parquet-converter commited on
Commit
388259c
·
1 Parent(s): 11e49b7

Update parquet files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. README.md +0 -104
  3. binding_affinity.py +0 -147
  4. bindingdb.ipynb +0 -1258
  5. bindingdb_single.ipynb +0 -1036
  6. biolip.ipynb +0 -586
  7. biolip.py +0 -41
  8. biolip.slurm +0 -10
  9. combine_dbs.ipynb +0 -1763
  10. combine_predictions.py +0 -10
  11. data/.gitattributes +0 -1
  12. data/all_ic50.parquet +0 -3
  13. data/all_nokras.parquet +0 -3
  14. data/bindingdb.parquet +0 -3
  15. data/biolip.parquet +0 -3
  16. data/biolip_complex.parquet +0 -3
  17. data/cov.parquet +0 -3
  18. data/dcoid.parquet +0 -3
  19. data/dcoid_predict.parquet +0 -3
  20. data/dcoid_rf2.parquet +0 -3
  21. data/deepcoy_dekois_predict.parquet +0 -3
  22. data/deepcoy_dude_predict.parquet +0 -3
  23. data/dude/_common_metadata +0 -3
  24. data/dude/_metadata +0 -3
  25. data/dude/part.0.parquet +0 -3
  26. data/dude/part.1.parquet +0 -3
  27. data/dude/part.10.parquet +0 -3
  28. data/dude/part.100.parquet +0 -3
  29. data/dude/part.101.parquet +0 -3
  30. data/dude/part.102.parquet +0 -3
  31. data/dude/part.103.parquet +0 -3
  32. data/dude/part.104.parquet +0 -3
  33. data/dude/part.105.parquet +0 -3
  34. data/dude/part.106.parquet +0 -3
  35. data/dude/part.107.parquet +0 -3
  36. data/dude/part.108.parquet +0 -3
  37. data/dude/part.109.parquet +0 -3
  38. data/dude/part.11.parquet +0 -3
  39. data/dude/part.110.parquet +0 -3
  40. data/dude/part.111.parquet +0 -3
  41. data/dude/part.112.parquet +0 -3
  42. data/dude/part.113.parquet +0 -3
  43. data/dude/part.114.parquet +0 -3
  44. data/dude/part.115.parquet +0 -3
  45. data/dude/part.116.parquet +0 -3
  46. data/dude/part.117.parquet +0 -3
  47. data/dude/part.118.parquet +0 -3
  48. data/dude/part.119.parquet +0 -3
  49. data/dude/part.12.parquet +0 -3
  50. data/dude/part.120.parquet +0 -3
.gitattributes CHANGED
@@ -839,3 +839,5 @@ data/dcoid_decoys.parquet filter=lfs diff=lfs merge=lfs -text
839
  data/moad_complex.parquet filter=lfs diff=lfs merge=lfs -text
840
  data/pdbbind_complex.parquet filter=lfs diff=lfs merge=lfs -text
841
  data/all_maccs.parquet filter=lfs diff=lfs merge=lfs -text
 
 
 
