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gustau.camps@uv.es — http://isp.uv.es

1 / 335



Theory:

1 Probability and random variables

2 Discrete time random processes

3 Spectral estimation

4 Signal decomposition and transforms

5 Introduction to information theory (bonus track)

Examples, demos and practices:

� Matlab source code, online material

� Examples and lab sessions
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Chapters 1+2: Probability, random signals and variables

“Introduction to random processes (with applications to signals and
systems)”, Gardner (1989)

“Intuitive probability and random processes using MATLAB”, Kay (2006)

“Probability, random variables and random signal principles”, Peebles
(1987)

“An introduction to statistical signal processing”, Gray and Davisson
(2004)

“Probability and measure”, Billingsley (1995)

Chapters 3+4: Spectral analysis and transforms

“Spectral analysis of signals”, Stoica and Moses (2005)

Chapter 14 “Spectrum Estimation and Modeling” in Digital Signal
Processing Handbook, Djuric and Kay (2005)

Chapters 35-27 in Digital Signal Processing Handbook, Djuric and Kay
(2005)

Wikipedia, Vetterli and Gilles slides

Chapter 5 (bonus track): Introduction to information theory

“Elements of Information Theory”, Cover and Thomas (1991)

“Information theory, inference and learning algorithms”, D. MacKay
(2004), http://www.inference.phy.cam.ac.uk/mackay
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Part 1: Probability and random variables
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

‘Probability is the chance that a given event will occur”

— Webster dictionary

‘Probability is simply an average value’

‘Probability theory is simply a calculus of averages’

‘Probability theory is useful to design and analyze signal
processing systems’

— Gardner, 1989
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Ingredients of probability:

We have a random experiment

A set of outcomes

The probabilities associated to these outcomes

We cannot predict with certainty the outcome of the experiment

We can predict “averages”!

Philosophical aspects of probability:

We want a probabilistic description of the physical problem

We believe that there’s a statistical regularity that describes the physical
phenomenon
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Example 1: cannot predict how much rain, but the average suggests not to
plant in Arizona

Example 2: result of tossing a coin is not predictable, but the average 53%
tells me it is fair coin
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Types of probability: Probabilistic problems (and methods) can be discrete or
continuous:

Q1 How many of the N = 4 people is chatting now via WhatsApp?
Discrete answer: 0, . . . ,N
Simple equiprobable decision: 1/(N + 1) = 1/5 = 20%

Q2 How long a particular guy is chatting between 15:00-15:10?

Infinite answers: T = [0, 10] min
We need to decide if the outcome is discrete or continuous
We need a probabilistic model!
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

[Q2] How long a particular guy is chatting between 15:00-15:10?

A1 Assume a simple probabilistic model with discrete answer:
Assign a probability to each guy being on the phone in T , e.g.: p = 0.75
Assume a Bernoulli distribution:

P[k] =
N!

k!(N − k)!
pk (1− p)N−k

Too strong assumptions?: 1) each guy has a different p, 2) every p is
affected by friends p; and 3) p changes over time

A2 Assume a more complex probabilistic model with continuous answer:
Assume an average time of chat µ = 7min
Assume a Gaussian model for the time on the phone:

pT (t) =
1√
2π

exp

(
− 1

2
(t−7)2

)
→ P[5 ≤ T ≤ 6] =

∫ 6

5
pT (t)dt = 0.1359
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Notion of probability

The thermal noise voltage: composition of +/- pulses

What’s the probability that V (t) > 1µV at t = to? Need a probabilistic
model for this physical situation!

Event of interest A: V (to) > 1µV

Event indicator: IA = 1 if A occurs, IA = 0 otherwise

Imagine n resistors, and average the values of the indicator function:

P(A) = lim
n→∞

1

n

n∑
i=1

Ia(i)

If we have m resistors that fullfil A, then:

P(A) = lim
n→∞

m

n

P(A) is the relative frequency of occurrence of event A

P(A) is the probability of occurrence of event A
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Sets

A set S is a collection of entities (or
elements):

S = {s1, . . . , sn}

A set S belongs to a larger set So

S is the set of all s contained in So that
fullfill property QS :

S = {s ∈ So : s satisfies QS}

S is a subset of So : S ⊂ So , S ⊆ So

Complement of S is S̄

Union: A ∪ B = {s ∈ S : s ∈ A or s ∈ B}
Intersection:
A ∩ B = {s ∈ S : s ∈ A and s ∈ B}
DeMorgan’s laws:

A ∪ B = Ā ∩ B̄

A ∩ B = Ā ∪ B̄
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Sets operations
Sets relations

Sets partition

DeMorgan’s Law
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Sample space

Experiment: process of observing the state of the resistor at t = to

Sample point: outcome of the experiment, sets of positions and velocities
of all electrons/ions in the resistor

Sample space: set S of all possible sample points (infinite possibilities!)

