Upload NLP_project.ipynb
Browse files- NLP_project.ipynb +700 -0
NLP_project.ipynb
ADDED
@@ -0,0 +1,700 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {
|
7 |
+
"id": "jZ0wVSoo_5yd"
|
8 |
+
},
|
9 |
+
"outputs": [],
|
10 |
+
"source": [
|
11 |
+
"%pip install gradio gensim sentence_transformers torch torchvision torchaudio -f https://download.pytorch.org/whl/cu111/torch_stable.html"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": null,
|
17 |
+
"metadata": {
|
18 |
+
"colab": {
|
19 |
+
"base_uri": "https://localhost:8080/"
|
20 |
+
},
|
21 |
+
"id": "c7lAKXG_DTM_",
|
22 |
+
"outputId": "60bad5b5-83a2-4f21-fce3-8bda36b50c5a"
|
23 |
+
},
|
24 |
+
"outputs": [
|
25 |
+
{
|
26 |
+
"name": "stderr",
|
27 |
+
"output_type": "stream",
|
28 |
+
"text": [
|
29 |
+
"[nltk_data] Downloading package punkt to /root/nltk_data...\n",
|
30 |
+
"[nltk_data] Package punkt is already up-to-date!\n",
|
31 |
+
"[nltk_data] Downloading package averaged_perceptron_tagger to\n",
|
32 |
+
"[nltk_data] /root/nltk_data...\n",
|
33 |
+
"[nltk_data] Package averaged_perceptron_tagger is already up-to-\n",
|
34 |
+
"[nltk_data] date!\n",
|
35 |
+
"[nltk_data] Downloading package vader_lexicon to /root/nltk_data...\n",
|
36 |
+
"[nltk_data] Package vader_lexicon is already up-to-date!\n"
|
37 |
+
]
|
38 |
+
}
|
39 |
+
],
|
40 |
+
"source": [
|
41 |
+
"import pandas as pd\n",
|
42 |
+
"import networkx as nx\n",
|
43 |
+
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
44 |
+
"from sklearn.metrics.pairwise import linear_kernel\n",
|
45 |
+
"from textblob import TextBlob\n",
|
46 |
+
"from nltk.sentiment.vader import SentimentIntensityAnalyzer\n",
|
47 |
+
"import nltk\n",
|
48 |
+
"from nltk import pos_tag\n",
|
49 |
+
"from nltk.tokenize import word_tokenize\n",
|
50 |
+
"from gensim.models import Word2Vec\n",
|
51 |
+
"import spacy\n",
|
52 |
+
"from sentence_transformers import SentenceTransformer, util\n",
|
53 |
+
"import numpy as np\n",
|
54 |
+
"import torch\n",
|
55 |
+
"import gradio as gr\n",
|
56 |
+
"import os\n",
|
57 |
+
"import math\n",
|
58 |
+
"from datetime import datetime\n",
|
59 |
+
"\n",
|
60 |
+
"# Use GPU\n",
|
61 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
62 |
+
"\n",
|
63 |
+
"# Load a BERT model\n",
|
64 |
+
"bert_model = SentenceTransformer('paraphrase-MiniLM-L6-v2', device=device)\n",
|
65 |
+
"\n",
|
66 |
+
"# Download NLTK resources (if not already downloaded)\n",
|
67 |
+
"nltk.download('punkt')\n",
|
68 |
+
"nltk.download('averaged_perceptron_tagger')\n",
|
69 |
+
"nltk.download('vader_lexicon')\n",
|
70 |
+
"\n",
|
71 |
+
"# Load Spacy model for Named Entity Recognition (NER)\n",
|
72 |
+
"nlp = spacy.load(\"en_core_web_sm\")"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": null,
|
78 |
+
"metadata": {
|
79 |
+
"id": "dG1jLPn5DXeb"
|
80 |
+
},
|
81 |
+
"outputs": [],
|
82 |
+
"source": [
|
83 |
+
"# Load Yelp dataset\n",
|
84 |
+
"yelp_data = pd.read_csv('restaurants.csv')\n",
|
85 |
+
"\n",
|
86 |
+
"# Filter out relevant information (e.g., restaurant name, rating, location, categories, hours)\n",
|
87 |
+
"restaurants = yelp_data[['name', 'stars', 'city', 'categories', 'hours']]\n",
|
88 |
+
"\n",
|
89 |
+
"comfort_food_terms = [\n",
|
90 |
+
" \"Home cooking\",\n",
|
91 |
+
" \"Soul food\",\n",
|
92 |
+
" \"Indulgent food\",\n",
|
93 |
+
" \"Feel-good food\",\n",
|
94 |
+
" \"Nostalgia food\",\n",
|
95 |
+
" \"Emotional food\",\n",
|
96 |
+
" \"Guilty pleasure\",\n",
|
97 |
+
" \"Indulgence\",\n",
|
98 |
+
" \"Treat\",\n",
|
99 |
+
" \"Culinary hug\",\n",
|
100 |
+
" \"Soul-soothing food\",\n",
|
101 |
+
" \"Heart-warming food\",\n",
|
102 |
+
"]\n",
|
103 |
+
"\n",
|
104 |
+
"exciting_food_terms = [\n",
|
105 |
+
" \"Adventurous food\",\n",
|
106 |
+
" \"Exotic food\",\n",
|
107 |
+
" \"Culinary adventure\",\n",
|
108 |
+
" \"Sensual food\",\n",
|
109 |
+
" \"Tantalizing food\",\n",
|
110 |
+
" \"Mouthwatering food\",\n",
|
111 |
+
" \"Delectable food\",\n",
|
112 |
+
" \"Irresistible food\",\n",
|
113 |
+
" \"Tempting food\",\n",
|
114 |
+
" \"Gastronomical delight\",\n",