839
  data/moad_complex.parquet filter=lfs diff=lfs merge=lfs -text
840
  data/pdbbind_complex.parquet filter=lfs diff=lfs merge=lfs -text
841
  data/all_maccs.parquet filter=lfs diff=lfs merge=lfs -text
842
+ default/binding_affinity-train.parquet filter=lfs diff=lfs merge=lfs -text
843
+ default/binding_affinity-no_kras.parquet filter=lfs diff=lfs merge=lfs -text
README.md DELETED
@@ -1,104 +0,0 @@
1
- ---
2
- tags:
3
- - molecules
4
- - chemistry
5
- - SMILES
6
- ---
7
-
8
- ## How to use the data sets
9
-
10
- This dataset contains 1.9M unique pairs of protein sequences and ligand SMILES with experimentally determined
11
- binding affinities. It can be used for fine-tuning a language model.
12
-
13
- The data comes from the following sources:
14
- - BindingDB
15
- - PDBbind-cn
16
- - BioLIP
17
- - BindingMOAD
18
-
19
- ### Use the already preprocessed data
20
-
21
- Load a test/train split using
22
-
23
- ```
24
- from datasets import load_dataset
25
- train = load_dataset("jglaser/binding_affinity",split='train[:90%]')
26
- validation = load_dataset("jglaser/binding_affinity",split='train[90%:]')
27
- ```
28
-
29
- Optionally, datasets with certain protein sequences removed are available.
30
- These can be used to test the predictive power for specific proteins even when
31
- these are not part of the training data.
32
-
33
- - `train_no_kras` (no KRAS proteins)
34
-
35
- **Loading the data manually**
36
-
37
- The file `data/all.parquet` contains the preprocessed data. To extract it,
38
- you need download and install [git LFS support] https://git-lfs.github.com/].
39
-
40
- ### Pre-process yourself
41
-
42
- To manually perform the preprocessing, download the data sets from
43
-
44
- 1. BindingDB
45
-
46
- In `bindingdb`, download the database as tab separated values
47
- <https://bindingdb.org> > Download > BindingDB_All_2021m4.tsv.zip
48
- and extract the zip archive into `bindingdb/data`
49
-
50
- Run the steps in `bindingdb.ipynb`
51
-
52
- 2. PDBBind-cn
53
-
54
- Register for an account at <https://www.pdbbind.org.cn/>, confirm the validation
55
- email, then login and download
56
-
57
- - the Index files (1)
58
- - the general protein-ligand complexes (2)
59
- - the refined protein-ligand complexes (3)
60
-
61
- Extract those files in `pdbbind/data`
62
-
63
- Run the script `pdbbind.py` in a compute job on an MPI-enabled cluster
64
- (e.g., `mpirun -n 64 pdbbind.py`).
65
-
66
- Perform the steps in the notebook `pdbbind.ipynb`
67
-
68
- 3. BindingMOAD
69
-
70
- Go to <https://bindingmoad.org> and download the files `every.csv`
71
- (All of Binding MOAD, Binding Data) and the non-redundant biounits
72
- (`nr_bind.zip`). Place and extract those files into `binding_moad`.
73
-
74
- Run the script `moad.py` in a compute job on an MPI-enabled cluster
75
- (e.g., `mpirun -n 64 moad.py`).
76
-
77
- Perform the steps in the notebook `moad.ipynb`
78
-
79
- 4. BioLIP
80
-
81
- Download from <https://zhanglab.ccmb.med.umich.edu/BioLiP/> the files
82
- - receptor1.tar.bz2 (Receptor1, Non-redudant set)
83
- - ligand_2013-03-6.tar.bz2 (Ligands)
84
- - BioLiP.tar.bz2 (Annotations)
85
- and extract them in `biolip/data`.
86
-
87
- The following steps are **optional**, they **do not** result in additional binding affinity data.
88
-
89
- Download the script
90
- - download_all_sets.pl
91
- from the Weekly update subpage.
92
-
93
- Update the 2013 database to its current state
94
-
95
- `perl download_all-sets.pl`
96
-
97
- Run the script `biolip.py` in a compute job on an MPI-enabled cluster
98
- (e.g., `mpirun -n 64 biolip.py`).
99
-
100
- Perform the steps in the notebook `biolip.ipynb`
101
-
102
- 5. Final concatenation and filtering
103
-
104
- Run the steps in the notebook `combine_dbs.ipynb`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
binding_affinity.py DELETED
@@ -1,147 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """TODO: A dataset of protein sequences, ligand SMILES and binding affinities."""
16
-
17
- import huggingface_hub
18
- import os
19
- import pyarrow.parquet as pq
20
- import datasets
21
-
22
-
23
- # TODO: Add BibTeX citation
24
- # Find for instance the citation on arxiv or on the dataset repo/website
25
- _CITATION = """\
26
- @InProceedings{huggingface:dataset,
27
- title = {jglaser/binding_affinity},
28
- author={Jens Glaser, ORNL
29
- },
30
- year={2021}
31
- }
32
- """
33
-
34
- # TODO: Add description of the dataset here
35
- # You can copy an official description
36
- _DESCRIPTION = """\
37
- A dataset to fine-tune language models on protein-ligand binding affinity prediction.
38
- """
39
-
40
- # TODO: Add a link to an official homepage for the dataset here
41
- _HOMEPAGE = ""
42
-
43
- # TODO: Add the licence for the dataset here if you can find it
44
- _LICENSE = "BSD two-clause"
45
-
46
- # TODO: Add link to the official dataset URLs here
47
- # The HuggingFace dataset library don't host the datasets but only point to the original files
48
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
49
- _URL = "https://huggingface.co/datasets/jglaser/binding_affinity/resolve/main/"
50
- _data_dir = "data/"
51
- _file_names = {'default': _data_dir+'all.parquet',
52
- 'no_kras': _data_dir+'all_nokras.parquet',
53
- 'cov': _data_dir+'cov.parquet'}
54
-
55
- _URLs = {name: _URL+_file_names[name] for name in _file_names}
56
-
57
-
58
- # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
59
- class BindingAffinity(datasets.ArrowBasedBuilder):
60
- """List of protein sequences, ligand SMILES and binding affinities."""
61
-
62
- VERSION = datasets.Version("1.4.1")
63
-
64
- def _info(self):
65
- # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
66
- #if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
67
- # features = datasets.Features(
68
- # {
69
- # "sentence": datasets.Value("string"),
70
- # "option1": datasets.Value("string"),
71
- # "answer": datasets.Value("string")
72
- # # These are the features of your dataset like images, labels ...
73
- # }
74
- # )
75
- #else: # This is an example to show how to have different features for "first_domain" and "second_domain"
76
- features = datasets.Features(
77
- {
78
- "seq": datasets.Value("string"),
79
- "smiles": datasets.Value("string"),
80
- "affinity_uM": datasets.Value("float"),
81
- "neg_log10_affinity_M": datasets.Value("float"),
82
- "smiles_can": datasets.Value("string"),
83
- "affinity": datasets.Value("float"),
84
- # These are the features of your dataset like images, labels ...
85
- }
86
- )
87
- return datasets.DatasetInfo(
88
- # This is the description that will appear on the datasets page.
89
- description=_DESCRIPTION,
90
- # This defines the different columns of the dataset and their types
91
- features=features, # Here we define them above because they are different between the two configurations
92
- # If there's a common (input, target) tuple from the features,
93
- # specify them here. They'll be used if as_supervised=True in
94
- # builder.as_dataset.
95
- supervised_keys=None,
96
- # Homepage of the dataset for documentation
97
- homepage=_HOMEPAGE,
98
- # License for the dataset if available
99
- license=_LICENSE,
100
- # Citation for the dataset
101
- citation=_CITATION,
102
- )
103
-
104
- def _split_generators(self, dl_manager):
105
- """Returns SplitGenerators."""
106
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
107
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
108
-
109
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
110
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
111
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
112
- files = dl_manager.download_and_extract(_URLs)
113
-
114
- return [
115
- datasets.SplitGenerator(
116
- # These kwargs will be passed to _generate_examples
117
- name=datasets.Split.TRAIN,
118
- gen_kwargs={
119
- 'filepath': files["default"],
120
- },
121
- ),
122
-
123
- datasets.SplitGenerator(
124
- name='no_kras',
125
- # These kwargs will be passed to _generate_examples
126
- gen_kwargs={
127
- "filepath": files["no_kras"],
128
- },
129
- ),
130
-
131
- datasets.SplitGenerator(
132
- name='covalent',
133
- # These kwargs will be passed to _generate_examples
134
- gen_kwargs={
135
- "filepath": files["cov"],
136
- },
137
- ),
138
- ]
139
-
140
- def _generate_tables(
141
- self, filepath
142
- ):
143
- from pyarrow import fs
144
- local = fs.LocalFileSystem()
145
-
146
- for i, f in enumerate([filepath]):
147
- yield i, pq.read_table(f,filesystem=local)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bindingdb.ipynb DELETED
@@ -1,1258 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 2,
6
- "id": "ecce356e-321b-441e-8a5d-a20bf72f8691",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import dask.dataframe as dd"
11
- ]
12
- },
13
- {
14
- "cell_type": "code",
15
- "execution_count": 3,
16
- "id": "89cbcd82-4ca2-4aba-95b7-e58c0ceed770",
17
- "metadata": {},
18
- "outputs": [],
19
- "source": [
20
- "cols = ['Ligand SMILES', 'IC50 (nM)','KEGG ID of Ligand','Ki (nM)', 'Kd (nM)','EC50 (nM)']"
21
- ]
22
- },
23
- {
24
- "cell_type": "code",
25
- "execution_count": 3,
26
- "id": "a870d8d7-374b-4474-b9ee-305bbf9f17a9",
27
- "metadata": {},
28
- "outputs": [],
29
- "source": [
30
- "import tqdm.notebook"
31
- ]
32
- },
33
- {
34
- "cell_type": "code",
35
- "execution_count": 5,
36
- "id": "e9f76b32-e8f0-47ee-b592-a91a88f4f93e",
37
- "metadata": {},
38
- "outputs": [
39
- {
40
- "data": {
41
- "application/vnd.jupyter.widget-view+json": {
42
- "model_id": "c988bc89781242ec8c8b7f8fd0b1c233",
43
- "version_major": 2,
44
- "version_minor": 0
45
- },
46
- "text/plain": [
47
- " 0%| | 0/13 [00:00<?, ?it/s]"
48
- ]
49
- },
50
- "metadata": {},
51
- "output_type": "display_data"
52
- }
53
- ],
54
- "source": [
55
- "for i in tqdm.notebook.tqdm(range(0,13)):\n",
56
- " mycol = 'BindingDB Target Chain Sequence.{}'.format(i)\n",
57
- " allseq = ['BindingDB Target Chain Sequence']+['BindingDB Target Chain Sequence.{}'.format(j) for j in range(1,13)]\n",
58
- " dtypes = {'BindingDB Target Chain Sequence.{}'.format(i): 'object' for i in range(1,13)}\n",
59
- " dtypes.update({'BindingDB Target Chain Sequence': 'object',\n",
60
- " 'IC50 (nM)': 'object',\n",
61
- " 'KEGG ID of Ligand': 'object',\n",
62
- " 'Ki (nM)': 'object',\n",
63
- " 'Kd (nM)': 'object',\n",
64
- " 'EC50 (nM)': 'object',\n",
65
- " 'koff (s-1)': 'object'})\n",
66
- " ddf = dd.read_csv('bindingdb/data/BindingDB_All.tsv',sep='\\t',error_bad_lines=False,blocksize=16*1024*1024,\n",
67
- " usecols=cols+allseq,\n",
68
- " dtype=dtypes)\n",
69
- " ddf = ddf.reset_index()\n",
70
- " ddf = ddf.rename(columns={'BindingDB Target Chain Sequence.{}'.format(j): 'seq_{}'.format(j) for j in range(1,13)})\n",
71
- " ddf = ddf.rename(columns={'BindingDB Target Chain Sequence': 'seq_0'})\n",
72
- " ddf = ddf.drop(columns={'seq_{}'.format(j) for j in range(0,13) if i != j})\n",
73
- " ddf[cols+['seq_{}'.format(i)]].to_parquet('bindingdb/parquet_data/target{}'.format(i),schema='infer')"
74
- ]
75
- },
76
- {
77
- "cell_type": "code",
78
- "execution_count": 15,
79
- "id": "be79bbcf-0622-4d1e-8f08-a723a4167d8b",
80
- "metadata": {},
81
- "outputs": [],
82
- "source": [
83
- "ddfs = []\n",
84
- "for i in range(0,13):\n",
85
- " ddf = dd.read_parquet('bindingdb/parquet_data/target{}'.format(i))\n",
86
- " ddf = ddf.rename(columns={'seq_{}'.format(i): 'seq'})\n",
87
- " ddfs.append(ddf)"
88
- ]
89
- },
90
- {
91
- "cell_type": "code",
92
- "execution_count": 16,
93
- "id": "35ca09cb-6264-4526-b504-0d29236a03c1",
94
- "metadata": {},
95
- "outputs": [],
96
- "source": [
97
- "ddf = dd.concat(ddfs)"
98
- ]
99
- },
100
- {
101
- "cell_type": "code",
102
- "execution_count": 17,
103
- "id": "ba518a9a-0d15-47be-977b-e2dfe2511529",
104
- "metadata": {},
105
- "outputs": [
106
- {
107
- "data": {
108
- "text/html": [
109
- "<div>\n",
110
- "<style scoped>\n",
111
- " .dataframe tbody tr th:only-of-type {\n",
112
- " vertical-align: middle;\n",
113
- " }\n",
114
- "\n",
115
- " .dataframe tbody tr th {\n",
116
- " vertical-align: top;\n",
117
- " }\n",
118
- "\n",
119
- " .dataframe thead th {\n",
120
- " text-align: right;\n",
121
- " }\n",
122
- "</style>\n",
123
- "<table border=\"1\" class=\"dataframe\">\n",
124
- " <thead>\n",
125
- " <tr style=\"text-align: right;\">\n",
126
- " <th></th>\n",
127
- " <th>Ligand SMILES</th>\n",
128
- " <th>IC50 (nM)</th>\n",
129
- " <th>KEGG ID of Ligand</th>\n",
130
- " <th>Ki (nM)</th>\n",
131
- " <th>Kd (nM)</th>\n",
132
- " <th>EC50 (nM)</th>\n",
133
- " <th>seq</th>\n",
134
- " </tr>\n",
135
- " </thead>\n",
136
- " <tbody>\n",
137
- " <tr>\n",
138
- " <th>0</th>\n",
139
- " <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
140
- " <td>None</td>\n",
141
- " <td>None</td>\n",
142
- " <td>0.24</td>\n",
143
- " <td>None</td>\n",
144
- " <td>None</td>\n",
145
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
146
- " </tr>\n",
147
- " <tr>\n",
148
- " <th>1</th>\n",
149
- " <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
150
- " <td>None</td>\n",
151
- " <td>None</td>\n",
152
- " <td>0.25</td>\n",
153
- " <td>None</td>\n",
154
- " <td>None</td>\n",
155
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
156
- " </tr>\n",
157
- " <tr>\n",
158
- " <th>2</th>\n",
159
- " <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
160
- " <td>None</td>\n",
161
- " <td>None</td>\n",
162
- " <td>0.41</td>\n",
163
- " <td>None</td>\n",
164
- " <td>None</td>\n",
165
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
166
- " </tr>\n",
167
- " <tr>\n",
168
- " <th>3</th>\n",
169
- " <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
170
- " <td>None</td>\n",
171
- " <td>None</td>\n",
172
- " <td>0.8</td>\n",
173
- " <td>None</td>\n",
174
- " <td>None</td>\n",
175
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
176
- " </tr>\n",
177
- " <tr>\n",
178
- " <th>4</th>\n",
179
- " <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
180
- " <td>None</td>\n",
181
- " <td>None</td>\n",
182
- " <td>0.99</td>\n",
183
- " <td>None</td>\n",
184
- " <td>None</td>\n",
185
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
186
- " </tr>\n",
187
- " </tbody>\n",
188
- "</table>\n",
189
- "</div>"
190
- ],
191
- "text/plain": [
192
- " Ligand SMILES IC50 (nM) \\\n",
193
- "0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n",
194
- "1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n",
195
- "2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n",
196
- "3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n",
197
- "4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n",
198
- "\n",
199
- " KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n",
200
- "0 None 0.24 None None \n",
201
- "1 None 0.25 None None \n",
202
- "2 None 0.41 None None \n",
203
- "3 None 0.8 None None \n",
204
- "4 None 0.99 None None \n",
205
- "\n",
206
- " seq \n",
207
- "0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
208
- "1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
209
- "2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
210
- "3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
211
- "4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... "
212
- ]
213
- },
214
- "execution_count": 17,
215
- "metadata": {},
216
- "output_type": "execute_result"
217
- }
218
- ],
219
- "source": [
220
- "ddf.head()"
221
- ]
222
- },
223
- {
224
- "cell_type": "code",
225
- "execution_count": 9,
226
- "id": "f504d7aa-dfc1-4346-a136-8814c4b5d979",
227
- "metadata": {},
228
- "outputs": [],
229
- "source": [
230
- "ddf.repartition(partition_size='25MB').to_parquet('bindingdb/parquet_data/all_targets',schema='infer')"
231
- ]
232
- },
233
- {
234
- "cell_type": "code",
235
- "execution_count": 4,
236
- "id": "d7eafa69-4606-4b34-ae8f-8c6462dcb004",
237
- "metadata": {},
238
- "outputs": [],
239
- "source": [
240
- "ddf = dd.read_parquet('../binding_affinity/bindingdb/parquet_data/all_targets')"
241
- ]
242
- },
243
- {
244
- "cell_type": "code",
245
- "execution_count": 5,
246
- "id": "b151868a-0cd6-405e-8401-f79918fb0b07",
247
- "metadata": {},
248
- "outputs": [
249
- {
250
- "data": {
251
- "text/html": [
252
- "<div><strong>Dask DataFrame Structure:</strong></div>\n",
253
- "<div>\n",
254
- "<style scoped>\n",
255
- " .dataframe tbody tr th:only-of-type {\n",
256
- " vertical-align: middle;\n",
257
- " }\n",
258
- "\n",
259
- " .dataframe tbody tr th {\n",
260
- " vertical-align: top;\n",
261
- " }\n",
262
- "\n",
263
- " .dataframe thead th {\n",
264
- " text-align: right;\n",
265
- " }\n",
266
- "</style>\n",
267
- "<table border=\"1\" class=\"dataframe\">\n",
268
- " <thead>\n",
269
- " <tr style=\"text-align: right;\">\n",
270
- " <th></th>\n",
271
- " <th>Ligand SMILES</th>\n",
272
- " <th>IC50 (nM)</th>\n",
273
- " <th>KEGG ID of Ligand</th>\n",
274
- " <th>Ki (nM)</th>\n",
275
- " <th>Kd (nM)</th>\n",
276
- " <th>EC50 (nM)</th>\n",
277
- " <th>seq</th>\n",
278
- " </tr>\n",
279
- " <tr>\n",
280
- " <th>npartitions=483</th>\n",
281
- " <th></th>\n",
282
- " <th></th>\n",
283
- " <th></th>\n",
284
- " <th></th>\n",
285
- " <th></th>\n",
286
- " <th></th>\n",
287
- " <th></th>\n",
288
- " </tr>\n",
289
- " </thead>\n",
290
- " <tbody>\n",
291
- " <tr>\n",
292
- " <th></th>\n",
293
- " <td>object</td>\n",
294
- " <td>object</td>\n",
295
- " <td>object</td>\n",
296
- " <td>object</td>\n",
297
- " <td>object</td>\n",
298
- " <td>object</td>\n",
299
- " <td>object</td>\n",
300
- " </tr>\n",
301
- " <tr>\n",
302
- " <th></th>\n",
303
- " <td>...</td>\n",
304
- " <td>...</td>\n",
305
- " <td>...</td>\n",
306
- " <td>...</td>\n",
307
- " <td>...</td>\n",
308
- " <td>...</td>\n",
309
- " <td>...</td>\n",
310
- " </tr>\n",
311
- " <tr>\n",
312
- " <th>...</th>\n",
313
- " <td>...</td>\n",
314
- " <td>...</td>\n",
315
- " <td>...</td>\n",
316
- " <td>...</td>\n",
317
- " <td>...</td>\n",
318
- " <td>...</td>\n",
319
- " <td>...</td>\n",
320
- " </tr>\n",
321
- " <tr>\n",
322
- " <th></th>\n",
323
- " <td>...</td>\n",
324
- " <td>...</td>\n",
325
- " <td>...</td>\n",
326
- " <td>...</td>\n",
327
- " <td>...</td>\n",
328
- " <td>...</td>\n",
329
- " <td>...</td>\n",
330
- " </tr>\n",
331
- " <tr>\n",
332
- " <th></th>\n",
333
- " <td>...</td>\n",
334
- " <td>...</td>\n",
335
- " <td>...</td>\n",
336
- " <td>...</td>\n",
337
- " <td>...</td>\n",
338
- " <td>...</td>\n",
339
- " <td>...</td>\n",
340
- " </tr>\n",
341
- " </tbody>\n",
342
- "</table>\n",
343
- "</div>\n",
344
- "<div>Dask Name: read-parquet, 483 tasks</div>"
345
- ],
346
- "text/plain": [
347
- "Dask DataFrame Structure:\n",
348
- " Ligand SMILES IC50 (nM) KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) seq\n",
349
- "npartitions=483 \n",
350
- " object object object object object object object\n",
351
- " ... ... ... ... ... ... ...\n",
352
- "... ... ... ... ... ... ... ...\n",
353
- " ... ... ... ... ... ... ...\n",
354
- " ... ... ... ... ... ... ...\n",
355
- "Dask Name: read-parquet, 483 tasks"
356
- ]
357
- },
358
- "execution_count": 5,
359
- "metadata": {},
360
- "output_type": "execute_result"
361
- }
362
- ],
363
- "source": [
364
- "ddf"
365
- ]
366
- },
367
- {
368
- "cell_type": "code",
369
- "execution_count": 6,
370
- "id": "c00102b8-f4be-4ebd-8d30-7a2c7fc2d05e",
371
- "metadata": {},
372
- "outputs": [],
373
- "source": [
374
- "ddf_nonnull = ddf[~ddf.seq.isnull()].copy()"
375
- ]
376
- },
377
- {
378
- "cell_type": "code",
379
- "execution_count": 8,
380
- "id": "c5337e06-1e45-4180-90ed-49ac9ecdd24a",
381
- "metadata": {},
382
- "outputs": [
383
- {
384
- "data": {
385
- "text/html": [
386
- "<div>\n",
387
- "<style scoped>\n",
388
- " .dataframe tbody tr th:only-of-type {\n",
389
- " vertical-align: middle;\n",
390
- " }\n",
391
- "\n",
392
- " .dataframe tbody tr th {\n",
393
- " vertical-align: top;\n",
394
- " }\n",
395
- "\n",
396
- " .dataframe thead th {\n",
397
- " text-align: right;\n",
398
- " }\n",
399
- "</style>\n",
400
- "<table border=\"1\" class=\"dataframe\">\n",
401
- " <thead>\n",
402
- " <tr style=\"text-align: right;\">\n",
403
- " <th></th>\n",
404
- " <th>Ligand SMILES</th>\n",
405
- " <th>IC50 (nM)</th>\n",
406
- " <th>KEGG ID of Ligand</th>\n",
407
- " <th>Ki (nM)</th>\n",
408
- " <th>Kd (nM)</th>\n",
409
- " <th>EC50 (nM)</th>\n",
410
- " <th>seq</th>\n",
411
- " </tr>\n",
412
- " </thead>\n",
413
- " <tbody>\n",
414
- " <tr>\n",
415
- " <th>0</th>\n",
416
- " <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
417
- " <td>None</td>\n",
418
- " <td>None</td>\n",
419
- " <td>0.24</td>\n",
420
- " <td>None</td>\n",
421
- " <td>None</td>\n",
422
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
423
- " </tr>\n",
424
- " <tr>\n",
425
- " <th>1</th>\n",
426
- " <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
427
- " <td>None</td>\n",
428
- " <td>None</td>\n",
429
- " <td>0.25</td>\n",
430
- " <td>None</td>\n",
431
- " <td>None</td>\n",
432
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
433
- " </tr>\n",
434
- " <tr>\n",
435
- " <th>2</th>\n",
436
- " <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
437
- " <td>None</td>\n",
438
- " <td>None</td>\n",
439
- " <td>0.41</td>\n",
440
- " <td>None</td>\n",
441
- " <td>None</td>\n",
442
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
443
- " </tr>\n",
444
- " <tr>\n",
445
- " <th>3</th>\n",
446
- " <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
447
- " <td>None</td>\n",
448
- " <td>None</td>\n",
449
- " <td>0.8</td>\n",
450
- " <td>None</td>\n",
451
- " <td>None</td>\n",
452
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
453
- " </tr>\n",
454
- " <tr>\n",
455
- " <th>4</th>\n",
456
- " <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
457
- " <td>None</td>\n",
458
- " <td>None</td>\n",
459
- " <td>0.99</td>\n",
460
- " <td>None</td>\n",
461
- " <td>None</td>\n",
462
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
463
- " </tr>\n",
464
- " </tbody>\n",
465
- "</table>\n",
466
- "</div>"
467
- ],
468
- "text/plain": [
469
- " Ligand SMILES IC50 (nM) \\\n",
470
- "0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n",
471
- "1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n",
472
- "2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n",
473
- "3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n",
474
- "4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n",
475
- "\n",
476
- " KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n",
477
- "0 None 0.24 None None \n",
478
- "1 None 0.25 None None \n",
479
- "2 None 0.41 None None \n",
480
- "3 None 0.8 None None \n",
481
- "4 None 0.99 None None \n",
482
- "\n",
483
- " seq \n",
484
- "0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
485
- "1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
486
- "2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
487
- "3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
488
- "4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... "
489
- ]
490
- },
491
- "execution_count": 8,
492
- "metadata": {},
493
- "output_type": "execute_result"
494
- }
495
- ],
496
- "source": [
497
- "ddf_nonnull.head()"
498
- ]
499
- },
500
- {
501
- "cell_type": "code",
502
- "execution_count": 17,
503
- "id": "7b423365-4989-4325-a5a5-845d852d52e9",
504
- "metadata": {},
505
- "outputs": [
506
- {
507
- "data": {
508
- "text/plain": [
509
- "2512985"
510
- ]
511
- },
512
- "execution_count": 17,
513
- "metadata": {},
514
- "output_type": "execute_result"
515
- }
516
- ],
517
- "source": [
518
- "len(ddf_nonnull)"
519
- ]
520
- },
521
- {
522
- "cell_type": "code",
523
- "execution_count": 11,
524
- "id": "872edb84-3459-43d9-8e0e-e2a6b5d281eb",
525
- "metadata": {},
526
- "outputs": [],
527
- "source": [
528
- "from pint import UnitRegistry\n",
529
- "import numpy as np\n",
530
- "import re\n",
531
- "ureg = UnitRegistry()\n",
532
- "\n",
533
- "def to_uM(affinities):\n",
534
- " ic50, Ki, Kd, ec50 = affinities\n",
535
- "\n",
536
- " vals = []\n",
537
- " \n",
538
- " try:\n",
539
- " ic50 = ureg(str(ic50)+'nM').m_as(ureg.uM)\n",
540
- " vals.append(ic50)\n",
541
- " except:\n",
542
- " pass\n",
543
- "\n",
544
- " try:\n",
545
- " Ki = ureg(str(Ki)+'nM').m_as(ureg.uM)\n",
546
- " vals.append(Ki)\n",
547
- " except:\n",
548
- " pass\n",
549
- "\n",
550
- " try:\n",
551
- " Kd = ureg(str(Kd)+'nM').m_as(ureg.uM)\n",
552
- " vals.append(Kd)\n",
553
- " except:\n",
554
- " pass\n",
555
- "\n",
556
- " try:\n",
557
- " ec50 = ureg(str(ec50)+'nM').m_as(ureg.uM)\n",
558
- " vals.append(ec50)\n",
559
- " except:\n",
560
- " pass\n",
561
- "\n",
562
- " if len(vals) > 0:\n",
563
- " vals = np.array(vals)\n",
564
- " return np.mean(vals[~np.isnan(vals)])\n",
565
- " \n",
566
- " return None"
567
- ]
568
- },
569
- {
570
- "cell_type": "code",
571
- "execution_count": 12,
572
- "id": "b3cff13c-19b2-4413-a84b-d99062f516a7",
573
- "metadata": {},
574
- "outputs": [],
575
- "source": [
576
- "df_nonnull = ddf_nonnull.compute()"
577
- ]
578
- },
579
- {
580
- "cell_type": "code",
581
- "execution_count": 13,
582
- "id": "ca9795de-e821-4dc3-a7bf-70ade9e4c7f0",
583
- "metadata": {},
584
- "outputs": [
585
- {
586
- "name": "stdout",
587
- "output_type": "stream",
588
- "text": [
589
- "INFO: Pandarallel will run on 32 workers.\n",
590
- "INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n"
591
- ]
592
- }
593
- ],
594
- "source": [
595
- "from pandarallel import pandarallel\n",
596
- "pandarallel.initialize()\n"
597
- ]
598
- },
599
- {
600
- "cell_type": "code",
601
- "execution_count": 14,
602
- "id": "4356a3e2-fede-48e7-a486-343661fe0a0a",
603
- "metadata": {},
604
- "outputs": [],
605
- "source": [
606
- "df_affinity = df_nonnull.copy()\n",
607
- "df_affinity['affinity_uM'] = df_affinity[['IC50 (nM)', 'Ki (nM)', 'Kd (nM)','EC50 (nM)']].parallel_apply(to_uM,axis=1)"
608
- ]
609
- },
610
- {
611
- "cell_type": "code",
612
- "execution_count": 15,
613
- "id": "e91c3af8-84a5-42a2-9e25-49cb2f320b0b",
614
- "metadata": {},
615
- "outputs": [],
616
- "source": [
617
- "df_affinity[~df_affinity['affinity_uM'].isnull()].to_parquet('data/bindingdb.parquet')"
618
- ]
619
- },
620
- {
621
- "cell_type": "code",
622
- "execution_count": 1,
623
- "id": "f3a9173e-d574-4314-9cea-f8c0a66766c0",
624
- "metadata": {},
625
- "outputs": [],
626
- "source": [
627
- "import pandas as pd\n",
628
- "df_affinity = pd.read_parquet('data/bindingdb.parquet')"
629
- ]
630
- },
631
- {
632
- "cell_type": "code",
633
- "execution_count": 2,
634
- "id": "f602fdbe-7083-436c-9eac-9d97fbc8be67",
635
- "metadata": {},
636
- "outputs": [
637
- {
638
- "data": {
639
- "text/plain": [
640
- "2510716"
641
- ]
642
- },
643
- "execution_count": 2,
644
- "metadata": {},
645
- "output_type": "execute_result"
646
- }
647
- ],
648
- "source": [
649
- "len(df_affinity)"
650
- ]
651
- },
652
- {
653
- "cell_type": "code",
654
- "execution_count": 3,
655
- "id": "27194288-cf3e-4c30-ad55-3b0998fdf939",
656
- "metadata": {},
657
- "outputs": [
658
- {
659
- "data": {
660
- "text/html": [
661
- "<div>\n",
662
- "<style scoped>\n",
663
- " .dataframe tbody tr th:only-of-type {\n",
664
- " vertical-align: middle;\n",
665
- " }\n",
666
- "\n",
667
- " .dataframe tbody tr th {\n",
668
- " vertical-align: top;\n",
669
- " }\n",
670
- "\n",
671
- " .dataframe thead th {\n",
672
- " text-align: right;\n",
673
- " }\n",
674
- "</style>\n",
675
- "<table border=\"1\" class=\"dataframe\">\n",
676
- " <thead>\n",
677
- " <tr style=\"text-align: right;\">\n",
678
- " <th></th>\n",
679
- " <th>Ligand SMILES</th>\n",
680
- " <th>IC50 (nM)</th>\n",
681
- " <th>KEGG ID of Ligand</th>\n",
682
- " <th>Ki (nM)</th>\n",
683
- " <th>Kd (nM)</th>\n",
684
- " <th>EC50 (nM)</th>\n",
685
- " <th>seq</th>\n",
686
- " <th>affinity_uM</th>\n",
687
- " </tr>\n",
688
- " </thead>\n",
689
- " <tbody>\n",
690
- " <tr>\n",
691
- " <th>0</th>\n",
692
- " <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
693
- " <td>None</td>\n",
694
- " <td>None</td>\n",
695
- " <td>0.24</td>\n",
696
- " <td>None</td>\n",
697
- " <td>None</td>\n",
698
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
699
- " <td>0.00024</td>\n",
700
- " </tr>\n",
701
- " <tr>\n",
702
- " <th>1</th>\n",
703
- " <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
704
- " <td>None</td>\n",
705
- " <td>None</td>\n",
706
- " <td>0.25</td>\n",
707
- " <td>None</td>\n",
708
- " <td>None</td>\n",
709
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
710
- " <td>0.00025</td>\n",
711
- " </tr>\n",
712
- " <tr>\n",
713
- " <th>2</th>\n",
714
- " <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
715
- " <td>None</td>\n",
716
- " <td>None</td>\n",
717
- " <td>0.41</td>\n",
718
- " <td>None</td>\n",
719
- " <td>None</td>\n",
720
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
721
- " <td>0.00041</td>\n",
722
- " </tr>\n",
723
- " <tr>\n",
724
- " <th>3</th>\n",
725
- " <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
726
- " <td>None</td>\n",
727
- " <td>None</td>\n",
728
- " <td>0.8</td>\n",
729
- " <td>None</td>\n",
730
- " <td>None</td>\n",
731
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
732
- " <td>0.00080</td>\n",
733
- " </tr>\n",
734
- " <tr>\n",
735
- " <th>4</th>\n",
736
- " <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
737
- " <td>None</td>\n",
738
- " <td>None</td>\n",
739
- " <td>0.99</td>\n",
740
- " <td>None</td>\n",
741
- " <td>None</td>\n",
742
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
743
- " <td>0.00099</td>\n",
744
- " </tr>\n",
745
- " </tbody>\n",
746
- "</table>\n",
747
- "</div>"
748
- ],
749
- "text/plain": [
750
- " Ligand SMILES IC50 (nM) \\\n",
751
- "0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n",
752
- "1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n",
753
- "2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n",
754
- "3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n",
755
- "4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n",
756
- "\n",
757
- " KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n",
758
- "0 None 0.24 None None \n",
759
- "1 None 0.25 None None \n",
760
- "2 None 0.41 None None \n",
761
- "3 None 0.8 None None \n",
762
- "4 None 0.99 None None \n",
763
- "\n",
764
- " seq affinity_uM \n",
765
- "0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00024 \n",
766
- "1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00025 \n",
767
- "2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00041 \n",
768
- "3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00080 \n",
769
- "4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00099 "
770
- ]
771
- },
772
- "execution_count": 3,
773
- "metadata": {},
774
- "output_type": "execute_result"
775
- }
776
- ],
777
- "source": [
778
- "df_affinity.head()"
779
- ]
780
- },
781
- {
782
- "cell_type": "code",
783
- "execution_count": 4,
784
- "id": "603fd298-0aa6-4097-b298-c55db013548c",
785
- "metadata": {},
786
- "outputs": [
787
- {
788
- "data": {
789
- "text/plain": [
790
- "2510716"
791
- ]
792
- },
793
- "execution_count": 4,
794
- "metadata": {},
795
- "output_type": "execute_result"
796
- }
797
- ],
798
- "source": [
799
- "len(df_affinity)"
800
- ]
801
- },
802
- {
803
- "cell_type": "code",
804
- "execution_count": 5,
805
- "id": "d95ad9a9-d4ca-4679-8a33-235fe6e7047f",
806
- "metadata": {},
807
- "outputs": [
808
- {
809
- "data": {
810
- "text/plain": [
811
- "2510716"
812
- ]
813
- },
814
- "execution_count": 5,
815
- "metadata": {},
816
- "output_type": "execute_result"
817
- }
818
- ],
819
- "source": [
820
- "len(df_affinity[~df_affinity['affinity_uM'].isnull()])"
821
- ]
822
- },
823
- {
824
- "cell_type": "code",
825
- "execution_count": 6,
826
- "id": "b21c4683-0fe1-4a0a-a55c-c0dc80193f36",
827
- "metadata": {},
828
- "outputs": [
829
- {
830
- "data": {
831
- "text/html": [
832
- "<div>\n",
833
- "<style scoped>\n",
834
- " .dataframe tbody tr th:only-of-type {\n",
835
- " vertical-align: middle;\n",
836
- " }\n",
837
- "\n",
838
- " .dataframe tbody tr th {\n",
839
- " vertical-align: top;\n",
840
- " }\n",
841
- "\n",
842
- " .dataframe thead th {\n",
843
- " text-align: right;\n",
