Datasets:

rassulya commited on
Commit
7111d8b
·
verified ·
1 Parent(s): 1695b1f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +52 -36
README.md CHANGED
@@ -1,45 +1,61 @@
1
- # TFW: Annotated Thermal Faces in the Wild Dataset
2
 
3
- This dataset contains thermal images of faces acquired in various environments: controlled indoor (`c-indoor`), semi-controlled indoor (`s-indoor`), and uncontrolled outdoor (`u-outdoor`). The `c-indoor` subset utilizes images from the SpeakingFaces dataset. The `s-indoor` and `u-outdoor` subsets were captured using a FLIR T540 thermal camera (464x348 pixels, 7.5–14 μm wave-band, 24° field of view, iron color palette).
4
 
5
- Each image is annotated with a face bounding box and five facial landmarks (centers of the eyes, tip of the nose, and outer corners of the mouth).
6
-
7
- **Dataset Statistics:**
8
-
9
- * **Total Images:** 9,982
10
- * **Total Labeled Faces:** 16,509
11
-
12
- **Data Splits:**
13
-
14
- * **c-indoor:** 142 subjects, 5,112 images, 5,112 labeled faces. Visual pairs are available.
15
- * **s-indoor:** 9 subjects, 780 images, 1,748 labeled faces. Visual pairs are available.
16
- * **u-outdoor:** 15 subjects, 4,090 images, 9,649 labeled faces. Visual pairs are not available.
17
-
18
-
19
- **Example Images:**
20
-
21
- [Image: https://github.com/IS2AI/TFW/blob/main/figures/example.png]
22
 
 
23
 
24
- **Dataset Download:**
25
 
26
- The dataset can be downloaded from Google Drive [link removed].
27
 
 
28
 
29
- **Pre-trained Models:**
30
 
31
- Pre-trained YOLOv5 and YOLO5Face models for thermal face detection are available [links removed]. These models were trained on the TFW dataset and performance metrics are available in a removed table.
32
-
33
-
34
- **Demo:**
35
-
36
- [GIF: https://github.com/IS2AI/TFW/blob/main/figures/demo.gif]
37
-
38
- **Example YOLOv5 Detection Results:**
39
-
40
- [Image: https://github.com/IS2AI/TFW/blob/main/figures/yolov5.png]
41
-
42
- **Example YOLO5Face Detection Results:**
43
-
44
- [Image: https://github.com/IS2AI/TFW/blob/main/figures/yolov5_face.png]
45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # TFW: Annotated Thermal Faces in the Wild Dataset Card
2
 
3
+ **Repository:** [https://github.com/IS2AI/TFW](https://github.com/IS2AI/TFW)
4
 
5
+ **Summary Description:**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ The TFW dataset comprises thermal images captured in controlled indoor, semi-controlled indoor, and uncontrolled outdoor environments. It's a multi-environment dataset, leveraging a previously published SpeakingFaces dataset for its controlled indoor component. The remaining images were acquired using a FLIR T540 thermal camera. Each image is manually annotated with bounding boxes for faces and five facial landmarks. The dataset is valuable for thermal face recognition research and applications.
8
 
 
9
 
10
+ **Summary of Abstract (Unavailable):**
11
 
12
+ The abstract from the linked TechRxiv preprint was inaccessible.
13
 
 
14
 
15
+ **Dataset Statistics:**
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
+ | Environment | Subjects | Images | Labeled Faces | Visual Pair |
18
+ |---|---|---|---|---|
19
+ | c-indoor | 142 | 5,112 | 5,112 | yes |
20
+ | s-indoor | 9 | 780 | 1,748 | yes |
21
+ | u-outdoor | 15 | 4,090 | 9,649 | no |
22
+ | combined | 147 | 9,982 | 16,509 | yes & no |
23
+
24
+
25
+ **Citation:**
26
+
27
+ ```bibtex
28
+ @ARTICLE{9781417,
29
+ author={Kuzdeuov, Askat and Aubakirova, Dana and Koishigarina, Darina and Varol, Huseyin Atakan},
30
+ journal={IEEE Transactions on Information Forensics and Security},
31
+ title={TFW: Annotated Thermal Faces in the Wild Dataset},
32
+ year={2022},
33
+ volume={17},
34
+ number={},
35
+ pages={2084-2094},
36
+ doi={10.1109/TIFS.2022.3177949}}
37
+ ```
38
+
39
+ **Pre-trained Models Table:**
40
+
41
+ | Model | Backbone | c-indoor AP<sub>50</sub> | u-outdoor AP<sub>50</sub> | Speed (ms) V100 b1 | Params (M) | Flops (G) @512x384 |
42
+ |---|---|---|---|---|---|---|
43
+ | YOLOv5n | CSPNet | 100 | 97.29 | 6.16 | 1.76 | 0.99 |
44
+ | YOLOv5n6 | CSPNet | 100 | 95.79 | 8.18 | 3.09 | 1.02 |
45
+ | YOLOv5s | CSPNet | 100 | 96.82 | 7.20 | 7.05 | 3.91 |
46
+ | YOLOv5s6 | CSPNet | 100 | 96.83 | 9.05 | 12.31 | 3.88 |
47
+ | YOLOv5m | CSPNet | 100 | 97.16 | 9.59 | 21.04 | 12.07 |
48
+ | YOLOv5m6 | CSPNet | 100 | 97.10 | 12.11 | 35.25 | 11.76 |
49
+ | YOLOv5l | CSPNet | 100 | 96.68 | 12.39 | 46.60 | 27.38 |
50
+ | YOLOv5l6 | CSPNet | 100 | 96.29 | 15.73 | 76.16 | 110.2 |
51
+ | YOLOv5n-Face | ShuffleNetv2 | 100 | 95.93 | 10.12 | 1.72 | 1.36 |
52
+ | YOLOv5n6-Face | ShuffleNetv2 | 100 | 95.59 | 13.30 | 2.54 | 1.38 |
53
+ | YOLOv5s-Face | CSPNet | 100 | 96.73 | 8.29 | 7.06 | 3.67 |
54
+ | YOLOv5s6-Face | CSPNet | 100 | 96.36 | 10.86 | 12.37 | 3.75 |
55
+ | YOLOv5m-Face | CSPNet | 100 | 95.32 | 11.01 | 21.04 | 11.58 |
56
+ | YOLOv5m6-Face | CSPNet | 100 | 96.32 | 13.97 | 35.45 | 11.84 |
57
+ | YOLOv5l-Face | CSPNet | 100 | 96.18 | 13.57 | 46.59 | 25.59 |
58
+ | YOLOv5l6-Face | CSPNet | 100 | 95.76 | 17.29 | 76.67 | 113.2 |
59
+
60
+
61
+ **(Note: Links to pre-trained models and example images are omitted as requested.)**