Datasets:
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,45 +1,61 @@
|
|
1 |
-
# TFW: Annotated Thermal Faces in the Wild Dataset
|
2 |
|
3 |
-
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
**Dataset Statistics:**
|
8 |
-
|
9 |
-
* **Total Images:** 9,982
|
10 |
-
* **Total Labeled Faces:** 16,509
|
11 |
-
|
12 |
-
**Data Splits:**
|
13 |
-
|
14 |
-
* **c-indoor:** 142 subjects, 5,112 images, 5,112 labeled faces. Visual pairs are available.
|
15 |
-
* **s-indoor:** 9 subjects, 780 images, 1,748 labeled faces. Visual pairs are available.
|
16 |
-
* **u-outdoor:** 15 subjects, 4,090 images, 9,649 labeled faces. Visual pairs are not available.
|
17 |
-
|
18 |
-
|
19 |
-
**Example Images:**
|
20 |
-
|
21 |
-
[Image: https://github.com/IS2AI/TFW/blob/main/figures/example.png]
|
22 |
|
|
|
23 |
|
24 |
-
**Dataset Download:**
|
25 |
|
26 |
-
|
27 |
|
|
|
28 |
|
29 |
-
**Pre-trained Models:**
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
**Demo:**
|
35 |
-
|
36 |
-
[GIF: https://github.com/IS2AI/TFW/blob/main/figures/demo.gif]
|
37 |
-
|
38 |
-
**Example YOLOv5 Detection Results:**
|
39 |
-
|
40 |
-
[Image: https://github.com/IS2AI/TFW/blob/main/figures/yolov5.png]
|
41 |
-
|
42 |
-
**Example YOLO5Face Detection Results:**
|
43 |
-
|
44 |
-
[Image: https://github.com/IS2AI/TFW/blob/main/figures/yolov5_face.png]
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TFW: Annotated Thermal Faces in the Wild Dataset Card
|
2 |
|
3 |
+
**Repository:** [https://github.com/IS2AI/TFW](https://github.com/IS2AI/TFW)
|
4 |
|
5 |
+
**Summary Description:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
The TFW dataset comprises thermal images captured in controlled indoor, semi-controlled indoor, and uncontrolled outdoor environments. It's a multi-environment dataset, leveraging a previously published SpeakingFaces dataset for its controlled indoor component. The remaining images were acquired using a FLIR T540 thermal camera. Each image is manually annotated with bounding boxes for faces and five facial landmarks. The dataset is valuable for thermal face recognition research and applications.
|
8 |
|
|
|
9 |
|
10 |
+
**Summary of Abstract (Unavailable):**
|
11 |
|
12 |
+
The abstract from the linked TechRxiv preprint was inaccessible.
|
13 |
|
|
|
14 |
|
15 |
+
**Dataset Statistics:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
| Environment | Subjects | Images | Labeled Faces | Visual Pair |
|
18 |
+
|---|---|---|---|---|
|
19 |
+
| c-indoor | 142 | 5,112 | 5,112 | yes |
|
20 |
+
| s-indoor | 9 | 780 | 1,748 | yes |
|
21 |
+
| u-outdoor | 15 | 4,090 | 9,649 | no |
|
22 |
+
| combined | 147 | 9,982 | 16,509 | yes & no |
|
23 |
+
|
24 |
+
|
25 |
+
**Citation:**
|
26 |
+
|
27 |
+
```bibtex
|
28 |
+
@ARTICLE{9781417,
|
29 |
+
author={Kuzdeuov, Askat and Aubakirova, Dana and Koishigarina, Darina and Varol, Huseyin Atakan},
|
30 |
+
journal={IEEE Transactions on Information Forensics and Security},
|
31 |
+
title={TFW: Annotated Thermal Faces in the Wild Dataset},
|
32 |
+
year={2022},
|
33 |
+
volume={17},
|
34 |
+
number={},
|
35 |
+
pages={2084-2094},
|
36 |
+
doi={10.1109/TIFS.2022.3177949}}
|
37 |
+
```
|
38 |
+
|
39 |
+
**Pre-trained Models Table:**
|
40 |
+
|
41 |
+
| Model | Backbone | c-indoor AP<sub>50</sub> | u-outdoor AP<sub>50</sub> | Speed (ms) V100 b1 | Params (M) | Flops (G) @512x384 |
|
42 |
+
|---|---|---|---|---|---|---|
|
43 |
+
| YOLOv5n | CSPNet | 100 | 97.29 | 6.16 | 1.76 | 0.99 |
|
44 |
+
| YOLOv5n6 | CSPNet | 100 | 95.79 | 8.18 | 3.09 | 1.02 |
|
45 |
+
| YOLOv5s | CSPNet | 100 | 96.82 | 7.20 | 7.05 | 3.91 |
|
46 |
+
| YOLOv5s6 | CSPNet | 100 | 96.83 | 9.05 | 12.31 | 3.88 |
|
47 |
+
| YOLOv5m | CSPNet | 100 | 97.16 | 9.59 | 21.04 | 12.07 |
|
48 |
+
| YOLOv5m6 | CSPNet | 100 | 97.10 | 12.11 | 35.25 | 11.76 |
|
49 |
+
| YOLOv5l | CSPNet | 100 | 96.68 | 12.39 | 46.60 | 27.38 |
|
50 |
+
| YOLOv5l6 | CSPNet | 100 | 96.29 | 15.73 | 76.16 | 110.2 |
|
51 |
+
| YOLOv5n-Face | ShuffleNetv2 | 100 | 95.93 | 10.12 | 1.72 | 1.36 |
|
52 |
+
| YOLOv5n6-Face | ShuffleNetv2 | 100 | 95.59 | 13.30 | 2.54 | 1.38 |
|
53 |
+
| YOLOv5s-Face | CSPNet | 100 | 96.73 | 8.29 | 7.06 | 3.67 |
|
54 |
+
| YOLOv5s6-Face | CSPNet | 100 | 96.36 | 10.86 | 12.37 | 3.75 |
|
55 |
+
| YOLOv5m-Face | CSPNet | 100 | 95.32 | 11.01 | 21.04 | 11.58 |
|
56 |
+
| YOLOv5m6-Face | CSPNet | 100 | 96.32 | 13.97 | 35.45 | 11.84 |
|
57 |
+
| YOLOv5l-Face | CSPNet | 100 | 96.18 | 13.57 | 46.59 | 25.59 |
|
58 |
+
| YOLOv5l6-Face | CSPNet | 100 | 95.76 | 17.29 | 76.67 | 113.2 |
|
59 |
+
|
60 |
+
|
61 |
+
**(Note: Links to pre-trained models and example images are omitted as requested.)**
|