|
115 |
+
"]"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "code",
|
120 |
+
"execution_count": null,
|
121 |
+
"metadata": {
|
122 |
+
"id": "Z05Z7XmOW5xe"
|
123 |
+
},
|
124 |
+
"outputs": [],
|
125 |
+
"source": [
|
126 |
+
"# Create a TF-IDF vectorizer to convert restaurant categories into numerical features\n",
|
127 |
+
"tfidf_vectorizer = TfidfVectorizer(stop_words='english', lowercase=True)\n",
|
128 |
+
"tfidf_matrix = tfidf_vectorizer.fit_transform(restaurants['categories']+\", \"+restaurants['city'].fillna(''))\n",
|
129 |
+
"\n",
|
130 |
+
"# Train Word2Vec model on restaurant names\n",
|
131 |
+
"restaurant_names = [word_tokenize(restaurant['categories'].lower()+restaurant['city'].lower()) for _, restaurant in restaurants.iterrows()]\n",
|
132 |
+
"word2vec_model = Word2Vec(sentences=restaurant_names, vector_size=100, window=5, min_count=1, workers=4)\n",
|
133 |
+
"\n",
|
134 |
+
"if os.path.isfile(\"./bert_embeddings.npy\"):\n",
|
135 |
+
" restaurant_embeddings = np.load('bert_embeddings.npy')\n",
|
136 |
+
"else:\n",
|
137 |
+
" # Precompute restaurant embeddings on the chosen device for both categories and cities\n",
|
138 |
+
" restaurant_embeddings = [bert_model.encode((restaurant['categories'].lower() + restaurant['city'].lower()), convert_to_tensor=True).detach().cpu().numpy()\n",
|
139 |
+
" for _, restaurant in restaurants.iterrows()]\n",
|
140 |
+
" np.save('bert_embeddings.npy', np.array(restaurant_embeddings))\n",
|
141 |
+
" restaurant_embeddings = np.load('bert_embeddings.npy')\n",
|
142 |
+
"\n",
|
143 |
+
"\n",
|
144 |
+
"# Build a knowledge graph\n",
|
145 |
+
"knowledge_graph = nx.Graph()\n",
|
146 |
+
"\n",
|
147 |
+
"# Add restaurant nodes with attributes\n",
|
148 |
+
"for _, restaurant in restaurants.iterrows():\n",
|
149 |
+
" knowledge_graph.add_node(\n",
|
150 |
+
" restaurant['name'],\n",
|
151 |
+
" stars=restaurant['stars'],\n",
|
152 |
+
" city=restaurant['city'],\n",
|
153 |
+
" categories=restaurant['categories'],\n",
|
154 |
+
" hours=restaurant['hours']\n",
|
155 |
+
" )\n",
|
156 |
+
"\n",
|
157 |
+
"# Function to extract named entities from user input using Spacy NER\n",
|
158 |
+
"def extract_named_entities(user_input):\n",
|
159 |
+
" doc = nlp(user_input)\n",
|
160 |
+
" named_entities = [(ent.text, ent.label_) for ent in doc.ents]\n",
|
161 |
+
" return named_entities\n",
|
162 |
+
"\n",
|
163 |
+
"# Function to perform sentiment analysis using VADER\n",
|
164 |
+
"def analyze_sentiment_vader(text):\n",
|
165 |
+
" sid = SentimentIntensityAnalyzer()\n",
|
166 |
+
" compound_score = sid.polarity_scores(text)['compound']\n",
|
167 |
+
" return compound_score"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": null,
|
173 |
+
"metadata": {
|
174 |
+
"id": "wtd56Af2EI7h"
|
175 |
+
},
|
176 |
+
"outputs": [],
|
177 |
+
"source": [
|
178 |
+
"# # Function to get restaurant recommendations based on graph similarity\n",
|
179 |
+
"# def get_graph_recommendations(user_nouns):\n",
|
180 |
+
"# # Use graph-based similarity to get similar restaurants from the knowledge graph\n",
|
181 |
+
"# # You can choose a graph similarity algorithm based on your requirements\n",
|
182 |
+
"# # For example, you can use Jaccard similarity or node2vec embeddings\n",
|
183 |
+
"# # For simplicity, let's use Jaccard similarity here\n",
|
184 |
+
"# user_nouns_set = set(user_nouns)\n",
|
185 |
+
"# graph_recommendations = set()\n",
|
186 |
+
"\n",
|
187 |
+
"# # print(user_nouns_set)\n",
|
188 |
+
"# for restaurant in knowledge_graph.nodes():\n",
|
189 |
+
"# restaurant_nouns = set(pos_tag(word_tokenize(restaurant)))\n",
|
190 |
+
"# jaccard_similarity = len(user_nouns_set.intersection(restaurant_nouns)) / len(user_nouns_set.union(restaurant_nouns))\n",
|
191 |
+
"\n",
|
192 |
+
"# # print(restaurant, restaurant_nouns, jaccard_similarity)\n",
|
193 |
+
"# # If Jaccard similarity is above a threshold, consider it a recommendation\n",
|
194 |
+
"# if jaccard_similarity > 0.1: # You can adjust the threshold\n",
|
195 |
+
"# graph_recommendations.add(restaurant)\n",
|
196 |
+