844
- " }\n",
845
- "</style>\n",
846
- "<table border=\"1\" class=\"dataframe\">\n",
847
- " <thead>\n",
848
- " <tr style=\"text-align: right;\">\n",
849
- " <th></th>\n",
850
- " <th>Ligand SMILES</th>\n",
851
- " <th>IC50 (nM)</th>\n",
852
- " <th>KEGG ID of Ligand</th>\n",
853
- " <th>Ki (nM)</th>\n",
854
- " <th>Kd (nM)</th>\n",
855
- " <th>EC50 (nM)</th>\n",
856
- " <th>seq</th>\n",
857
- " <th>affinity_uM</th>\n",
858
- " </tr>\n",
859
- " </thead>\n",
860
- " <tbody>\n",
861
- " <tr>\n",
862
- " <th>0</th>\n",
863
- " <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
864
- " <td>None</td>\n",
865
- " <td>None</td>\n",
866
- " <td>0.24</td>\n",
867
- " <td>None</td>\n",
868
- " <td>None</td>\n",
869
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
870
- " <td>0.00024</td>\n",
871
- " </tr>\n",
872
- " <tr>\n",
873
- " <th>1</th>\n",
874
- " <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
875
- " <td>None</td>\n",
876
- " <td>None</td>\n",
877
- " <td>0.25</td>\n",
878
- " <td>None</td>\n",
879
- " <td>None</td>\n",
880
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
881
- " <td>0.00025</td>\n",
882
- " </tr>\n",
883
- " <tr>\n",
884
- " <th>2</th>\n",
885
- " <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
886
- " <td>None</td>\n",
887
- " <td>None</td>\n",
888
- " <td>0.41</td>\n",
889
- " <td>None</td>\n",
890
- " <td>None</td>\n",
891
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
892
- " <td>0.00041</td>\n",
893
- " </tr>\n",
894
- " <tr>\n",
895
- " <th>3</th>\n",
896
- " <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
897
- " <td>None</td>\n",
898
- " <td>None</td>\n",
899
- " <td>0.8</td>\n",
900
- " <td>None</td>\n",
901
- " <td>None</td>\n",
902
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
903
- " <td>0.00080</td>\n",
904
- " </tr>\n",
905
- " <tr>\n",
906
- " <th>4</th>\n",
907
- " <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
908
- " <td>None</td>\n",
909
- " <td>None</td>\n",
910
- " <td>0.99</td>\n",
911
- " <td>None</td>\n",
912
- " <td>None</td>\n",
913
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
914
- " <td>0.00099</td>\n",
915
- " </tr>\n",
916
- " <tr>\n",
917
- " <th>...</th>\n",
918
- " <td>...</td>\n",
919
- " <td>...</td>\n",
920
- " <td>...</td>\n",
921
- " <td>...</td>\n",
922
- " <td>...</td>\n",
923
- " <td>...</td>\n",
924
- " <td>...</td>\n",
925
- " <td>...</td>\n",
926
- " </tr>\n",
927
- " <tr>\n",
928
- " <th>5112</th>\n",
929
- " <td>COc1ccc(NC(=O)N2CCC(CC2)C(=O)N[C@@H](CC(C)C)C(...</td>\n",
930
- " <td>17</td>\n",
931
- " <td>None</td>\n",
932
- " <td>None</td>\n",
933
- " <td>None</td>\n",
934
- " <td>None</td>\n",
935
- " <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
936
- " <td>0.01700</td>\n",
937
- " </tr>\n",
938
- " <tr>\n",
939
- " <th>5113</th>\n",
940
- " <td>CC(C)C[C@H](NC(=O)C1CCN(CC1)C(=O)Nc1cnccn1)C(=...</td>\n",
941
- " <td>76</td>\n",
942
- " <td>None</td>\n",
943
- " <td>None</td>\n",
944
- " <td>None</td>\n",
945
- " <td>None</td>\n",
946
- " <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
947
- " <td>0.07600</td>\n",
948
- " </tr>\n",
949
- " <tr>\n",
950
- " <th>5313</th>\n",
951
- " <td>C[C@H](NC(=O)[C@H](Cc1ccccc1)NC(=O)OCc1ccccc1)...</td>\n",
952
- " <td>&gt;100000</td>\n",
953
- " <td>None</td>\n",
954
- " <td>None</td>\n",
955
- " <td>None</td>\n",
956
- " <td>None</td>\n",
957
- " <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
958
- " <td>100.00000</td>\n",
959
- " </tr>\n",
960
- " <tr>\n",
961
- " <th>5314</th>\n",
962
- " <td>FCC(=O)CNC(=O)[C@H](Cc1ccccc1)NC(=O)c1cccc2ccc...</td>\n",
963
- " <td>&gt;100000</td>\n",
964
- " <td>None</td>\n",
965
- " <td>None</td>\n",
966
- " <td>None</td>\n",
967
- " <td>None</td>\n",
968
- " <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
969
- " <td>100.00000</td>\n",
970
- " </tr>\n",
971
- " <tr>\n",
972
- " <th>5361</th>\n",
973
- " <td>FCC(=O)CNC(=O)[C@H](Cc1ccccc1)NC(=O)c1ccccc1</td>\n",
974
- " <td>&gt;100000</td>\n",
975
- " <td>None</td>\n",
976
- " <td>None</td>\n",
977
- " <td>None</td>\n",
978
- " <td>None</td>\n",
979
- " <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
980
- " <td>100.00000</td>\n",
981
- " </tr>\n",
982
- " </tbody>\n",
983
- "</table>\n",
984
- "<p>2510716 rows × 8 columns</p>\n",
985
- "</div>"
986
- ],
987
- "text/plain": [
988
- " Ligand SMILES IC50 (nM) \\\n",
989
- "0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n",
990
- "1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n",
991
- "2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n",
992
- "3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n",
993
- "4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n",
994
- "... ... ... \n",
995
- "5112 COc1ccc(NC(=O)N2CCC(CC2)C(=O)N[C@@H](CC(C)C)C(... 17 \n",
996
- "5113 CC(C)C[C@H](NC(=O)C1CCN(CC1)C(=O)Nc1cnccn1)C(=... 76 \n",
997
- "5313 C[C@H](NC(=O)[C@H](Cc1ccccc1)NC(=O)OCc1ccccc1)... >100000 \n",
998
- "5314 FCC(=O)CNC(=O)[C@H](Cc1ccccc1)NC(=O)c1cccc2ccc... >100000 \n",
999
- "5361 FCC(=O)CNC(=O)[C@H](Cc1ccccc1)NC(=O)c1ccccc1 >100000 \n",
1000
- "\n",
1001
- " KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n",
1002
- "0 None 0.24 None None \n",
1003
- "1 None 0.25 None None \n",
1004
- "2 None 0.41 None None \n",
1005
- "3 None 0.8 None None \n",
1006
- "4 None 0.99 None None \n",
1007
- "... ... ... ... ... \n",
1008
- "5112 None None None None \n",
1009
- "5113 None None None None \n",
1010
- "5313 None None None None \n",
1011
- "5314 None None None None \n",
1012
- "5361 None None None None \n",
1013
- "\n",
1014
- " seq affinity_uM \n",
1015
- "0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00024 \n",
1016
- "1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00025 \n",
1017
- "2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00041 \n",
1018
- "3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00080 \n",
1019
- "4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00099 \n",
1020
- "... ... ... \n",
1021
- "5112 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... 0.01700 \n",
1022
- "5113 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... 0.07600 \n",
1023
- "5313 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... 100.00000 \n",
1024
- "5314 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... 100.00000 \n",
1025
- "5361 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... 100.00000 \n",
1026
- "\n",
1027
- "[2510716 rows x 8 columns]"
1028
- ]
1029
- },
1030
- "execution_count": 6,
1031
- "metadata": {},
1032
- "output_type": "execute_result"
1033
- }
1034
- ],
1035
- "source": [
1036
- "df_affinity"
1037
- ]
1038
- },
1039
- {
1040
- "cell_type": "code",
1041
- "execution_count": 25,
1042
- "id": "20690729",
1043
- "metadata": {},
1044
- "outputs": [],
1045
- "source": [
1046
- "import rdkit.Chem as Chem"
1047
- ]
1048
- },
1049
- {
1050
- "cell_type": "code",
1051
- "execution_count": 27,
1052
- "id": "48114dcc",
1053
- "metadata": {},
1054
- "outputs": [],
1055
- "source": [
1056
- "df_pdb = df[~df['PDB ID(s) for Ligand-Target Complex'].isnull()][['PDB ID(s) for Ligand-Target Complex','Ligand SMILES']]"
1057
- ]
1058
- },
1059
- {
1060
- "cell_type": "code",
1061
- "execution_count": 28,
1062
- "id": "caa0497c",
1063
- "metadata": {},
1064
- "outputs": [],
1065
- "source": [
1066
- "def make_canonical(smi):\n",
1067
- " return Chem.MolToSmiles(Chem.MolFromSmiles(smi))\n",
1068
- "\n",
1069
- "df_pdb['can_smiles'] = df_pdb['Ligand SMILES'].apply(make_canonical)"
1070
- ]
1071
- },
1072
- {
1073
- "cell_type": "code",
1074
- "execution_count": 29,
1075
- "id": "e82d64f3",
1076
- "metadata": {},
1077
- "outputs": [
1078
- {
1079
- "data": {
1080
- "text/html": [
1081
- "<div>\n",
1082
- "<style scoped>\n",
1083
- " .dataframe tbody tr th:only-of-type {\n",
1084
- " vertical-align: middle;\n",
1085
- " }\n",
1086
- "\n",
1087
- " .dataframe tbody tr th {\n",
1088
- " vertical-align: top;\n",
1089
- " }\n",
1090
- "\n",
1091
- " .dataframe thead th {\n",
1092
- " text-align: right;\n",
1093
- " }\n",
1094
- "</style>\n",
1095
- "<table border=\"1\" class=\"dataframe\">\n",
1096
- " <thead>\n",
1097
- " <tr style=\"text-align: right;\">\n",
1098
- " <th></th>\n",
1099
- " <th>PDB ID(s) for Ligand-Target Complex</th>\n",
1100
- " <th>Ligand SMILES</th>\n",
1101
- " <th>can_smiles</th>\n",
1102
- " </tr>\n",
1103
- " </thead>\n",
1104
- " <tbody>\n",
1105
- " <tr>\n",
1106
- " <th>0</th>\n",
1107
- " <td>2IVU</td>\n",
1108
- " <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
1109
- " <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
1110
- " </tr>\n",
1111
- " <tr>\n",
1112
- " <th>29</th>\n",
1113
- " <td>1HWR</td>\n",
1114
- " <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC=C)C(=O)...</td>\n",
1115
- " <td>C=CCN1C(=O)N(CC=C)[C@H](Cc2ccccc2)[C@H](O)[C@@...</td>\n",
1116
- " </tr>\n",
1117
- " <tr>\n",
1118
- " <th>34</th>\n",
1119
- " <td>6DGY,6DH1,6DH4,6DH7,3O99</td>\n",
1120
- " <td>CC[C@H](C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O...</td>\n",
1121
- " <td>CC[C@H](C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O...</td>\n",
1122
- " </tr>\n",
1123
- " <tr>\n",
1124
- " <th>129</th>\n",
1125
- " <td>1MES,1MEU,1MET,1BVG,1BVE,3JVW,1QBS</td>\n",
1126
- " <td>OCc1ccc(CN2[C@H](Cc3ccccc3)[C@H](O)[C@@H](O)[C...</td>\n",
1127
- " <td>O=C1N(Cc2ccc(CO)cc2)[C@H](Cc2ccccc2)[C@H](O)[C...</td>\n",
1128
- " </tr>\n",
1129
- " <tr>\n",
1130
- " <th>130</th>\n",
1131
- " <td>1MER,1DMP,1RQ9</td>\n",
1132
- " <td>Nc1cccc(CN2[C@H](Cc3ccccc3)[C@H](O)[C@@H](O)[C...</td>\n",
1133
- " <td>Nc1cccc(CN2C(=O)N(Cc3cccc(N)c3)[C@H](Cc3ccccc3...</td>\n",
1134
- " </tr>\n",
1135
- " <tr>\n",
1136
- " <th>...</th>\n",
1137
- " <td>...</td>\n",
1138
- " <td>...</td>\n",
1139
- " <td>...</td>\n",
1140
- " </tr>\n",
1141
- " <tr>\n",
1142
- " <th>2333375</th>\n",
1143
- " <td>1MUI,2RKG,2RKF,1RV7,2Q5K,2O4S,6DJ1,6DJ2,3OGQ,2...</td>\n",
1144
- " <td>CC(C)[C@H](N1CCCNC1=O)C(=O)N[C@H](C[C@H](O)[C@...</td>\n",
1145
- " <td>Cc1cccc(C)c1OCC(=O)N[C@@H](Cc1ccccc1)[C@@H](O)...</td>\n",
1146
- " </tr>\n",
1147
- " <tr>\n",
1148
- " <th>2333376</th>\n",
1149
- " <td>4NPT,4DQH,4DQE,5E5J,3JW2,6OPU,6OPX,2HS2,2HS1,2...</td>\n",
1150
- " <td>CC(C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O[C@H]...</td>\n",
1151
- " <td>CC(C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O[C@H]...</td>\n",
1152
- " </tr>\n",
1153
- " <tr>\n",
1154
- " <th>2333380</th>\n",
1155
- " <td>6EKZ,1DY4,5FUK,6PS5</td>\n",
1156
- " <td>CC(C)NCC(O)COc1cccc2ccccc12</td>\n",
1157
- " <td>CC(C)NCC(O)COc1cccc2ccccc12</td>\n",
1158
- " </tr>\n",
1159
- " <tr>\n",
1160
- " <th>2333384</th>\n",
1161
- " <td>6EKZ,1DY4,5FUK,6PS5</td>\n",
1162
- " <td>CC(C)NCC(O)COc1cccc2ccccc12</td>\n",
1163
- " <td>CC(C)NCC(O)COc1cccc2ccccc12</td>\n",
1164
- " </tr>\n",
1165
- " <tr>\n",
1166
- " <th>2333385</th>\n",
1167
- " <td>6A60,3DCT</td>\n",
1168
- " <td>CC(C)c1onc(c1COc1ccc(\\C=C\\c2cccc(c2)C(O)=O)c(C...</td>\n",
1169
- " <td>CC(C)c1onc(-c2c(Cl)cccc2Cl)c1COc1ccc(/C=C/c2cc...</td>\n",
1170
- " </tr>\n",
1171
- " </tbody>\n",
1172
- "</table>\n",
1173
- "<p>123385 rows × 3 columns</p>\n",
1174
- "</div>"
1175
- ],
1176
- "text/plain": [
1177
- " PDB ID(s) for Ligand-Target Complex \\\n",
1178
- "0 2IVU \n",
1179
- "29 1HWR \n",
1180
- "34 6DGY,6DH1,6DH4,6DH7,3O99 \n",
1181
- "129 1MES,1MEU,1MET,1BVG,1BVE,3JVW,1QBS \n",
1182
- "130 1MER,1DMP,1RQ9 \n",
1183
- "... ... \n",
1184
- "2333375 1MUI,2RKG,2RKF,1RV7,2Q5K,2O4S,6DJ1,6DJ2,3OGQ,2... \n",
1185
- "2333376 4NPT,4DQH,4DQE,5E5J,3JW2,6OPU,6OPX,2HS2,2HS1,2... \n",
1186
- "2333380 6EKZ,1DY4,5FUK,6PS5 \n",
1187
- "2333384 6EKZ,1DY4,5FUK,6PS5 \n",
1188
- "2333385 6A60,3DCT \n",
1189
- "\n",
1190
- " Ligand SMILES \\\n",
1191
- "0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 \n",
1192
- "29 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC=C)C(=O)... \n",
1193
- "34 CC[C@H](C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O... \n",
1194
- "129 OCc1ccc(CN2[C@H](Cc3ccccc3)[C@H](O)[C@@H](O)[C... \n",
1195
- "130 Nc1cccc(CN2[C@H](Cc3ccccc3)[C@H](O)[C@@H](O)[C... \n",
1196
- "... ... \n",
1197
- "2333375 CC(C)[C@H](N1CCCNC1=O)C(=O)N[C@H](C[C@H](O)[C@... \n",
1198
- "2333376 CC(C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O[C@H]... \n",
1199
- "2333380 CC(C)NCC(O)COc1cccc2ccccc12 \n",
1200
- "2333384 CC(C)NCC(O)COc1cccc2ccccc12 \n",
1201
- "2333385 CC(C)c1onc(c1COc1ccc(\\C=C\\c2cccc(c2)C(O)=O)c(C... \n",
1202
- "\n",
1203
- " can_smiles \n",
1204
- "0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 \n",
1205
- "29 C=CCN1C(=O)N(CC=C)[C@H](Cc2ccccc2)[C@H](O)[C@@... \n",
1206
- "34 CC[C@H](C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O... \n",
1207
- "129 O=C1N(Cc2ccc(CO)cc2)[C@H](Cc2ccccc2)[C@H](O)[C... \n",
1208
- "130 Nc1cccc(CN2C(=O)N(Cc3cccc(N)c3)[C@H](Cc3ccccc3... \n",
1209
- "... ... \n",
1210
- "2333375 Cc1cccc(C)c1OCC(=O)N[C@@H](Cc1ccccc1)[C@@H](O)... \n",
1211
- "2333376 CC(C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O[C@H]... \n",
1212
- "2333380 CC(C)NCC(O)COc1cccc2ccccc12 \n",
1213
- "2333384 CC(C)NCC(O)COc1cccc2ccccc12 \n",
1214
- "2333385 CC(C)c1onc(-c2c(Cl)cccc2Cl)c1COc1ccc(/C=C/c2cc... \n",
1215
- "\n",
1216
- "[123385 rows x 3 columns]"
1217
- ]
1218
- },
1219
- "execution_count": 29,
1220
- "metadata": {},
1221
- "output_type": "execute_result"
1222
- }
1223
- ],
1224
- "source": [
1225
- "df_pdb"
1226
- ]
1227
- },
1228
- {
1229
- "cell_type": "code",
1230
- "execution_count": null,
1231
- "id": "593c9aec",
1232
- "metadata": {},
1233
- "outputs": [],
1234
- "source": []
1235
- }
1236
- ],
1237
- "metadata": {
1238
- "kernelspec": {
1239
- "display_name": "Python 3",
1240
- "language": "python",
1241
- "name": "python3"
1242
- },
1243
- "language_info": {
1244
- "codemirror_mode": {
1245
- "name": "ipython",
1246
- "version": 3
1247
- },
1248
- "file_extension": ".py",
1249
- "mimetype": "text/x-python",
1250
- "name": "python",
1251
- "nbconvert_exporter": "python",
1252
- "pygments_lexer": "ipython3",
1253
- "version": "3.9.4"
1254
- }
1255
- },
1256
- "nbformat": 4,
1257
- "nbformat_minor": 5
1258
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bindingdb_single.ipynb DELETED
@@ -1,1036 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 1,
6
- "id": "ecce356e-321b-441e-8a5d-a20bf72f8691",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import dask.dataframe as dd"
12
- ]
13
- },
14
- {
15
- "cell_type": "code",
16
- "execution_count": 2,
17
- "id": "89cbcd82-4ca2-4aba-95b7-e58c0ceed770",
18
- "metadata": {},
19
- "outputs": [],
20
- "source": [
21
- "cols = ['Ligand SMILES', 'IC50 (nM)','KEGG ID of Ligand','Ki (nM)', 'Kd (nM)','EC50 (nM)']"
22
- ]
23
- },
24
- {
25
- "cell_type": "code",
26
- "execution_count": 3,
27
- "id": "1b923f02-e858-4737-ab5e-4c98c2def1b6",
28
- "metadata": {},
29
- "outputs": [],
30
- "source": [
31
- "allseq = ['BindingDB Target Chain Sequence']+['BindingDB Target Chain Sequence.{}'.format(j) for j in range(1,13)]"
32
- ]
33
- },
34
- {
35
- "cell_type": "code",
36
- "execution_count": 4,
37
- "id": "54f0721e-1e36-48cc-a635-a1617a04f9e5",
38
- "metadata": {},
39
- "outputs": [],
40
- "source": [
41
- "dtypes = {'BindingDB Target Chain Sequence.{}'.format(i): 'object' for i in range(1,13)}"
42
- ]
43
- },
44
- {
45
- "cell_type": "code",
46
- "execution_count": 5,
47
- "id": "c1843c65-a5ef-4604-adca-40fb18bc2991",
48
- "metadata": {},
49
- "outputs": [],
50
- "source": [
51
- "dtypes.update({'BindingDB Target Chain Sequence': 'object',\n",
52
- " 'IC50 (nM)': 'object',\n",
53
- " 'KEGG ID of Ligand': 'object',\n",
54
- " 'Ki (nM)': 'object',\n",
55
- " 'Kd (nM)': 'object',\n",
56
- " 'EC50 (nM)': 'object',\n",
57
- " 'koff (s-1)': 'object'})"
58
- ]
59
- },
60
- {
61
- "cell_type": "code",
62
- "execution_count": 6,
63
- "id": "aa337ac3-4ca1-4369-a9c7-ab705221a137",
64
- "metadata": {},
65
- "outputs": [],
66
- "source": [
67
- "seq_name = 'BindingDB Target Chain Sequence'"
68
- ]
69
- },
70
- {
71
- "cell_type": "code",
72
- "execution_count": 7,
73
- "id": "a870d8d7-374b-4474-b9ee-305bbf9f17a9",
74
- "metadata": {},
75
- "outputs": [],
76
- "source": [
77
- "import tqdm.notebook"
78
- ]
79
- },
80
- {
81
- "cell_type": "code",
82
- "execution_count": 8,
83
- "id": "e97d29e6-d153-480e-a1ee-c216c22af8d2",
84
- "metadata": {},
85
- "outputs": [],
86
- "source": [
87
- "ddf = dd.read_csv('bindingdb/data/BindingDB_All.tsv',sep='\\t',\n",
88
- " error_bad_lines=False,\n",
89
- " usecols=cols+allseq,\n",
90
- " dtype=dtypes)"
91
- ]
92
- },
93
- {
94
- "cell_type": "code",
95
- "execution_count": 11,
96
- "id": "a4b381c0-968b-4248-a24f-9609acb12136",
97
- "metadata": {},
98
- "outputs": [
99
- {
100
- "data": {
101
- "text/plain": [
102
- "0.04789522637942933"
103
- ]
104
- },
105
- "execution_count": 11,
106
- "metadata": {},
107
- "output_type": "execute_result"
108
- }
109
- ],
110
- "source": [
111
- "len(ddf[~ddf['BindingDB Target Chain Sequence.1'].isnull()])/len(ddf[~ddf['BindingDB Target Chain Sequence'].isnull()])"
112
- ]
113
- },
114
- {
115
- "cell_type": "code",
116
- "execution_count": 18,
117
- "id": "7a8efd3f-c9c4-4f6a-83e5-9e9610deb17f",
118
- "metadata": {},
119
- "outputs": [],
120
- "source": [
121
- "# remove rows with more than one target\n",
122
- "ddf_prune = ddf[ddf['BindingDB Target Chain Sequence.1'].isnull()]\n",
123
- "ddf_prune = ddf_prune.rename(columns={'BindingDB Target Chain Sequence': 'seq'})"
124
- ]
125
- },
126
- {
127
- "cell_type": "code",
128
- "execution_count": 19,
129
- "id": "c00102b8-f4be-4ebd-8d30-7a2c7fc2d05e",
130
- "metadata": {},
131
- "outputs": [],
132
- "source": [
133
- "ddf_nonnull = ddf_prune[~ddf_prune.seq.isnull()].copy()"
134
- ]
135
- },
136
- {
137
- "cell_type": "code",
138
- "execution_count": 20,
139
- "id": "c5337e06-1e45-4180-90ed-49ac9ecdd24a",
140
- "metadata": {},
141
- "outputs": [
142
- {
143
- "data": {
144
- "text/html": [
145
- "<div>\n",
146
- "<style scoped>\n",
147
- " .dataframe tbody tr th:only-of-type {\n",
148
- " vertical-align: middle;\n",
149
- " }\n",
150
- "\n",
151
- " .dataframe tbody tr th {\n",
152
- " vertical-align: top;\n",
153
- " }\n",
154
- "\n",
155
- " .dataframe thead th {\n",
156
- " text-align: right;\n",
157
- " }\n",
158
- "</style>\n",
159
- "<table border=\"1\" class=\"dataframe\">\n",
160
- " <thead>\n",
161
- " <tr style=\"text-align: right;\">\n",
162
- " <th></th>\n",
163
- " <th>Ligand SMILES</th>\n",
164
- " <th>Ki (nM)</th>\n",
165
- " <th>IC50 (nM)</th>\n",
166
- " <th>Kd (nM)</th>\n",
167
- " <th>EC50 (nM)</th>\n",
168
- " <th>KEGG ID of Ligand</th>\n",
169
- " <th>seq</th>\n",
170
- " <th>BindingDB Target Chain Sequence.1</th>\n",
171
- " <th>BindingDB Target Chain Sequence.2</th>\n",
172
- " <th>BindingDB Target Chain Sequence.3</th>\n",
173
- " <th>BindingDB Target Chain Sequence.4</th>\n",
174
- " <th>BindingDB Target Chain Sequence.5</th>\n",
175
- " <th>BindingDB Target Chain Sequence.6</th>\n",
176
- " <th>BindingDB Target Chain Sequence.7</th>\n",
177
- " <th>BindingDB Target Chain Sequence.8</th>\n",
178
- " <th>BindingDB Target Chain Sequence.9</th>\n",
179
- " <th>BindingDB Target Chain Sequence.10</th>\n",
180
- " <th>BindingDB Target Chain Sequence.11</th>\n",
181
- " <th>BindingDB Target Chain Sequence.12</th>\n",
182
- " </tr>\n",
183
- " </thead>\n",
184
- " <tbody>\n",
185
- " <tr>\n",
186
- " <th>0</th>\n",
187
- " <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
188
- " <td>0.24</td>\n",
189
- " <td>NaN</td>\n",
190
- " <td>NaN</td>\n",
191
- " <td>NaN</td>\n",
192
- " <td>NaN</td>\n",
193
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
194
- " <td>NaN</td>\n",
195
- " <td>NaN</td>\n",
196
- " <td>NaN</td>\n",
197
- " <td>NaN</td>\n",
198
- " <td>NaN</td>\n",
199
- " <td>NaN</td>\n",
200
- " <td>NaN</td>\n",
201
- " <td>NaN</td>\n",
202
- " <td>NaN</td>\n",
203
- " <td>NaN</td>\n",
204
- " <td>NaN</td>\n",
205
- " <td>NaN</td>\n",
206
- " </tr>\n",
207
- " <tr>\n",
208
- " <th>1</th>\n",
209
- " <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
210
- " <td>0.25</td>\n",
211
- " <td>NaN</td>\n",
212
- " <td>NaN</td>\n",
213
- " <td>NaN</td>\n",
214
- " <td>NaN</td>\n",
215
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
216
- " <td>NaN</td>\n",
217
- " <td>NaN</td>\n",
218
- " <td>NaN</td>\n",
219
- " <td>NaN</td>\n",
220
- " <td>NaN</td>\n",
221
- " <td>NaN</td>\n",
222
- " <td>NaN</td>\n",
223
- " <td>NaN</td>\n",
224
- " <td>NaN</td>\n",
225
- " <td>NaN</td>\n",
226
- " <td>NaN</td>\n",
227
- " <td>NaN</td>\n",
228
- " </tr>\n",
229
- " <tr>\n",
230
- " <th>2</th>\n",
231
- " <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
232
- " <td>0.41</td>\n",
233
- " <td>NaN</td>\n",
234
- " <td>NaN</td>\n",
235
- " <td>NaN</td>\n",
236
- " <td>NaN</td>\n",
237
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
238
- " <td>NaN</td>\n",
239
- " <td>NaN</td>\n",
240
- " <td>NaN</td>\n",
241
- " <td>NaN</td>\n",
242
- " <td>NaN</td>\n",
243
- " <td>NaN</td>\n",
244
- " <td>NaN</td>\n",
245
- " <td>NaN</td>\n",
246
- " <td>NaN</td>\n",
247
- " <td>NaN</td>\n",
248
- " <td>NaN</td>\n",
249
- " <td>NaN</td>\n",
250
- " </tr>\n",
251
- " <tr>\n",
252
- " <th>3</th>\n",
253
- " <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
254
- " <td>0.8</td>\n",
255
- " <td>NaN</td>\n",
256
- " <td>NaN</td>\n",
257
- " <td>NaN</td>\n",
258
- " <td>NaN</td>\n",
259
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
260
- " <td>NaN</td>\n",
261
- " <td>NaN</td>\n",
262
- " <td>NaN</td>\n",
263
- " <td>NaN</td>\n",
264
- " <td>NaN</td>\n",
265
- " <td>NaN</td>\n",
266
- " <td>NaN</td>\n",
267
- " <td>NaN</td>\n",
268
- " <td>NaN</td>\n",
269
- " <td>NaN</td>\n",
270
- " <td>NaN</td>\n",
271
- " <td>NaN</td>\n",
272
- " </tr>\n",
273
- " <tr>\n",
274
- " <th>4</th>\n",
275
- " <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
276
- " <td>0.99</td>\n",
277
- " <td>NaN</td>\n",
278
- " <td>NaN</td>\n",
279
- " <td>NaN</td>\n",
280
- " <td>NaN</td>\n",
281
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
282
- " <td>NaN</td>\n",
283
- " <td>NaN</td>\n",
284
- " <td>NaN</td>\n",
285
- " <td>NaN</td>\n",
286
- " <td>NaN</td>\n",
287
- " <td>NaN</td>\n",
288
- " <td>NaN</td>\n",
289
- " <td>NaN</td>\n",
290
- " <td>NaN</td>\n",
291
- " <td>NaN</td>\n",
292
- " <td>NaN</td>\n",
293
- " <td>NaN</td>\n",
294
- " </tr>\n",
295
- " </tbody>\n",
296
- "</table>\n",
297
- "</div>"
298
- ],
299
- "text/plain": [
300
- " Ligand SMILES Ki (nM) IC50 (nM) \\\n",
301
- "0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 0.24 NaN \n",
302
- "1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... 0.25 NaN \n",
303
- "2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... 0.41 NaN \n",
304
- "3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... 0.8 NaN \n",
305
- "4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... 0.99 NaN \n",
306
- "\n",
307
- " Kd (nM) EC50 (nM) KEGG ID of Ligand \\\n",
308
- "0 NaN NaN NaN \n",
309
- "1 NaN NaN NaN \n",
310
- "2 NaN NaN NaN \n",
311
- "3 NaN NaN NaN \n",
312
- "4 NaN NaN NaN \n",
313
- "\n",
314
- " seq \\\n",
315
- "0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
316
- "1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
317
- "2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
318
- "3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
319
- "4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
320
- "\n",
321
- " BindingDB Target Chain Sequence.1 BindingDB Target Chain Sequence.2 \\\n",
322
- "0 NaN NaN \n",
323
- "1 NaN NaN \n",
324
- "2 NaN NaN \n",
325
- "3 NaN NaN \n",
326
- "4 NaN NaN \n",
327
- "\n",
328
- " BindingDB Target Chain Sequence.3 BindingDB Target Chain Sequence.4 \\\n",
329
- "0 NaN NaN \n",
330
- "1 NaN NaN \n",
331
- "2 NaN NaN \n",
332
- "3 NaN NaN \n",
333
- "4 NaN NaN \n",
334
- "\n",
335
- " BindingDB Target Chain Sequence.5 BindingDB Target Chain Sequence.6 \\\n",
336
- "0 NaN NaN \n",
337
- "1 NaN NaN \n",
338
- "2 NaN NaN \n",
339
- "3 NaN NaN \n",
340
- "4 NaN NaN \n",
341
- "\n",
342
- " BindingDB Target Chain Sequence.7 BindingDB Target Chain Sequence.8 \\\n",
343
- "0 NaN NaN \n",
344
- "1 NaN NaN \n",
345
- "2 NaN NaN \n",
346
- "3 NaN NaN \n",
347
- "4 NaN NaN \n",
348
- "\n",
349
- " BindingDB Target Chain Sequence.9 BindingDB Target Chain Sequence.10 \\\n",
350
- "0 NaN NaN \n",
351
- "1 NaN NaN \n",
352
- "2 NaN NaN \n",
353
- "3 NaN NaN \n",
354
- "4 NaN NaN \n",
355
- "\n",
356
- " BindingDB Target Chain Sequence.11 BindingDB Target Chain Sequence.12 \n",
357
- "0 NaN NaN \n",
358
- "1 NaN NaN \n",
359
- "2 NaN NaN \n",
360
- "3 NaN NaN \n",
361
- "4 NaN NaN "
362
- ]
363
- },
364
- "execution_count": 20,
365
- "metadata": {},
366
- "output_type": "execute_result"
367
- }
368
- ],
369
- "source": [
370
- "ddf_nonnull.head()"
371
- ]
372
- },
373
- {
374
- "cell_type": "code",
375
- "execution_count": 21,
376
- "id": "7b423365-4989-4325-a5a5-845d852d52e9",
377
- "metadata": {},
378
- "outputs": [
379
- {
380
- "data": {
381
- "text/plain": [
382
- "2221761"
383
- ]
384
- },
385
- "execution_count": 21,
386
- "metadata": {},
387
- "output_type": "execute_result"
388
- }
389
- ],
390
- "source": [
391
- "len(ddf_nonnull)"
392
- ]
393
- },
394
- {
395
- "cell_type": "code",
396
- "execution_count": 22,
397
- "id": "872edb84-3459-43d9-8e0e-e2a6b5d281eb",
398
- "metadata": {},
399
- "outputs": [],
400
- "source": [
401
- "from pint import UnitRegistry\n",
402
- "import numpy as np\n",
403
- "import re\n",
404
- "ureg = UnitRegistry()\n",
405
- "\n",
406
- "def to_uM(affinities):\n",
407
- " ic50, Ki, Kd, ec50 = affinities\n",
408
- "\n",
409
- " vals = []\n",
410
- " \n",
411
- " try:\n",
412
- " ic50 = ureg(str(ic50)+'nM').m_as(ureg.uM)\n",
413
- " vals.append(ic50)\n",
414
- " except:\n",
415
- " pass\n",
416
- "\n",
417
- " try:\n",
418
- " Ki = ureg(str(Ki)+'nM').m_as(ureg.uM)\n",
419
- " vals.append(Ki)\n",
420
- " except:\n",
421
- " pass\n",
422
- "\n",
423
- " try:\n",
424
- " Kd = ureg(str(Kd)+'nM').m_as(ureg.uM)\n",
425
- " vals.append(Kd)\n",
426
- " except:\n",
427
- " pass\n",
428
- "\n",
429
- " try:\n",
430
- " ec50 = ureg(str(ec50)+'nM').m_as(ureg.uM)\n",
431
- " vals.append(ec50)\n",
432
- " except:\n",
433
- " pass\n",
434
- "\n",
435
- " if len(vals) > 0:\n",
436
- " vals = np.array(vals)\n",
437
- " return np.mean(vals[~np.isnan(vals)])\n",
438
- " \n",
439
- " return None"
440
- ]
441
- },
442
- {
443
- "cell_type": "code",
444
- "execution_count": 23,
445
- "id": "b3cff13c-19b2-4413-a84b-d99062f516a7",
446
- "metadata": {},
447
- "outputs": [],
448
- "source": [
449
- "df_nonnull = ddf_nonnull.compute()"
450
- ]
451
- },
452
- {
453
- "cell_type": "code",
454
- "execution_count": 24,
455
- "id": "ca9795de-e821-4dc3-a7bf-70ade9e4c7f0",
456
- "metadata": {},
457
- "outputs": [
458
- {
459
- "name": "stdout",
460
- "output_type": "stream",
461
- "text": [
462
- "INFO: Pandarallel will run on 32 workers.\n",
463
- "INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n"
464
- ]
465
- }
466
- ],
467
- "source": [
468
- "from pandarallel import pandarallel\n",
469
- "pandarallel.initialize()\n"
470
- ]
471
- },
472
- {
473
- "cell_type": "code",
474
- "execution_count": 25,
475
- "id": "4356a3e2-fede-48e7-a486-343661fe0a0a",
476
- "metadata": {},
477
- "outputs": [],
478
- "source": [
479
- "df_affinity = df_nonnull.copy()\n",
480
- "df_affinity['affinity_uM'] = df_affinity[['IC50 (nM)', 'Ki (nM)', 'Kd (nM)','EC50 (nM)']].parallel_apply(to_uM,axis=1)"
481
- ]
482
- },
483
- {
484
- "cell_type": "code",
485
- "execution_count": 26,
486
- "id": "e91c3af8-84a5-42a2-9e25-49cb2f320b0b",
487
- "metadata": {},
488
- "outputs": [],
489
- "source": [
490
- "df_affinity[~df_affinity['affinity_uM'].isnull()].to_parquet('data/bindingdb.parquet')"
491
- ]
492
- },
493
- {
494
- "cell_type": "code",
495
- "execution_count": 27,
496
- "id": "f3a9173e-d574-4314-9cea-f8c0a66766c0",
497
- "metadata": {},
498
- "outputs": [],
499
- "source": [
500
- "import pandas as pd\n",
501
- "df_affinity = pd.read_parquet('data/bindingdb.parquet')"
502
- ]
503
- },
504
- {
505
- "cell_type": "code",
506
- "execution_count": 28,
507
- "id": "f602fdbe-7083-436c-9eac-9d97fbc8be67",
508
- "metadata": {},
509
- "outputs": [
510
- {
511
- "data": {
512
- "text/plain": [
513
- "2219812"
514
- ]
515
- },
516
- "execution_count": 28,
517
- "metadata": {},
518
- "output_type": "execute_result"
519
- }
520
- ],
521
- "source": [
522
- "len(df_affinity)"
523
- ]
524
- },
525
- {
526
- "cell_type": "code",
527
- "execution_count": 29,
528
- "id": "27194288-cf3e-4c30-ad55-3b0998fdf939",
529
- "metadata": {},
530
- "outputs": [
531
- {
532
- "data": {
533
- "text/html": [
534
- "<div>\n",
535
- "<style scoped>\n",
536
- " .dataframe tbody tr th:only-of-type {\n",
537
- " vertical-align: middle;\n",
538
- " }\n",
539
- "\n",
540
- " .dataframe tbody tr th {\n",
541
- " vertical-align: top;\n",
542
- " }\n",
543
- "\n",
544
- " .dataframe thead th {\n",
545
- " text-align: right;\n",
546
- " }\n",
547
- "</style>\n",
548
- "<table border=\"1\" class=\"dataframe\">\n",
549
- " <thead>\n",
550
- " <tr style=\"text-align: right;\">\n",
551
- " <th></th>\n",
552
- " <th>Ligand SMILES</th>\n",
553
- " <th>Ki (nM)</th>\n",
554
- " <th>IC50 (nM)</th>\n",
555
- " <th>Kd (nM)</th>\n",
556
- " <th>EC50 (nM)</th>\n",
557
- " <th>KEGG ID of Ligand</th>\n",
558
- " <th>seq</th>\n",
559
- " <th>BindingDB Target Chain Sequence.1</th>\n",
560
- " <th>BindingDB Target Chain Sequence.2</th>\n",
561
- " <th>BindingDB Target Chain Sequence.3</th>\n",
562
- " <th>BindingDB Target Chain Sequence.4</th>\n",
563
- " <th>BindingDB Target Chain Sequence.5</th>\n",
564
- " <th>BindingDB Target Chain Sequence.6</th>\n",
565
- " <th>BindingDB Target Chain Sequence.7</th>\n",
566
- " <th>BindingDB Target Chain Sequence.8</th>\n",
567
- " <th>BindingDB Target Chain Sequence.9</th>\n",
568
- " <th>BindingDB Target Chain Sequence.10</th>\n",
569
- " <th>BindingDB Target Chain Sequence.11</th>\n",
570
- " <th>BindingDB Target Chain Sequence.12</th>\n",
571
- " <th>affinity_uM</th>\n",
572
- " </tr>\n",
573
- " </thead>\n",
574
- " <tbody>\n",
575
- " <tr>\n",
576
- " <th>0</th>\n",
577
- " <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
578
- " <td>0.24</td>\n",
579
- " <td>None</td>\n",
580
- " <td>None</td>\n",
581
- " <td>None</td>\n",
582
- " <td>None</td>\n",
583
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
584
- " <td>None</td>\n",
585
- " <td>None</td>\n",
586
- " <td>None</td>\n",
587
- " <td>None</td>\n",
588
- " <td>None</td>\n",
589
- " <td>None</td>\n",
590
- " <td>None</td>\n",
591
- " <td>None</td>\n",
592
- " <td>None</td>\n",
593
- " <td>None</td>\n",
594
- " <td>None</td>\n",
595
- " <td>None</td>\n",
596
- " <td>0.00024</td>\n",
597
- " </tr>\n",
598
- " <tr>\n",
599
- " <th>1</th>\n",
600
- " <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
601
- " <td>0.25</td>\n",
602
- " <td>None</td>\n",
603
- " <td>None</td>\n",
604
- " <td>None</td>\n",
605
- " <td>None</td>\n",
606
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
607
- " <td>None</td>\n",
608
- " <td>None</td>\n",
609
- " <td>None</td>\n",
610
- " <td>None</td>\n",
611
- " <td>None</td>\n",
612
- " <td>None</td>\n",
613
- " <td>None</td>\n",
614
- " <td>None</td>\n",
615
- " <td>None</td>\n",
616
- " <td>None</td>\n",
617
- " <td>None</td>\n",
618
- " <td>None</td>\n",
619
- " <td>0.00025</td>\n",
620
- " </tr>\n",
621
- " <tr>\n",
622
- " <th>2</th>\n",
623
- " <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
624
- " <td>0.41</td>\n",
625
- " <td>None</td>\n",
626
- " <td>None</td>\n",
627
- " <td>None</td>\n",
628
- " <td>None</td>\n",
629
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
630
- " <td>None</td>\n",
631
- " <td>None</td>\n",
632
- " <td>None</td>\n",
633
- " <td>None</td>\n",
634
- " <td>None</td>\n",
635
- " <td>None</td>\n",
636
- " <td>None</td>\n",
637
- " <td>None</td>\n",
638
- " <td>None</td>\n",
639
- " <td>None</td>\n",
640
- " <td>None</td>\n",
641
- " <td>None</td>\n",
642