Event: event A ⊂ S that occurs (happens)

s1, s2 and s3: sample points

A, B: events

S : sample space

If enough net negatively charged regions reside near the – terminal, and/or
enough positively charged regions are near the + terminal, then the event
A: V (to) > 1µV will occur.
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Probability space
The sample space S is a probability space iff to every event A there is a
number P(A) that fulfils:

0 ≤ P(A) ≤ 1

P(A ∪ B) = P(A) + P(B), iff A ∩ B = ∅
P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

P(S) = 1

Probability as a volume over a planar sample space

The infinitesimal probability of the event ds,
centered at point s in set A is dP(s) then the
probability of the event A is the continuous integral
(sum) of all the individual probabilities over the set:

P(A) =

∫
s∈A

dP(s) =

∫
s∈A

dP(s)

ds
ds

This representation is not very useful because most of the problems are
multidimensional, e.g. our problem is defined in a 6-dim space positions
and velocities of a single electron.
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Conditional probability

What if we have an extra condition on our problem? Given that
V (to) > 0, what is the probability that V (to) > 1µV ?

Conditional probability

P(A|B) =
P(A ∩ B)

P(B)

In this example, A is a subset of B, A ⊂ B, so A ∩ B = A:

P(A|B) =
P(A)

P(B)
= 2P(A), because P(B) = 0.5

A conditional probability is a simple (unconditional) probability defined on
a new (conditional) probability space, e.g. in our case SB = B, and the
new probability function is:

PB (·) = P(·|B) =
P(· ∩ B)

P(B)
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Bayes’ theorem

P(A|B) = P(B|A)
P(A)

P(B)

Bayes was concerned about...

Forward problem: Given a specified number of white and black balls in a
box, what is the probability of drawing a black ball?

Reverse problem: Given that one or more balls have been drawn, what can
be said about the number of white and black balls in the box?
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Bayes’ Theorem: “Bayes’ theorem relates the conditional and marginal
probabilities of events A and B, where B has a non-zero probability”

posterior ≡ P(A|B) =
P(B|A)P(A)

P(B)
=

likelihood× prior

marginal likelihood

Example “The department is formed by 60% men and 40% women. Men
always wear trousers, women wear trousers or skirts in equal numbers”.

A: I see a girl

B: A person is wearing trousers

The probability of meeting a girl with trousers is:

P(A|B) =
P(B|A)P(A)

P(B)
=

0.5× 0.4

0.5× 0.4 + 1× 0.6
= 0.25

Simple non-Bayesian probabilities would say: 0.4× 0.5 = 0.2
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Independent events

If the occurrence of event B has no effect on the occurrence of event A,
we say that A is independent of B, P(A|B) = P(A)

Remember Bayes’ theorem:

P(A|B) = P(B|A)
P(A)

P(B)

then
P(A ∩ B) = P(A)P(B), P(B|A) = P(B)

so if A is independent of B, then B is independent of A
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Random variable

A random variable is a real-valued function X (·) of sample points in a
sample space: a function that assigns a real number x = X (s) to each
sample point s. The real number x is called realization, or statistical
sample of X (·)

Representation of a random variable

Our example:

X = V (to) is a random variable, and after the experiment, the specific
value v(to) measured is a sample of the random variable V (to):
x = v(to) = V (to , s) = X (s)
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Discrete random variables

One-to-one map Many-to-one map
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Why “random” in random variable?

“Nothing in nature is random . . . A thing appears random only through
the incompleteness of our knowledge.”

—Spinoza, Ethics I

“I do not believe that God rolls dice.”

—attributed to Einstein
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Why “random” in random variable?

“A random or stochastic process is a mathematical model for a phenomenon
that evolves in time in an unpredictable manner from the viewpoint of the
observer.

The phenomenon may be a sequence of real-valued measurements of voltage or
temperature, a binary data stream from a computer, a modulated binary data
stream from a modem, a sequence of coin tosses, the daily Dow–Jones average,
radiometer data or photographs from deep space probes, a sequence of images
from a cable television, or any of an infinite number of possible sequences,
waveforms, or signals of any imaginable type.

It may be unpredictable because of such effects as interference or noise in a
communication link or storage medium, or it may be an information-bearing
signal, deterministic from the viewpoint of an observer at the transmitter but
random to an observer at the receiver.”

—Gray, 2004
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Why “random” in random variable? (II)

“The theory of random processes quantifies the above notions so that one can
construct mathematical models of real phenomena that are both tractable and
meaningful in the sense of yielding useful predictions of future behavior.

Tractability is required in order for the engineer (or anyone else) to be able to
perform analyses and syntheses of random processes, perhaps with the aid of
computers. The meaningful requirement is that the models must provide a
reasonably good approximation of the actual phenomena.

An oversimplified model may provide results and conclusions that do not apply
to the real phenomenon being modeled. An overcomplicated one may constrain
potential applications, render theory too difficult to be useful, and strain
available computational resources. Perhaps the most distinguishing
characteristic between an average engineer and an outstanding engineer is the
ability to derive effective models providing a good balance between complexity
and accuracy.”

—Gray, 2004
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Why “random” in random variable? (III)

“Random processes usually occur in applications in the context of environments
or systems which change the processes to produce other processes.