"\n",
|
197 |
+
"# # print(graph_recommendations)\n",
|
198 |
+
"# return graph_recommendations\n",
|
199 |
+
"\n",
|
200 |
+
"# Function to get restaurant recommendations based on Word Overlap\n",
|
201 |
+
"def get_overlap_recommendations(user_input, num_recommendations):\n",
|
202 |
+
" overlap_scores = pd.DataFrame()\n",
|
203 |
+
" overlap_scores['combined_text'] = (restaurants['name'] + \", \" + restaurants['categories'] + \", \" + restaurants['city']).str.lower()\n",
|
204 |
+
" overlap_scores['overlap_score'] = overlap_scores['combined_text'].apply(lambda x: sum(word in user_input.lower() for word in x.replace(',', '').split()))\n",
|
205 |
+
" sorted_overlap_scores = overlap_scores.sort_values(by='overlap_score', ascending=False)\n",
|
206 |
+
" top_recommendations_indices = [idx for idx, _ in sorted_overlap_scores.head(num_recommendations).iterrows()]\n",
|
207 |
+
" return top_recommendations_indices\n",
|
208 |
+
"\n",
|
209 |
+
"\n",
|
210 |
+
"# Function to get restaurant recommendations based on Word Embeddings similarity\n",
|
211 |
+
"def get_embedding_recommendations(user_input, num_recommendations):\n",
|
212 |
+
" tokens = word_tokenize(user_input.lower())\n",
|
213 |
+
" embedding_similarities = {}\n",
|
214 |
+
"\n",
|
215 |
+
" for i, restaurant in restaurants.iterrows():\n",
|
216 |
+
" restaurant_tokens = word_tokenize(restaurant['categories'].lower() + restaurant['city'].lower())\n",
|
217 |
+
" similarity = word2vec_model.wv.n_similarity(tokens, restaurant_tokens)\n",
|
218 |
+
" embedding_similarities[i] = similarity\n",
|
219 |
+
"\n",
|
220 |
+
" # Sort the dictionary by similarity scores and get top recommendations\n",
|
221 |
+
" sorted_similarities = sorted(embedding_similarities.items(), key=lambda item: item[1], reverse=True)\n",
|
222 |
+
" top_recommendations_indices = [idx for idx, _ in sorted_similarities[:num_recommendations]]\n",
|
223 |
+
"\n",
|
224 |
+
" return top_recommendations_indices\n",
|
225 |
+
"\n",
|
226 |
+
"# Function to get restaurant recommendations based on BERT embeddings similarity\n",
|
227 |
+
"def get_bert_recommendations(user_input, num_recommendations):\n",
|
228 |
+
" user_embedding = bert_model.encode(user_input.lower(), convert_to_tensor=True).detach().cpu().numpy()\n",
|
229 |
+
" # user_embedding = np.mean(bert_model.encode(user_input.lower(), convert_to_tensor=True).detach().cpu().numpy(), axis=0)\n",
|
230 |
+
"\n",
|
231 |
+
" bert_similarities = {}\n",
|
232 |
+
"\n",
|
233 |
+
" for i, restaurant in restaurants.iterrows():\n",
|
234 |
+
" restaurant_embedding = restaurant_embeddings[i]\n",
|
235 |
+
" # print(restaurant_embedding, user_embedding)\n",
|
236 |
+
" # similarity = np.dot(user_embedding, restaurant_embedding) / (np.linalg.norm(user_embedding) * np.linalg.norm(restaurant_embedding))\n",
|
237 |
+
" similarity = util.cos_sim(user_embedding, restaurant_embedding)\n",
|
238 |
+
" bert_similarities[i] = similarity\n",
|
239 |
+
" # print(i, similarity)\n",
|
240 |
+
"\n",
|
241 |
+
" # Sort the dictionary by similarity scores and get top recommendations\n",
|
242 |
+
" sorted_similarities = sorted(bert_similarities.items(), key=lambda item: item[1], reverse=True)\n",
|
243 |
+
" top_recommendations_indices = [idx for idx, _ in sorted_similarities[:num_recommendations]]\n",
|
244 |
+
"\n",
|
245 |
+
" return top_recommendations_indices"
|
246 |
+
]
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"cell_type": "code",
|
250 |
+
"execution_count": null,
|
251 |
+
"metadata": {
|
252 |
+
"id": "gU0JhAg0EB3b"
|
253 |
+
},
|
254 |
+
"outputs": [],
|
255 |
+
"source": [
|
256 |
+
"# Function to recommend restaurants based on user input, sentiment, availability, and knowledge graph\n",
|
257 |
+
"def recommend_restaurants(user_input, num_recommendations=5, sentiment_recursive_break=False):\n",
|
258 |
+
"\n",
|
259 |
+
" sr = pd.DataFrame()\n",
|
260 |
+
"\n",
|
261 |
+
" # Tokenize and perform POS tagging on the user input\n",
|
262 |
+
" tokens = word_tokenize(user_input)\n",
|
263 |
+
" pos_tags = pos_tag(tokens)\n",
|
264 |
+