- " <td>0.00041</td>\n",
643
- " </tr>\n",
644
- " <tr>\n",
645
- " <th>3</th>\n",
646
- " <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
647
- " <td>0.8</td>\n",
648
- " <td>None</td>\n",
649
- " <td>None</td>\n",
650
- " <td>None</td>\n",
651
- " <td>None</td>\n",
652
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
653
- " <td>None</td>\n",
654
- " <td>None</td>\n",
655
- " <td>None</td>\n",
656
- " <td>None</td>\n",
657
- " <td>None</td>\n",
658
- " <td>None</td>\n",
659
- " <td>None</td>\n",
660
- " <td>None</td>\n",
661
- " <td>None</td>\n",
662
- " <td>None</td>\n",
663
- " <td>None</td>\n",
664
- " <td>None</td>\n",
665
- " <td>0.00080</td>\n",
666
- " </tr>\n",
667
- " <tr>\n",
668
- " <th>4</th>\n",
669
- " <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
670
- " <td>0.99</td>\n",
671
- " <td>None</td>\n",
672
- " <td>None</td>\n",
673
- " <td>None</td>\n",
674
- " <td>None</td>\n",
675
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
676
- " <td>None</td>\n",
677
- " <td>None</td>\n",
678
- " <td>None</td>\n",
679
- " <td>None</td>\n",
680
- " <td>None</td>\n",
681
- " <td>None</td>\n",
682
- " <td>None</td>\n",
683
- " <td>None</td>\n",
684
- " <td>None</td>\n",
685
- " <td>None</td>\n",
686
- " <td>None</td>\n",
687
- " <td>None</td>\n",
688
- " <td>0.00099</td>\n",
689
- " </tr>\n",
690
- " </tbody>\n",
691
- "</table>\n",
692
- "</div>"
693
- ],
694
- "text/plain": [
695
- " Ligand SMILES Ki (nM) IC50 (nM) \\\n",
696
- "0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 0.24 None \n",
697
- "1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... 0.25 None \n",
698
- "2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... 0.41 None \n",
699
- "3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... 0.8 None \n",
700
- "4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... 0.99 None \n",
701
- "\n",
702
- " Kd (nM) EC50 (nM) KEGG ID of Ligand \\\n",
703
- "0 None None None \n",
704
- "1 None None None \n",
705
- "2 None None None \n",
706
- "3 None None None \n",
707
- "4 None None None \n",
708
- "\n",
709
- " seq \\\n",
710
- "0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
711
- "1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
712
- "2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
713
- "3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
714
- "4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
715
- "\n",
716
- " BindingDB Target Chain Sequence.1 BindingDB Target Chain Sequence.2 \\\n",
717
- "0 None None \n",
718
- "1 None None \n",
719
- "2 None None \n",
720
- "3 None None \n",
721
- "4 None None \n",
722
- "\n",
723
- " BindingDB Target Chain Sequence.3 BindingDB Target Chain Sequence.4 \\\n",
724
- "0 None None \n",
725
- "1 None None \n",
726
- "2 None None \n",
727
- "3 None None \n",
728
- "4 None None \n",
729
- "\n",
730
- " BindingDB Target Chain Sequence.5 BindingDB Target Chain Sequence.6 \\\n",
731
- "0 None None \n",
732
- "1 None None \n",
733
- "2 None None \n",
734
- "3 None None \n",
735
- "4 None None \n",
736
- "\n",
737
- " BindingDB Target Chain Sequence.7 BindingDB Target Chain Sequence.8 \\\n",
738
- "0 None None \n",
739
- "1 None None \n",
740
- "2 None None \n",
741
- "3 None None \n",
742
- "4 None None \n",
743
- "\n",
744
- " BindingDB Target Chain Sequence.9 BindingDB Target Chain Sequence.10 \\\n",
745
- "0 None None \n",
746
- "1 None None \n",
747
- "2 None None \n",
748
- "3 None None \n",
749
- "4 None None \n",
750
- "\n",
751
- " BindingDB Target Chain Sequence.11 BindingDB Target Chain Sequence.12 \\\n",
752
- "0 None None \n",
753
- "1 None None \n",
754
- "2 None None \n",
755
- "3 None None \n",
756
- "4 None None \n",
757
- "\n",
758
- " affinity_uM \n",
759
- "0 0.00024 \n",
760
- "1 0.00025 \n",
761
- "2 0.00041 \n",
762
- "3 0.00080 \n",
763
- "4 0.00099 "
764
- ]
765
- },
766
- "execution_count": 29,
767
- "metadata": {},
768
- "output_type": "execute_result"
769
- }
770
- ],
771
- "source": [
772
- "df_affinity.head()"
773
- ]
774
- },
775
- {
776
- "cell_type": "code",
777
- "execution_count": 30,
778
- "id": "603fd298-0aa6-4097-b298-c55db013548c",
779
- "metadata": {},
780
- "outputs": [
781
- {
782
- "data": {
783
- "text/plain": [
784
- "2219812"
785
- ]
786
- },
787
- "execution_count": 30,
788
- "metadata": {},
789
- "output_type": "execute_result"
790
- }
791
- ],
792
- "source": [
793
- "len(df_affinity)"
794
- ]
795
- },
796
- {
797
- "cell_type": "code",
798
- "execution_count": 31,
799
- "id": "d95ad9a9-d4ca-4679-8a33-235fe6e7047f",
800
- "metadata": {},
801
- "outputs": [
802
- {
803
- "data": {
804
- "text/plain": [
805
- "2219812"
806
- ]
807
- },
808
- "execution_count": 31,
809
- "metadata": {},
810
- "output_type": "execute_result"
811
- }
812
- ],
813
- "source": [
814
- "len(df_affinity[~df_affinity['affinity_uM'].isnull()])"
815
- ]
816
- },
817
- {
818
- "cell_type": "code",
819
- "execution_count": 25,
820
- "id": "20690729",
821
- "metadata": {},
822
- "outputs": [],
823
- "source": [
824
- "import rdkit.Chem as Chem"
825
- ]
826
- },
827
- {
828
- "cell_type": "code",
829
- "execution_count": 27,
830
- "id": "48114dcc",
831
- "metadata": {},
832
- "outputs": [],
833
- "source": [
834
- "df_pdb = df[~df['PDB ID(s) for Ligand-Target Complex'].isnull()][['PDB ID(s) for Ligand-Target Complex','Ligand SMILES']]"
835
- ]
836
- },
837
- {
838
- "cell_type": "code",
839
- "execution_count": 28,
840
- "id": "caa0497c",
841
- "metadata": {},
842
- "outputs": [],
843
- "source": [
844
- "def make_canonical(smi):\n",
845
- " return Chem.MolToSmiles(Chem.MolFromSmiles(smi))\n",
846
- "\n",
847
- "df_pdb['can_smiles'] = df_pdb['Ligand SMILES'].apply(make_canonical)"
848
- ]
849
- },
850
- {
851
- "cell_type": "code",
852
- "execution_count": 29,
853
- "id": "e82d64f3",
854
- "metadata": {},
855
- "outputs": [
856
- {
857
- "data": {
858
- "text/html": [
859
- "<div>\n",
860
- "<style scoped>\n",
861
- " .dataframe tbody tr th:only-of-type {\n",
862
- " vertical-align: middle;\n",
863
- " }\n",
864
- "\n",
865
- " .dataframe tbody tr th {\n",
866
- " vertical-align: top;\n",
867
- " }\n",
868
- "\n",
869
- " .dataframe thead th {\n",
870
- " text-align: right;\n",
871
- " }\n",
872
- "</style>\n",
873
- "<table border=\"1\" class=\"dataframe\">\n",
874
- " <thead>\n",
875
- " <tr style=\"text-align: right;\">\n",
876
- " <th></th>\n",
877
- " <th>PDB ID(s) for Ligand-Target Complex</th>\n",
878
- " <th>Ligand SMILES</th>\n",
879
- " <th>can_smiles</th>\n",
880
- " </tr>\n",
881
- " </thead>\n",
882
- " <tbody>\n",
883
- " <tr>\n",
884
- " <th>0</th>\n",
885
- " <td>2IVU</td>\n",
886
- " <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
887
- " <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
888
- " </tr>\n",
889
- " <tr>\n",
890
- " <th>29</th>\n",
891
- " <td>1HWR</td>\n",
892
- " <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC=C)C(=O)...</td>\n",
893
- " <td>C=CCN1C(=O)N(CC=C)[C@H](Cc2ccccc2)[C@H](O)[C@@...</td>\n",
894
- " </tr>\n",
895
- " <tr>\n",
896
- " <th>34</th>\n",
897
- " <td>6DGY,6DH1,6DH4,6DH7,3O99</td>\n",
898
- " <td>CC[C@H](C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O...</td>\n",
899
- " <td>CC[C@H](C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O...</td>\n",
900
- " </tr>\n",
901
- " <tr>\n",
902
- " <th>129</th>\n",
903
- " <td>1MES,1MEU,1MET,1BVG,1BVE,3JVW,1QBS</td>\n",
904
- " <td>OCc1ccc(CN2[C@H](Cc3ccccc3)[C@H](O)[C@@H](O)[C...</td>\n",
905
- " <td>O=C1N(Cc2ccc(CO)cc2)[C@H](Cc2ccccc2)[C@H](O)[C...</td>\n",
906
- " </tr>\n",
907
- " <tr>\n",
908
- " <th>130</th>\n",
909
- " <td>1MER,1DMP,1RQ9</td>\n",
910
- " <td>Nc1cccc(CN2[C@H](Cc3ccccc3)[C@H](O)[C@@H](O)[C...</td>\n",
911
- " <td>Nc1cccc(CN2C(=O)N(Cc3cccc(N)c3)[C@H](Cc3ccccc3...</td>\n",
912
- " </tr>\n",
913
- " <tr>\n",
914
- " <th>...</th>\n",
915
- " <td>...</td>\n",
916
- " <td>...</td>\n",
917
- " <td>...</td>\n",
918
- " </tr>\n",
919
- " <tr>\n",
920
- " <th>2333375</th>\n",
921
- " <td>1MUI,2RKG,2RKF,1RV7,2Q5K,2O4S,6DJ1,6DJ2,3OGQ,2...</td>\n",
922
- " <td>CC(C)[C@H](N1CCCNC1=O)C(=O)N[C@H](C[C@H](O)[C@...</td>\n",
923
- " <td>Cc1cccc(C)c1OCC(=O)N[C@@H](Cc1ccccc1)[C@@H](O)...</td>\n",
924
- " </tr>\n",
925
- " <tr>\n",
926
- " <th>2333376</th>\n",
927
- " <td>4NPT,4DQH,4DQE,5E5J,3JW2,6OPU,6OPX,2HS2,2HS1,2...</td>\n",
928
- " <td>CC(C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O[C@H]...</td>\n",
929
- " <td>CC(C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O[C@H]...</td>\n",
930
- " </tr>\n",
931
- " <tr>\n",
932
- " <th>2333380</th>\n",
933
- " <td>6EKZ,1DY4,5FUK,6PS5</td>\n",
934
- " <td>CC(C)NCC(O)COc1cccc2ccccc12</td>\n",
935
- " <td>CC(C)NCC(O)COc1cccc2ccccc12</td>\n",
936
- " </tr>\n",
937
- " <tr>\n",
938
- " <th>2333384</th>\n",
939
- " <td>6EKZ,1DY4,5FUK,6PS5</td>\n",
940
- " <td>CC(C)NCC(O)COc1cccc2ccccc12</td>\n",
941
- " <td>CC(C)NCC(O)COc1cccc2ccccc12</td>\n",
942
- " </tr>\n",
943
- " <tr>\n",
944
- " <th>2333385</th>\n",
945
- " <td>6A60,3DCT</td>\n",
946
- " <td>CC(C)c1onc(c1COc1ccc(\\C=C\\c2cccc(c2)C(O)=O)c(C...</td>\n",
947
- " <td>CC(C)c1onc(-c2c(Cl)cccc2Cl)c1COc1ccc(/C=C/c2cc...</td>\n",
948
- " </tr>\n",
949
- " </tbody>\n",
950
- "</table>\n",
951
- "<p>123385 rows × 3 columns</p>\n",
952
- "</div>"
953
- ],
954
- "text/plain": [
955
- " PDB ID(s) for Ligand-Target Complex \\\n",
956
- "0 2IVU \n",
957
- "29 1HWR \n",
958
- "34 6DGY,6DH1,6DH4,6DH7,3O99 \n",
959
- "129 1MES,1MEU,1MET,1BVG,1BVE,3JVW,1QBS \n",
960
- "130 1MER,1DMP,1RQ9 \n",
961
- "... ... \n",
962
- "2333375 1MUI,2RKG,2RKF,1RV7,2Q5K,2O4S,6DJ1,6DJ2,3OGQ,2... \n",
963
- "2333376 4NPT,4DQH,4DQE,5E5J,3JW2,6OPU,6OPX,2HS2,2HS1,2... \n",
964
- "2333380 6EKZ,1DY4,5FUK,6PS5 \n",
965
- "2333384 6EKZ,1DY4,5FUK,6PS5 \n",
966
- "2333385 6A60,3DCT \n",
967
- "\n",
968
- " Ligand SMILES \\\n",
969
- "0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 \n",
970
- "29 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC=C)C(=O)... \n",
971
- "34 CC[C@H](C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O... \n",
972
- "129 OCc1ccc(CN2[C@H](Cc3ccccc3)[C@H](O)[C@@H](O)[C... \n",
973
- "130 Nc1cccc(CN2[C@H](Cc3ccccc3)[C@H](O)[C@@H](O)[C... \n",
974
- "... ... \n",
975
- "2333375 CC(C)[C@H](N1CCCNC1=O)C(=O)N[C@H](C[C@H](O)[C@... \n",
976
- "2333376 CC(C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O[C@H]... \n",
977
- "2333380 CC(C)NCC(O)COc1cccc2ccccc12 \n",
978
- "2333384 CC(C)NCC(O)COc1cccc2ccccc12 \n",
979
- "2333385 CC(C)c1onc(c1COc1ccc(\\C=C\\c2cccc(c2)C(O)=O)c(C... \n",
980
- "\n",
981
- " can_smiles \n",
982
- "0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 \n",
983
- "29 C=CCN1C(=O)N(CC=C)[C@H](Cc2ccccc2)[C@H](O)[C@@... \n",
984
- "34 CC[C@H](C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O... \n",
985
- "129 O=C1N(Cc2ccc(CO)cc2)[C@H](Cc2ccccc2)[C@H](O)[C... \n",
986
- "130 Nc1cccc(CN2C(=O)N(Cc3cccc(N)c3)[C@H](Cc3ccccc3... \n",
987
- "... ... \n",
988
- "2333375 Cc1cccc(C)c1OCC(=O)N[C@@H](Cc1ccccc1)[C@@H](O)... \n",
989
- "2333376 CC(C)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(=O)O[C@H]... \n",
990
- "2333380 CC(C)NCC(O)COc1cccc2ccccc12 \n",
991
- "2333384 CC(C)NCC(O)COc1cccc2ccccc12 \n",
992
- "2333385 CC(C)c1onc(-c2c(Cl)cccc2Cl)c1COc1ccc(/C=C/c2cc... \n",
993
- "\n",
994
- "[123385 rows x 3 columns]"
995
- ]
996
- },
997
- "execution_count": 29,
998
- "metadata": {},
999
- "output_type": "execute_result"
1000
- }
1001
- ],
1002
- "source": [
1003
- "df_pdb"
1004
- ]
1005
- },
1006
- {
1007
- "cell_type": "code",
1008
- "execution_count": null,
1009
- "id": "593c9aec",
1010
- "metadata": {},
1011
- "outputs": [],
1012
- "source": []
1013
- }
1014
- ],
1015
- "metadata": {
1016
- "kernelspec": {
1017
- "display_name": "Python 3",
1018
- "language": "python",
1019
- "name": "python3"
1020
- },
1021
- "language_info": {
1022
- "codemirror_mode": {
1023
- "name": "ipython",
1024
- "version": 3
1025
- },
1026
- "file_extension": ".py",
1027
- "mimetype": "text/x-python",
1028
- "name": "python",
1029
- "nbconvert_exporter": "python",
1030
- "pygments_lexer": "ipython3",
1031
- "version": "3.9.4"
1032
- }
1033
- },
1034
- "nbformat": 4,
1035
- "nbformat_minor": 5
1036
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
biolip.ipynb DELETED
@@ -1,586 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 3,
6
- "id": "26bc18a2-a6eb-49d3-be80-876ddc7dd8e1",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd"
11
- ]
12
- },
13
- {
14
- "cell_type": "markdown",
15
- "id": "dbef8a5d-8603-4f40-aa98-fe50aa1160f6",
16
- "metadata": {},
17
- "source": [
18
- "the binding affinities are **only** present in the 2013 snapshot, not in the updated ones"
19
- ]
20
- },
21
- {
22
- "cell_type": "code",
23
- "execution_count": 48,
24
- "id": "3b59cfb4-c42a-425d-9653-44f07f9e864e",
25
- "metadata": {},
26
- "outputs": [],
27
- "source": [
28
- "df = pd.read_table('biolip/data/BioLiP_2013-03-6_nr.txt',sep='\\t',header=None,usecols=[0,4,5,6,13,14,15,16,19])\n",
29
- "df = df.rename(columns={0:'pdb',4:'chain',5:'l_id',6:'l_chain',\n",
30
- " 13: 'affinity_lit',14: 'affinity_moad',15: 'affinity_pdbbind-cn',16:'affinity_bindingdb',\n",
31
- " 19: 'seq'})"
32
- ]
33
- },
34
- {
35
- "cell_type": "code",
36
- "execution_count": 49,
37
- "id": "01123edd-2b98-4fcc-a2e9-28213b9bed82",
38
- "metadata": {},
39
- "outputs": [],
40
- "source": [
41
- "base = 'biolip/data/ligand/'\n",
42
- "df['ligand_fn'] = base + df['pdb']+'_'+df['chain']+'_'+df['l_id'].astype(str)+'_'+df['l_chain'].astype(str)+'.pdb'"
43
- ]
44
- },
45
- {
46
- "cell_type": "code",
47
- "execution_count": 50,
48
- "id": "bd8671da-66ad-40ad-b221-e33228be65f4",
49
- "metadata": {},
50
- "outputs": [],
51
- "source": [
52
- "df_complex = pd.read_parquet('data/biolip_complex.parquet')"
53
- ]
54
- },
55
- {
56
- "cell_type": "code",
57
- "execution_count": 51,
58
- "id": "08b04d75-c01e-4b26-ae2d-622efae3bd1f",
59
- "metadata": {},
60
- "outputs": [],
61
- "source": [
62
- "df_affinity = df_complex[~df_complex['affinity_lit'].isnull() | ~df_complex['affinity_moad'].isnull() \n",
63
- " | ~df_complex['affinity_pdbbind-cn'].isnull() | ~df_complex['affinity_bindingdb'].isnull()].copy()"
64
- ]
65
- },
66
- {
67
- "cell_type": "code",
68
- "execution_count": 57,
69
- "id": "97af5533-10fe-4419-a998-ed80b7d26690",
70
- "metadata": {},
71
- "outputs": [],
72
- "source": [
73
- "from pint import UnitRegistry\n",
74
- "import numpy as np\n",
75
- "import re\n",
76
- "ureg = UnitRegistry()\n",
77
- "\n",
78
- "quantities = ['ki','kd','ka','k1/2','kb','ic50','ec50','km']\n",
79
- "\n",
80
- "others = set()\n",
81
- "def to_uM(affinities):\n",
82
- " lit, moad, pdbbind, bindingdb = affinities\n",
83
- "\n",
84
- " vals = []\n",
85
- " try:\n",
86
- " q = re.split('[=~<>]',str(lit))[0].lower()\n",
87
- " if q not in quantities:\n",
88
- " others.add(q)\n",
89
- " raise\n",
90
- " val = re.split('[=~<>]',str(lit))[1].split(' ')[0]\n",
91
- " val = ureg(val).m_as(ureg.uM)\n",
92
- " vals.append(val)\n",
93
- " except:\n",
94
- " pass\n",
95
- "\n",
96
- " try:\n",
97
- " q = re.split('[=~<>]',str(lit))[0].lower()\n",
98
- " if q not in quantities:\n",
99
- " others.add(q)\n",
100
- " raise\n",
101
- " val = re.split('[=~<>]',str(lit))[1].split(' ')[0]\n",
102
- " val = ureg(val).m_as(1/ureg.uM)\n",
103
- " vals.append(1/val)\n",
104
- " except:\n",
105
- " pass\n",
106
- "\n",
107
- " try:\n",
108
- " q = re.split('[=~<>]',str(moad))[0].lower()\n",
109
- " if q not in quantities:\n",
110
- " others.add(q)\n",
111
- " raise\n",
112
- " val = re.split('[=~<>]',str(moad))[1].split(' ')[0]\n",
113
- " val = ureg(val).m_as(ureg.uM)\n",
114
- " vals.append(val)\n",
115
- " except:\n",
116
- " pass\n",
117
- "\n",
118
- " try:\n",
119
- " q = re.split('[=~<>]',str(moad))[0].lower()\n",
120
- " if q not in quantities:\n",
121
- " others.add(q)\n",
122
- " raise\n",
123
- " val = re.split('[=~<>]',str(moad))[1].split(' ')[0]\n",
124
- " val = ureg(val).m_as(1/ureg.uM)\n",
125
- " vals.append(1/moad)\n",
126
- " except:\n",
127
- " pass\n",
128
- "\n",
129
- " try:\n",
130
- " q = re.split('[=~<>]',str(pdbbind))[0].lower()\n",
131
- " if q not in quantities:\n",
132
- " others.add(q)\n",
133
- " raise\n",
134
- " val = re.split('[=~<>]',str(pdbbind))[1].split(' ')[0]\n",
135
- " val = ureg(val).m_as(ureg.uM)\n",
136
- " vals.append(val)\n",
137
- " except:\n",
138
- " pass\n",
139
- "\n",
140
- " try:\n",
141
- " q = re.split('[=~<>]',str(pdbbind))[0].lower()\n",
142
- " if q not in quantities:\n",
143
- " others.add(q)\n",
144
- " raise\n",
145
- " val = re.split('[=~<>]',str(pdbbind))[1].split(' ')[0]\n",
146
- " val = ureg(val).m_as(1/ureg.uM)\n",
147
- " vals.append(1/val)\n",
148
- " except:\n",
149
- " pass\n",
150
- "\n",
151
- " try:\n",
152
- " q = re.split('[=~<>]',str(bindingdb))[0].lower()\n",
153
- " if q not in quantities:\n",
154
- " others.add(q)\n",
155
- " raise\n",
156
- " val = re.split('[=~<>]',str(bindingdb))[1].split(' ')[0]\n",
157
- " val = ureg(val).m_as(ureg.uM)\n",
158
- " vals.append(val)\n",
159
- " except:\n",
160
- " pass\n",
161
- "\n",
162
- " try:\n",
163
- " q = re.split('[=~<>]',str(bindingdb))[0].lower()\n",
164
- " if q not in quantities:\n",
165
- " others.add(q)\n",
166
- " raise\n",
167
- " val = re.split('[=~<>]',str(bindingdb))[1].split(' ')[0]\n",
168
- " val = ureg(val).m_as(1/ureg.uM)\n",
169
- " vals.append(1/val)\n",
170
- " except:\n",
171
- " pass\n",
172
- "\n",
173
- " if len(vals) > 0:\n",
174
- " vals = np.array(vals)\n",
175
- " return np.mean(vals[~np.isnan(vals)])\n",
176
- " \n",
177
- " return None"
178
- ]
179
- },
180
- {
181
- "cell_type": "code",
182
- "execution_count": 58,
183
- "id": "d2fab1e6-ec5b-46f9-a4a2-f3744128c777",
184
- "metadata": {},
185
- "outputs": [
186
- {
187
- "data": {
188
- "text/plain": [
189
- "Index(['pdb', 'chain', 'l_id', 'l_chain', 'affinity_lit', 'affinity_moad',\n",
190
- " 'affinity_pdbbind-cn', 'affinity_bindingdb', 'seq', 'ligand_fn',\n",
191
- " 'smiles', 'affinity_uM'],\n",
192
- " dtype='object')"
193
- ]
194
- },
195
- "execution_count": 58,
196
- "metadata": {},
197
- "output_type": "execute_result"
198
- }
199
- ],
200
- "source": [
201
- "df_affinity.columns"
202
- ]
203
- },
204
- {
205
- "cell_type": "code",
206
- "execution_count": 59,
207
- "id": "e21154a9-d3a0-4aa3-986f-cfeebc280da6",
208
- "metadata": {},
209
- "outputs": [],
210
- "source": [
211
- "df_affinity['affinity_uM'] = df_affinity[['affinity_lit','affinity_moad','affinity_pdbbind-cn','affinity_bindingdb']].apply(to_uM,axis=1)"
212
- ]
213
- },
214
- {
215
- "cell_type": "code",
216
- "execution_count": 60,
217
- "id": "6b9526ec-b134-4ecb-8fea-b493c3fdac22",
218
- "metadata": {},
219
- "outputs": [
220
- {
221
- "data": {
222
- "text/plain": [
223
- "{'deltag', 'deltah', 'none'}"
224
- ]
225
- },
226
- "execution_count": 60,
227
- "metadata": {},
228
- "output_type": "execute_result"
229
- }
230
- ],
231
- "source": [
232
- "others"
233
- ]
234
- },
235
- {
236
- "cell_type": "code",
237
- "execution_count": 61,
238
- "id": "0fc94de0-823d-4f4f-9904-1c4d1e722c2e",
239
- "metadata": {},
240
- "outputs": [
241
- {
242
- "data": {
243
- "text/html": [
244
- "<div>\n",
245
- "<style scoped>\n",
246
- " .dataframe tbody tr th:only-of-type {\n",
247
- " vertical-align: middle;\n",
248
- " }\n",
249
- "\n",
250
- " .dataframe tbody tr th {\n",
251
- " vertical-align: top;\n",
252
- " }\n",
253
- "\n",
254
- " .dataframe thead th {\n",
255
- " text-align: right;\n",
256
- " }\n",
257
- "</style>\n",
258
- "<table border=\"1\" class=\"dataframe\">\n",
259
- " <thead>\n",
260
- " <tr style=\"text-align: right;\">\n",
261
- " <th></th>\n",
262
- " <th>pdb</th>\n",
263
- " <th>chain</th>\n",
264
- " <th>l_id</th>\n",
265
- " <th>l_chain</th>\n",
266
- " <th>affinity_lit</th>\n",
267
- " <th>affinity_moad</th>\n",
268
- " <th>affinity_pdbbind-cn</th>\n",
269
- " <th>affinity_bindingdb</th>\n",
270
- " <th>seq</th>\n",
271
- " <th>ligand_fn</th>\n",
272
- " <th>smiles</th>\n",
273
- " <th>affinity_uM</th>\n",
274
- " </tr>\n",
275
- " </thead>\n",
276
- " <tbody>\n",
277
- " <tr>\n",
278
- " <th>38</th>\n",
279
- " <td>11gs</td>\n",
280
- " <td>EAA</td>\n",
281
- " <td>A</td>\n",
282
- " <td>1</td>\n",
283
- " <td>None</td>\n",
284
- " <td>ki=1.5uM (GTT EAA)</td>\n",
285
- " <td>Ki=1.5uM (GTT-EAA)</td>\n",
286
- " <td>None</td>\n",
287
- " <td>PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC...</td>\n",
288
- " <td>biolip/data/ligand/11gs_EAA_A_1.pdb</td>\n",
289
- " <td>CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C</td>\n",
290
- " <td>1.5000</td>\n",
291
- " </tr>\n",
292
- " <tr>\n",
293
- " <th>43</th>\n",
294
- " <td>13gs</td>\n",
295
- " <td>SAS</td>\n",
296
- " <td>A</td>\n",
297
- " <td>1</td>\n",
298
- " <td>None</td>\n",
299
- " <td>ki=24uM (SAS)</td>\n",
300
- " <td>Ki=24uM (SAS)</td>\n",
301
- " <td>None</td>\n",
302
- " <td>MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA...</td>\n",
303
- " <td>biolip/data/ligand/13gs_SAS_A_1.pdb</td>\n",
304
- " <td>OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c...</td>\n",
305
- " <td>24.0000</td>\n",
306
- " </tr>\n",
307
- " <tr>\n",
308
- " <th>53</th>\n",
309
- " <td>16pk</td>\n",
310
- " <td>BIS</td>\n",
311
- " <td>A</td>\n",
312
- " <td>1</td>\n",
313
- " <td>None</td>\n",
314
- " <td>None</td>\n",
315
- " <td>Ki=6uM (BIS)</td>\n",
316
- " <td>None</td>\n",
317
- " <td>EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKV...</td>\n",
318
- " <td>biolip/data/ligand/16pk_BIS_A_1.pdb</td>\n",
319
- " <td>O[C@@H]1[C@@H](CO[P@](=O)(O[P@@](=O)(C(CCCC(P(...</td>\n",
320
- " <td>6.0000</td>\n",
321
- " </tr>\n",
322
- " <tr>\n",
323
- " <th>54</th>\n",
324
- " <td>17gs</td>\n",
325
- " <td>GTX</td>\n",
326
- " <td>A</td>\n",
327
- " <td>1</td>\n",
328
- " <td>None</td>\n",
329
- " <td>None</td>\n",
330
- " <td>None</td>\n",
331
- " <td>Kd=10000nM</td>\n",
332
- " <td>MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA...</td>\n",
333
- " <td>biolip/data/ligand/17gs_GTX_A_1.pdb</td>\n",
334
- " <td>CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(...</td>\n",
335
- " <td>10.0000</td>\n",
336
- " </tr>\n",
337
- " <tr>\n",
338
- " <th>55</th>\n",
339
- " <td>181l</td>\n",
340
- " <td>BNZ</td>\n",
341
- " <td>A</td>\n",
342
- " <td>1</td>\n",
343
- " <td>None</td>\n",
344
- " <td>Ka=5700M^-1 (BNZ)</td>\n",
345
- " <td>None</td>\n",
346
- " <td>Kd=175000nM</td>\n",
347
- " <td>MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL...</td>\n",
348
- " <td>biolip/data/ligand/181l_BNZ_A_1.pdb</td>\n",
349
- " <td>c1ccccc1</td>\n",
350
- " <td>175.0000</td>\n",
351
- " </tr>\n",
352
- " <tr>\n",
353
- " <th>...</th>\n",
354
- " <td>...</td>\n",
355
- " <td>...</td>\n",
356
- " <td>...</td>\n",
357
- " <td>...</td>\n",
358
- " <td>...</td>\n",
359
- " <td>...</td>\n",
360
- " <td>...</td>\n",
361
- " <td>...</td>\n",
362
- " <td>...</td>\n",
363
- " <td>...</td>\n",
364
- " <td>...</td>\n",
365
- " <td>...</td>\n",
366
- " </tr>\n",
367
- " <tr>\n",
368
- " <th>105118</th>\n",
369
- " <td>9hvp</td>\n",
370
- " <td>0E9</td>\n",
371
- " <td>A</td>\n",
372
- " <td>1</td>\n",
373
- " <td>None</td>\n",
374
- " <td>None</td>\n",
375
- " <td>Ki=4.5nM (5-mer)</td>\n",
376
- " <td>None</td>\n",
377
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
378
- " <td>biolip/data/ligand/9hvp_0E9_A_1.pdb</td>\n",
379
- " <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
380
- " <td>0.0045</td>\n",
381
- " </tr>\n",
382
- " <tr>\n",
383
- " <th>105119</th>\n",
384
- " <td>9hvp</td>\n",
385
- " <td>0E9</td>\n",
386
- " <td>A</td>\n",
387
- " <td>1</td>\n",
388
- " <td>None</td>\n",
389
- " <td>None</td>\n",
390
- " <td>Ki=4.5nM (5-mer)</td>\n",
391
- " <td>None</td>\n",
392
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
393
- " <td>biolip/data/ligand/9hvp_0E9_A_1.pdb</td>\n",
394
- " <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
395
- " <td>0.0045</td>\n",
396
- " </tr>\n",
397
- " <tr>\n",
398
- " <th>105124</th>\n",
399
- " <td>9icd</td>\n",
400
- " <td>NAP</td>\n",
401
- " <td>A</td>\n",
402
- " <td>1</td>\n",
403
- " <td>None</td>\n",
404
- " <td>kd=125uM (NAP)</td>\n",
405
- " <td>Kd=125uM (NAP)</td>\n",
406
- " <td>None</td>\n",
407
- " <td>SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV...</td>\n",
408
- " <td>biolip/data/ligand/9icd_NAP_A_1.pdb</td>\n",
409
- " <td>O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O...</td>\n",
410
- " <td>125.0000</td>\n",
411
- " </tr>\n",
412
- " <tr>\n",
413
- " <th>105133</th>\n",
414
- " <td>9lpr</td>\n",
415
- " <td>III</td>\n",
416
- " <td>P</td>\n",
417
- " <td>1</td>\n",
418
- " <td>None</td>\n",
419
- " <td>None</td>\n",
420
- " <td>Ki=2000nM (4-mer)</td>\n",
421
- " <td>None</td>\n",
422
- " <td>ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI...</td>\n",
423
- " <td>biolip/data/ligand/9lpr_III_P_1.pdb</td>\n",
424
- " <td>CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]...</td>\n",
425
- " <td>2.0000</td>\n",
426
- " </tr>\n",
427
- " <tr>\n",
428
- " <th>105138</th>\n",
429
- " <td>9nse</td>\n",
430
- " <td>ISU</td>\n",
431
- " <td>B</td>\n",
432
- " <td>2</td>\n",
433
- " <td>None</td>\n",
434
- " <td>Ki=0.039uM (ISU)</td>\n",
435
- " <td>None</td>\n",
436
- " <td>None</td>\n",
437
- " <td>KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR...</td>\n",
438
- " <td>biolip/data/ligand/9nse_ISU_B_2.pdb</td>\n",
439
- " <td>CC[Se]C(=N)N</td>\n",
440
- " <td>0.0390</td>\n",
441
- " </tr>\n",
442
- " </tbody>\n",
443
- "</table>\n",
444
- "<p>12851 rows × 12 columns</p>\n",
445
- "</div>"
446
- ],
447
- "text/plain": [
448
- " pdb chain l_id l_chain affinity_lit affinity_moad \\\n",
449
- "38 11gs EAA A 1 None ki=1.5uM (GTT EAA) \n",
450
- "43 13gs SAS A 1 None ki=24uM (SAS) \n",
451
- "53 16pk BIS A 1 None None \n",
452
- "54 17gs GTX A 1 None None \n",
453
- "55 181l BNZ A 1 None Ka=5700M^-1 (BNZ) \n",
454
- "... ... ... ... ... ... ... \n",
455
- "105118 9hvp 0E9 A 1 None None \n",
456
- "105119 9hvp 0E9 A 1 None None \n",
457
- "105124 9icd NAP A 1 None kd=125uM (NAP) \n",
458
- "105133 9lpr III P 1 None None \n",
459
- "105138 9nse ISU B 2 None Ki=0.039uM (ISU) \n",
460
- "\n",
461
- " affinity_pdbbind-cn affinity_bindingdb \\\n",
462
- "38 Ki=1.5uM (GTT-EAA) None \n",
463
- "43 Ki=24uM (SAS) None \n",
464
- "53 Ki=6uM (BIS) None \n",
465
- "54 None Kd=10000nM \n",
466
- "55 None Kd=175000nM \n",
467
- "... ... ... \n",
468
- "105118 Ki=4.5nM (5-mer) None \n",
469
- "105119 Ki=4.5nM (5-mer) None \n",
470
- "105124 Kd=125uM (NAP) None \n",
471
- "105133 Ki=2000nM (4-mer) None \n",
472
- "105138 None None \n",
473
- "\n",
474
- " seq \\\n",
475
- "38 PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC... \n",
476
- "43 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
477
- "53 EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKV... \n",
478
- "54 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
479
- "55 MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... \n",
480
- "... ... \n",
481
- "105118 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
482
- "105119 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
483
- "105124 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
484
- "105133 ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... \n",
485
- "105138 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
486
- "\n",
487
- " ligand_fn \\\n",
488
- "38 biolip/data/ligand/11gs_EAA_A_1.pdb \n",
489
- "43 biolip/data/ligand/13gs_SAS_A_1.pdb \n",
490
- "53 biolip/data/ligand/16pk_BIS_A_1.pdb \n",
491
- "54 biolip/data/ligand/17gs_GTX_A_1.pdb \n",
492
- "55 biolip/data/ligand/181l_BNZ_A_1.pdb \n",
493
- "... ... \n",
494
- "105118 biolip/data/ligand/9hvp_0E9_A_1.pdb \n",
495
- "105119 biolip/data/ligand/9hvp_0E9_A_1.pdb \n",
496
- "105124 biolip/data/ligand/9icd_NAP_A_1.pdb \n",
497
- "105133 biolip/data/ligand/9lpr_III_P_1.pdb \n",
498
- "105138 biolip/data/ligand/9nse_ISU_B_2.pdb \n",
499
- "\n",
500
- " smiles affinity_uM \n",
501
- "38 CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C 1.5000 \n",
502
- "43 OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c... 24.0000 \n",
503
- "53 O[C@@H]1[C@@H](CO[P@](=O)(O[P@@](=O)(C(CCCC(P(... 6.0000 \n",
504
- "54 CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(... 10.0000 \n",
505
- "55 c1ccccc1 175.0000 \n",
506
- "... ... ... \n",
507
- "105118 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
508
- "105119 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
509
- "105124 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.0000 \n",
510
- "105133 CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... 2.0000 \n",
511
- "105138 CC[Se]C(=N)N 0.0390 \n",
512
- "\n",
513
- "[12851 rows x 12 columns]"
514
- ]
515
- },
516
- "execution_count": 61,
517
- "metadata": {},
518
- "output_type": "execute_result"
519
- }
520
- ],
521
- "source": [
522
- "df_affinity[~df_affinity['affinity_uM'].isnull()]"
523
- ]
524
- },
525
- {
526
- "cell_type": "code",
527
- "execution_count": 63,
528
- "id": "2b483565-3c99-4c42-b2a9-f7b97cd8e80e",
529
- "metadata": {},
530
- "outputs": [],
531
- "source": [
532
- "df_affinity.to_parquet('data/biolip.parquet')"
533
- ]
534
- },
535
- {
536
- "cell_type": "code",
537
- "execution_count": 64,
538
- "id": "68dd5e45-b31d-492d-a47e-39072b67fa72",
539
- "metadata": {},
540
- "outputs": [
541
- {
542
- "data": {
543
- "text/plain": [
544
- "13645"
545
- ]
546
- },
547
- "execution_count": 64,
548
- "metadata": {},
549
- "output_type": "execute_result"
550
- }
551
- ],
552
- "source": [
553
- "len(df_affinity)"
554
- ]
555
- },
556
- {
557
- "cell_type": "code",
558
- "execution_count": null,
559
- "id": "cf11317d-bbab-40f1-a8a2-b6fd6126e998",
560
- "metadata": {},
561
- "outputs": [],
562
- "source": []
563
- }
564
- ],
565
- "metadata": {
566
- "kernelspec": {
567
- "display_name": "Python 3",
568
- "language": "python",
569
- "name": "python3"
570
- },
571
- "language_info": {
572
- "codemirror_mode": {
573
- "name": "ipython",
574
- "version": 3
575
- },
576
- "file_extension": ".py",
577
- "mimetype": "text/x-python",
578
- "name": "python",
579
- "nbconvert_exporter": "python",
580
- "pygments_lexer": "ipython3",
581
- "version": "3.9.4"
582
- }
583
- },
584
- "nbformat": 4,
585
- "nbformat_minor": 5
586
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
biolip.py DELETED
@@ -1,41 +0,0 @@
1
- from mpi4py import MPI
2
- from mpi4py.futures import MPICommExecutor
3
-
4
- from openbabel import pybel
5
- from Bio.PDB import *
6
- parser = PDBParser()
7
-
8
- import os
9
- molecular_weight_cutoff = 2500
10
- def parse_ligand(fn):
11
- print(fn)
12
- try:
13
- struct = parser.get_structure('lig',fn)
14
- if len(list(struct.get_atoms())) > molecular_weight_cutoff:
15
- raise ValueError
16
- mol = next(pybel.readfile('pdb',fn))
17
- if mol.molwt > molecular_weight_cutoff:
18
- raise ValueError
19
- smi = mol.write('can').split('\t')[0]
20
- return smi
21
- except:
22
- return None
23
-
24
-
25
- if __name__ == '__main__':
26
- import glob
27
-
28
- comm = MPI.COMM_WORLD
29
- with MPICommExecutor(comm, root=0) as executor:
30
- if executor is not None:
31
- import pandas as pd
32
-
33
- df = pd.read_table('biolip/data/BioLiP_2013-03-6_nr.txt',sep='\t',header=None,usecols=[0,4,5,6,13,14,15,16,19])
34
- df = df.rename(columns={0:'pdb',4:'chain',5:'l_id',6:'l_chain',
35
- 13: 'affinity_lit',14: 'affinity_moad',15: 'affinity_pdbbind-cn',16:'affinity_bindingdb',
36
- 19: 'seq'})
37
- base = 'biolip/data/ligand/'
38
- df['ligand_fn'] = base + df['pdb']+'_'+df['chain']+'_'+df['l_id'].astype(str)+'_'+df['l_chain'].astype(str)+'.pdb'
39
- smiles = list(executor.map(parse_ligand, df['ligand_fn']))
40
- df['smiles'] = smiles
41
- df.to_parquet('data/biolip_complex.parquet')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
biolip.slurm DELETED
@@ -1,10 +0,0 @@
1
- #!/bin/bash
2
- #SBATCH -J preprocess_biolip
3
- #SBATCH -p batch
4
- #SBATCH -A BIP214
5
- #SBATCH -t 3:00:00
6
- #SBATCH -N 11
7
- #SBATCH --ntasks-per-node=32
8
-
9
- export PYTHONUNBUFFERED=1
10
- srun python biolip.py
 
