmtQaYNwLhopKCAHpfINf1LkqhhuchXVFw0qElUli1BcEWXlmkiJkpaSGraoF6S1EyQnGOQI3GATbChJYKMIcPv2Ygex49js7szOnM3P38/NzPkz57x+debZM7+Zc5yqQpLUlt/ougBJ0toz3CWpQYa7JDXIcJekBhnuktSgDV0XAHDFFVfU1NRU12Us64UXXuDSSy/tuox1wV70sx/97Ee/UfXj8OHDP6qq15xr2boI96mpKQ4dOtR1Gcuan59nZmam6zLWBXvRz370sx/9RtWPJP99vmUOy0hSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIatGy4J/lcktNJnlgy7/IkjyQ51nvctGTZJ5I8leTbSf54VIVLks5vJVeofh74DPCPS+btBg5W1Z4ku3vTH09yLXAL8PvAa4F/S/J7VfW/a1u2LjRTux/ubN/H99zY2b6lQS175l5VXwN+fNbs7cC+3vN9wE1L5s9V1c+q6rvAU8Bb16ZUSdJKZSX/zV6SKeChqnpjb/q5qtq4ZPmzVbUpyWeAr1fVF3rz7wH+paoOnGObO4GdAJOTk9fNzc2twT9ntBYWFpiYmOi6jHVh3L04cvL5se3rbFu3XLbsOh4b/exHv1H1Y3Z29nBVTZ9r2VrfOCznmHfOvx5VtRfYCzA9PV0vh5sMeTOkXxl3L27rcljm1pll1/HY6Gc/+nXRj0F/LXMqyWaA3uPp3vwTwFVL1rsS+P7g5UmSBjFouD8I7Og93wE8sGT+LUl+M8nVwDXAfw5XoiRptZYdlklyHzADXJHkBHAnsAfYn+R24GngZoCqejLJfuCbwBngQ/5SRpLGb9lwr6r3nWfRtvOsfxdw1zBFSZKG4xWqktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYNFe5JPpbkySRPJLkvyauSXJ7kkSTHeo+b1qpYSdLKbBj0hUm2AB8Frq2qF5PsB24BrgUOVtWeJLuB3cDH16RadW5q98MA7Np6htt6zyWtP8MOy2wALk6yAbgE+D6wHdjXW74PuGnIfUiSVilVNfiLkzuAu4AXgS9X1a1JnquqjUvWebaqXjI0k2QnsBNgcnLyurm5uYHrGJeFhQUmJia6LqNTR04+D8DkxXDqxY6LGZOtWy5bdh2PjX72o9+o+jE7O3u4qqbPtWyYYZlNLJ6lXw08B/xTkvev9PVVtRfYCzA9PV0zMzODljI28/PzvBzqHKXblgzL3H1k4MPnZeX4rTPLruOx0c9+9OuiH8MMy7wT+G5V/bCqfgHcD7wdOJVkM0Dv8fTwZUqSVmOYcH8auD7JJUkCbAOOAg8CO3rr7AAeGK5ESdJqDfy5uqoeTXIAeAw4AzzO4jDLBLA/ye0s/gG4eS0KlSSt3FCDplV1J3DnWbN/xuJZvCSpI16hKkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWrQUOGeZGOSA0m+leRokrcluTzJI0mO9R43rVWxkqSVGfbM/dPAl6rq9cCbgKPAbuBgVV0DHOxNS5LGaOBwT/Jq4B3APQBV9fOqeg7YDuzrrbYPuGm4EiVJq5WqGuyFyR8Ae4FvsnjWfhi4AzhZVRuXrPdsVb1kaCbJTmAnwOTk5HVzc3MD1TFOCwsLTExMdF1Gp46cfB6AyYvh1IsdFzMmW7dctuw6Hhv97Ee/UfVjdnb2cFVNn2vZMOE+DXwduKGqHk3yaeAnwEdWEu5LTU9P16FDhwaqY5zm5+eZmZnpuoxOTe1+GIBdW89w95ENHVczHsf33LjsOh4b/exHv1H1I8l5w32YMfcTwImqerQ3fQB4C3AqyebejjcDp4fYhyRpAAOHe1X9APhektf1Zm1jcYjmQWBHb94O4IGhKpQkrdqwn6s/Atyb5JXAd4APsvgHY3+S24GngZuH3IckaZWGCveq+gZwrvGebcNsV5I0HK9QlaQGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ26MK4fl4bwy1su/Dq7tp7hthWstxorue2BdD6euUtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSg4YO9yQXJXk8yUO96cuTPJLkWO9x0/BlSpJWYy3O3O8Aji6Z3g0crKprgIO9aUnSGA0V7kmuBG4EPrtk9nZgX+/5PuCmYfYhSVq9VNXgL04OAH8N/Bbwl1X1niTPVdXGJes8W1UvGZpJshPYCTA5OXnd3NzcwHWMy8LCAhMTE12X0akjJ58HYPJiOPVix8WsI6Pox9Ytl63tBsfI90q/UfVjdnb2cFVNn2vZhkE3muQ9wOmqOpxkZrWvr6q9wF6A6enpmplZ9SbGbn5+npdDnaN02+6HAdi19Qx3Hxn48GnOKPpx/NaZNd3eOPle6ddFP4Y5Gm8A3pvkT4FXAa9O8gXgVJLNVfVMks3A6bUoVJK0cgOPuVfVJ6rqyqqaAm4BvlJV7wceBHb0VtsBPDB0lZKkVRnF79z3AO9Kcgx4V29akjRGazJIWFXzwHzv+f8A29Ziu5KkwXiFqiQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ14+/DE31bgEgSefjmbskNcgzd2md6vIT2vE9N3a2b60Nz9wlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJatDA4Z7kqiRfTXI0yZNJ7ujNvzzJI0mO9R43rV25kqSVGObM/Qywq6reAFwPfCjJtcBu4GBVXQMc7E1LksZo4HCvqmeq6rHe858CR4EtwHZgX2+1fcBNQ9YoSVqlVNXwG0mmgK8BbwSerqqNS5Y9W1UvGZpJshPYCTA5OXnd3Nzc0HWM2sLCAhMTE12XwZGTz3ddApMXw6kXu65i/WitH1u3XDbU69fLe2W9GFU/ZmdnD1fV9LmWDR3uSSaAfwfuqqr7kzy3knBfanp6ug4dOjRUHeMwPz/PzMxM12Uwtfvhrktg19Yz3H1kQ9dlrBut9eP4nhuHev16ea+sF6PqR5LzhvtQv5ZJ8grgi8C9VXV/b/apJJt7yzcDp4fZhyRp9Yb5tUyAe4CjVfWpJYseBHb0nu8AHhi8PEnSIIb5HHkD8AHgSJJv9OZ9EtgD7E9yO/A0cPNQFUqSVm3gcK+q/wBynsXbBt2uJGl4XqEqSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGtTO9dIdWA+3AZBGYdhje9fWM9w2wDaGve2BfsUzd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAZ5V0hJ60ZXd1pt8W6UnrlLUoMMd0lqkOEuSQ0y3CWpQU18oTquL2EG/a/DJGncPHOXpAYZ7pLUIMNdkhrUxJi7JA1j1N/b/brv60Z1AZVn7pLUIMNdkho0snBP8u4k307yVJLdo9qPJOmlRhLuSS4C/g74E+Ba4H1Jrh3FviRJLzWqM/e3Ak9V1Xeq6ufAHLB9RPuSJJ0lVbX2G03+DHh3Vf15b/oDwB9W1YeXrLMT2NmbfB3w7TUvZO1dAfyo6yLWCXvRz370sx/9RtWP36mq15xrwah+CplzzOv7K1JVe4G9I9r/SCQ5VFXTXdexHtiLfvajn/3o10U/RjUscwK4asn0lcD3R7QvSdJZRhXu/wVck+TqJK8EbgEeHNG+JElnGcmwTFWdSfJh4F+Bi4DPVdWTo9jXmL2shpFGzF70sx/97Ee/sfdjJF+oSpK65RWqktQgw12SGmS4LyPJVUm+muRokieT3NF1TetBkouSPJ7koa5r6VqSjUkOJPlW7zh5W9c1dSXJx3rvkyeS3JfkVV3XNE5JPpfkdJInlsy7PMkjSY71HjeNoxbDfXlngF1V9QbgeuBD3koBgDuAo10XsU58GvhSVb0eeBMXaF+SbAE+CkxX1RtZ/DHFLd1WNXafB9591rzdwMGqugY42JseOcN9GVX1TFU91nv+UxbfuFu6rapbSa4EbgQ+23UtXUvyauAdwD0AVfXzqnqu06K6tQG4OMkG4BIusOtbquprwI/Pmr0d2Nd7vg+4aRy1GO6rkGQKeDPwaMeldO1vgb8C/q/jOtaD3wV+CPxDb5jqs0ku7bqoLlTVSeBvgKeBZ4Dnq+rL3Va1LkxW1TOweLII/PY4dmq4r1CSCeCLwF9U1U+6rqcrSd4DnK6qw13Xsk5sAN4C/H1VvRl4gTF97F5vemPJ24GrgdcClyZ5f7dVXbgM9xVI8goWg/3eqrq/63o6dgPw3iTHWbzb5x8l+UK3JXXqBHCiqn75ae4Ai2F/IXon8N2q+mFV/QK4H3h7xzWtB6eSbAboPZ4ex04N92UkCYvjqUer6lNd19O1qvpEVV1ZVVMsfln2laq6YM/OquoHwPeSvK43axvwzQ5L6tLTwPVJLum9b7ZxgX65fJYHgR295zuAB8axU/+D7OXdAHwAOJLkG715n6yqf+6uJK0zHwHu7d1H6TvABzuupxNV9WiSA8BjLP7K7HEusNsQJLkPmAGuSHICuBPYA+xPcjuLfwBvHkst3n5AktrjsIwkNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ36fwQ+77qgfKxkAAAAAElFTkSuQmCC\n",
|
1656 |
-
"text/plain": [
|
1657 |
-
"<Figure size 432x288 with 1 Axes>"
|
1658 |
-
]
|
1659 |
-
},
|
1660 |
-
"metadata": {
|
1661 |
-
"needs_background": "light"
|
1662 |
-
},
|