"\n",
|
265 |
+
" # Extract nouns and locations from POS tags\n",
|
266 |
+
" user_nouns = [word for word, pos in pos_tags if pos.startswith('N') or pos.startswith('J')]\n",
|
267 |
+
" user_locations = [word.lower().strip() for word, pos in pos_tags if pos.startswith('NNP')] # Assume proper nouns are locations\n",
|
268 |
+
" # print(user_input)\n",
|
269 |
+
"\n",
|
270 |
+
" # Extract named entities from user input\n",
|
271 |
+
" named_entities = extract_named_entities(user_input)\n",
|
272 |
+
" # print(\"Named Entities:\", named_entities)\n",
|
273 |
+
"\n",
|
274 |
+
" # Transform user input into a TF-IDF vector\n",
|
275 |
+
" user_tfidf = tfidf_vectorizer.transform([user_input])\n",
|
276 |
+
"\n",
|
277 |
+
" # Compute the cosine similarity between the user input and restaurant categories\n",
|
278 |
+
" cosine_similarities = linear_kernel(user_tfidf, tfidf_matrix).flatten()\n",
|
279 |
+
"\n",
|
280 |
+
" # Get recommended restaurants from simple word overlap\n",
|
281 |
+
" overlap_recommendations = get_overlap_recommendations(user_input, num_recommendations)\n",
|
282 |
+
"\n",
|
283 |
+
" # Get indices of restaurants with the highest similarity scores using TF-IDF\n",
|
284 |
+
" tfidf_recommendations = cosine_similarities.argsort()[:-num_recommendations-1:-1]\n",
|
285 |
+
"\n",
|
286 |
+
" # Get recommendations using Word Embeddings\n",
|
287 |
+
" embedding_similarities = get_embedding_recommendations(user_input, num_recommendations)\n",
|
288 |
+
"\n",
|
289 |
+
" # Get recommendations using BERT\n",
|
290 |
+
" bert_recommendations_indices = get_bert_recommendations(user_input, num_recommendations)\n",
|
291 |
+
"\n",
|
292 |
+
" # Combine recommendations from both approaches\n",
|
293 |
+
" combined_recommendations = set(overlap_recommendations) | set(tfidf_recommendations) | set(embedding_similarities) |set(bert_recommendations_indices)\n",
|
294 |
+
" combined_recommendations = set(embedding_similarities)\n",
|
295 |
+
" # print(\"TFIDF:\", tfidf_recommendations)\n",
|
296 |
+
" # print(\"overlap:\", overlap_recommendations)\n",
|
297 |
+
" # print(\"w2v:\", embedding_similarities)\n",
|
298 |
+
" # print(\"BERT:\", bert_recommendations_indices)\n",
|
299 |
+
"\n",
|
300 |
+
" # Get details of recommended restaurants\n",
|
301 |
+
" recommended_restaurants = restaurants.iloc[list(combined_recommendations)]\n",
|
302 |
+
"\n",
|
303 |
+
" # print(\"rec res:\", combined_recommendations)\n",
|
304 |
+
"\n",
|
305 |
+
" # Refine recommendations based on extracted information, location, and named entities\n",
|
306 |
+
" for _, restaurant in recommended_restaurants.iterrows():\n",
|
307 |
+
" # if any(category in restaurant['categories'] for category in user_nouns) and any(location in restaurant['city'] for location in user_locations):\n",
|
308 |
+
" # if any(location in restaurant['city'].lower().strip() for location in user_locations):\n",
|
309 |
+
" print(f\"Recommendation: {restaurant['name'], restaurant['city'], restaurant['categories'], restaurant['stars']} \")\n",
|
310 |
+
"\n",
|
311 |
+
" if not sentiment_recursive_break:\n",
|
312 |
+
" # Perform sentiment analysis using VADER\n",
|
313 |
+
" sentiment_score = analyze_sentiment_vader(user_input)\n",
|
314 |
+
"\n",
|
315 |
+
" if sentiment_score < -0.2:\n",
|
316 |
+
" print(\"Considering your negative sentiment, you might prefer comforting places.\")\n",
|
317 |
+
" sr = recommend_restaurants(user_input=user_input + \", \" + \", \".join(comfort_food_terms), num_recommendations=num_recommendations, sentiment_recursive_break=True)\n",
|
318 |
+
" # comforting_places = restaurants[restaurants['categories'].str.contains('comfort food', case=False, na=False)]\n",
|
319 |
+
" # print(\"Comforting food places suggestions:\")\n",
|
320 |
+
" # print(comforting_places[['name', 'stars', 'city', 'categories']])\n",
|
321 |
+
" elif sentiment_score > 0.2:\n",
|
322 |
+
" print(\"Considering your positive sentiment, you might prefer something exciting.\")\n",
|
323 |
+