The intentional operation on a signal produced by one process, an input signal,
to produce a new signal, an output signal, is generally referred to as signal
processing, a topic easily illustrated by examples.”

—Gray, 2004
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Why “random” in random variable? (IV)
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Distribution function (DF) or Cumulative Density Function (CDF):
The probability distribution function for a random variable X is denoted by
FX (·), and is defined by

FX (x) = Prob{X < x},

that is, FX (x) is the probability that the random variable X will take on a value
less than the number x

FX (−∞) = 0

FX (+∞) = 1

Let X = V (to), then:

AX : V (to) < 1µV = 10−6V

ĀX : V (to) ≥ 10−6V

Prob{V (to) ≥ 10−6V } = P(ĀX ) = 1− FX (10−6V )

Therefore, we can answer the question if we determine the appropriate
distribution function for the thermal noise voltage!
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Probability Density function (PDF):
The probability that a random variable X takes a value in the interval
[x − ε, x + ε) is

Prob{x − ε ≤ X < x + ε},

then the density of probability a the point x is

fX (x) = lim
ε→0

1

2ε
Prob{x − ε ≤ X < x + ε}

Properties:

Non-negative function: fX (x) ≥ 0

Unit area:
∫∞
−∞ fX (x)dx = 1
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

PDF and CDF are related:

fX (x) =
d

dx
FX (x) FX (x) =

∫ x

−∞
fX (y)dy

Intuition:

Probability of the event AX : x ∈ [x1, x2) is

P(AX ) = FX (x2)− FX (x1) =

∫ x2

x1

dFX (x)

dx
dx

Prob{x1 ≤ X < x2} =

∫ ∞
−∞

fX (x)dx

“The probability that x is contained in some subset of real numbers AX

can be interpreted as the area under the probability density function fX (·)
above the subset”
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

The Gaussian (or normal) density function:

fX (x) =
1√

2πσ2
exp

(
− 1

2

(x − µ)2

σ2

)
, −∞ < x <∞

where µ is the mean and σ is the standard deviation.

>> x = -10:0.1:10;

>> f = normpdf(x,1,1);

>> plot(x,f)

>> xlabel(’Sample space x’); ylabel(’Gaussian density f X(x)’);

>> x = randn(1000,1);

>> histfit(x);

>> x = rand(1000,1);

>> histfit(x);
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

The thermal noise voltage solution with the Gaussian model:

Assume µ = 0 and σ2 = 4KTBR [V 2], where K is the Boltzmann’s
constant, T is the temperature [K], B is the bandwidth of the voltmeter
[Hz], and R is the resistance [Ω]. For T = 290K and a 100-MHz
voltmeter, σ2 = 1.6 10−10 [V 2]

•The probability of having V (to) ≥ 10−6V :

Prob{V (to) ≥ 10−6V } = 1−
∫ 10−6

−∞
fX (x)dx ,

and using the Gaussian density fX (x) =
1√
2πσ

exp

(
− 1

2

(x − µ)2

σ2

)
, we obtain

Prob{V (to) ≥ 10−6V } = 1/2− erf

(
10−6/

√
1.6 10−10

)
≈ 0.48,

where erf(·) is the error function:

erf(y) =
1√
2π

∫ y

0

exp(−x2/2)dx
>> help erf;

>> help erfinv;

•The conditional question: P[V (to) ≥ 10−6V | V (to) > 0V ] = 2× 0.48 = 0.96
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Probability density function of a discrete random variable:

Random variables with a Gaussian distribution are continuous random
variables. The other interesting case are random variables that can take
on only a countable number of values, the discrete random variables (e.g.
quantized signals)

Intuition:

The density function is just the differentiation of the (piecewise constant)
distribution function

Only two Dirac delta functions (impulses) are obtained (as expected)
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Probability density function of mixed random variable:

Sometimes the systems provide a mixed (continuous+discrete) random
variables.

Intuition:

FX (x) = (P ′1 + P ′2) FY (x) + P ′3 FZ (x),

where Y denotes the random (discrete) battery and Z denotes the
thermal-noise voltage (continuous)

The density function is an additive function (yet not invertible)!
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Probability mass function (PMF):

Useful to characterize the random variable instead of using the distribution
function

PX (x) =


P1 x = v1

P2 x = v2

0 otherwise
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Joint distributions and densities:

The previous definitions extend from a single random variable to several
random variables

For two RVs X and Y :

Joint distribution function:

FXY (x , y) = Prob{X < x and Y < y}
Joint density function:

fXY (x , y) =
∂2

∂x∂y
FXY (x , y)

Marginal distributions obtained from the joint distribution and density:

FX (x) = FXY (x ,∞) fX (x) =

∫ +∞

−∞
fXY (x , y)dy

Conditional density:

fX |Y (x |Y = y) =
fXY (x , y)

fY (y)

Conditional distribution:

FX |Y (x |Y < y) =
FXY (x , y)

FY (y)
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Independent random variables:

If X and Y are statistically independent then:

FXY (x , y) = FX (x) FY (y)

and therefore
fXY (x , y) = fX (x) fY (y)

Intuition: Independent variables only when you can describe X without the
need of observing Y
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Bivariate Gaussian density:

Two random variables X and Y are jointly Gaussian iff the random
variable Z = aX + bY is Gaussian for any real numbers a and b.