 
 
 
 
 
 
 
 
 
 
combine_dbs.ipynb DELETED
@@ -1,1763 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 2,
6
- "id": "95bd761a-fe51-4a8e-bc70-1365260ba5f8",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd"
11
- ]
12
- },
13
- {
14
- "cell_type": "code",
15
- "execution_count": 2,
16
- "id": "b0859483-5e19-4280-9f53-0d00a6f22d34",
17
- "metadata": {},
18
- "outputs": [],
19
- "source": [
20
- "df_pdbbind = pd.read_parquet('data/pdbbind.parquet')\n",
21
- "df_pdbbind = df_pdbbind[['seq','smiles','affinity_uM']]"
22
- ]
23
- },
24
- {
25
- "cell_type": "code",
26
- "execution_count": 3,
27
- "id": "f30732b7-7444-47ad-84e7-566e7a6f2f8e",
28
- "metadata": {},
29
- "outputs": [
30
- {
31
- "data": {
32
- "text/html": [
33
- "<div>\n",
34
- "<style scoped>\n",
35
- " .dataframe tbody tr th:only-of-type {\n",
36
- " vertical-align: middle;\n",
37
- " }\n",
38
- "\n",
39
- " .dataframe tbody tr th {\n",
40
- " vertical-align: top;\n",
41
- " }\n",
42
- "\n",
43
- " .dataframe thead th {\n",
44
- " text-align: right;\n",
45
- " }\n",
46
- "</style>\n",
47
- "<table border=\"1\" class=\"dataframe\">\n",
48
- " <thead>\n",
49
- " <tr style=\"text-align: right;\">\n",
50
- " <th></th>\n",
51
- " <th>seq</th>\n",
52
- " <th>smiles</th>\n",
53
- " <th>affinity_uM</th>\n",
54
- " </tr>\n",
55
- " </thead>\n",
56
- " <tbody>\n",
57
- " <tr>\n",
58
- " <th>0</th>\n",
59
- " <td>MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE...</td>\n",
60
- " <td>CCCCCCCCCCCCCCCCCCCC(=O)O</td>\n",
61
- " <td>0.026</td>\n",
62
- " </tr>\n",
63
- " <tr>\n",
64
- " <th>1</th>\n",
65
- " <td>APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE...</td>\n",
66
- " <td>OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]...</td>\n",
67
- " <td>500.000</td>\n",
68
- " </tr>\n",
69
- " <tr>\n",
70
- " <th>2</th>\n",
71
- " <td>VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE...</td>\n",
72
- " <td>COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)...</td>\n",
73
- " <td>0.023</td>\n",
74
- " </tr>\n",
75
- " <tr>\n",
76
- " <th>3</th>\n",
77
- " <td>AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM...</td>\n",
78
- " <td>OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)...</td>\n",
79
- " <td>6.430</td>\n",
80
- " </tr>\n",
81
- " <tr>\n",
82
- " <th>4</th>\n",
83
- " <td>YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL...</td>\n",
84
- " <td>CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1...</td>\n",
85
- " <td>0.185</td>\n",
86
- " </tr>\n",
87
- " </tbody>\n",
88
- "</table>\n",
89
- "</div>"
90
- ],
91
- "text/plain": [
92
- " seq \\\n",
93
- "0 MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... \n",
94
- "1 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
95
- "2 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
96
- "3 AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... \n",
97
- "4 YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... \n",
98
- "\n",
99
- " smiles affinity_uM \n",
100
- "0 CCCCCCCCCCCCCCCCCCCC(=O)O 0.026 \n",
101
- "1 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.000 \n",
102
- "2 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.023 \n",
103
- "3 OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... 6.430 \n",
104
- "4 CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... 0.185 "
105
- ]
106
- },
107
- "execution_count": 3,
108
- "metadata": {},
109
- "output_type": "execute_result"
110
- }
111
- ],
112
- "source": [
113
- "df_pdbbind.head()"
114
- ]
115
- },
116
- {
117
- "cell_type": "code",
118
- "execution_count": 4,
119
- "id": "2787b9fd-3d6f-4ae3-a3ad-d3539b72782b",
120
- "metadata": {},
121
- "outputs": [],
122
- "source": [
123
- "from rdkit import Chem\n",
124
- "from rdkit.Chem import MACCSkeys\n",
125
- "import numpy as np\n",
126
- "\n",
127
- "def get_maccs(smi):\n",
128
- " try:\n",
129
- " mol = Chem.MolFromSmiles(smi)\n",
130
- " arr = np.packbits([0 if c=='0' else 1 for c in MACCSkeys.GenMACCSKeys(mol).ToBitString()])\n",
131
- " return np.pad(arr,(0,3)).view(np.uint32)\n",
132
- " except Exception:\n",
133
- " pass"
134
- ]
135
- },
136
- {
137
- "cell_type": "code",
138
- "execution_count": 5,
139
- "id": "d1abe1c8-ac66-4289-8964-367a5b18528d",
140
- "metadata": {},
141
- "outputs": [],
142
- "source": [
143
- "df_bindingdb = pd.read_parquet('data/bindingdb.parquet')\n",
144
- "df_bindingdb = df_bindingdb[['seq','Ligand SMILES','affinity_uM']].rename(columns={'Ligand SMILES': 'smiles'})"
145
- ]
146
- },
147
- {
148
- "cell_type": "code",
149
- "execution_count": 6,
150
- "id": "988bab9c-5147-44e2-92ef-902eaf3c5a90",
151
- "metadata": {},
152
- "outputs": [
153
- {
154
- "data": {
155
- "text/html": [
156
- "<div>\n",
157
- "<style scoped>\n",
158
- " .dataframe tbody tr th:only-of-type {\n",
159
- " vertical-align: middle;\n",
160
- " }\n",
161
- "\n",
162
- " .dataframe tbody tr th {\n",
163
- " vertical-align: top;\n",
164
- " }\n",
165
- "\n",
166
- " .dataframe thead th {\n",
167
- " text-align: right;\n",
168
- " }\n",
169
- "</style>\n",
170
- "<table border=\"1\" class=\"dataframe\">\n",
171
- " <thead>\n",
172
- " <tr style=\"text-align: right;\">\n",
173
- " <th></th>\n",
174
- " <th>seq</th>\n",
175
- " <th>smiles</th>\n",
176
- " <th>affinity_uM</th>\n",
177
- " </tr>\n",
178
- " </thead>\n",
179
- " <tbody>\n",
180
- " <tr>\n",
181
- " <th>0</th>\n",
182
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
183
- " <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
184
- " <td>0.00024</td>\n",
185
- " </tr>\n",
186
- " <tr>\n",
187
- " <th>1</th>\n",
188
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
189
- " <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
190
- " <td>0.00025</td>\n",
191
- " </tr>\n",
192
- " <tr>\n",
193
- " <th>2</th>\n",
194
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
195
- " <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
196
- " <td>0.00041</td>\n",
197
- " </tr>\n",
198
- " <tr>\n",
199
- " <th>3</th>\n",
200
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
201
- " <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
202
- " <td>0.00080</td>\n",
203
- " </tr>\n",
204
- " <tr>\n",
205
- " <th>4</th>\n",
206
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
207
- " <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
208
- " <td>0.00099</td>\n",
209
- " </tr>\n",
210
- " </tbody>\n",
211
- "</table>\n",
212
- "</div>"
213
- ],
214
- "text/plain": [
215
- " seq \\\n",
216
- "0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
217
- "1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
218
- "2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
219
- "3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
220
- "4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
221
- "\n",
222
- " smiles affinity_uM \n",
223
- "0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 0.00024 \n",
224
- "1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... 0.00025 \n",
225
- "2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... 0.00041 \n",
226
- "3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... 0.00080 \n",
227
- "4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... 0.00099 "
228
- ]
229
- },
230
- "execution_count": 6,
231
- "metadata": {},
232
- "output_type": "execute_result"
233
- }
234
- ],
235
- "source": [
236
- "df_bindingdb.head()"
237
- ]
238
- },
239
- {
240
- "cell_type": "code",
241
- "execution_count": 7,
242
- "id": "d7bfee2a-c4e6-48c9-b0c6-52f6a69c7453",
243
- "metadata": {},
244
- "outputs": [],
245
- "source": [
246
- "df_moad = pd.read_parquet('data/moad.parquet')\n",
247
- "df_moad = df_moad[['seq','smiles','affinity_uM']]"
248
- ]
249
- },
250
- {
251
- "cell_type": "code",
252
- "execution_count": 8,
253
- "id": "25553199-1715-40fb-9260-427bdd6c3706",
254
- "metadata": {},
255
- "outputs": [
256
- {
257
- "data": {
258
- "text/html": [
259
- "<div>\n",
260
- "<style scoped>\n",
261
- " .dataframe tbody tr th:only-of-type {\n",
262
- " vertical-align: middle;\n",
263
- " }\n",
264
- "\n",
265
- " .dataframe tbody tr th {\n",
266
- " vertical-align: top;\n",
267
- " }\n",
268
- "\n",
269
- " .dataframe thead th {\n",
270
- " text-align: right;\n",
271
- " }\n",
272
- "</style>\n",
273
- "<table border=\"1\" class=\"dataframe\">\n",
274
- " <thead>\n",
275
- " <tr style=\"text-align: right;\">\n",
276
- " <th></th>\n",
277
- " <th>seq</th>\n",
278
- " <th>smiles</th>\n",
279
- " <th>affinity_uM</th>\n",
280
- " </tr>\n",
281
- " </thead>\n",
282
- " <tbody>\n",
283
- " <tr>\n",
284
- " <th>0</th>\n",
285
- " <td>NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE...</td>\n",
286
- " <td>NP(=O)(N)O</td>\n",
287
- " <td>0.000620</td>\n",
288
- " </tr>\n",
289
- " <tr>\n",
290
- " <th>1</th>\n",
291
- " <td>NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE...</td>\n",
292
- " <td>CC(=O)NO</td>\n",
293
- " <td>2.600000</td>\n",
294
- " </tr>\n",
295
- " <tr>\n",
296
- " <th>2</th>\n",
297
- " <td>MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE...</td>\n",
298
- " <td>C#CCCOP(=O)(O)OP(=O)(O)O</td>\n",
299
- " <td>0.580000</td>\n",
300
- " </tr>\n",
301
- " <tr>\n",
302
- " <th>3</th>\n",
303
- " <td>MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE...</td>\n",
304
- " <td>C#CCOP(=O)(O)OP(=O)(O)O</td>\n",
305
- " <td>0.770000</td>\n",
306
- " </tr>\n",
307
- " <tr>\n",
308
- " <th>4</th>\n",
309
- " <td>MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV...</td>\n",
310
- " <td>c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3...</td>\n",
311
- " <td>15.000000</td>\n",
312
- " </tr>\n",
313
- " <tr>\n",
314
- " <th>...</th>\n",
315
- " <td>...</td>\n",
316
- " <td>...</td>\n",
317
- " <td>...</td>\n",
318
- " </tr>\n",
319
- " <tr>\n",
320
- " <th>25420</th>\n",
321
- " <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
322
- " <td>None</td>\n",
323
- " <td>127.226463</td>\n",
324
- " </tr>\n",
325
- " <tr>\n",
326
- " <th>25421</th>\n",
327
- " <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
328
- " <td>None</td>\n",
329
- " <td>127.226463</td>\n",
330
- " </tr>\n",
331
- " <tr>\n",
332
- " <th>25422</th>\n",
333
- " <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
334
- " <td>None</td>\n",
335
- " <td>169.204738</td>\n",
336
- " </tr>\n",
337
- " <tr>\n",
338
- " <th>25423</th>\n",
339
- " <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
340
- " <td>None</td>\n",
341
- " <td>169.204738</td>\n",
342
- " </tr>\n",
343
- " <tr>\n",
344
- " <th>25424</th>\n",
345
- " <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
346
- " <td>None</td>\n",
347
- " <td>169.204738</td>\n",
348
- " </tr>\n",
349
- " </tbody>\n",
350
- "</table>\n",
351
- "<p>25425 rows × 3 columns</p>\n",
352
- "</div>"
353
- ],
354
- "text/plain": [
355
- " seq \\\n",
356
- "0 NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... \n",
357
- "1 NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... \n",
358
- "2 MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... \n",
359
- "3 MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... \n",
360
- "4 MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV... \n",
361
- "... ... \n",
362
- "25420 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
363
- "25421 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
364
- "25422 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
365
- "25423 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
366
- "25424 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
367
- "\n",
368
- " smiles affinity_uM \n",
369
- "0 NP(=O)(N)O 0.000620 \n",
370
- "1 CC(=O)NO 2.600000 \n",
371
- "2 C#CCCOP(=O)(O)OP(=O)(O)O 0.580000 \n",
372
- "3 C#CCOP(=O)(O)OP(=O)(O)O 0.770000 \n",
373
- "4 c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3... 15.000000 \n",
374
- "... ... ... \n",
375
- "25420 None 127.226463 \n",
376
- "25421 None 127.226463 \n",
377
- "25422 None 169.204738 \n",
378
- "25423 None 169.204738 \n",
379
- "25424 None 169.204738 \n",
380
- "\n",
381
- "[25425 rows x 3 columns]"
382
- ]
383
- },
384
- "execution_count": 8,
385
- "metadata": {},
386
- "output_type": "execute_result"
387
- }
388
- ],
389
- "source": [
390
- "df_moad"
391
- ]
392
- },
393
- {
394
- "cell_type": "code",
395
- "execution_count": 9,
396
- "id": "b2c936bc-cdc8-4bc1-b92d-f8755fd65f0a",
397
- "metadata": {},
398
- "outputs": [],
399
- "source": [
400
- "df_biolip = pd.read_parquet('data/biolip.parquet')\n",
401
- "df_biolip = df_biolip[['seq','smiles','affinity_uM']]"
402
- ]
403
- },
404
- {
405
- "cell_type": "code",
406
- "execution_count": 10,
407
- "id": "cee93018-601d-458b-af44-bd978da7a2bc",
408
- "metadata": {},
409
- "outputs": [
410
- {
411
- "data": {
412
- "text/html": [
413
- "<div>\n",
414
- "<style scoped>\n",
415
- " .dataframe tbody tr th:only-of-type {\n",
416
- " vertical-align: middle;\n",
417
- " }\n",
418
- "\n",
419
- " .dataframe tbody tr th {\n",
420
- " vertical-align: top;\n",
421
- " }\n",
422
- "\n",
423
- " .dataframe thead th {\n",
424
- " text-align: right;\n",
425
- " }\n",
426
- "</style>\n",
427
- "<table border=\"1\" class=\"dataframe\">\n",
428
- " <thead>\n",
429
- " <tr style=\"text-align: right;\">\n",
430
- " <th></th>\n",
431
- " <th>seq</th>\n",
432
- " <th>smiles</th>\n",
433
- " <th>affinity_uM</th>\n",
434
- " </tr>\n",
435
- " </thead>\n",
436
- " <tbody>\n",
437
- " <tr>\n",
438
- " <th>38</th>\n",
439
- " <td>PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC...</td>\n",
440
- " <td>CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C</td>\n",
441
- " <td>1.5000</td>\n",
442
- " </tr>\n",
443
- " <tr>\n",
444
- " <th>43</th>\n",
445
- " <td>MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA...</td>\n",
446
- " <td>OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c...</td>\n",
447
- " <td>24.0000</td>\n",
448
- " </tr>\n",
449
- " <tr>\n",
450
- " <th>53</th>\n",
451
- " <td>EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKV...</td>\n",
452
- " <td>O[C@@H]1[C@@H](CO[P@](=O)(O[P@@](=O)(C(CCCC(P(...</td>\n",
453
- " <td>6.0000</td>\n",
454
- " </tr>\n",
455
- " <tr>\n",
456
- " <th>54</th>\n",
457
- " <td>MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA...</td>\n",
458
- " <td>CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(...</td>\n",
459
- " <td>10.0000</td>\n",
460
- " </tr>\n",
461
- " <tr>\n",
462
- " <th>55</th>\n",
463
- " <td>MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL...</td>\n",
464
- " <td>c1ccccc1</td>\n",
465
- " <td>175.0000</td>\n",
466
- " </tr>\n",
467
- " <tr>\n",
468
- " <th>...</th>\n",
469
- " <td>...</td>\n",
470
- " <td>...</td>\n",
471
- " <td>...</td>\n",
472
- " </tr>\n",
473
- " <tr>\n",
474
- " <th>105118</th>\n",
475
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
476
- " <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
477
- " <td>0.0045</td>\n",
478
- " </tr>\n",
479
- " <tr>\n",
480
- " <th>105119</th>\n",
481
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
482
- " <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
483
- " <td>0.0045</td>\n",
484
- " </tr>\n",
485
- " <tr>\n",
486
- " <th>105124</th>\n",
487
- " <td>SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV...</td>\n",
488
- " <td>O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O...</td>\n",
489
- " <td>125.0000</td>\n",
490
- " </tr>\n",
491
- " <tr>\n",
492
- " <th>105133</th>\n",
493
- " <td>ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI...</td>\n",
494
- " <td>CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]...</td>\n",
495
- " <td>2.0000</td>\n",
496
- " </tr>\n",
497
- " <tr>\n",
498
- " <th>105138</th>\n",
499
- " <td>KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR...</td>\n",
500
- " <td>CC[Se]C(=N)N</td>\n",
501
- " <td>0.0390</td>\n",
502
- " </tr>\n",
503
- " </tbody>\n",
504
- "</table>\n",
505
- "<p>13645 rows × 3 columns</p>\n",
506
- "</div>"
507
- ],
508
- "text/plain": [
509
- " seq \\\n",
510
- "38 PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC... \n",
511
- "43 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
512
- "53 EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKV... \n",
513
- "54 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
514
- "55 MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... \n",
515
- "... ... \n",
516
- "105118 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
517
- "105119 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
518
- "105124 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
519
- "105133 ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... \n",
520
- "105138 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
521
- "\n",
522
- " smiles affinity_uM \n",
523
- "38 CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C 1.5000 \n",
524
- "43 OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c... 24.0000 \n",
525
- "53 O[C@@H]1[C@@H](CO[P@](=O)(O[P@@](=O)(C(CCCC(P(... 6.0000 \n",
526
- "54 CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(... 10.0000 \n",
527
- "55 c1ccccc1 175.0000 \n",
528
- "... ... ... \n",
529
- "105118 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
530
- "105119 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
531
- "105124 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.0000 \n",
532
- "105133 CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... 2.0000 \n",
533
- "105138 CC[Se]C(=N)N 0.0390 \n",
534
- "\n",
535
- "[13645 rows x 3 columns]"
536
- ]
537
- },
538
- "execution_count": 10,
539
- "metadata": {},
540
- "output_type": "execute_result"
541
- }
542
- ],
543
- "source": [
544
- "df_biolip"
545
- ]
546
- },
547
- {
548
- "cell_type": "code",
549
- "execution_count": 11,
550
- "id": "195f92db-fe06-4d03-8500-8d6c310a3347",
551
- "metadata": {},
552
- "outputs": [],
553
- "source": [
554
- "df_all = pd.concat([df_pdbbind,df_bindingdb,df_moad,df_biolip]).reset_index()"
555
- ]
556
- },
557
- {
558
- "cell_type": "code",
559
- "execution_count": 12,
560
- "id": "d25c1e24-6566-4944-a0b4-944b3c8dbc6f",
561
- "metadata": {},
562
- "outputs": [
563
- {
564
- "data": {
565
- "text/plain": [
566
- "2283641"
567
- ]
568
- },
569
- "execution_count": 12,
570
- "metadata": {},
571
- "output_type": "execute_result"
572
- }
573
- ],
574
- "source": [
575
- "len(df_all)"
576
- ]
577
- },
578
- {
579
- "cell_type": "code",
580
- "execution_count": 13,
581
- "id": "c8287da2-cfdf-4d89-b175-f4c6b38ff8ac",
582
- "metadata": {},
583
- "outputs": [
584
- {
585
- "name": "stdout",
586
- "output_type": "stream",
587
- "text": [
588
- "INFO: Pandarallel will run on 32 workers.\n",
589
- "INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n"
590
- ]
591
- }
592
- ],
593
- "source": [
594
- "from pandarallel import pandarallel\n",
595
- "pandarallel.initialize()"
596
- ]
597
- },
598
- {
599
- "cell_type": "code",
600
- "execution_count": null,
601
- "id": "de5ffc4a-afb7-4a26-8d57-509c2278d750",
602
- "metadata": {},
603
- "outputs": [],
604
- "source": [
605
- "df_all['maccs'] = df_all['smiles'].parallel_apply(get_maccs)"
606
- ]
607
- },
608
- {
609
- "cell_type": "code",
610
- "execution_count": 16,
611
- "id": "59a6706d-dab9-4ee0-8ef6-33537a3622a4",
612
- "metadata": {},
613
- "outputs": [],
614
- "source": [
615
- "df_all.to_parquet('data/all_maccs.parquet')"
616
- ]
617
- },
618
- {
619
- "cell_type": "code",
620
- "execution_count": 17,
621
- "id": "4ccf2ee5-d369-4c0e-bb91-792765d661bf",
622
- "metadata": {},
623
- "outputs": [],
624
- "source": [
625
- "import numpy as np"
626
- ]
627
- },
628
- {
629
- "cell_type": "code",
630
- "execution_count": 18,
631
- "id": "399f4ace-6dc3-441f-972a-f7b3a103e239",
632
- "metadata": {},
633
- "outputs": [
634
- {
635
- "data": {
636
- "text/plain": [
637
- "2283641"
638
- ]
639
- },
640
- "execution_count": 18,
641
- "metadata": {},
642
- "output_type": "execute_result"
643
- }
644
- ],
645
- "source": [
646
- "len(df_all)"
647
- ]
648
- },
649
- {
650
- "cell_type": "code",
651
- "execution_count": 19,
652
- "id": "8a4bbb18-e62f-4774-ac6b-8a1be68204c1",
653
- "metadata": {},
654
- "outputs": [],
655
- "source": [
656
- "df_all = pd.read_parquet('data/all_maccs.parquet')\n",
657
- "df_all = df_all.dropna().reset_index(drop=True)"
658
- ]
659
- },
660
- {
661
- "cell_type": "code",
662
- "execution_count": 25,
663
- "id": "d210fe56-a7eb-4adc-a77a-14c0c6d0034e",
664
- "metadata": {},
665
- "outputs": [
666
- {
667
- "data": {
668
- "text/plain": [
669
- "2277323"
670
- ]
671
- },
672
- "execution_count": 25,
673
- "metadata": {},
674
- "output_type": "execute_result"
675
- }
676
- ],
677
- "source": [
678
- "len(df_all)"
679
- ]
680
- },
681
- {
682
- "cell_type": "code",
683
- "execution_count": 26,
684
- "id": "d12b365d-98bd-4b61-b836-1a08d2e55418",
685
- "metadata": {},
686
- "outputs": [],
687
- "source": [
688
- "maccs = df_all['maccs'].to_numpy()\n",
689
- "#df_reindex[df_reindex.duplicated(keep='first')].reset_index()"
690
- ]
691
- },
692
- {
693
- "cell_type": "code",
694
- "execution_count": 27,
695
- "id": "80c15210-1af3-436e-970b-f81fc596fb41",
696
- "metadata": {},
697
- "outputs": [],
698
- "source": [
699
- "df_maccs = pd.DataFrame(np.vstack(maccs))"
700
- ]
701
- },
702
- {
703
- "cell_type": "code",
704
- "execution_count": 28,
705
- "id": "30c314b8-8fe7-48ae-a2b8-149de1471b0c",
706
- "metadata": {},
707
- "outputs": [
708
- {
709
- "data": {
710
- "text/plain": [
711
- "0 int64\n",
712
- "1 int64\n",
713
- "2 int64\n",
714
- "3 int64\n",
715
- "4 int64\n",
716
- "5 int64\n",
717
- "dtype: object"
718
- ]
719
- },
720
- "execution_count": 28,
721
- "metadata": {},
722
- "output_type": "execute_result"
723
- }
724
- ],
725
- "source": [
726
- "df_maccs.dtypes"
727
- ]
728
- },
729
- {
730
- "cell_type": "code",
731
- "execution_count": 29,
732
- "id": "70a0a820-4d0c-4472-af96-9c301c0ab204",
733
- "metadata": {},
734
- "outputs": [],
735
- "source": [
736
- "df_expand = pd.concat([df_all[['seq','smiles','affinity_uM']],df_maccs],axis=1)"
737
- ]
738
- },
739
- {
740
- "cell_type": "code",
741
- "execution_count": 30,
742
- "id": "13d092fa-5625-40d0-b7ec-e3405ea20279",
743
- "metadata": {},
744
- "outputs": [
745
- {
746
- "data": {
747
- "text/html": [
748
- "<div>\n",
749
- "<style scoped>\n",
750
- " .dataframe tbody tr th:only-of-type {\n",
751
- " vertical-align: middle;\n",
752
- " }\n",
753
- "\n",
754
- " .dataframe tbody tr th {\n",
755
- " vertical-align: top;\n",
756
- " }\n",
757
- "\n",
758
- " .dataframe thead th {\n",
759
- " text-align: right;\n",
760
- " }\n",
761
- "</style>\n",
762
- "<table border=\"1\" class=\"dataframe\">\n",
763
- " <thead>\n",
764
- " <tr style=\"text-align: right;\">\n",
765
- " <th></th>\n",
766
- " <th>seq</th>\n",
767
- " <th>smiles</th>\n",
768
- " <th>affinity_uM</th>\n",
769