1663 |
-
"output_type": "display_data"
|
1664 |
-
}
|
1665 |
-
],
|
1666 |
-
"source": [
|
1667 |
-
"df_cov['neg_log10_affinity_M'].hist()"
|
1668 |
-
]
|
1669 |
-
},
|
1670 |
-
{
|
1671 |
-
"cell_type": "code",
|
1672 |
-
"execution_count": 92,
|
1673 |
-
"id": "ab2e429b-d84c-42b7-b0dc-55e6728b9f81",
|
1674 |
-
"metadata": {},
|
1675 |
-
"outputs": [
|
1676 |
-
{
|
1677 |
-
"data": {
|
1678 |
-
"text/plain": [
|
1679 |
-
"167"
|
1680 |
-
]
|
1681 |
-
},
|
1682 |
-
"execution_count": 92,
|
1683 |
-
"metadata": {},
|
1684 |
-
"output_type": "execute_result"
|
1685 |
-
}
|
1686 |
-
],
|
1687 |
-
"source": [
|
1688 |
-
"len(df_cov['seq'].unique())"
|
1689 |
-
]
|
1690 |
-
},
|
1691 |
-
{
|
1692 |
-
"cell_type": "code",
|
1693 |
-
"execution_count": 94,
|
1694 |
-
"id": "4d535b74-1a32-45ee-a61f-f0cca805ad9b",
|
1695 |
-
"metadata": {},
|
1696 |
-
"outputs": [
|
1697 |
-
{
|
1698 |
-
"data": {
|
1699 |
-
"text/plain": [
|
1700 |
-
"49"
|
1701 |
-
]
|
1702 |
-
},
|
1703 |
-
"execution_count": 94,
|
1704 |
-
"metadata": {},
|
1705 |
-
"output_type": "execute_result"
|
1706 |
-
}
|
1707 |
-
],
|
1708 |
-
"source": [
|
1709 |
-
"len(df_cov['smiles'].unique())"
|
1710 |
-
]
|
1711 |
-
},
|
1712 |
-
{
|
1713 |
-
"cell_type": "code",
|
1714 |
-
"execution_count": 96,
|
1715 |
-
"id": "f59aa644-f848-447f-b82a-cff5b0507738",
|
1716 |
-
"metadata": {},
|
1717 |
-
"outputs": [
|
1718 |
-
{
|
1719 |
-
"data": {
|
1720 |
-
"text/plain": [
|
1721 |
-
"346"
|
1722 |
-
]
|
1723 |
-
},
|
1724 |
-
"execution_count": 96,
|
1725 |
-
"metadata": {},
|
1726 |
-
"output_type": "execute_result"
|
1727 |
-
}
|
1728 |
-
],
|
1729 |
-
"source": [
|
1730 |
-
"len(df_cov)"
|
1731 |
-
]
|
1732 |
-
},
|
1733 |
-
{
|
1734 |
-
"cell_type": "code",
|
1735 |
-
"execution_count": null,
|
1736 |
-
"id": "b8af53a6-5203-4889-9c4b-31140da5fc5b",
|
1737 |
-
"metadata": {},
|
1738 |
-
"outputs": [],
|
1739 |
-
"source": []
|
1740 |
-
}
|
1741 |
-
],
|
1742 |
-
"metadata": {
|
1743 |
-
"kernelspec": {
|
1744 |
-
"display_name": "Python 3 (ipykernel)",
|
1745 |
-
"language": "python",
|
1746 |
-
"name": "python3"
|
1747 |
-
},
|
1748 |
-
"language_info": {
|
1749 |
-
"codemirror_mode": {
|
1750 |
-
"name": "ipython",
|
1751 |
-
"version": 3
|
1752 |
-
},
|
1753 |
-
"file_extension": ".py",
|
1754 |
-
"mimetype": "text/x-python",
|
1755 |
-
"name": "python",
|
1756 |
-
"nbconvert_exporter": "python",
|
1757 |
-
"pygments_lexer": "ipython3",
|
1758 |
-
"version": "3.9.6"
|