If X and Y are not linearly dependent (@c, d : Y = cX + d), then the
joint Gaussian density is:

fXY (x , y) =
1

2πσσ′
√

1− ρ2

× exp

(
(x − µ)2/σ2 − 2ρ(x − µ)σ(y − µ′)σ′ + (y − µ′)2/σ

′2

2(1− ρ)2

)
If X and Y are linearly dependent, then ρ = 1, and this does not apply
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Multivariate Gaussian density:

The multivariate normal distribution or multivariate Gaussian distribution,
is a generalization of the one-dimensional (univariate) normal distribution
to higher dimensions

The multivariate normal distribution of a
k-dimensional random variable
X = [X1,X2, . . . ,Xk ] is written:

X ∼ N (µ, Σ),

with k-dimensional mean vector

µ = [µ1, µ2, . . . , µk ]

and k × k covariance matrix

Σ = [σij ], i , j = 1, 2, . . . , k

http://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Multidimensional Probability density function (PDF)

1 Joint PDF of a vector a:

Pa(a) = Pa(a1, a2, ..., ad ),

∫
Pa(a)da = 1

2 Marginal PDF (of ith component of a):

Pai (ai ) =

∫
Pa(a)da1dai−1dai+1dad

is the integral of the joint PDF in all directions except i

3 Conditional PDF (of a component i fixing the rest):

Pai (ai |aj ) =
P(ai , aj )

Paj (aj )
∀j 6= i

4 Bayes’ rule says:

P(ai |aj ) =
p(ai , aj )

p(aj )
, P(aj |ai ) =

p(ai , aj )

p(ai )

P(ai |aj ) =
P(aj |ai )P(ai )

P(aj )
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Probabilities and ensembles

Probabilities and Ensembles

An ensemble is a triple (x,AX ,PX ):

• the outcome x is the value of a random variable,

• x takes values from set AX = {a1, a2, . . . , aL},

• with probabilities PX = {p1, p2, . . . , pL}.

• P (x = ai) = pi, pi ≥ 0

• ∑
ai∈AX

P (x = ai) =
∑L

i=1 pi = 1.

Simpler notation:

P (x = ai) = P (x) = P (ai)

(from David MacKay)
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Example of joint probability

Example of Joint Probability - Bigrams

• Bigrams: probability of letter x
followed by leter y

• Marginal probability from joint:

P (x = ai) =
∑

y∈AY

P (x = ai, y) .

• Similarly

P (y) =
∑

x∈AX

P (x, y) .

(figure from David MacKay)
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Functions of random variables:

Imagine that we have a function g(·) that transform random variable X
into Y , Y = g(X ).
Can we determine the probability of Y from the probability of X ? For
some cases, yes!

If X is continuous and the inverse of g(·), denoted by g−1(·) exists and is
differentiable, the probability density for Y is:

fY (y) = fX [g−1(y)]

∣∣∣∣dg−1(y)

dy

∣∣∣∣ =
fX (x)

|dg(x)/dx | , x = g−1(y)

This is very powerful! Avoid computing density fY (y) directly (which is
hard) and just derive the transformation

Watch out with non-continuous functions (holes in the space) and
bivalued (ambiguous) functions!
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Density estimation under arbitrary transform
Now we are given Y = [Y1,Y2, . . . ,Yk ]> obtained from X = [X1,X2, . . . ,Xk ]>

using a deterministic function g(·) : Y = g(X), and g−1 exists and is
differentiable, then the joint probability density of Y is:

fY(y) = fX[g−1(y)]

∣∣∣∣∂g−1(y)

∂y

∣∣∣∣,
where |∂g−1(y)/∂y| is the absolute value of the determinant of the matrix of
first-order partial derivatives ∂g−1

i (y)/∂yj which is called the Jacobian of
g−1(·).
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Density estimation under arbitrary transform, intuition
Let a ∈ Rk be a RV with PDF, pa(a). Given some bijective, differentiable
transform of a into y using F : Rk → Rk , y = F (a), the PDFs are related:

pa(a) = py(F (a))

∣∣∣∣dF (a)

da

∣∣∣∣−1

= py(F (a))|∇aF (a)|−1

where |∇aF | is the determinant of the transform’s Jacobian matrix.
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Example 1: A linear transformation

Y = AX + b

Preliminaries:

X = g−1(y) = A−1[y − b]

∂g−1(y)

∂y
= A−1

|A−1| = 1/|A|

Therefore:

fY(y) = fX[g−1(y)]

∣∣∣∣∂g−1(y)

∂y

∣∣∣∣ =
fX(A−1[y − b])

|A| =
fX(X)

|A| ,

where A−1 is the inverse of A, and |A| is the absolute value of the determinant
of A
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Example 2: Sum of random variables

Let us define the sum of random variables X1 and X2 as Y = Y1 = X1 + X2

and the second component Y2 = X2. Compute fY(y1, y2).