- " <th>0</th>\n",
770
- " <th>1</th>\n",
771
- " <th>2</th>\n",
772
- " <th>3</th>\n",
773
- " <th>4</th>\n",
774
- " <th>5</th>\n",
775
- " </tr>\n",
776
- " </thead>\n",
777
- " <tbody>\n",
778
- " <tr>\n",
779
- " <th>0</th>\n",
780
- " <td>MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE...</td>\n",
781
- " <td>CCCCCCCCCCCCCCCCCCCC(=O)O</td>\n",
782
- " <td>0.0260</td>\n",
783
- " <td>0</td>\n",
784
- " <td>0</td>\n",
785
- " <td>805306368</td>\n",
786
- " <td>272271360</td>\n",
787
- " <td>890245320</td>\n",
788
- " <td>136</td>\n",
789
- " </tr>\n",
790
- " <tr>\n",
791
- " <th>1</th>\n",
792
- " <td>APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE...</td>\n",
793
- " <td>OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]...</td>\n",
794
- " <td>500.0000</td>\n",
795
- " <td>2147483648</td>\n",
796
- " <td>3242590208</td>\n",
797
- " <td>1914732547</td>\n",
798
- " <td>994116706</td>\n",
799
- " <td>3748288829</td>\n",
800
- " <td>124</td>\n",
801
- " </tr>\n",
802
- " <tr>\n",
803
- " <th>2</th>\n",
804
- " <td>VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE...</td>\n",
805
- " <td>COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)...</td>\n",
806
- " <td>0.0230</td>\n",
807
- " <td>131072</td>\n",
808
- " <td>1109655552</td>\n",
809
- " <td>2123376961</td>\n",
810
- " <td>3477340882</td>\n",
811
- " <td>2951175957</td>\n",
812
- " <td>252</td>\n",
813
- " </tr>\n",
814
- " <tr>\n",
815
- " <th>3</th>\n",
816
- " <td>AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM...</td>\n",
817
- " <td>OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)...</td>\n",
818
- " <td>6.4300</td>\n",
819
- " <td>0</td>\n",
820
- " <td>6685696</td>\n",
821
- " <td>2033191680</td>\n",
822
- " <td>1345701844</td>\n",
823
- " <td>2133187096</td>\n",
824
- " <td>220</td>\n",
825
- " </tr>\n",
826
- " <tr>\n",
827
- " <th>4</th>\n",
828
- " <td>YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL...</td>\n",
829
- " <td>CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1...</td>\n",
830
- " <td>0.1850</td>\n",
831
- " <td>1048576</td>\n",
832
- " <td>1107427332</td>\n",
833
- " <td>2109513024</td>\n",
834
- " <td>4081492984</td>\n",
835
- " <td>4026260436</td>\n",
836
- " <td>252</td>\n",
837
- " </tr>\n",
838
- " <tr>\n",
839
- " <th>...</th>\n",
840
- " <td>...</td>\n",
841
- " <td>...</td>\n",
842
- " <td>...</td>\n",
843
- " <td>...</td>\n",
844
- " <td>...</td>\n",
845
- " <td>...</td>\n",
846
- " <td>...</td>\n",
847
- " <td>...</td>\n",
848
- " <td>...</td>\n",
849
- " </tr>\n",
850
- " <tr>\n",
851
- " <th>2277318</th>\n",
852
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
853
- " <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
854
- " <td>0.0045</td>\n",
855
- " <td>65536</td>\n",
856
- " <td>393216</td>\n",
857
- " <td>964698368</td>\n",
858
- " <td>369403648</td>\n",
859
- " <td>4284858000</td>\n",
860
- " <td>252</td>\n",
861
- " </tr>\n",
862
- " <tr>\n",
863
- " <th>2277319</th>\n",
864
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
865
- " <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
866
- " <td>0.0045</td>\n",
867
- " <td>65536</td>\n",
868
- " <td>393216</td>\n",
869
- " <td>964698368</td>\n",
870
- " <td>369403648</td>\n",
871
- " <td>4284858000</td>\n",
872
- " <td>252</td>\n",
873
- " </tr>\n",
874
- " <tr>\n",
875
- " <th>2277320</th>\n",
876
- " <td>SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV...</td>\n",
877
- " <td>O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O...</td>\n",
878
- " <td>125.0000</td>\n",
879
- " <td>67108864</td>\n",
880
- " <td>1115688962</td>\n",
881
- " <td>1771869508</td>\n",
882
- " <td>4018431718</td>\n",
883
- " <td>3744193341</td>\n",
884
- " <td>124</td>\n",
885
- " </tr>\n",
886
- " <tr>\n",
887
- " <th>2277321</th>\n",
888
- " <td>ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI...</td>\n",
889
- " <td>CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]...</td>\n",
890
- " <td>2.0000</td>\n",
891
- " <td>2097152</td>\n",
892
- " <td>137216</td>\n",
893
- " <td>958148868</td>\n",
894
- " <td>1746307978</td>\n",
895
- " <td>2067783280</td>\n",
896
- " <td>204</td>\n",
897
- " </tr>\n",
898
- " <tr>\n",
899
- " <th>2277322</th>\n",
900
- " <td>KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR...</td>\n",
901
- " <td>CC[Se]C(=N)N</td>\n",
902
- " <td>0.0390</td>\n",
903
- " <td>16</td>\n",
904
- " <td>6144</td>\n",
905
- " <td>537396736</td>\n",
906
- " <td>2170880</td>\n",
907
- " <td>1510015504</td>\n",
908
- " <td>192</td>\n",
909
- " </tr>\n",
910
- " </tbody>\n",
911
- "</table>\n",
912
- "<p>2277323 rows × 9 columns</p>\n",
913
- "</div>"
914
- ],
915
- "text/plain": [
916
- " seq \\\n",
917
- "0 MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... \n",
918
- "1 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
919
- "2 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
920
- "3 AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... \n",
921
- "4 YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... \n",
922
- "... ... \n",
923
- "2277318 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
924
- "2277319 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
925
- "2277320 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
926
- "2277321 ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... \n",
927
- "2277322 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
928
- "\n",
929
- " smiles affinity_uM \\\n",
930
- "0 CCCCCCCCCCCCCCCCCCCC(=O)O 0.0260 \n",
931
- "1 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.0000 \n",
932
- "2 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.0230 \n",
933
- "3 OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... 6.4300 \n",
934
- "4 CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... 0.1850 \n",
935
- "... ... ... \n",
936
- "2277318 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
937
- "2277319 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
938
- "2277320 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.0000 \n",
939
- "2277321 CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... 2.0000 \n",
940
- "2277322 CC[Se]C(=N)N 0.0390 \n",
941
- "\n",
942
- " 0 1 2 3 4 5 \n",
943
- "0 0 0 805306368 272271360 890245320 136 \n",
944
- "1 2147483648 3242590208 1914732547 994116706 3748288829 124 \n",
945
- "2 131072 1109655552 2123376961 3477340882 2951175957 252 \n",
946
- "3 0 6685696 2033191680 1345701844 2133187096 220 \n",
947
- "4 1048576 1107427332 2109513024 4081492984 4026260436 252 \n",
948
- "... ... ... ... ... ... ... \n",
949
- "2277318 65536 393216 964698368 369403648 4284858000 252 \n",
950
- "2277319 65536 393216 964698368 369403648 4284858000 252 \n",
951
- "2277320 67108864 1115688962 1771869508 4018431718 3744193341 124 \n",
952
- "2277321 2097152 137216 958148868 1746307978 2067783280 204 \n",
953
- "2277322 16 6144 537396736 2170880 1510015504 192 \n",
954
- "\n",
955
- "[2277323 rows x 9 columns]"
956
- ]
957
- },
958
- "execution_count": 30,
959
- "metadata": {},
960
- "output_type": "execute_result"
961
- }
962
- ],
963
- "source": [
964
- "df_expand"
965
- ]
966
- },
967
- {
968
- "cell_type": "code",
969
- "execution_count": 31,
970
- "id": "30f7fff7-3cfe-41c8-97c9-666f3e256222",
971
- "metadata": {},
972
- "outputs": [
973
- {
974
- "data": {
975
- "text/plain": [
976
- "Index(['seq', 'smiles', 'affinity_uM', 0, 1, 2, 3, 4, 5], dtype='object')"
977
- ]
978
- },
979
- "execution_count": 31,
980
- "metadata": {},
981
- "output_type": "execute_result"
982
- }
983
- ],
984
- "source": [
985
- "df_expand.columns"
986
- ]
987
- },
988
- {
989
- "cell_type": "code",
990
- "execution_count": 32,
991
- "id": "16d2b26e-984f-4c71-af19-a3e711ed9ca2",
992
- "metadata": {},
993
- "outputs": [],
994
- "source": [
995
- "df_reindex = df_expand.set_index([0,1,2,3,4,5,'seq'])"
996
- ]
997
- },
998
- {
999
- "cell_type": "code",
1000
- "execution_count": 33,
1001
- "id": "27fa2150-8152-444b-ba5b-24bea39fc098",
1002
- "metadata": {},
1003
- "outputs": [
1004
- {
1005
- "data": {
1006
- "text/plain": [
1007
- "Index(['smiles', 'affinity_uM'], dtype='object')"
1008
- ]
1009
- },
1010
- "execution_count": 33,
1011
- "metadata": {},
1012
- "output_type": "execute_result"
1013
- }
1014
- ],
1015
- "source": [
1016
- "df_reindex.columns"
1017
- ]
1018
- },
1019
- {
1020
- "cell_type": "code",
1021
- "execution_count": 34,
1022
- "id": "89edacbc-52f3-4a76-90b0-95273f5e53b3",
1023
- "metadata": {},
1024
- "outputs": [],
1025
- "source": [
1026
- "df_nr = df_reindex[~df_reindex.duplicated(keep='first')].reset_index()\n",
1027
- "df_nr = df_nr.drop(columns=[0,1,2,3,4,5])"
1028
- ]
1029
- },
1030
- {
1031
- "cell_type": "code",
1032
- "execution_count": 36,
1033
- "id": "6a704c5e-68a6-418f-bcad-8688a13ca1d6",
1034
- "metadata": {},
1035
- "outputs": [],
1036
- "source": [
1037
- "# final sanity checks"
1038
- ]
1039
- },
1040
- {
1041
- "cell_type": "code",
1042
- "execution_count": 37,
1043
- "id": "0cad3882-975d-4693-aad1-63ec26646bd0",
1044
- "metadata": {},
1045
- "outputs": [
1046
- {
1047
- "name": "stderr",
1048
- "output_type": "stream",
1049
- "text": [
1050
- "/ccs/proj/stf006/glaser/conda-envs/dask/lib/python3.9/site-packages/pandas/core/arraylike.py:358: RuntimeWarning: divide by zero encountered in log\n",
1051
- " result = getattr(ufunc, method)(*inputs, **kwargs)\n"
1052
- ]
1053
- }
1054
- ],
1055
- "source": [
1056
- "df_nr['neg_log10_affinity_M'] = 6-np.log(df_nr['affinity_uM'])/np.log(10)"
1057
- ]
1058
- },
1059
- {
1060
- "cell_type": "code",
1061
- "execution_count": 38,
1062
- "id": "c200e29a-3f14-41f4-b620-ccce0eb0d5ce",
1063
- "metadata": {},
1064
- "outputs": [
1065
- {
1066
- "data": {
1067
- "text/html": [
1068
- "<div>\n",
1069
- "<style scoped>\n",
1070
- " .dataframe tbody tr th:only-of-type {\n",
1071
- " vertical-align: middle;\n",
1072
- " }\n",
1073
- "\n",
1074
- " .dataframe tbody tr th {\n",
1075
- " vertical-align: top;\n",
1076
- " }\n",
1077
- "\n",
1078
- " .dataframe thead th {\n",
1079
- " text-align: right;\n",
1080
- " }\n",
1081
- "</style>\n",
1082
- "<table border=\"1\" class=\"dataframe\">\n",
1083
- " <thead>\n",
1084
- " <tr style=\"text-align: right;\">\n",
1085
- " <th></th>\n",
1086
- " <th>seq</th>\n",
1087
- " <th>smiles</th>\n",
1088
- " <th>affinity_uM</th>\n",
1089
- " <th>neg_log10_affinity_M</th>\n",
1090
- " </tr>\n",
1091
- " </thead>\n",
1092
- " <tbody>\n",
1093
- " <tr>\n",
1094
- " <th>0</th>\n",
1095
- " <td>MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE...</td>\n",
1096
- " <td>CCCCCCCCCCCCCCCCCCCC(=O)O</td>\n",
1097
- " <td>0.0260</td>\n",
1098
- " <td>7.585027</td>\n",
1099
- " </tr>\n",
1100
- " <tr>\n",
1101
- " <th>1</th>\n",
1102
- " <td>APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE...</td>\n",
1103
- " <td>OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]...</td>\n",
1104
- " <td>500.0000</td>\n",
1105
- " <td>3.301030</td>\n",
1106
- " </tr>\n",
1107
- " <tr>\n",
1108
- " <th>2</th>\n",
1109
- " <td>VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE...</td>\n",
1110
- " <td>COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)...</td>\n",
1111
- " <td>0.0230</td>\n",
1112
- " <td>7.638272</td>\n",
1113
- " </tr>\n",
1114
- " <tr>\n",
1115
- " <th>3</th>\n",
1116
- " <td>AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM...</td>\n",
1117
- " <td>OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)...</td>\n",
1118
- " <td>6.4300</td>\n",
1119
- " <td>5.191789</td>\n",
1120
- " </tr>\n",
1121
- " <tr>\n",
1122
- " <th>4</th>\n",
1123
- " <td>YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL...</td>\n",
1124
- " <td>CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1...</td>\n",
1125
- " <td>0.1850</td>\n",
1126
- " <td>6.732828</td>\n",
1127
- " </tr>\n",
1128
- " <tr>\n",
1129
- " <th>...</th>\n",
1130
- " <td>...</td>\n",
1131
- " <td>...</td>\n",
1132
- " <td>...</td>\n",
1133
- " <td>...</td>\n",
1134
- " </tr>\n",
1135
- " <tr>\n",
1136
- " <th>1838495</th>\n",
1137
- " <td>IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL...</td>\n",
1138
- " <td>O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(...</td>\n",
1139
- " <td>8.0000</td>\n",
1140
- " <td>5.096910</td>\n",
1141
- " </tr>\n",
1142
- " <tr>\n",
1143
- " <th>1838496</th>\n",
1144
- " <td>IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL...</td>\n",
1145
- " <td>CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H...</td>\n",
1146
- " <td>8.0000</td>\n",
1147
- " <td>5.096910</td>\n",
1148
- " </tr>\n",
1149
- " <tr>\n",
1150
- " <th>1838497</th>\n",
1151
- " <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
1152
- " <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
1153
- " <td>0.0045</td>\n",
1154
- " <td>8.346787</td>\n",
1155
- " </tr>\n",
1156
- " <tr>\n",
1157
- " <th>1838498</th>\n",
1158
- " <td>ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI...</td>\n",
1159
- " <td>CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]...</td>\n",
1160
- " <td>2.0000</td>\n",
1161
- " <td>5.698970</td>\n",
1162
- " </tr>\n",
1163
- " <tr>\n",
1164
- " <th>1838499</th>\n",
1165
- " <td>KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR...</td>\n",
1166
- " <td>CC[Se]C(=N)N</td>\n",
1167
- " <td>0.0390</td>\n",
1168
- " <td>7.408935</td>\n",
1169
- " </tr>\n",
1170
- " </tbody>\n",
1171
- "</table>\n",
1172
- "<p>1838500 rows × 4 columns</p>\n",
1173
- "</div>"
1174
- ],
1175
- "text/plain": [
1176
- " seq \\\n",
1177
- "0 MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... \n",
1178
- "1 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
1179
- "2 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
1180
- "3 AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... \n",
1181
- "4 YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... \n",
1182
- "... ... \n",
1183
- "1838495 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
1184
- "1838496 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
1185
- "1838497 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
1186
- "1838498 ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... \n",
1187
- "1838499 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
1188
- "\n",
1189
- " smiles affinity_uM \\\n",
1190
- "0 CCCCCCCCCCCCCCCCCCCC(=O)O 0.0260 \n",
1191
- "1 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.0000 \n",
1192
- "2 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.0230 \n",
1193
- "3 OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... 6.4300 \n",
1194
- "4 CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... 0.1850 \n",
1195
- "... ... ... \n",
1196
- "1838495 O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(... 8.0000 \n",
1197
- "1838496 CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H... 8.0000 \n",
1198
- "1838497 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
1199
- "1838498 CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... 2.0000 \n",
1200
- "1838499 CC[Se]C(=N)N 0.0390 \n",
1201
- "\n",
1202
- " neg_log10_affinity_M \n",
1203
- "0 7.585027 \n",
1204
- "1 3.301030 \n",
1205
- "2 7.638272 \n",
1206
- "3 5.191789 \n",
1207
- "4 6.732828 \n",
1208
- "... ... \n",
1209
- "1838495 5.096910 \n",
1210
- "1838496 5.096910 \n",
1211
- "1838497 8.346787 \n",
1212
- "1838498 5.698970 \n",
1213
- "1838499 7.408935 \n",
1214
- "\n",
1215
- "[1838500 rows x 4 columns]"
1216
- ]
1217
- },
1218
- "execution_count": 38,
1219
- "metadata": {},
1220
- "output_type": "execute_result"
1221
- }
1222
- ],
1223
- "source": [
1224
- "df_nr"
1225
- ]
1226
- },
1227
- {
1228
- "cell_type": "code",
1229
- "execution_count": 52,
1230
- "id": "7f4027a2-0a5f-47bf-8a34-0c6a73b9b112",
1231
- "metadata": {},
1232
- "outputs": [],
1233
- "source": [
1234
- "df = df_nr[np.isfinite(df_nr['neg_log10_affinity_M'])].copy()"
1235
- ]
1236
- },
1237
- {
1238
- "cell_type": "code",
1239
- "execution_count": 53,
1240
- "id": "eb99774f-9bcc-454d-b5e5-a8470223d6ca",
1241
- "metadata": {},
1242
- "outputs": [],
1243
- "source": [
1244
- "from rdkit import Chem\n",
1245
- "def make_canonical(smi):\n",
1246
- " try:\n",
1247
- " return Chem.MolToSmiles(Chem.MolFromSmiles(smi))\n",
1248
- " except:\n",
1249
- " return smi"
1250
- ]
1251
- },
1252
- {
1253
- "cell_type": "code",
1254
- "execution_count": 54,
1255
- "id": "4d44bd8e-f2e1-44b4-aea7-40b4437baf44",
1256
- "metadata": {},
1257
- "outputs": [],
1258
- "source": [
1259
- "df['smiles_can'] = df['smiles'].parallel_apply(make_canonical)"
1260
- ]
1261
- },
1262
- {
1263
- "cell_type": "code",
1264
- "execution_count": 55,
1265
- "id": "07ffdeb1-f4fa-4776-9fea-a18439e03d2e",
1266
- "metadata": {},
1267
- "outputs": [],
1268
- "source": [
1269
- "df = df[(df['neg_log10_affinity_M']>0) & (df['neg_log10_affinity_M']<15)].reset_index()"
1270
- ]
1271
- },
1272
- {
1273
- "cell_type": "code",
1274
- "execution_count": 56,
1275
- "id": "8f949038-d07d-4d3a-a47e-b825cc9018ca",
1276
- "metadata": {},
1277
- "outputs": [],
1278
- "source": [
1279
- "from sklearn.preprocessing import StandardScaler"
1280
- ]
1281
- },
1282
- {
1283
- "cell_type": "code",
1284
- "execution_count": 57,
1285
- "id": "0c027988-0b44-4010-ad61-7d70eead1654",
1286
- "metadata": {},
1287
- "outputs": [],
1288
- "source": [
1289
- "scaler = StandardScaler()"
1290
- ]
1291
- },
1292
- {
1293
- "cell_type": "code",
1294
- "execution_count": 58,
1295
- "id": "6aeba020-b6ff-4633-902e-4df74463eb2f",
1296
- "metadata": {},
1297
- "outputs": [],
1298
- "source": [
1299
- "df['affinity'] = scaler.fit_transform(df['neg_log10_affinity_M'].values.reshape(-1,1))"
1300
- ]
1301
- },
1302
- {
1303
- "cell_type": "code",
1304
- "execution_count": 59,
1305
- "id": "91196eee-5fd0-4aa4-927a-5c1a3f436ac8",
1306
- "metadata": {},
1307
- "outputs": [
1308
- {
1309
- "data": {
1310
- "text/plain": [
1311
- "(array([6.50604534]), array([2.43319576]))"
1312
- ]
1313
- },
1314
- "execution_count": 59,
1315
- "metadata": {},
1316
- "output_type": "execute_result"
1317
- }
1318
- ],
1319
- "source": [
1320
- "scaler.mean_, scaler.var_"
1321
- ]
1322
- },
1323
- {
1324
- "cell_type": "code",
1325
- "execution_count": 60,
1326
- "id": "56269dcb-e691-4759-949d-7bfdd02f5fd4",
1327
- "metadata": {},
1328
- "outputs": [],
1329
- "source": [
1330
- "df = df.drop(columns='index')"
1331
- ]
1332
- },
1333
- {
1334
- "cell_type": "code",
1335
- "execution_count": 7,
1336
- "id": "c6c64066-4032-4247-a8b9-00388176cc7b",
1337
- "metadata": {},
1338
- "outputs": [],
1339
- "source": [
1340
- "df = df.astype({'affinity_uM': 'float32', 'neg_log10_affinity_M': 'float32', 'affinity': 'float32'})\n",
1341
- "df.to_parquet('data/all.parquet')\n",
1342
- "\n",
1343
- "#df = pd.read_parquet('data/all.parquet')"
1344
- ]
1345
- },
1346
- {
1347
- "cell_type": "code",
1348
- "execution_count": 14,
1349
- "id": "469cf0dd-7b87-4245-973c-2a445e1fcca9",
1350
- "metadata": {},
1351
- "outputs": [
1352
- {
1353
- "data": {
1354
- "text/plain": [
1355
- "Index(['seq', 'smiles', 'affinity_uM', 'neg_log10_affinity_M', 'smiles_can',\n",
1356
- " 'affinity'],\n",
1357
- " dtype='object')"
1358
- ]
1359
- },
1360
- "execution_count": 14,
1361
- "metadata": {},
1362
- "output_type": "execute_result"
1363
- }
1364
- ],
1365
- "source": [
1366
- "df.columns"
1367
- ]
1368
- },
1369
- {
1370
- "cell_type": "code",
1371
- "execution_count": 63,
1372
- "id": "d91c0d91-474c-4ab2-9a5e-3b7861f7a832",
1373
- "metadata": {},
1374
- "outputs": [
1375
- {
1376
- "data": {
1377