" sr = recommend_restaurants(user_input=user_input + \", \" + \", \".join(exciting_food_terms), num_recommendations=num_recommendations, sentiment_recursive_break=True)\n",
|
324 |
+
" # exciting_places = restaurants[restaurants['categories'].str.contains('nightlife|arts & entertainment|restaurants', case=False, na=False)]\n",
|
325 |
+
" # print(\"Exciting food places suggestions:\")\n",
|
326 |
+
" # print(exciting_places[['name', 'stars', 'city', 'categories']])\n",
|
327 |
+
" else:\n",
|
328 |
+
" print(\"neutral sentiment\")\n",
|
329 |
+
"\n",
|
330 |
+
" # Rank the restaurants based on ratings in descending order\n",
|
331 |
+
" ranked_restaurants = recommended_restaurants.sort_values(by='stars', ascending=False).head(num_recommendations)\n",
|
332 |
+
"\n",
|
333 |
+
" # return recommended restaurants for evaluation\n",
|
334 |
+
" return ranked_restaurants"
|
335 |
+
]
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"cell_type": "code",
|
339 |
+
"execution_count": null,
|
340 |
+
"metadata": {
|
341 |
+
"id": "aDZYCDQxfMFH"
|
342 |
+
},
|
343 |
+
"outputs": [],
|
344 |
+
"source": [
|
345 |
+
"# Example prompt\n",
|
346 |
+
"user_prompt = input(\"Enter your restaurant preference (e.g., I want Chinese in Brooklyn): \")\n",
|
347 |
+
"\n",
|
348 |
+
"# Get recommendations based on the user's input, sentiment, availability, and knowledge graph\n",
|
349 |
+
"recommend_restaurants(user_prompt)"
|
350 |
+
]
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"cell_type": "code",
|
354 |
+
"execution_count": null,
|
355 |
+
"metadata": {
|
356 |
+
"id": "asj5AxXvDjrY"
|
357 |
+
},
|
358 |
+
"outputs": [],
|
359 |
+
"source": [
|
360 |
+
"def evaluate_recommendations(predicted_df, filtered_df, k):\n",
|
361 |
+
" \"\"\"\n",
|
362 |
+
" Evaluate predicted restaurant recommendations against the ground truth using precision@k, recall@k, and F1@k.\n",
|
363 |
+
"\n",
|
364 |
+
" Parameters:\n",
|
365 |
+
" - predicted_df (pd.DataFrame): DataFrame with predicted restaurant recommendations.\n",
|
366 |
+
" - filtered_df (pd.DataFrame): DataFrame with ground truth or actual relevant restaurants.\n",
|
367 |
+
" - k (int): Value of k for top-k recommendations.\n",
|
368 |
+
"\n",
|
369 |
+
" Returns:\n",
|
370 |
+
" - precision_at_k (float): Precision@k.\n",
|
371 |
+
" - recall_at_k (float): Recall@k.\n",
|
372 |
+
" - f1_at_k (float): F1@k.\n",
|
373 |
+
" \"\"\"\n",
|
374 |
+
"\n",
|
375 |
+
" # Extract the top-k predicted restaurants\n",
|
376 |
+
" top_k_predicted = predicted_df.head(k)\n",
|
377 |
+
"\n",
|
378 |
+
" # Evaluate precision@k, recall@k, and F1@k\n",
|
379 |
+
" intersection = pd.merge(top_k_predicted, filtered_df, on=['name', 'stars', 'city', 'categories', 'hours'], how='inner')\n",
|
380 |
+
"\n",
|
381 |
+
" precision_at_k = len(intersection) / k\n",
|
382 |
+
" recall_at_k = len(intersection) / len(filtered_df)\n",
|
383 |
+
" f1_at_k = 2 * (precision_at_k * recall_at_k) / (precision_at_k + recall_at_k) if (precision_at_k + recall_at_k) > 0 else 0\n",
|
384 |
+
"\n",
|
385 |
+
" return precision_at_k, recall_at_k, f1_at_k"
|
386 |
+
]
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"cell_type": "code",
|
390 |
+
"execution_count": null,
|
391 |
+
"metadata": {
|
392 |
+
"id": "n1Xrcarvzw9P"
|
393 |
+
},
|
394 |
+
"outputs": [],
|
395 |
+
"source": [
|
396 |
+
"cajun_in_neworleans = restaurants[\n",
|
397 |
+
" (restaurants['city'] == 'New Orleans') &\n",
|
398 |
+
" (restaurants['categories'].str.contains('cajun', case=False))\n",
|
399 |
+
"]\n",
|
400 |
+
"steakhouses_in_indiana = restaurants[\n",
|
401 |
+
" (restaurants['city'] == 'Indianapolis') &\n",
|
402 |
+
" (restaurants['categories'].str.contains('steakhouse', case=False))\n",
|
403 |
+
"]\n",
|
404 |
+
"chinese_in_philadelphia = restaurants[\n",
|
405 |
+
" (restaurants['city'] == 'Philadelphia') &\n",
|
406 |
+
" (restaurants['categories'].str.contains('chinese', case=False))\n",
|
407 |
+
"]\n",
|
408 |
+
"seafood_in_tampa = restaurants[\n",
|
409 |
+
" (restaurants['city'] == 'Tampa') &\n",
|
410 |
+
" (restaurants['categories'].str.contains('seafood', case=False))\n",
|
411 |
+
"]\n",
|
412 |