1759 |
-
}
|
1760 |
-
},
|
1761 |
-
"nbformat": 4,
|
1762 |
-
"nbformat_minor": 5
|
1763 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
combine_predictions.py
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
import dask.dataframe as dd
|
2 |
-
import sys
|
3 |
-
|
4 |
-
if __name__ == '__main__':
|
5 |
-
import glob
|
6 |
-
|
7 |
-
filenames = glob.glob(sys.argv[2])
|
8 |
-
|
9 |
-
ddf = dd.read_parquet(filenames)
|
10 |
-
ddf.compute().to_parquet(sys.argv[1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/.gitattributes
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
all_512.parquet filter=lfs diff=lfs merge=lfs -text
|
|
|
|
data/all_ic50.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:cdb65d5e81b196c0d174ec4a142d9c16188c2e340acc3810f33fc60018c5c937
|
3 |
-
size 211443928
|
|
|
|
|
|
|
|
data/all_nokras.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b9bdba06c3a4b653eddc0bcc6010624f7cdc44d5bb7c98ae1b87c4a46d09c14c
|
3 |
-
size 228445972
|
|
|
|
|
|
|
|
data/bindingdb.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:3d85a064f94b500d8f071697856bc117505ece9cbb5802c25a22e6f0b95431de
|
3 |
-
size 282365981
|
|
|
|
|
|
|
|
data/biolip.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:cb056959c05ed8b9bf52b286dcc0975abb9b310153f354fef0cfb94f1e9a8084
|
3 |
-
size 2772622
|
|
|
|
|
|
|
|
data/biolip_complex.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:60ba3885834e4737508a11a754cc9b2facaabcdb670e84a99acaff60356c2bf9
|
3 |
-
size 15241983
|
|
|
|
|
|
|
|
data/cov.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:cbaab94a40c721df756e256a5ca3938e802749b68ccaf8d6f1c1f3053a6769a9
|
3 |
-
size 93896
|
|
|
|
|
|
|
|
data/dcoid.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:57286fa1878faeb5954050d2c557042e806dd2ad0bf1731a57044d0fff3af785
|
3 |
-
size 597990
|
|
|
|
|
|
|
|
data/dcoid_predict.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:1c7c8522cc43a27d05b68f3828cb5d15d51b655430bb0cac635977fd0258dba1
|
3 |
-
size 621295
|
|
|
|
|
|
|
|
data/dcoid_rf2.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5f22bcc4300a2c97a7346b9dfa8e072de088a3c6e5ac4d955c1ab2a89cc6d2ab
|
3 |
-
size 148055
|
|
|
|
|
|
|
|
data/deepcoy_dekois_predict.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c1c7ff872ba4ec0921a146e03edb60505a53ffc936894373b9f4fa1ef953ea44
|
3 |
-
size 3663538
|
|
|
|
|
|
|
|
data/deepcoy_dude_predict.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b5bd6b45d588bcc5eb3b5c1c5cf07582e495596063b1f488604f776031f51586