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfwElEQVR4nO3dfZwcVZ3v8c+XRC4xURCRQRIgqGFd1oiaEVC4MqPiDeg1uOIKRiBgjFEj4gXXKC6Cyl18Ka5PYMwiRhQcd0Uw10SQBUf0ArshPjCAgDGJOgkQeTAyIYKR3/5RNaHodM9U9fRU10y+79erX91V55zq3zz++pyqOkcRgZmZWR67tDsAMzMbO5w0zMwsNycNMzPLzUnDzMxyc9IwM7PcJrY7gNG21157xfTp05tqu2XLFiZPntzagFqo6vGBY2yFqscH1Y+x6vFBtWJcvXr1AxHxnLqFETGuH7NmzYpm/ehHP2q6bRmqHl+EY2yFqscXUf0Yqx5fRLViBG6NBv9TPTxlZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuY37aURs/Ji+eMX21+sveH0bIzHbebmnYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5VZ60pA0W9LdktZIWlynfI6k2yT9QtKtko7M29bMzEZXqUlD0gTgIuAY4GDgREkH11S7HjgkIl4CnAZcUqCtmZmNorJ7GocCayJibUQ8DvQAc7IVImIgIiLdnAxE3rZmZja6yk4aU4HfZ7b7031PIelNku4CVpD0NnK3NTOz0aMnP9SX8GbSW4D/FRHz0+2TgEMj4n0N6r8KOCciXlukraQFwAKAjo6OWT09PU3FOzAwwJQpU5pqW4aqxwetjbFvw+btr2dO3b0lx4Tqfx+rHh9UP8aqxwfVirG7u3t1RHTWKyt75b5+YL/M9jRgY6PKEXGjpOdL2qtI24hYCiwF6OzsjK6urqaC7e3tpdm2Zah6fNDaGOdlV+6b25pjQvW/j1WPD6ofY9Xjg7ERI5Q/PLUKmCHpQEm7AicAy7MVJL1AktLXLwN2BR7M09bMzEZXqT2NiNgmaRFwLTABuDQi7pC0MC1fArwZOFnSX4CtwFvTE+N125YZv41PfRs2b+/FeO1xs6GVPTxFRKwEVtbsW5J5/SngU3nbmplZeXxHuJmZ5eakYWZmuTlpmJlZbk4aZmaWW+knws3Gq+nZ+0h8FZaNU+5pmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpZb6UlD0mxJd0taI2lxnfK5km5LHzdJOiRTtl5Sn6RfSLq13MjNzKzUNcIlTQAuAo4G+oFVkpZHxJ2ZauuAoyLiYUnHAEuBwzLl3RHxQGlBm5nZdmX3NA4F1kTE2oh4HOgB5mQrRMRNEfFwunkLMK3kGM3MrAFFRHlvJh0PzI6I+en2ScBhEbGoQf2zgBdm6q8DHgYC+EpELG3QbgGwAKCjo2NWT09PU/EODAwwZcqUptqWoerxQWtj7NuwefvrmVN3b8kxATY9tJn7t478uI3iG2ncO9vPeTRUPT6oVozd3d2rI6KzXlmpw1OA6uyrm7UkdQPvAI7M7D4iIjZK2hu4TtJdEXHjDgdMkslSgM7Ozujq6moq2N7eXpptW4aqxwetjXHe4hXbX6+f25pjAnzx8u9xYd/EER+3UXwjjXtn+zmPhqrHB2MjRih/eKof2C+zPQ3YWFtJ0ouBS4A5EfHg4P6I2Jg+bwKuIhnuMjOzkpSdNFYBMyQdKGlX4ARgebaCpP2B7wInRcQ9mf2TJT1j8DXwOuD20iI3M7Nyh6ciYpukRcC1wATg0oi4Q9LCtHwJcA7wbOBiSQDb0rG1DuCqdN9E4IqIuKbM+M3MdnZln9MgIlYCK2v2Lcm8ng/Mr9NuLXBI7X4zMyuP7wg3M7PcnDTMzCw3Jw0zM8vNScPMzHJz0jAzs9wKJQ1JR49WIGZmVn1FL7m9VtJa4CvAsoj4wyjEZFYJ07PTf1zw+jZGYlYdRYenXk1yV/cngN9LukLSUa0Py8zMqqhQTyMieoFeSc8GTgPeCZwg6W5gCXBZZlpzszEn27swsx01dSI8Ih6MiE9HxEEkCyo9AHwW2CBpmaSZrQzSzMyqYURXT0k6FjgdOBzYBFwGHAX8TNK7Rx6emZlVSeGkIWkfSWenCyJ9H9gDeDuwX0QsBF5AcqL8nFYGarYzmr54BX0bNnvYzCqj0DkNSVcCbwD+DHwTuDgi7sjWiYi/SroCeE/LojQzs0ooesntDOAM4BsRMTBEvT6gu9mgzMysmoomjTcA90bEX2oLJE0E9o2I30XEI8CPWxGgmZlVR9GksQ54BfBfdcoOSfdPGGlQZlXmm/5sZ1Y0aWiIsqcBT4wgFrOm+J+4WXmGTRqS9gD2zOyaKul5NdUmAacA97UuNDMzq5o8PY33Ax8DIn18p0E9pfXMzGycypM0rgbWkySFS4FPAr+pqfMYcGdE3NbK4MzMrFqGTRoR8UvglwCSAlgREQ+MdmBmZlY9RScs/PpoBWJmZtWX50T4DcB7IuKu9PVQIiJe05rQzKrD03iYJfLMPZW9zHaXdLvRY9jjSZot6W5JayQtrlM+V9Jt6eMmSYfkbWtmZqMrzzmN7szrrpG8maQJwEUk06n3A6skLY+IOzPV1gFHRcTDko4BlgKH5WxrVglFeya+18TGiqI3943UocCaiFgLIKkHmANs/8cfETdl6t8CTMvb1mws8ZCXjUWKiKErSK8qcsCIuHGIYx0PzI6I+en2ScBhEbGoQf2zgBdGxPwibSUtABYAdHR0zOrp6SnyJWw3MDDAlClTmmpbhqrHB62NsW/D5u2vZ07dfdj9eW16aDP3b20upkZxjKR+bZ2OSXD/1ua+trJU/Xex6vFBtWLs7u5eHRGd9cry9DR6SW7qG47SekPNPVVvGpK6x5bUDbwDOLJo24hYSjKsRWdnZ3R1dQ0RUmO9vb0027YMVY8PWhvjvOwQztyuYffn9cXLv8eFfc11uhvF0VDflsxG/fesPeaZM7dxYd/Epr62slT9d7Hq8cHYiBHyJY1WTnHeD+yX2Z4GbKytJOnFwCXAMRHxYJG2ZmY2evKcCG/lFOergBmSDgQ2ACcAb8tWkLQ/8F3gpIi4p0hbs7L5vITtbEo9ER4R2yQtAq4lGca6NCLukLQwLV9Cskzss4GLJQFsi4jORm3LjN/MbGdX+s19EbESWFmzb0nm9Xxgft62Zo34Mlaz1svT06i9uW+ok+JDrbdhZmZjXKk395mZ2diWZxoRMzMzoIkT4elKfh8gWSt8KsmVTDcBn4uIP7YyODMzq5ZCPY108sBfAx8GdiOZwmM34CPAPZJmtjxCMzOrjKI9jS8ADwKdEfHbwZ2SpgPXAF8EuloVnJmZVUvRpPFy4JRswgCIiPWSPgZ8rWWRmTXBN9uZja6iJ8IfJFkPvJ4/p+VmZjZOFU0aXwY+KGm37E5Jk4CzSNa7MDOzcSrPHeEfz24CBwC/k7QSuB/oAI4FtgJPH40gzeypfLe7tUuecxofbbD/5Dr7ziaZO8rMzMahPHeE+wZAMzMDfEe4mZkV4KRhZma5FU4akhZI+rmkRyX9tfYxGkGamVk1FJ1G5GSSu75XkUwf8jXgm8CfgN8AH2/c2szMxrqiPY0zgH8G3p1uXxwRpwDPI7nk1jf3mZmNY0WnEZkB3Ag8kT52BYiIhyWdD5wPfKmlEZq1wFDTi5zpaTbNciuaNLYCu0RESLqPpIdxS1o2AOzbyuDMGvEcU2btUTRp9AEvAP4D+AnwEUnrgG3AucBdLY3OzMwqpWjSWErSuwD4J5Lk8dN0+xHguNaEZWZmVVQoaUTEtzOv10j6O+CVwCTgpoh4oMXxme10PPRmVVZ4udesiNgCXNeiWMzMrOKaublvgqRTJS2VtCJ9nidpQs72syXdLWmNpMV1yl8o6WZJj0k6q6ZsvaQ+Sb+QdGvR2M3MbGQK9TQkHQBcCxwE9JNMjT4TmA98SNLs2lX9atpPIFlz4+i0/SpJyyPizky1h4DTaXx+pNvDYLYz8rCVVUHRnsaXgGcCR0bE/hHx8ojYH/ifwO4kd4sP5VBgTUSsjYjHgR5gTrZCRGyKiFXAXwrGZmZmo0wRkb+ytAV4T0R8vU7ZPOBLETFliPbHA7MjYn66fRJwWEQsqlP3XGAgIj6T2bcOeBgI4CsRsbTB+ywAFgB0dHTM6unpyf01Zg0MDDBlSsMvp+2qHh+0Nsa+DZtbcpxaHZPg/q2jcuiWGC6+mVN3Ly+YBqr+u1j1+KBaMXZ3d6+OiM56ZUVPhA8AmxqUbQIeHaa96uzLn7XgiIjYKGlv4DpJd0XEjTscMEkmSwE6Ozujq6urwFs8qbe3l2bblqHq8UFrY5w3SsMzZ87cxoV9I7omZFQNF9/6uV3lBdNA1X8Xqx4fjI0Yofjw1DeBhQ3K3gVcNkz7fmC/zPY0YGPeN4+IjenzJuAqkuEuq6Dpi1cwffGKUesdmFl75Fkj/LTM5q+Bt0jqA67kyTXCjweeAfxgmMOtAmZIOhDYAJwAvC1PoJImk0xh8kj6+nV4Vl0zs1Ll6ZNfUmffNODv6uy/CFjS6EARsU3SIpIrsCYAl0bEHZIWpuVLJO0D3Epywv0JSWcABwN7AVdJGoz7ioi4Jkf8ViHZK4DWX/D6NkZiZs3IkzQObOUbRsRKYGXNviWZ1/eRJKVafwIOaWUsZmZWzLBJY6j7LsxaxT0Qs7GhqUtGJL0IOArYk2ThpRsj4vZWBmY7LycQs+oqekf4RGAZcCJPvXw2JF0BzIsIrxNuZjZOFb3k9mPAPwDnkJzrmJQ+nwO8NX02M7Nxqujw1NuBT0TE+Zl9vwXOT+eVOpUksZiZ2ThUtKexL3Bzg7Kb8HKvZmbjWtGksRE4okHZKylwd7eZmY09RYenLgfOlvRE+vpeYB+SO7vPBj7V2vDMzKxKiiaNc0nWCD8vfT1IwLfS/WZmNk4VXSN8G/A2SecDryK5T+Mh4Mc1CymZWRv4HhcbbbmThqRdgftI7sVYDtwxalGZmVkl5U4aEfG4pG3An0cxHjMryMvAWpmKXj11Nck06GZmthMqeiL8B8AXJH2HJIHcS83KexFxQ2tCMzOzqimaNK5Mn/8+fQwKkiuogmSdDDMzG4eKJo3uUYnCrAGP15tVS9FLbn8MIOmZwIuAqSTLtt4eEX9qfXhmZlYlhdfTkHQOcCYwhSeHpAYkfToiPtni+MzMrEKKrqdxHvBPJOuG9wD3Ax0k62ucJ2liRJzb6iDNzKwaivY03glcGBEfzOy7A7hB0mZgAU+dXsTMzMaRovdp7A5c26DsmrTczMzGqaJJ4z+Blzcoe3labmZm41TRpHE6cJqkD0qaLmlS+vyPwGnAIkm7DD7qHUDSbEl3S1ojaXGd8hdKulnSY5LOKtLWzMxGV9FzGrelzxekjywBfZntqD1+uiTsRcDRQD+wStLymhlyHyJJTsc10dbMzEZR0aTxcWqmDSnoUGBNRKwFkNQDzAG2/+OPiE3AJkm18zoP29bMhufp020kFDGSHFDwzaTjgdkRMT/dPgk4LCIW1al7LjAQEZ9pou0Ckiu56OjomNXT09NUvAMDA0yZMqWptmWocnx9GzYD0DEJ9t5z9x32A8ycWn9/2Tomwf1b2/b2w2o2vuz3N6vRz2Akqvy7CNWPD6oVY3d39+qI6KxXVvjmvhFSnX15s1buthGxFFgK0NnZGV1dXTnf4ql6e3tptm0ZqhzfvPTT7Jkzt/EPmRjnZacF6duSaVH2r+KTzpy5jQv72vf+w2k2vvVzu+ruz/4MGtUpqsq/i1D9+GBsxAjFT4SPVD+wX2Z7GrCxhLZmZtYCZSeNVcAMSQemKwGeACwvoa2ZmbVAqX3yiNgmaRHJDYITgEsj4g5JC9PyJZL2AW4Fngk8IekM4OCI+FO9tmXGb2a2syt9IDciVgIra/Ytyby+j2ToKVdbMzMrT9nDU2ZmNoY5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aZmaWW3Un3LFxIzurqpmNbe5pmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluvnrKbJzyWuA2GtzTMDOz3NzTMNsJ+F4ZaxX3NMzMLDcnDTMzy81Jw8zMcnPSMDOz3Jw0zMwsNycNMzPLzUnDzMxyK/0+DUmzgc8DE4BLIuKCmnKl5ccCjwLzIuJnadl64BHgr8C2iOgsMXSzccd3jVtRpSYNSROAi4CjgX5glaTlEXFnptoxwIz0cRjw5fR5UHdEPFBSyGZmllH28NShwJqIWBsRjwM9wJyaOnOAyyJxC7CHpOeWHKeZmdWhiCjvzaTjgdkRMT/dPgk4LCIWZep8H7ggIn6abl8PfCgibpW0DngYCOArEbG0wfssABYAdHR0zOrp6Wkq3oGBAaZMmdJU2zJUOb6+DZsB6JgE929tczDDqHqM7Ypv5tTdc9et8u8iVD8+qFaM3d3dqxsN/5d9TkN19tVmraHqHBERGyXtDVwn6a6IuHGHykkyWQrQ2dkZXV1dTQXb29tLs23LUOX45qVj5WfO3MaFfdWe4qzqMbYrvvVzu3LXrfLvIlQ/PhgbMUL5w1P9wH6Z7WnAxrx1ImLweRNwFclwl5mZlaTspLEKmCHpQEm7AicAy2vqLAdOVuJwYHNE3CtpsqRnAEiaDLwOuL3M4M3Mdnal9nkjYpukRcC1JJfcXhoRd0hamJYvAVaSXG67huSS21PT5h3AVckVuUwEroiIa8qM38xsZ1f6QGlErCRJDNl9SzKvA3hvnXZrgUNGPUArxNf5m+1cfEe4mZnlVt1LRqyyvAqc2c7LScNaxsnEbPxz0jCzuny+yurxOQ0zM8vNPQ0zG5Z7HTbIPQ0zM8vNScPMzHJz0jAzs9ycNMzMLDefCLenaHTC0/dgmBm4p2FmZgU4aZiZWW4enjKzpk3PrNDY1d5QrCTuaZiZWW7uaZhZIb4oYufmnoaZmeXmpGFmZrk5aZiZWW4+p2ENeezaivBMuDsHJw0zazknkPHLw1NmZpabexpj1PTFKzhz5jbmLV6R+5Oc55Wydmj0++UeyNhUetKQNBv4PDABuCQiLqgpV1p+LPAoMC8ifpanreUfFnCisHbL8yHGiaV6Sk0akiYAFwFHA/3AKknLI+LOTLVjgBnp4zDgy8BhOdvulBolACcGM2u1snsahwJrImItgKQeYA6Q/cc/B7gsIgK4RdIekp4LTM/RtqX6NmxmXvqPdySfePzP22xorfrg0+jvtFV/y1Z+0pgK/D6z3U/SmxiuztScbQGQtABYkG4OSLq7yXj3Ah4A0KeaPMIoOj0TX1U5xpGrenxQnRiH+Dut9N9yqhLfw9QBjQrKThqqsy9y1snTNtkZsRRYWiy0HUm6NSI6R3qc0VL1+MAxtkLV44Pqx1j1+GBsxAjlJ41+YL/M9jRgY846u+Zoa2Zmo6js+zRWATMkHShpV+AEYHlNneXAyUocDmyOiHtztjUzs1FUak8jIrZJWgRcS3LZ7KURcYekhWn5EmAlyeW2a0guuT11qLajHPKIh7hGWdXjA8fYClWPD6ofY9Xjg7ERI0ouUjIzMxuepxExM7PcnDTMzCw3J406JM2WdLekNZIWtzueWpL2k/QjSb+SdIek97c7pnokTZD0c0nfb3cs9aQ3jn5H0l3p9/IV7Y6plqQPpD/j2yV9S9JubY7nUkmbJN2e2benpOsk/Tp9flYFY/x0+nO+TdJVkvZoY4h1Y8yUnSUpJO3VjtiG46RRIzNdyTHAwcCJkg5ub1Q72AacGRF/CxwOvLeCMQK8H/hVu4MYwueBayLihcAhVCxWSVOB04HOiHgRyQUgJ7Q3KpYBs2v2LQauj4gZwPXpdjstY8cYrwNeFBEvBu4BPlx2UDWWsWOMSNqPZKqk35UdUF5OGjvaPtVJRDwODE5XUhkRce/gJI4R8QjJP7up7Y3qqSRNA14PXNLuWOqR9EzgVcBXASLi8Yj4Y1uDqm8iMEnSRODptPnepIi4EXioZvcc4Ovp668Dx5UZU616MUbEDyNiW7p5C8l9Xm3T4PsI8C/AP9LgxuUqcNLYUaNpTCpJ0nTgpcB/tjmUWp8j+eV/os1xNPI84A/A19IhtEskTW53UFkRsQH4DMmnzntJ7ln6YXujqqsjvZeK9HnvNscznNOAH7Q7iFqS3ghsiIhftjuWoThp7Cj3dCXtJmkKcCVwRkT8qd3xDJL0BmBTRKxudyxDmAi8DPhyRLwU2EL7h1WeIj03MAc4ENgXmCzp7e2NamyTdDbJ8O7l7Y4lS9LTgbOBc9ody3CcNHaUZ6qTtpP0NJKEcXlEfLfd8dQ4AnijpPUkw3uvlvTN9oa0g36gPyIGe2jfIUkiVfJaYF1E/CEi/gJ8F3hlm2Oq5/50JmrS501tjqcuSacAbwDmRvVuUHs+yYeDX6Z/N9OAn0nap61R1eGksaPKT1eSLlT1VeBXEfHZdsdTKyI+HBHTImI6yffvhoio1CfkiLgP+L2kv0l3vYZRnGa/Sb8DDpf09PRn/hoqdrI+tRw4JX19CvC9NsZSV7qA24eAN0bEo+2Op1ZE9EXE3hExPf276Qdelv6eVoqTRo30ZNngdCW/Av6thOlKijoCOInkE/wv0sex7Q5qDHofcLmk24CXAP+3veE8VdoL+g7wM6CP5O+1rVNNSPoWcDPwN5L6Jb0DuAA4WtKvSa78aeuKmg1i/BLwDOC69O9lSQVjHBM8jYiZmeXmnoaZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aVimSzpU0Lm8eknRauubE45L+ONT+Zr8P9dpJOk7S/2ky5mXp2g4hqbembF6m7KA6bbsy5a9N9300s6+/mZisvZw0zEogaV+Su7lvAl5NMq9Uw/0kU8o3syhUvXbHAU0ljdR96THf06D8EZIZCmqdnJZlfS091soRxGNtNLHdAZjtJGaQLKL09Yj46XD7I6KfZP6hQpptN4zHIuKWIcq/C7xd0jmDEwFKmgS8mWRSzXmZ+DYAGyT9ocUxWknc07AxQckSvDdL2ipps6SrM5MNZuudmC7r+WdJfZLeKKm3dmilxbG9QNI3JK1L41sr6cuDy55KWgYMvv/16dDMskb70zZPGWYa3JY0Q9IKSQOSfivpHEm71NbLbC8jmURwamZYaL2k49PXh9T5enol3VzgW/AN4ADgyMy+N5EkwysLHMfGAPc0rPLSGUpXADcAbwWmAB8HfirpJemnVyQdTbJOwnLgTGAvksWgdiNZ4nO07Evy6f4M4GGSBZ4+QjIE8wrgE8Bq4AvAe0kmIBz8pN1ofyNXkQzx/Avwv4HzSBYN+1qD+p8AngO8HHhjuu8xkgkQNwLvIjPslCbio4BTh4kj67fAjSRDVD9J952cxjpQ4Dg2Bjhp2FjwSWAtcMzgkp3pJ+F7SJLD4Hj9eSTTm78pM0zSR/KPedSSRrp0542D25JuAtYAP5H00oj4uaTBKc3vzA71NNo/hAsjYjBB/IekVwMn0iBpRMRv0qGgx2uPL+lfgQ9I+mBEbEl3vwv4I/DtHLFkXQZcKOl04Fkk52aOKXgMGwM8PGVtocTE7KNBvckkiyN9O7PGMxGxDvj/JJ+KkTQB6ASuzC6wk66lvq7mmB+RdLekJyQdV1P2fEk/lXSPkmVgO3N8Lbumx7xL0lbgLzz5iXuHIbQRWlGzfTuwf5PHWkqy7viJAJJ2IxnKuiwithY81r8D/4Ok9zOX5OT59U3GZRXmpGHtchTJP9fso55nkSzBe2+dsvuAPdPXewFPo/6qcffXbF8PHEumd5CxBFgWEQeRrHF+uaR6SwBn/TNwLvBN4PXAocDfp2W7DdO2qIdqth9r9j0iYiPJgkkL011vIfl+fqWJYz0CXE0yRHUyyYqSVV0f3kbAw1PWLqtJxtmH8zDJGu31lr3cB3gwff0ASeLZu069DpJV8IDtixtRmwskPQc4nCShEBHXpXVmAbcOEeMJJJ/OP5k51pQh6lfJxSQn4WeRDE39JCKaXcHwMpKe0C6kvRcbf9zTsLaIiEci4tbso0G9LSQJ5i3pEBQAkg4gWS/7x2m9v5L8Y39ztmeQ/jM8MGdY+wMb0/W4B/2W4Yd/ns6OPaUiJ5JH22PApHoFEXEDyQqVnyVZEXIkK9pdB/wbsKSCq11ai7inYWPBP5F8gv2+pItJrp46D9gMXJip9zHgh8BVkpaSDFmdSzKM1exQyXBDUwDXAKekJ93XkAxNvbLJ9xsNdwJ7Sno3SWL9c0T0ZcqXAJ8n6a01fYlsmrjdwxjn3NOwyouIa0jOFexB+kmW5NPxkem4/GC960hOwv4tyeWeHyK5uuo+kgQznN8B+0p6WmbfAWSGthp4H8llvueTXHX0DKr1z/MSoIdkDfT/Av5fTfm/p8/LIuKxMgOzscdrhNu4Jmkayaf/8yPiEzVlvcDnIuLqzL7rgZ6I+Nf0vo+LgYNiHP+hSHonycnvgyJiTU3ZMqALeAEQaW9iJO8lkpv+vgq8JiKmjeR4Vj73NGzckDQpvRP7zZKOknQqyTj7oySftgfrfTSdLO8VwCWS+iUNnmhfCJwq6R7g08Dc8ZowJB0safAGwatrE0bGASTnbFpxCe3Z6bFObsGxrA3c07BxQ9KuJMNDhwPPBraQ3C/xkYi4vZ2xVVHa03olyWSJb8sO9WXqTCc5NwTwSETcPcL3fC4wNd18PCJuG8nxrHxOGmZmlpuHp8zMLDcnDTMzy81Jw8zMcnPSMDOz3Jw0zMwsNycNMzPLzUnDzMxy+29GVQvyP63mDAAAAABJRU5ErkJggg==\n",
1378
- "text/plain": [
1379
- "<Figure size 432x288 with 1 Axes>"
1380
- ]
1381
- },
1382
- "metadata": {
1383
- "needs_background": "light"
1384
- },
1385
- "output_type": "display_data"
1386
- }
1387
- ],
1388
- "source": [
1389
- "ax = df['neg_log10_affinity_M'].hist(bins=100,density=True)\n",
1390
- "ax.set_xlabel('-$\\log_{10}$ affinity[M]',fontsize=16)\n",
1391
- "ax.set_ylabel('probability',fontsize=16)\n",
1392
- "ax.figure.savefig('affinity_neglog10_M.pdf')"
1393
- ]
1394
- },
1395
- {
1396
- "cell_type": "code",
1397
- "execution_count": 64,
1398
- "id": "0e895ef5-1812-46c7-a4c2-dd6619b49157",
1399
- "metadata": {},
1400
- "outputs": [
1401
- {
1402
- "data": {
1403
- "text/plain": [
1404
- "1836729"
1405
- ]
1406
- },
1407
- "execution_count": 64,
1408
- "metadata": {},
1409
- "output_type": "execute_result"
1410
- }
1411
- ],
1412
- "source": [
1413
- "len(df)"
1414
- ]
1415
- },
1416
- {
1417
- "cell_type": "code",
1418
- "execution_count": 65,
1419
- "id": "3af855d3-a943-4574-985c-540d3f6b6f80",
1420
- "metadata": {},
1421
- "outputs": [
1422
- {
1423
- "data": {
1424
- "text/plain": [
1425
- "{'with_mean': True,\n",
1426
- " 'with_std': True,\n",
1427
- " 'copy': True,\n",
1428
- " 'n_features_in_': 1,\n",
1429
- " 'n_samples_seen_': 1836729,\n",
1430
- " 'mean_': array([6.50604534]),\n",
1431
- " 'var_': array([2.43319576]),\n",
1432
- " 'scale_': array([1.55987043])}"
1433
- ]
1434
- },
1435
- "execution_count": 65,
1436
- "metadata": {},
1437
- "output_type": "execute_result"
1438
- }
1439
- ],
1440
- "source": [
1441
- "scaler.__dict__"
1442
- ]
1443
- },
1444
- {
1445
- "cell_type": "code",
1446
- "execution_count": 66,
1447
- "id": "15f8d5b9-37d5-453e-a6df-df6510cc5c81",
1448
- "metadata": {},
1449
- "outputs": [],
1450
- "source": [
1451
- "# output the normalization\n",
1452
- "\n",
1453
- "import json\n",
1454
- "\n",
1455
- "class NumpyEncoder(json.JSONEncoder):\n",
1456
- " def default(self, obj):\n",
1457
- " if isinstance(obj, np.ndarray):\n",
1458
- " return obj.tolist()\n",
1459
- " if isinstance(obj, np.int64):\n",
1460
- " return int(obj)\n",
1461
- " return json.JSONEncoder.default(self, obj)\n",
1462
- " \n",
1463
- "json.dump(scaler.__dict__,open('data/scaling.json','w'),cls=NumpyEncoder)"
1464
- ]
1465
- },
1466
- {
1467
- "cell_type": "markdown",
1468
- "id": "210b39d3-505b-4a6e-b186-35e660f4d510",
1469
- "metadata": {},
1470
- "source": [
1471
- "**without KRAS**"
1472
- ]
1473
- },
1474
- {
1475
- "cell_type": "code",
1476
- "execution_count": 67,
1477
- "id": "8dec95dc-a014-4d39-ae51-8de981173573",
1478
- "metadata": {},
1479
- "outputs": [],
1480
- "source": [
1481
- "smiles_sotorasib = 'C=CC(=O)N1CCN(c2nc(=O)n(-c3c(C)ccnc3C(C)C)c3nc(-c4c(O)cccc4F)c(F)cc23)[C@@H](C)C1'\n",
1482
- "seq_kras_wt = 'MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAGQEEYSAMRDQYMRTGEGFLCVFAINNTKSFEDIHHYREQIKRVKDSEDVPMVLVGNKCDLPSRTVDTKQAQDLARSYGIPFIETSAKTRQRVEDAFYTLVREIRQYRLKKISKEEKTPGCVKIKKCIIM'"
1483
- ]
1484
- },
1485
- {
1486
- "cell_type": "code",
1487
- "execution_count": 68,
1488
- "id": "3f90eadd-d7e4-4104-961f-adaf5437e24b",
1489
- "metadata": {},
1490
- "outputs": [],
1491
- "source": [
1492
- "df_nokras = df[~df.seq.str.startswith(seq_kras_wt[:20])]"
1493
- ]
1494
- },
1495
- {
1496
- "cell_type": "code",
1497
- "execution_count": 69,
1498
- "id": "f5f5335a-8f28-4058-8647-fcc8f7d2f841",
1499
- "metadata": {},
1500
- "outputs": [
1501
- {
1502
- "data": {
1503
- "text/plain": [
1504
- "1836326"
1505
- ]
1506
- },
1507
- "execution_count": 69,
1508
- "metadata": {},
1509
- "output_type": "execute_result"
1510
- }
1511
- ],
1512
- "source": [
1513
- "len(df_nokras)"
1514
- ]
1515
- },
1516
- {
1517
- "cell_type": "code",
1518
- "execution_count": 10,
1519
- "id": "47966268-c97c-4bd9-9c90-eb568249f2ef",
1520
- "metadata": {},
1521
- "outputs": [],
1522
- "source": [
1523
- "#df_nokras = df_nokras.astype({'affinity_uM': 'float32', 'neg_log10_affinity_M': 'float32', 'affinity': 'float32'})\n",
1524
- "#df_nokras.to_parquet('data/all_nokras.parquet')\n",
1525
- "#df_nokras = pd.read_parquet('data/all_nokras.parquet')"
1526
- ]
1527
- },
1528
- {
1529
- "cell_type": "markdown",
1530
- "id": "4838f164-aed7-4f2d-a047-df647dfb8ea6",
1531
- "metadata": {},
1532
- "source": [
1533
- "**with covalently binding ligands only**"
1534
- ]
1535
- },
1536
- {
1537
- "cell_type": "code",
1538
- "execution_count": 89,
1539
- "id": "c0d250a3-5680-446c-9c98-7d6623643304",
1540
- "metadata": {},
1541
- "outputs": [],
1542
- "source": [
1543
- "from rdkit.Chem import SDMolSupplier\n",
1544
- "suppl = SDMolSupplier('data/CovPDB_ligands.sdf')\n"
1545
- ]
1546
- },
1547
- {
1548
- "cell_type": "code",
1549
- "execution_count": 90,
1550
- "id": "0c7c0b26-1f2a-4b80-8117-f1e02719aac9",
1551
- "metadata": {},
1552
- "outputs": [
1553
- {
1554
- "name": "stderr",
1555
- "output_type": "stream",
1556
- "text": [
1557
- "RDKit WARNING: [13:44:45] Warning: molecule is tagged as 3D, but all Z coords are zero\n",
1558
- "RDKit WARNING: [13:44:45] Warning: molecule is tagged as 3D, but all Z coords are zero\n",
1559
- "RDKit WARNING: [13:44:45] Warning: molecule is tagged as 3D, but all Z coords are zero\n",
1560
- "RDKit WARNING: [13:44:45] Warning: molecule is tagged as 3D, but all Z coords are zero\n",
1561
- "RDKit WARNING: [13:44:45] Warning: molecule is tagged as 3D, but all Z coords are zero\n",
1562
- "RDKit WARNING: [13:44:45] Warning: molecule is tagged as 3D, but all Z coords are zero\n",
1563
- "RDKit WARNING: [13:44:45] Warning: molecule is tagged as 3D, but all Z coords are zero\n",
1564
- "RDKit WARNING: [13:44:45] Warning: molecule is tagged as 3D, but all Z coords are zero\n"
1565
- ]
1566
- }
1567
- ],
1568
- "source": [
1569
- "from rdkit import Chem\n",
1570
- "cov_smiles = [Chem.MolToSmiles(m) for m in suppl]"
1571
- ]
1572
- },
1573
- {
1574
- "cell_type": "code",
1575
- "execution_count": 74,
1576
- "id": "258f593c-1cba-45cb-936e-8c1360075926",
1577
- "metadata": {},
1578
- "outputs": [],
1579
- "source": [
1580
- "df_cov = df[df['smiles'].isin(cov_smiles)]"
1581
- ]
1582
- },
1583
- {
1584
- "cell_type": "code",
1585
- "execution_count": 12,
1586
- "id": "ee3fa0bc-9ad3-4ea7-9393-cbc7504f634c",
1587
- "metadata": {},
1588
- "outputs": [],
1589
- "source": [
1590
- "df_cov = df_cov.astype({'affinity_uM': 'float32', 'neg_log10_affinity_M': 'float32', 'affinity': 'float32'})\n",
1591
- "#df_cov.reset_index(drop=True).to_parquet('data/cov.parquet')\n",
1592
- "#df_cov = pd.read_parquet('data/cov.parquet')"
1593
- ]
1594
- },
1595
- {
1596
- "cell_type": "code",
1597
- "execution_count": 77,
1598
- "id": "5c12fedc-4236-4587-a744-c0c9ec21ceaa",
1599
- "metadata": {},
1600
- "outputs": [
1601
- {
1602
- "data": {
1603
- "text/plain": [
1604
- "346"
1605
- ]
1606
- },
1607
- "execution_count": 77,
1608
- "metadata": {},
1609
- "output_type": "execute_result"
1610
- }
1611
- ],
1612
- "source": [
1613
- "len(df_cov)"
1614
- ]
1615
- },
1616
- {
1617
- "cell_type": "code",
1618
- "execution_count": 78,
1619
- "id": "1b73cea5-e6d9-427f-a31e-7ab38b5e6e4e",
1620
- "metadata": {},
1621
- "outputs": [
1622
- {
1623
- "data": {
1624
- "text/plain": [
1625
- "2.703125"
1626
- ]
1627
- },
1628
- "execution_count": 78,
1629
- "metadata": {},
1630
- "output_type": "execute_result"
1631
- }
1632
- ],
1633
- "source": [
1634
- "346/128"
1635
- ]
1636
- },
1637
- {
1638
- "cell_type": "code",
1639
- "execution_count": 80,
1640
- "id": "2d1d2955-7839-45e0-9a11-07dda2d51b24",
1641
- "metadata": {},
1642
- "outputs": [
1643
- {
1644
- "data": {
1645
- "text/plain": [
1646
- "<AxesSubplot:>"
1647
- ]
1648
- },
1649
- "execution_count": 80,
1650
- "metadata": {},
1651
- "output_type": "execute_result"
1652
- },
1653
- {
1654
- "data": {
1655
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAPIUlEQVR4nO3dX4xcd3nG8e/TGEqSLbGj0JVxom4qpUCKRSErGoiEdmtQaYNwLhopKCAHpfINf1LkqhhuchXVFw0qElUli1BcEWXlmkiJkpaSGraoF6S1EyQnGOQI3GATbChJYKMIcPv2Ygex49js7szOnM3P38/NzPkz57x+debZM7+Zc5yqQpLUlt/ougBJ0toz3CWpQYa7JDXIcJekBhnuktSgDV0XAHDFFVfU1NRU12Us64UXXuDSSy/tuox1wV70sx/97Ee/UfXj8OHDP6qq15xr2boI96mpKQ4dOtR1Gcuan59nZmam6zLWBXvRz370sx/9RtWPJP99vmUOy0hSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIatGy4J/lcktNJnlgy7/IkjyQ51nvctGTZJ5I8leTbSf54VIVLks5vJVeofh74DPCPS+btBg5W1Z4ku3vTH09yLXAL8PvAa4F/S/J7VfW/a1u2LjRTux/ubN/H99zY2b6lQS175l5VXwN+fNbs7cC+3vN9wE1L5s9V1c+q6rvAU8Bb16ZUSdJKZSX/zV6SKeChqnpjb/q5qtq4ZPmzVbUpyWeAr1fVF3rz7wH+paoOnGObO4GdAJOTk9fNzc2twT9ntBYWFpiYmOi6jHVh3L04cvL5se3rbFu3XLbsOh4b/exHv1H1Y3Z29nBVTZ9r2VrfOCznmHfOvx5VtRfYCzA9PV0vh5sMeTOkXxl3L27rcljm1pll1/HY6Gc/+nXRj0F/LXMqyWaA3uPp3vwTwFVL1rsS+P7g5UmSBjFouD8I7Og93wE8sGT+LUl+M8nVwDXAfw5XoiRptZYdlklyHzADXJHkBHAnsAfYn+R24GngZoCqejLJfuCbwBngQ/5SRpLGb9lwr6r3nWfRtvOsfxdw1zBFSZKG4xWqktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYNFe5JPpbkySRPJLkvyauSXJ7kkSTHeo+b1qpYSdLKbBj0hUm2AB8Frq2qF5PsB24BrgUOVtWeJLuB3cDH16RadW5q98MA7Np6htt6zyWtP8MOy2wALk6yAbgE+D6wHdjXW74PuGnIfUiSVilVNfiLkzuAu4AXgS9X1a1JnquqjUvWebaqXjI0k2QnsBNgcnLyurm5uYHrGJeFhQUmJia6LqNTR04+D8DkxXDqxY6LGZOtWy5bdh2PjX72o9+o+jE7O3u4qqbPtWyYYZlNLJ6lXw08B/xTkvev9PVVtRfYCzA9PV0zMzODljI28/PzvBzqHKXblgzL3H1k4MPnZeX4rTPLruOx0c9+9OuiH8MMy7wT+G5V/bCqfgHcD7wdOJVkM0Dv8fTwZUqSVmOYcH8auD7JJUkCbAOOAg8CO3rr7AAeGK5ESdJqDfy5uqoeTXIAeAw4AzzO4jDLBLA/ye0s/gG4eS0KlSSt3FCDplV1J3DnWbN/xuJZvCSpI16hKkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWrQUOGeZGOSA0m+leRokrcluTzJI0mO9R43rVWxkqSVGfbM/dPAl6rq9cCbgKPAbuBgVV0DHOxNS5LGaOBwT/Jq4B3APQBV9fOqeg7YDuzrrbYPuGm4EiVJq5WqGuyFyR8Ae4FvsnjWfhi4AzhZVRuXrPdsVb1kaCbJTmAnwOTk5HVzc3MD1TFOCwsLTExMdF1Gp46cfB6AyYvh1IsdFzMmW7dctuw6Hhv97Ee/UfVjdnb2cFVNn2vZMOE+DXwduKGqHk3yaeAnwEdWEu5LTU9P16FDhwaqY5zm5+eZmZnpuoxOTe1+GIBdW89w95ENHVczHsf33LjsOh4b/exHv1H1I8l5w32YMfcTwImqerQ3fQB4C3AqyebejjcDp4fYhyRpAAOHe1X9APhektf1Zm1jcYjmQWBHb94O4IGhKpQkrdqwn6s/Atyb5JXAd4APsvgHY3+S24GngZuH3IckaZWGCveq+gZwrvGebcNsV5I0HK9QlaQGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ26MK4fl4bwy1su/Dq7tp7hthWstxorue2BdD6euUtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSg4YO9yQXJXk8yUO96cuTPJLkWO9x0/BlSpJWYy3O3O8Aji6Z3g0crKprgIO9aUnSGA0V7kmuBG4EPrtk9nZgX+/5PuCmYfYhSVq9VNXgL04OAH8N/Bbwl1X1niTPVdXGJes8W1UvGZpJshPYCTA5OXnd3NzcwHWMy8LCAhMTE12X0akjJ58HYPJiOPVix8WsI6Pox9Ytl63tBsfI90q/UfVjdnb2cFVNn2vZhkE3muQ9wOmqOpxkZrWvr6q9wF6A6enpmplZ9SbGbn5+npdDnaN02+6HAdi19Qx3Hxn48GnOKPpx/NaZNd3eOPle6ddFP4Y5Gm8A3pvkT4FXAa9O8gXgVJLNVfVMks3A6bUoVJK0cgOPuVfVJ6rqyqqaAm4BvlJV7wceBHb0VtsBPDB0lZKkVRnF79z3AO9Kcgx4V29akjRGazJIWFXzwHzv+f8A29Ziu5KkwXiFqiQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ14+/DE31bgEgSefjmbskNcgzd2md6vIT2vE9N3a2b60Nz9wlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJatDA4Z7kqiRfTXI0yZNJ7ujNvzzJI0mO9R43rV25kqSVGObM/Qywq6reAFwPfCjJtcBu4GBVXQMc7E1LksZo4HCvqmeq6rHe858CR4EtwHZgX2+1fcBNQ9YoSVqlVNXwG0mmgK8BbwSerqqNS5Y9W1UvGZpJshPYCTA5OXnd3Nzc0HWM2sLCAhMTE12XwZGTz3ddApMXw6kXu65i/WitH1u3XDbU69fLe2W9GFU/ZmdnD1fV9LmWDR3uSSaAfwfuqqr7kzy3knBfanp6ug4dOjRUHeMwPz/PzMxM12Uwtfvhrktg19Yz3H1kQ9dlrBut9eP4nhuHev16ea+sF6PqR5LzhvtQv5ZJ8grgi8C9VXV/b/apJJt7yzcDp4fZhyRp9Yb5tUyAe4CjVfWpJYseBHb0nu8AHhi8PEnSIIb5HHkD8AHgSJJv9OZ9EtgD7E9yO/A0cPNQFUqSVm3gcK+q/wBynsXbBt2uJGl4XqEqSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGtTO9dIdWA+3AZBGYdhje9fWM9w2wDaGve2BfsUzd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAZ5V0hJ60ZXd1pt8W6UnrlLUoMMd0lqkOEuSQ0y3CWpQU18oTquL2EG/a/DJGncPHOXpAYZ7pLUIMNdkhrUxJi7JA1j1N/b/brv60Z1AZVn7pLUIMNdkho0snBP8u4k307yVJLdo9qPJOmlRhLuSS4C/g74E+Ba4H1Jrh3FviRJLzWqM/e3Ak9V1Xeq6ufAHLB9RPuSJJ0lVbX2G03+DHh3Vf15b/oDwB9W1YeXrLMT2NmbfB3w7TUvZO1dAfyo6yLWCXvRz370sx/9RtWP36mq15xrwah+CplzzOv7K1JVe4G9I9r/SCQ5VFXTXdexHtiLfvajn/3o10U/RjUscwK4asn0lcD3R7QvSdJZRhXu/wVck+TqJK8EbgEeHNG+JElnGcmwTFWdSfJh4F+Bi4DPVdWTo9jXmL2shpFGzF70sx/97Ee/sfdjJF+oSpK65RWqktQgw12SGmS4LyPJVUm+muRokieT3NF1TetBkouSPJ7koa5r6VqSjUkOJPlW7zh5W9c1dSXJx3rvkyeS3JfkVV3XNE5JPpfkdJInlsy7PMkjSY71HjeNoxbDfXlngF1V9QbgeuBD3koBgDuAo10XsU58GvhSVb0eeBMXaF+SbAE+CkxX1RtZ/DHFLd1WNXafB9591rzdwMGqugY42JseOcN9GVX1TFU91nv+UxbfuFu6rapbSa4EbgQ+23UtXUvyauAdwD0AVfXzqnqu06K6tQG4OMkG4BIusOtbquprwI/Pmr0d2Nd7vg+4aRy1GO6rkGQKeDPwaMeldO1vgb8C/q/jOtaD3wV+CPxDb5jqs0ku7bqoLlTVSeBvgKeBZ4Dnq+rL3Va1LkxW1TOweLII/PY4dmq4r1CSCeCLwF9U1U+6rqcrSd4DnK6qw13Xsk5sAN4C/H1VvRl4gTF97F5vemPJ24GrgdcClyZ5f7dVXbgM9xVI8goWg/3eqrq/63o6dgPw3iTHWbzb5x8l+UK3JXXqBHCiqn75ae4Ai2F/IXon8N2q+mFV/QK4H3h7xzWtB6eSbAboPZ4ex04N92UkCYvjqUer6lNd19O1qvpEVV1ZVVMsfln2laq6YM/OquoHwPeSvK43axvwzQ5L6tLTwPVJLum9b7ZxgX65fJYHgR295zuAB8axU/+D7OXdAHwAOJLkG715n6yqf+6uJK0zHwHu7d1H6TvABzuupxNV9WiSA8BjLP7K7HEusNsQJLkPmAGuSHICuBPYA+xPcjuLfwBvHkst3n5AktrjsIwkNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ36fwQ+77qgfKxkAAAAAElFTkSuQmCC\n",
1656
- "text/plain": [
1657
- "<Figure size 432x288 with 1 Axes>"
1658
- ]
1659
- },
1660
- "metadata": {
1661
- "needs_background": "light"
1662
- },
1663
- "output_type": "display_data"
1664
- }
1665
- ],
1666
- "source": [
1667
- "df_cov['neg_log10_affinity_M'].hist()"
1668
- ]
1669
- },
1670
- {
1671
- "cell_type": "code",
1672
- "execution_count": 92,
1673
- "id": "ab2e429b-d84c-42b7-b0dc-55e6728b9f81",
1674
- "metadata": {},
1675
- "outputs": [
1676
- {
1677
- "data": {
1678
- "text/plain": [
1679
- "167"
1680
- ]
1681
- },
1682
- "execution_count": 92,
1683
- "metadata": {},
1684
- "output_type": "execute_result"
1685
- }
1686
- ],
1687
- "source": [
1688
- "len(df_cov['seq'].unique())"
1689
- ]
1690
- },
1691
- {
1692
- "cell_type": "code",
1693
- "execution_count": 94,
1694
- "id": "4d535b74-1a32-45ee-a61f-f0cca805ad9b",
1695
- "metadata": {},
1696
- "outputs": [
1697
- {
1698
- "data": {
1699
- "text/plain": [
1700
- "49"
1701
- ]
1702
- },
1703
- "execution_count": 94,
1704
- "metadata": {},
1705
- "output_type": "execute_result"
1706
- }
1707
- ],
1708
- "source": [
1709
- "len(df_cov['smiles'].unique())"
1710
- ]
1711
- },
1712
- {
1713
- "cell_type": "code",
1714
- "execution_count": 96,
1715
- "id": "f59aa644-f848-447f-b82a-cff5b0507738",
1716
- "metadata": {},
1717
- "outputs": [
1718
- {
1719
- "data": {
1720
- "text/plain": [
1721
- "346"
1722
- ]
1723
- },
1724
- "execution_count": 96,
1725
- "metadata": {},
1726
- "output_type": "execute_result"
1727
- }
1728
- ],
1729
- "source": [
1730
- "len(df_cov)"
1731
- ]
1732
- },
1733
- {
1734
- "cell_type": "code",
1735
- "execution_count": null,
1736
- "id": "b8af53a6-5203-4889-9c4b-31140da5fc5b",
1737
- "metadata": {},
1738
- "outputs": [],
1739
- "source": []
1740
- }
1741
- ],
1742
- "metadata": {
1743
- "kernelspec": {
1744
- "display_name": "Python 3 (ipykernel)",
1745
- "language": "python",
1746
- "name": "python3"
1747
- },
1748
- "language_info": {
1749
- "codemirror_mode": {
1750
- "name": "ipython",
1751
- "version": 3
1752
- },
1753
- "file_extension": ".py",
1754
- "mimetype": "text/x-python",
1755
- "name": "python",
1756
- "nbconvert_exporter": "python",
1757
- "pygments_lexer": "ipython3",
1758
- "version": "3.9.6"
1759
- }
1760
- },
1761
- "nbformat": 4,
1762
- "nbformat_minor": 5
1763
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
combine_predictions.py DELETED
@@ -1,10 +0,0 @@
1
- import dask.dataframe as dd
2
- import sys
3
-
4
- if __name__ == '__main__':
5
- import glob
6
-
7
- filenames = glob.glob(sys.argv[2])
8
-
9
- ddf = dd.read_parquet(filenames)
10
- ddf.compute().to_parquet(sys.argv[1])
 