+
"italian_in_stlouis = restaurants[\n",
|
413 |
+
" (restaurants['city'] == 'Saint Louis') &\n",
|
414 |
+
" (restaurants['categories'].str.contains('italian', case=False))\n",
|
415 |
+
"]"
|
416 |
+
]
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"cell_type": "code",
|
420 |
+
"execution_count": null,
|
421 |
+
"metadata": {
|
422 |
+
"id": "XEG8Eyh55lV7"
|
423 |
+
},
|
424 |
+
"outputs": [],
|
425 |
+
"source": [
|
426 |
+
"cino = recommend_restaurants(input())"
|
427 |
+
]
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"cell_type": "code",
|
431 |
+
"execution_count": null,
|
432 |
+
"metadata": {
|
433 |
+
"id": "Iarl1OLg6CW8"
|
434 |
+
},
|
435 |
+
"outputs": [],
|
436 |
+
"source": [
|
437 |
+
"print(evaluate_recommendations(cino, cajun_in_neworleans, 1))\n",
|
438 |
+
"print(evaluate_recommendations(cino, cajun_in_neworleans, 5))\n",
|
439 |
+
"print(evaluate_recommendations(cino, cajun_in_neworleans, 10))"
|
440 |
+
]
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"cell_type": "code",
|
444 |
+
"execution_count": null,
|
445 |
+
"metadata": {
|
446 |
+
"id": "jQI7iAQeEDGr"
|
447 |
+
},
|
448 |
+
"outputs": [],
|
449 |
+
"source": [
|
450 |
+
"sit = recommend_restaurants(input())"
|
451 |
+
]
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"cell_type": "code",
|
455 |
+
"execution_count": null,
|
456 |
+
"metadata": {
|
457 |
+
"id": "G2QAD-o8E6HZ"
|
458 |
+
},
|
459 |
+
"outputs": [],
|
460 |
+
"source": [
|
461 |
+
"print(evaluate_recommendations(sit, seafood_in_tampa, 1))\n",
|
462 |
+
"print(evaluate_recommendations(sit, seafood_in_tampa, 5))\n",
|
463 |
+
"print(evaluate_recommendations(sit, seafood_in_tampa, 10))"
|
464 |
+
]
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"cell_type": "code",
|
468 |
+
"execution_count": null,
|
469 |
+
"metadata": {
|
470 |
+
"id": "v7co493SGeWY"
|
471 |
+
},
|
472 |
+
"outputs": [],
|
473 |
+
"source": [
|
474 |
+
"sii = recommend_restaurants(input())"
|
475 |
+
]
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"cell_type": "code",
|
479 |
+
"execution_count": null,
|
480 |
+
"metadata": {
|
481 |
+
"id": "Te-YQGBzGl70"
|
482 |
+
},
|
483 |
+
"outputs": [],
|
484 |
+
"source": [
|
485 |
+
"print(evaluate_recommendations(sii, steakhouses_in_indiana, 1))\n",
|
486 |
+
"print(evaluate_recommendations(sii, steakhouses_in_indiana, 5))\n",
|
487 |
+
"print(evaluate_recommendations(sii, steakhouses_in_indiana, 10))"
|
488 |
+
]
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"cell_type": "code",
|
492 |
+
"execution_count": null,
|
493 |
+
"metadata": {
|
494 |
+
"id": "ILgW8nsLHuwd"
|
495 |
+
},
|
496 |
+
"outputs": [],
|
497 |
+
"source": [
|
498 |
+
"iisl = recommend_restaurants(input())"
|
499 |
+
]
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"cell_type": "code",
|
503 |
+
"execution_count": null,
|
504 |
+
"metadata": {
|
505 |
+
"id": "nGi-VJfcH3tH"
|
506 |
+
},
|
507 |
+
"outputs": [],
|
508 |
+
"source": [
|
509 |
+
"print(evaluate_recommendations(iisl, italian_in_stlouis, 1))\n",
|
510 |
+
"print(evaluate_recommendations(iisl, italian_in_stlouis, 5))\n",
|
511 |
+
"print(evaluate_recommendations(iisl, italian_in_stlouis, 10))"
|
512 |
+
]
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"cell_type": "code",
|
516 |
+
"execution_count": null,
|
517 |
+
"metadata": {
|
518 |
+
"colab": {
|
519 |
+
"background_save": true,
|
520 |
+
"base_uri": "https://localhost:8080/",
|
521 |
+
"height": 830
|
522 |
+
},
|
523 |
+
"id": "MNM-MiKwhN2I",
|
524 |
+
"outputId": "31abcb6c-b9bc-4096-f012-bf12ee7a1e24"
|
525 |
+
},
|
526 |
+
"outputs": [
|
527 |
+
{
|
528 |
+
"name": "stdout",
|
529 |
+
"output_type": "stream",
|
530 |
+
"text": [
|
531 |
+
"Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
|
532 |
+
"\n",
|
533 |
+
"Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
|
534 |
+
"Running on public URL: https://4a62505eb450484ce0.gradio.live\n",
|
535 |
+
"\n",
|
536 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
|
537 |
+
]
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"data": {
|
541 |
+