|
3 |
-
size 38798974
|
|
|
|
|
|
|
|
data/dude/_common_metadata
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c78b625f53ad2ede2cc93722f2010c8d938e9fd29b67c00639bed98547e0f7cf
|
3 |
-
size 2685
|
|
|
|
|
|
|
|
data/dude/_metadata
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b663b0333af3cdbe20cb2624bdaa6ff5e6025e64791984a465c2a3855ee52b11
|
3 |
-
size 967591
|
|
|
|
|
|
|
|
data/dude/part.0.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6dd0dffb824409426d4f0f76b4e09fed6b3e3d9a8531ae5446d77222b1cd9a01
|
3 |
-
size 123473
|
|
|
|
|
|
|
|
data/dude/part.1.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:128abc4911e0e6d1b4e2e66d5df4043786ca1046f7f858983790b5ee647d0cc0
|
3 |
-
size 138100
|
|
|
|
|
|
|
|
data/dude/part.10.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d2a4171991b06e59a8e2661e4c95319eb5e1bd1fa0c85a74ac5de0ad03af3d2e
|
3 |
-
size 117633
|
|
|
|
|
|
|
|
data/dude/part.100.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:27e35dcb08802208b1d5b6aa7d0221043bf4685567526d27ea3a373a8a04bf9c
|
3 |
-
size 122785
|
|
|
|
|
|
|
|
data/dude/part.101.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ccba5e5487f6073e55991a60e02a27a3731906b18dcac6cd324457f3418fa833
|
3 |
-
size 127785
|
|
|
|
|
|
|
|
data/dude/part.102.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:8b61f97b30f15bd105309a3134ba4c96500357e15b3e1470be9bbdb3123a74bc
|
3 |
-
size 132577
|
|
|
|
|
|
|
|
data/dude/part.103.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:957243c8f1997e36b4b018c58d507892cb3931585c385cb50b0bbc474f17acb9
|
3 |
-
size 124831
|
|
|
|
|
|
|
|
data/dude/part.104.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:1e55f7589f5a230bc2e08a7be83c5624583a7a2d2cf5866e5b29dc263bbf38d1
|
3 |
-
size 125229
|
|
|
|
|
|
|
|
data/dude/part.105.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:239b6a40f319aab310f710242b76a221a772684c6b90744f426054b5cde9ab5e
|
3 |
-
size 114557
|
|
|
|
|
|
|
|
data/dude/part.106.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c2be90dc224d8524adc5a3ece0bbcdf99deceb11fd479c10a8e24b60ba3e5108
|
3 |
-
size 127417
|
|
|
|
|
|
|
|
data/dude/part.107.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:bac8a9dda24b459373284dca37e39fbcaf71bc651d7c638c346ac6b22f01ba7f
|
3 |
-
size 106714
|
|
|
|
|
|
|
|
data/dude/part.108.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9dda65f1532215a345b7c55c08ec96dbea5d015b17c4c3c681664ee63f6f8410
