Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -80,11 +80,11 @@ See the [project website](https://audioshake.github.io/jam-alt/) for details and
|
|
80 |
|
81 |
```python
|
82 |
from datasets import load_dataset
|
83 |
-
dataset = load_dataset("
|
84 |
```
|
85 |
|
86 |
A subset is defined for each language (`en`, `fr`, `de`, `es`);
|
87 |
-
for example, use `load_dataset("
|
88 |
|
89 |
To control how the audio is decoded, cast the `audio` column using `dataset.cast_column("audio", datasets.Audio(...))`.
|
90 |
Useful arguments to `datasets.Audio()` are:
|
@@ -100,14 +100,14 @@ The evaluation is implemented in our [`alt-eval` package](https://github.com/aud
|
|
100 |
from datasets import load_dataset
|
101 |
from alt_eval import compute_metrics
|
102 |
|
103 |
-
dataset = load_dataset("
|
104 |
# transcriptions: list[str]
|
105 |
compute_metrics(dataset["text"], transcriptions, languages=dataset["language"])
|
106 |
```
|
107 |
|
108 |
For example, the following code can be used to evaluate Whisper:
|
109 |
```python
|
110 |
-
dataset = load_dataset("
|
111 |
dataset = dataset.cast_column("audio", datasets.Audio(decode=False)) # Get the raw audio file, let Whisper decode it
|
112 |
|
113 |
model = whisper.load_model("tiny")
|
@@ -119,7 +119,7 @@ compute_metrics(dataset["text"], transcriptions, languages=dataset["language"])
|
|
119 |
```
|
120 |
Alternatively, if you already have transcriptions, you might prefer to skip loading the `audio` column:
|
121 |
```python
|
122 |
-
dataset = load_dataset("
|
123 |
```
|
124 |
|
125 |
## Citation
|
|
|
80 |
|
81 |
```python
|
82 |
from datasets import load_dataset
|
83 |
+
dataset = load_dataset("jamendolyrics/jam-alt", split="test")
|
84 |
```
|
85 |
|
86 |
A subset is defined for each language (`en`, `fr`, `de`, `es`);
|
87 |
+
for example, use `load_dataset("jamendolyrics/jam-alt", "es")` to load only the Spanish songs.
|
88 |
|
89 |
To control how the audio is decoded, cast the `audio` column using `dataset.cast_column("audio", datasets.Audio(...))`.
|
90 |
Useful arguments to `datasets.Audio()` are:
|
|
|
100 |
from datasets import load_dataset
|
101 |
from alt_eval import compute_metrics
|
102 |
|
103 |
+
dataset = load_dataset("jamendolyrics/jam-alt", revision="v1.2.0", split="test")
|
104 |
# transcriptions: list[str]
|
105 |
compute_metrics(dataset["text"], transcriptions, languages=dataset["language"])
|
106 |
```
|
107 |
|
108 |
For example, the following code can be used to evaluate Whisper:
|
109 |
```python
|
110 |
+
dataset = load_dataset("jamendolyrics/jam-alt", revision="v1.2.0", split="test")
|
111 |
dataset = dataset.cast_column("audio", datasets.Audio(decode=False)) # Get the raw audio file, let Whisper decode it
|
112 |
|
113 |
model = whisper.load_model("tiny")
|
|
|
119 |
```
|
120 |
Alternatively, if you already have transcriptions, you might prefer to skip loading the `audio` column:
|
121 |
```python
|
122 |
+
dataset = load_dataset("jamendolyrics/jam-alt", revision="v1.2.0", split="test", columns=["name", "text", "language", "license_type"])
|
123 |
```
|
124 |
|
125 |
## Citation
|