"text/html": [
|
542 |
+
"<div><iframe src=\"https://4a62505eb450484ce0.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
543 |
+
],
|
544 |
+
"text/plain": [
|
545 |
+
"<IPython.core.display.HTML object>"
|
546 |
+
]
|
547 |
+
},
|
548 |
+
"metadata": {},
|
549 |
+
"output_type": "display_data"
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"name": "stdout",
|
553 |
+
"output_type": "stream",
|
554 |
+
"text": [
|
555 |
+
"Recommendation: (\"Charlie Gitto's On the Hill\", 'St. Louis', 'Restaurants, Italian', 4.5) \n",
|
556 |
+
"Recommendation: (\"Pietro's\", 'St. Louis', 'Italian, Restaurants', 4.0) \n",
|
557 |
+
"Recommendation: ('Cluster Busters', 'St. Louis', 'Italian, Restaurants, Seafood', 4.0) \n",
|
558 |
+
"Recommendation: ('Cibare Italian Kitchen', 'St. Louis', 'Restaurants, Italian', 4.0) \n",
|
559 |
+
"Recommendation: ('Toscana Pizza, Pasta & More', 'St. Petersburg', 'Italian, Restaurants, Pizza', 4.0) \n",
|
560 |
+
"Recommendation: (\"Del Pietro's\", 'St. Louis', 'Italian, Restaurants', 4.0) \n",
|
561 |
+
"Recommendation: (\"Sophia's Cucina + Enoteca\", 'St. Petersburg', 'Italian, Restaurants', 4.0) \n",
|
562 |
+
"Recommendation: (\"Moscato's Bella Cucina\", 'St. Petersburg', 'Italian, Restaurants', 3.5) \n",
|
563 |
+
"Recommendation: ('Bici Trattoria', 'St. Petersburg', 'Italian, Restaurants', 4.0) \n",
|
564 |
+
"Recommendation: ('Goodcents Deli Fresh Subs', 'St. Louis', 'Restaurants, Sandwiches', 4.0) \n",
|
565 |
+
"neutral sentiment\n"
|
566 |
+
]
|
567 |
+
}
|
568 |
+
],
|
569 |
+
"source": [
|
570 |
+
"# rr = recommend_restaurants(prompt, number_of_recommendations = 5)\n",
|
571 |
+
"\n",
|
572 |
+
"demo = gr.Interface(fn=recommend_restaurants, inputs=[\"text\", gr.Number(value=10, precision=0, minimum=1)], outputs=\"dataframe\")\n",
|
573 |
+
"\n",
|
574 |
+
"if __name__ == \"__main__\":\n",
|
575 |
+
" demo.launch(show_api=False, debug=True)"
|
576 |
+
]
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"cell_type": "code",
|
580 |
+
"execution_count": null,
|
581 |
+
"metadata": {
|
582 |
+
"id": "Dx0SmXB8qGln"
|
583 |
+
},
|
584 |
+
"outputs": [],
|
585 |
+
"source": [
|
586 |
+
"# import pandas as pd\n",
|
587 |
+
"# import networkx as nx\n",
|
588 |
+
"# from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
589 |
+
"# from sklearn.metrics.pairwise import linear_kernel\n",
|
590 |
+
"# import nltk\n",
|
591 |
+
"# from nltk import pos_tag\n",
|
592 |
+
"# from nltk.tokenize import word_tokenize\n",
|
593 |
+
"# from datetime import datetime\n",
|
594 |
+
"\n",
|
595 |
+
"# # Download NLTK resources (if not already downloaded)\n",
|
596 |
+
"# nltk.download('punkt')\n",
|
597 |
+
"# nltk.download('averaged_perceptron_tagger')\n",
|
598 |
+
"\n",
|
599 |
+
"# # Load Yelp dataset (replace 'yelp_dataset.csv' with your actual dataset file)\n",
|
600 |
+
"# yelp_data = pd.read_csv('yelp_dataset.csv')\n",
|
601 |
+
"\n",
|
602 |
+
"# # Load existing knowledge graph (replace 'knowledge_graph.gexf' with your actual graph file)\n",
|
603 |
+
"# knowledge_graph = nx.read_gexf('knowledge_graph.gexf')\n",
|
604 |
+
"\n",
|
605 |
+
"# # Filter out relevant information (e.g., restaurant name, rating, location, categories, hours)\n",
|
606 |
+
"# restaurants = yelp_data[['name', 'stars', 'city', 'categories', 'hours']]\n",
|
607 |
+
"\n",
|
608 |
+
"# # Create a TF-IDF vectorizer to convert restaurant categories into numerical features\n",
|
609 |
+
"# tfidf_vectorizer = TfidfVectorizer(stop_words='english', lowercase=True)\n",
|
610 |
+
"# tfidf_matrix = tfidf_vectorizer.fit_transform(restaurants['categories'].fillna(''))\n",
|
611 |
+
"\n",
|
612 |
+
"# # Function to check if a restaurant is open at the current time\n",
|
613 |
+
"# def is_restaurant_open(hours, current_time):\n",
|
614 |
+
"# for day, hours_range in hours.items():\n",
|
615 |
+
"# start_time, end_time = hours_range.split('-')\n",
|
616 |
+
"# if start_time <= current_time <= end_time:\n",
|
617 |
+
"# return True\n",
|
618 |
+
"# return False\n",
|
619 |
+
"\n",
|
620 |
+
"# # Function to get similar foods from the knowledge graph\n",