|
3 |
-
size 113964
|
|
|
|
|
|
|
|
data/dude/part.109.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:400aa32d023b0d0af25a6ab788ec1e4cf7c5da7e887e530315118ffdcd595375
|
3 |
-
size 113700
|
|
|
|
|
|
|
|
data/dude/part.11.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:362c6faffd7a14b1834195215dcc779d57f4554cedf20e8e1c46e70e60a3572d
|
3 |
-
size 129040
|
|
|
|
|
|
|
|
data/dude/part.110.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:561b1cbc91e54b53b0789c802c3777c0f0fa91b9235282bd0475a3bf8803a12d
|
3 |
-
size 120287
|
|
|
|
|
|
|
|
data/dude/part.111.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:82b49173ca12ee035c3b954174ae3c97d2a57b5e919467d69ddedc99c41ab9b3
|
3 |
-
size 106923
|
|
|
|
|
|
|
|
data/dude/part.112.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b5f9c5cf7a70efafe397e756c303960e99776f5aa63c3143c4608845cf0172ec
|
3 |
-
size 92697
|
|
|
|
|
|
|
|
data/dude/part.113.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:255853d5242828d66388c28fa20029be44ea29ba51bfeadcb36e9490759f1445
|
3 |
-
size 80880
|
|
|
|
|
|
|
|
data/dude/part.114.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f14eb5e26bea178a1906717b92aa302f5f462f8ee9f8ae61d251d6344ac1c4aa
|
3 |
-
size 114088
|
|
|
|
|
|
|
|
data/dude/part.115.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:7de897b15d8328594a81560b5be5203fade3da3db1d96f75135a7c67a7b6c8e9
|
3 |
-
size 122947
|
|
|
|
|
|
|
|
data/dude/part.116.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f8c74cab7cb99d01f450fac020acefde13a2b9be49faf2d4c8898e2870e3090a
|
3 |
-
size 115792
|
|
|
|
|
|
|
|
data/dude/part.117.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c7c2e351c13609389aef12ae60dae891e11b9638bf011d2f28ddc131057e8ade
|
3 |
-
size 125457
|
|
|
|
|
|
|
|
data/dude/part.118.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f855e288eb2cff09c964792390db183d23c960dd27a2c2f5e731acf915693487
|
3 |
-
size 118483
|
|
|
|
|
|
|
|
data/dude/part.119.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:239416564ae4eda212ec754e2db311818c8c03004b6070b4e41653d499002933
|
3 |
-
size 129974
|
|
|
|
|
|
|
|
data/dude/part.12.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a00d0ac9607c87ddecbe667c2aa4886f851db17b05a63892de2d797d7e685f2e
|
3 |
-
size 118890
|
|
|
|
|
|
|
|
data/dude/part.120.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ccfd6a370e55bdd6e8258c4a65b9762bf8440f4992a36ddba16fb1e23cff758c
|
3 |
-
size 121911
|
|
|
|
|
|
|
|