Note that equivalently:

Y = AX, Y = [Y1 Y2]>, X = [X1 X2]>, A =

(
1 1
0 1

)
Therefore:

fY(y) =
fX(A−1y)

|A| = fX

([
y1 − y2

y2

])
= fX1X2 (y1 − y2, y2) = fX1X2 (y − x2, x2)

and

fY(y1, y2) =

∫ ∞
−∞

fy(y)dy2 =

∫ ∞
−∞

fX1X2 (y − x2, x2)dx2
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Example 3: Data rotation

Let X1 and X2 be independent Gaussian random variables with zero means
and unity variances. Let us define the transform:

Y1 = (X 2
1 + X 2

2 )1/2, Y2 = tan−1(X2/X1)

Compute the joint density fY(y1, y2), and the marginals fY1 (y1) and fY2 (y2).

Note that: Y = AX, Y = [Y1 Y2]>, X = [X1 X2]> and

Y = g(X) =

(
(X 2

1 + X 2
2 )1/2

tan−1(X2/X1)

)
, X = g−1(Y) =

(
Y1 cos Y2

Y1 sin Y2

)
Joint density:

fY(y) = fX(g−1(y))

∣∣∣∣∂g−1(y)

∂y

∣∣∣∣ = . . . =
y1

2π
exp

(
− y 2

1

2

)
, y1 ≥ 0, 0 ≤ y2 < 2π

Marginal densities:

fY1 (y1) =

∫ ∞
−∞

fy(y)dy2 =

∫ 2π

0

y1

2π
exp

(
− y 2

1

2

)
dy2 = y1 exp

(
− y 2

1

2

)
, y1 ≥ 0

fY2 (y2) =

∫ ∞
−∞

fy(y)dy1 =

∫ 2π

0

y1

2π
exp

(
− y 2

1

2

)
dy1 =

1

2π
, 0 ≤ y2 < 2π
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Notion of expectation:

What do you expect the absolute value of the thermal-noise voltage to be?
We need a mathematical definition of expected value!

Given a sample space S with only two points:

X (s) =

{
x1 s = s1

x2 s = s2

and perform n identical experiments that yield {s(1), s(2), . . . , s(n)}
Average value of the random variable X (s) with n→∞?

E{X} = lim
n→∞

1

n

n∑
i=1

X (s(i))

If m1 and m2 are the total number of times that equal s1 and s2:

E{X} = lim
n→∞

[
m1

n
x1 +

m2

n
x2

]
, and lim

n→∞
m1

n
= P(s1), lim

n→∞
m2

n
= P(s2)

Average of X (s) is the probability-weighted sum of all possible values

E{X} = X (s1)P(s1) + X (s2)P(s2)

E{X} is the expected value of X
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Expected value:

The expected value of a random variable X is denoted by E{X}, and is a
real (nonrandom) number defined by:

E{X} =
∑
s∈S

X (s)P(s)

Note:
The expected value is a probability-weighted average over the entire
sample space of the sample values
For continuous random variables, replace

∑
with

∫
:

E{X} =

∫
s∈S

X (s)dP(s)

Example: S = {s1, s2, s3, s4, s5} and the probability function

P(s1) = 1/8, P(s2) = 1/8, P(s3) = 1/8, P(s4) = 3/8, P(s5) = 1/8

and the random variable

X (s1) = −1, X (s2) = +1, X (s3) = +1, X (s4) = +2, X (s5) = −1

Then: E{X} =
∑

s∈S X (s)P(s) = . . . = 7/8
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Properties of expectation:

1 Linearity: for any two RVs X and Y , two real numbers a and b, and the
RV Z = aX + bY :

E{Z} = aE{X}+ bE{Y }
2 Expected value of a function of a random variable: for any function g(·) of

a RV X , and Y = g(x), we can show that

E{g(X )} =

∫ ∞
−∞

g(x)fX (x)dx

Important note: this is the fundamental theorem of expectation, which is
far much easier than estimating the PDF of Y and then using the
definition:

E{g(X )} = E{Y } =

∫ ∞
−∞

yfY (y)dy
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Expected value of the thermal-noise voltage?