|
621 |
+
"# def get_similar_foods(category, knowledge_graph):\n",
|
622 |
+
"# similar_foods = set()\n",
|
623 |
+
"\n",
|
624 |
+
"# if category in knowledge_graph.nodes:\n",
|
625 |
+
"# neighbors = list(knowledge_graph.neighbors(category))\n",
|
626 |
+
"# similar_foods.update(neighbors)\n",
|
627 |
+
"\n",
|
628 |
+
"# return similar_foods\n",
|
629 |
+
"\n",
|
630 |
+
"# # Function to recommend restaurants based on content-based filtering and availability\n",
|
631 |
+
"# def recommend_restaurants(user_input, num_recommendations=5):\n",
|
632 |
+
"# # Tokenize and perform POS tagging on the user input\n",
|
633 |
+
"# tokens = word_tokenize(user_input)\n",
|
634 |
+
"# pos_tags = pos_tag(tokens)\n",
|
635 |
+
"\n",
|
636 |
+
"# # Extract nouns and locations from POS tags\n",
|
637 |
+
"# user_nouns = [word for word, pos in pos_tags if pos.startswith('N') or pos.startswith('J')]\n",
|
638 |
+
"# user_locations = [word for word, pos in pos_tags if pos.startswith('NNP')] # Assume proper nouns are locations\n",
|
639 |
+
"\n",
|
640 |
+
"# # Filter restaurants based on the user's location\n",
|
641 |
+
"# location_filtered_restaurants = restaurants[restaurants['city'].isin(user_locations)]\n",
|
642 |
+
"\n",
|
643 |
+
"# # Transform user input into a TF-IDF vector\n",
|
644 |
+
"# user_tfidf = tfidf_vectorizer.transform([user_input])\n",
|
645 |
+
"\n",
|
646 |
+
"# # Compute the cosine similarity between the user input and restaurant categories\n",
|
647 |
+
"# cosine_similarities = linear_kernel(user_tfidf, tfidf_matrix).flatten()\n",
|
648 |
+
"\n",
|
649 |
+
"# # Get indices of restaurants with highest similarity scores\n",
|
650 |
+
"# restaurant_indices = cosine_similarities.argsort()[:-num_recommendations-1:-1]\n",
|
651 |
+
"\n",
|
652 |
+
"# # Get recommended restaurants\n",
|
653 |
+
"# recommended_restaurants = restaurants.iloc[restaurant_indices]\n",
|
654 |
+
"\n",
|
655 |
+
"# # Refine recommendations based on extracted information and location\n",
|
656 |
+
"# for _, restaurant in recommended_restaurants.iterrows():\n",
|
657 |
+
"# if any(category in restaurant['categories'] for category in user_nouns) and any(location in restaurant['city'] for location in user_locations):\n",
|
658 |
+
"# print(f\"Refined recommendation: {restaurant['name']} based on type of food and location.\")\n",
|
659 |
+
"\n",
|
660 |
+
"# # Get similar foods from the knowledge graph\n",
|
661 |
+
"# additional_categories = set()\n",
|
662 |
+
"# for user_noun in user_nouns:\n",
|
663 |
+
"# similar_foods = get_similar_foods(user_noun, knowledge_graph)\n",
|
664 |
+
"# additional_categories.update(similar_foods)\n",
|
665 |
+
"\n",
|
666 |
+
"# # Update the categories column with similar foods\n",
|
667 |
+
"# updated_categories = ', '.join(set(restaurant['categories'].split(', ') + list(additional_categories)))\n",
|
668 |
+
"# print(f\"Updated Categories: {updated_categories}\")\n",
|
669 |
+
"\n",
|
670 |
+
"# # Check restaurant availability based on current time\n",
|
671 |
+
"# current_time = datetime.now().strftime(\"%H:%M\")\n",
|
672 |
+
"# if is_restaurant_open(restaurant['hours'], current_time):\n",
|
673 |
+
"# print(f\"{restaurant['name']} is open right now!\")\n",
|
674 |
+
"# else:\n",
|
675 |
+
"# print(f\"{restaurant['name']} is currently closed.\")\n",
|
676 |
+
"\n",
|
677 |
+
"# # Example prompt\n",
|
678 |
+
"# user_prompt = input(\"Enter your restaurant preference (e.g., I want Chinese in Brooklyn): \")\n",
|
679 |
+
"\n",
|
680 |
+
"# # Get recommendations based on the user's input and availability, prioritizing location\n",
|
681 |
+
"# recommend_restaurants(user_prompt)\n"
|
682 |
+
]
|
683 |
+
}
|
684 |
+
],
|
685 |
+
"metadata": {
|
686 |
+
"accelerator": "GPU",
|
687 |
+
"colab": {
|
688 |
+
"provenance": []
|
689 |
+
},
|
690 |
+
"kernelspec": {
|
691 |
+
"display_name": "Python 3",
|
692 |
+
"name": "python3"
|
693 |
+
},
|
694 |
+
"language_info": {
|
695 |
+
"name": "python"
|
696 |
+
}
|
697 |
+
},
|
698 |
+
"nbformat": 4,
|
699 |
+
"nbformat_minor": 0
|
700 |
+
}
|