jeffnyman commited on
Commit
66bf05c
·
1 Parent(s): e1075f5

Updating documentation.

Browse files
Files changed (1) hide show
  1. README.md +194 -0
README.md CHANGED
@@ -1,3 +1,197 @@
1
  ---
 
2
  license: cc-by-sa-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pretty_name: Emotions
3
  license: cc-by-sa-4.0
4
+ language:
5
+ - en
6
+ size_categories:
7
+ - 10K<n<100K
8
+ task_categories:
9
+ - text-classification
10
+ task_ids:
11
+ - multi-class-classification
12
+ tags:
13
+ - emotion-classification
14
+ dataset_info:
15
+ - config_name: split
16
+ features:
17
+ - name: text
18
+ dtype: string
19
+ - name: label
20
+ dtype:
21
+ class_label:
22
+ names:
23
+ "0": sadness
24
+ "1": joy
25
+ "2": love
26
+ "3": anger
27
+ "4": fear
28
+ "5": surprise
29
+ splits:
30
+ - name: train
31
+ num_bytes: 1741597
32
+ num_examples: 16000
33
+ - name: validation
34
+ num_bytes: 214703
35
+ num_examples: 2000
36
+ - name: test
37
+ num_bytes: 217181
38
+ num_examples: 2000
39
+ download_size: 740883
40
+ dataset_size: 2173481
41
+ - config_name: unsplit
42
+ features:
43
+ - name: text
44
+ dtype: string
45
+ - name: label
46
+ dtype:
47
+ class_label:
48
+ names:
49
+ "0": sadness
50
+ "1": joy
51
+ "2": love
52
+ "3": anger
53
+ "4": fear
54
+ "5": surprise
55
+ splits:
56
+ - name: train
57
+ num_bytes: 45445685
58
+ num_examples: 416809
59
+ download_size: 15388281
60
+ dataset_size: 45445685
61
+ train-eval-index:
62
+ - config: default
63
+ task: text-classification
64
+ task_id: multi_class_classification
65
+ splits:
66
+ train_split: train
67
+ eval_split: test
68
+ col_mapping:
69
+ text: text
70
+ label: target
71
+ metrics:
72
+ - type: accuracy
73
+ name: Accuracy
74
+ - type: f1
75
+ name: F1 macro
76
+ args:
77
+ average: macro
78
+ - type: f1
79
+ name: F1 micro
80
+ args:
81
+ average: micro
82
+ - type: f1
83
+ name: F1 weighted
84
+ args:
85
+ average: weighted
86
+ - type: precision
87
+ name: Precision macro
88
+ args:
89
+ average: macro
90
+ - type: precision
91
+ name: Precision micro
92
+ args:
93
+ average: micro
94
+ - type: precision
95
+ name: Precision weighted
96
+ args:
97
+ average: weighted
98
+ - type: recall
99
+ name: Recall macro
100
+ args:
101
+ average: macro
102
+ - type: recall
103
+ name: Recall micro
104
+ args:
105
+ average: micro
106
+ - type: recall
107
+ name: Recall weighted
108
+ args:
109
+ average: weighted
110
  ---
111
+
112
+ # Dataset Card for "emotions"
113
+
114
+ ## Table of Contents
115
+
116
+ - [Dataset Description](#dataset-description)
117
+ - [Dataset Summary](#dataset-summary)
118
+ - [Dataset Structure](#dataset-structure)
119
+ - [Data Instances](#data-instances)
120
+ - [Data Fields](#data-fields)
121
+ - [Data Splits](#data-splits)
122
+ - [Additional Information](#additional-information)
123
+ - [Licensing Information](#licensing-information)
124
+ - [Citation Information](#citation-information)
125
+
126
+ ## Dataset Description
127
+
128
+ - **Paper:** [CARER: Contextualized Affect Representations for Emotion Recognition](https://aclanthology.org/D18-1404/)
129
+ - **Size of downloaded dataset files:** 16.13 MB
130
+ - **Size of the generated dataset:** 47.62 MB
131
+ - **Total amount of disk used:** 63.75 MB
132
+
133
+ ### Dataset Summary
134
+
135
+ Emotions is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper. Note that the paper does contain a larger data set with eight emotions being considered.
136
+
137
+ ## Dataset Structure
138
+
139
+ ### Data Instances
140
+
141
+ An example bit of data looks like this:
142
+
143
+ ```
144
+ {
145
+ "text": "im feeling quite sad and sorry for myself but ill snap out of it soon",
146
+ "label": 0
147
+ }
148
+ ```
149
+
150
+ ### Data Fields
151
+
152
+ The data fields are:
153
+
154
+ - `text`: a `string` feature.
155
+ - `label`: a classification label, with possible values including `sadness` (0), `joy` (1), `love` (2), `anger` (3), `fear` (4), `surprise` (5).
156
+
157
+ ### Data Splits
158
+
159
+ The dataset has two configurations.
160
+
161
+ - split: with a total of 20,000 examples split into train, validation and test.
162
+ - unsplit: with a total of 416,809 examples in a single train split.
163
+
164
+ | name | train | validation | test |
165
+ | ------- | -----: | ---------: | ---: |
166
+ | split | 16000 | 2000 | 2000 |
167
+ | unsplit | 416809 | n/a | n/a |
168
+
169
+ ## Additional Information
170
+
171
+ ### Licensing Information
172
+
173
+ The dataset should be used for educational and research purposes only. It is licensed under Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).
174
+
175
+ ### Citation Information
176
+
177
+ If you use this dataset, please cite:
178
+
179
+ ```
180
+ @inproceedings{saravia-etal-2018-carer,
181
+ title = "{CARER}: Contextualized Affect Representations for Emotion Recognition",
182
+ author = "Saravia, Elvis and
183
+ Liu, Hsien-Chi Toby and
184
+ Huang, Yen-Hao and
185
+ Wu, Junlin and
186
+ Chen, Yi-Shin",
187
+ booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
188
+ month = oct # "-" # nov,
189
+ year = "2018",
190
+ address = "Brussels, Belgium",
191
+ publisher = "Association for Computational Linguistics",
192
+ url = "https://www.aclweb.org/anthology/D18-1404",
193
+ doi = "10.18653/v1/D18-1404",
194
+ pages = "3687--3697",
195
+ abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.",
196
+ }
197
+ ```