Let define X = V (to) and g(·) = | · | the absolute value function. Then
the expected value is:

E{g(X )} =

∫ ∞
−∞

g(x)fX (x)dx

E{V (to)} =

∫ ∞
−∞
|x |fX (x)dx

For the Gaussian density:

E{V (to)} = α

√
2

π
, α = 2

√
KTBR

For T = 290K , R = 100Ω, B = 100 MHz, α ≈ 1.3 10−5 [V 2], and thus

E{V (to)} ≈ 10µV
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Characteristic function

Example of a function of a random variable:

g(·) = e iω(·), with parameter ω

The characteristic function is defined as:

ΦX (ω) = E{e iωX}, i =
√
−1

Equivalent to:

ΦX (ω) =

∫ ∞
−∞

e iωx fX (x)dx ,

which is the conjugate (sign reversed) Fourier transform of fX (·)
A useful property of the characteristic function is that it yields the
moments of the random variable: the n-th moment of X can be obtained
by differentiation of ΦX :

E{X n} =

(
1

in

)
dnΦX (ω)

dωn

∣∣∣∣
ω=0

.
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Characteristic functions:
In probability theory and statistics, the characteristic function of any
real-valued random variable completely defines its probability distribution
If a random variable admits a probability density function, then the
characteristic function is the inverse Fourier transform of the probability
density function
It provides the basis of an alternative route to analytical results compared
with working directly with probability density functions or cumulative
distribution functions

Distribution Characteristic function ϕ(t)

Degenerate δa e ita

Bernoulli Bern(p) 1− p + pe it

Binomial B(n, p) (1− p + pe it )n

Negative binomial NB(r, p)

(
1−p

1−pei t

)r

Poisson Pois(λ) eλ(eit−1)

Uniform U(a, b) eitb−eita

it(b−a)

Laplace L(µ, b) eitµ

1+b2t2

Normal N(µ, σ2) e
itµ− 1

2
σ2t2

Chi-squared χ2 (1− 2it)−k/2

Cauchy C(µ, θ) e itµ−θ|t|

Gamma Γ(k, θ) (1− itθ)−k

Exponential Exp(λ) (1− itλ−1)−1

Multivariate normal N(µ,Σ) e
itTµ− 1

2
tT Σt

Multivariate Cauchy MultiCauchy(µ,Σ) e itTµ−
√

tT Σt
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Sums of independent random variables: exploit the characteristic function

Let W be a random variable equal to the sum of two statistically
independent random variables X and Y:

W = X + Y

The characteristic function of W is defined as:

ΦW (ω) = E{e iωW } = E{e iω(X +Y )} = E{e iωX}E{e iωY } = ΦX (ω)ΦY (ω)

which is the product of characteristic functions

From the convolution property of the Fourier transform

fw (α) = fx (α) ∗ fy (α) =

∫ ∞
−∞

f (u)f (u − α)du

The PDF of a sum of two statistically independent random variables
is the convolution of the individual PDFs
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First moments of a probability density function fX :

Since the fX is a non-negative function with unit area, the expected value

E{X} =

∫ ∞
−∞

xfX (x)dx

can be interpreted as the first moment of the function fX (·), which is a
measure of the center of a function.

The center of the PDF fX (·) is
the mean:

mX = E{X} >> mean(X)

The square root of the second
centralized moment measures
the width of the function and is
the standard deviation:

σX =
√

E{(X −mX )2} >> std(X)
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Higher moments of a probability density function fX :

The center of the PDF fX (·) is the mean:

mX = E{X} >> mean(X)

→ “average value” of the distribution

The square root of the second centralized moment measures the width of
the function and is the standard deviation:

σX =
√

E{(X −mX )2} >> std(X)

→ “average dispersion” of the distribution

The squared standard deviation is the variance:

σ2
X = E{(X −mX )2} = E{X 2} −m2

X >> var(X)

→ “average dispersion” of the distribution

The normalized 3rd central moment is the skewness:

E{(X −mX )3}/σ3
X >> skewness(X)

→ “asymmetry of the data around the sample mean” of the distribution

The normalized 4th central moment is the kurtosis:

E{(X −mX )4}/σ4
X >> kurtosis(X)

→ “outlier-prone” of the distribution
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Uniform distribution:

Equal probability of all values within bounds

Matlab: >> rand, pdf, cdf

Probability density function (PDF)

fX (x) =


0 x < a

1
b−a

a ≤ x ≤ b

0 x > b

Example: a = −1, b = 1

>> x = -4:0.1:4;

>> p = pdf(’Uniform’,x,-1,1); plot(x,p,’b’)

>> c = cdf(’Uniform’,x,-1,1); plot(x,c,’b’)

Exercise: Generate a random vector with 1000 samples from a uniform
distribution and compute the first and higher moments. Discuss.
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Gaussian (normal) distribution:

Matlab: >> randn, pdf, cdf

Probability density function (PDF)

fX (x) =
1√

2πσ2
X

exp

(
− 1

2

(x − µX )2

σ2
X

)
, −∞ < x <∞

Denoted as: x ∼ N (µX , σ
2
X )

Example: µX = 0.5, σ2
X = 1

>> x = -4:0.1:4;

>> p = pdf(’Normal’,x,0.5,1); plot(x,p,’b’)

>> c = cdf(’Normal’,x,0.5,1); plot(x,c,’b’)

Exercise: Generate a random vector with 1000 samples drawn from a normal
distribution and compute the first and higher moments. Discuss.
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Other important PDFs:

Exercise: Play around in MATLAB with: pdf, cdf, mean, var
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Correlation: The second joint moment of two random variables X and Y is
the correlation:

RXY = E{XY } =

∫ ∞
−∞

∫ ∞
−∞

xyfX (x)fY (y)dxdy >> corr(X, Y)