 
 
 
 
 
 
 
 
 
 
data/.gitattributes DELETED
@@ -1 +0,0 @@
1
- all_512.parquet filter=lfs diff=lfs merge=lfs -text
 
 
data/all_ic50.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:cdb65d5e81b196c0d174ec4a142d9c16188c2e340acc3810f33fc60018c5c937
3
- size 211443928
 
 
 
 
data/all_nokras.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b9bdba06c3a4b653eddc0bcc6010624f7cdc44d5bb7c98ae1b87c4a46d09c14c
3
- size 228445972
 
 
 
 
data/bindingdb.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3d85a064f94b500d8f071697856bc117505ece9cbb5802c25a22e6f0b95431de
3
- size 282365981
 
 
 
 
data/biolip.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:cb056959c05ed8b9bf52b286dcc0975abb9b310153f354fef0cfb94f1e9a8084
3
- size 2772622
 
 
 
 
data/biolip_complex.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:60ba3885834e4737508a11a754cc9b2facaabcdb670e84a99acaff60356c2bf9
3
- size 15241983
 
 
 
 
data/cov.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:cbaab94a40c721df756e256a5ca3938e802749b68ccaf8d6f1c1f3053a6769a9
3
- size 93896
 
 
 
 
data/dcoid.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:57286fa1878faeb5954050d2c557042e806dd2ad0bf1731a57044d0fff3af785
3
- size 597990
 
 
 
 
data/dcoid_predict.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1c7c8522cc43a27d05b68f3828cb5d15d51b655430bb0cac635977fd0258dba1
3
- size 621295
 
 
 
 
data/dcoid_rf2.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5f22bcc4300a2c97a7346b9dfa8e072de088a3c6e5ac4d955c1ab2a89cc6d2ab
3
- size 148055
 
 
 
 
data/deepcoy_dekois_predict.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c1c7ff872ba4ec0921a146e03edb60505a53ffc936894373b9f4fa1ef953ea44
3
- size 3663538
 
 
 
 
data/deepcoy_dude_predict.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b5bd6b45d588bcc5eb3b5c1c5cf07582e495596063b1f488604f776031f51586
3
- size 38798974
 
 
 
 
data/dude/_common_metadata DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c78b625f53ad2ede2cc93722f2010c8d938e9fd29b67c00639bed98547e0f7cf
3
- size 2685
 
 
 
 
data/dude/_metadata DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b663b0333af3cdbe20cb2624bdaa6ff5e6025e64791984a465c2a3855ee52b11
3
- size 967591
 
 
 
 
data/dude/part.0.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:6dd0dffb824409426d4f0f76b4e09fed6b3e3d9a8531ae5446d77222b1cd9a01
3
- size 123473
 
 
 
 
data/dude/part.1.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:128abc4911e0e6d1b4e2e66d5df4043786ca1046f7f858983790b5ee647d0cc0
3
- size 138100
 
 
 
 
data/dude/part.10.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d2a4171991b06e59a8e2661e4c95319eb5e1bd1fa0c85a74ac5de0ad03af3d2e
3
- size 117633
 
 
 
 
data/dude/part.100.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:27e35dcb08802208b1d5b6aa7d0221043bf4685567526d27ea3a373a8a04bf9c
3
- size 122785
 
 
 
 
data/dude/part.101.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:ccba5e5487f6073e55991a60e02a27a3731906b18dcac6cd324457f3418fa833
3
- size 127785
 
 
 
 
data/dude/part.102.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8b61f97b30f15bd105309a3134ba4c96500357e15b3e1470be9bbdb3123a74bc
3
- size 132577
 
 
 
 
data/dude/part.103.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:957243c8f1997e36b4b018c58d507892cb3931585c385cb50b0bbc474f17acb9
3
- size 124831
 
 
 
 
data/dude/part.104.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1e55f7589f5a230bc2e08a7be83c5624583a7a2d2cf5866e5b29dc263bbf38d1
3
- size 125229
 
 
 
 
data/dude/part.105.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:239b6a40f319aab310f710242b76a221a772684c6b90744f426054b5cde9ab5e
3
- size 114557
 
 
 
 
data/dude/part.106.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c2be90dc224d8524adc5a3ece0bbcdf99deceb11fd479c10a8e24b60ba3e5108
3
- size 127417
 
 
 
 
data/dude/part.107.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:bac8a9dda24b459373284dca37e39fbcaf71bc651d7c638c346ac6b22f01ba7f
3
- size 106714
 
 
 
 
data/dude/part.108.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9dda65f1532215a345b7c55c08ec96dbea5d015b17c4c3c681664ee63f6f8410
3
- size 113964
 
 
 
 
data/dude/part.109.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:400aa32d023b0d0af25a6ab788ec1e4cf7c5da7e887e530315118ffdcd595375
3
- size 113700
 
 
 
 
data/dude/part.11.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:362c6faffd7a14b1834195215dcc779d57f4554cedf20e8e1c46e70e60a3572d
3
- size 129040
 
 
 
 
data/dude/part.110.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:561b1cbc91e54b53b0789c802c3777c0f0fa91b9235282bd0475a3bf8803a12d
3
- size 120287
 
 
 
 
data/dude/part.111.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:82b49173ca12ee035c3b954174ae3c97d2a57b5e919467d69ddedc99c41ab9b3
3
- size 106923
 
 
 
 
data/dude/part.112.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b5f9c5cf7a70efafe397e756c303960e99776f5aa63c3143c4608845cf0172ec
3
- size 92697
 
 
 
 
data/dude/part.113.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:255853d5242828d66388c28fa20029be44ea29ba51bfeadcb36e9490759f1445
3
- size 80880
 
 
 
 
data/dude/part.114.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f14eb5e26bea178a1906717b92aa302f5f462f8ee9f8ae61d251d6344ac1c4aa
3
- size 114088
 
 
 
 
data/dude/part.115.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:7de897b15d8328594a81560b5be5203fade3da3db1d96f75135a7c67a7b6c8e9
3
- size 122947
 
 
 
 
data/dude/part.116.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f8c74cab7cb99d01f450fac020acefde13a2b9be49faf2d4c8898e2870e3090a
3
- size 115792
 
 
 
 
data/dude/part.117.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c7c2e351c13609389aef12ae60dae891e11b9638bf011d2f28ddc131057e8ade
3
- size 125457
 
 
 
 
data/dude/part.118.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f855e288eb2cff09c964792390db183d23c960dd27a2c2f5e731acf915693487
3
- size 118483
 
 
 
 
data/dude/part.119.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:239416564ae4eda212ec754e2db311818c8c03004b6070b4e41653d499002933
3
- size 129974
 
 
 
 
data/dude/part.12.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a00d0ac9607c87ddecbe667c2aa4886f851db17b05a63892de2d797d7e685f2e
3
- size 118890
 
 
 
 
data/dude/part.120.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:ccfd6a370e55bdd6e8258c4a65b9762bf8440f4992a36ddba16fb1e23cff758c
3
- size 121911