Covariance: The second joint (centralized) moment of two random variables X
and Y is the covariance:

KXY = E{(X −mX )(Y −mY )} >> cov(X, Y)

Correlation and covariance:

KXY = RXY −mX mY

Correlation coefficient:

ρ =
KXY

σXσY
− 1 ≤ ρ ≤ +1 >> corrcoef(X, Y)

If KXY = 0, then X and Y are linearly uncorrelated

If RXY = 0, then X and Y are orthogonal
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Scatterplot: correlation and dependence

Simple method to identify variable relations

Simple transformations, e.g. Y = X 2, make the correlation coefficient
useless

>> help scatter

>> scatterhist
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Correlation matrix: For an n-tuple of random variables, X = [X1, . . . ,Xk ]>,
there are k2 pairs of random variables and associated correlations:

RXi Xj = E{Xi Xj}, i , j = 1, 2, . . . , k

This is a matrix of pairwise correlations:

RX = E{X>X}

Covariance matrix: The matrix of covariances with (i , j)-th element:

KXi Xj = E{(Xi −mXi )(Xj −mXj )},

which in matrix form is:
KX = RX − µXµ

>
X ,

where µX is the n-tuple of means with element E{Xi}.

63 / 335



Probability RV PDF Functions Expectation Moments Convergence Conclusions

Notion of convergence

If we measure two time samples X = V (t) and Y = V (t + τ) being τ a
small enough delay, we expect that X and Y to be correlated. If we repeat
the experiment for an increasing number of n resistors, we obtain

{ρ̂1, ρ̂2, . . . , ρ̂n}

which should converge to the true probabilistic correlation coefficient, ρ.

We aim to assess
lim

n→∞
ρ̂n = ρ
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Stochastic convergence

A sequence of random variables {Xn} is actually a family of sequences of
real numbers,

{{Xn(s)} : s ∈ S}

together with a sequence of joint probability distributions

{FX1X2...Xn}.

There are four types of convergence:
1 Convergence almost surely:

lim
n→∞

Xn(s) = X (s) ∀s ∈ S̃ ⊆ S , P(S̃) = 1 −→ Prob{ lim
n→∞

Xn = X} = 1

2 Convergence in MSE (aka expected square convergence):

lim
n→∞

E{(Xn − X )2} = 0

3 Convergence in Probability:

lim
n→∞

Prob{|Xn − X | > ε} = 1, ∀ε > 0

4 Convergence in Distribution:

lim
n→∞

FXn (x) = FX (x)

for all continuity points x of FX (·)
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Laws of large numbers

Imagine we actually repeat the experiment with n resistors of the same
resistance and temperature and with voltmeters with the same bandwidth.
Each set of n executions can be interpreted as either 1) n statistically
independent experiments, or as 2) a composite experiment.

1 Weak law of large numbers: The sequence of random variables {X̄n}
converges in probability to the nonrandom variable P(A) :

lim
n→∞

Prob

{∣∣∣∣Kn

n
− P(A)

∣∣∣∣ > ε

}
= 1, ∀ε > 0

2 Strong law of large numbers:

Prob

{
lim

n→∞
Kn

n
= P(A)

}
= 1

>> X = randn(10,1); histfit(X)

>> X = randn(1000,1); histfit(X)

>> X = randn(10000,1); histfit(X)
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Central limit theorem and the convergence of partial sums:

Consider

Xn =
n∑

i=1

Zi ,

and the standardized variables

Yn =
Xn −mn

σn
,

where mn and σ2
n are the mean and variance of Xn. If {Zi} are independent

and identically distributed (i.i.d) random variables, then Yn converges in
distribution to a Gaussian variable with zero mean and unity variance.

Many phenomena are modeled in terms of Gaussian random variables

The value of a variable (e.g. V (t)) is the result of a superposition of a
large number of elementary effects (e.g. tiny voltage impulses).

>> X = randn(10,1); histfit(X)

>> X = randn(1000,1); histfit(X)

>> X = randn(10000,1); histfit(X)
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Reviewed:
Sample point, sample space, sets,
probability space, conditional probability,
independence, random variable,
correlation, covariance, distribution
function, density function, Gaussian
density, continuous/ discrete/ mixed
random variable, probability mass
function, joint distribution and density,
multivariate Gaussian,
functions/transformations of random
variables, expectation, moments,
characteristic function, conditional
expectation, convergence, law of large
numbers, central limit theorem, etc.
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Part 2: Discrete time random processes
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Remember: Random variables

The name random variable suggests a variable that takes on values
randomly

An observer measuring the amount of ‘noise’ on a communication
link sees a random variable

Mathematically, a random variable is neither random nor a variable

A random variable is just a function mapping one sample space (part
of a probability space) into another space (subset of the real-line
space)

Random variables in signal processing

A system transfers some ‘signal’ (of interest) through a noisy channel
(electronic systems, medium of propagation, interfering signals)

Signal and noise are uncertain, unpredictable, random

No matter how much we know about the past, the future is hard to
predict
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Discrete-time random processes:

A process is the result of an experiment

Digital signal processing generates tons of examples:
speech,
visual signals (images, videos),
sonar and radar,
geophysical,
astrophysical,
biological signals, ...
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Signal processing systems

Basic operations: differentiation, integration/summation,
multiplication, convolution, ...

Both with (quasi) continuous (waveforms) and discrete-time signals
(sequences)

Probabilistic study of signals = study of averages over ensembles of
waveforms or sequences

The underlying probability theory = calculus of averages

What and how do we measure? Typically on a single member of the
ensemble (a waveform/sequence) + averaging

Signal-to-noise error (SNR): mean/variance measured by time averaging

Channel equalizer: which removes distortion → (time-averaged) MSE

Binary digital transmission system: probability error (PE) is measured by
computing the relative frequency of received bits in error over a long
stream of bits
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Example: The SNR problem in communication systems

Study a communication system cannot be done looking at just one
signal, but an ensemble of signal+noise processes

We want to measure expected values (prob. params.) over the
ensembles:

Signal-to-noise ratio (SNR): relative strength of signal and noise

SNR (dB) = 10 log

(
σ2

x

σ2
n

)
, x = s + n

Mean-square-error (MSE): dissimilarity between a noisy signal and the
clean version

MSE = E{(x − s)2}

Probability of error (PE): likelihood of making an incorrect decision

PE = E{[ŝ = s]}
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Random processes

“Random processes are the probabilistic models of ensembles of
waveforms and sequences”

Outline:
1 Definition of a random process
2 Temporal characteristics of random processes

Stationarity, WSS, and Ergodicity
Auto-correlation, auto-covariance
Cross-correlation, cross-covariance
Dependence

3 Spectral characteristics of random processes
Periodogram
Correlogram
Power spectral density (PSD)

4 Signal Processing applications
Interpolation
Noise-immunity
Signal detection, extraction and prediction

5 Examples of random processes
Bernoulli, Binomial, random walk
Markov, Wiener and Poisson processes
Autorregressive and moving average processes
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Definition of random process

A random process X (t, s) is a random function of time t and a
sample-point variable s

X (t, ·) is a function of sample points, i.e. a random variable

X (·, s) is a function of time, i.e. a sample function

Intuition and notation for random processes

Concept: Enlarging the random variable to include time

Sometimes we use stochastic process instead of random process

A random variable x becomes a function of the possible outcomes (values)
s of an experiment and time t: x(s, t)

The family of all such functions is called a random process, X (s, t)

A random process becomes a random variable for fixed time
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Ensemble and realization

X (s, t) represents a family or ensemble of time functions

Convenient short form x(t) for specific waveform of the random process
X (t)

Each member time function is called a realization

The complete collection of sample functions of a random process is called
the ensemble
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Statistical samples of a:

Continuous-time random process

Discrete-time random process
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Statistical samples of a:

Discrete-value, continuous-time random process

Discrete-value, discrete-time random process
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(Generalized) Harmonic Analysis Studies the deterministic (non-probabilistic)
theory of random processes based on time-averages

Empirical auto-correlation decreases with delay τ

RX (τ) = lim
N→∞

1

2N + 1

N∑
n=−N

X (nτ + n)X (nτ)

Y (t) is narrow-band: thermal noise at a lower temperature (less collisions)

X (t) is wide-band: thermal noise at a higher temperature (more collisions)
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Empirical auto-correlation function (from a discrete-time average)

R̂X (τ) = lim
N→∞

1

2N + 1

N∑
n=−N

X (nτ + n)X (nτ)

Autocorrelation function (from a continuous-time average):

R̂X (τ) = lim
N→∞

1

T

∫ T/2

t=−T/2

X (t + n)X (t)dt

Autocorrelation is related to the frequency composition of signals!

We can study the frequency components via time-averages!

Discrete/continuous autocorr are related for a finite (window)
computation of the averaging/integration
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Stationary process:
“A stationary process (or strict(ly) stationary process or strong(ly)
stationary process) is a stochastic process whose joint probability
distribution does not change when shifted in time.”
Parameters such as the mean and variance, if they are present, also do not
change over time and do not follow any trends
Stationarity is useful in time series analysis

Cyclostationary process:
“A cyclostationary process is a signal having statistical properties that vary
cyclically with time”.
A cyclostationary process can be viewed as multiple interleaved stationary
processes
Examples: temperature, solar radiation, etc.
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Stationary process, formally:
Let {Xt} be a stochastic process and let FX (xt1+τ , . . . , xtk +τ ) represent the
cumulative distribution function of the joint distribution of {Xt} at times
t1 + τ, . . . , tk + τ
Then, {Xt} is said to be stationary if, for all k, for all τ , and for all
t1, . . . , tk , FX (xt1+τ , . . . , xtk +τ ) = FX (xt1 , . . . , xtk )
Since τ does not affect FX (·), FX is not a function of time
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Stationary process, examples:

White noise is stationary

The sound of a cymbal clashing, if hit only once, is not stationary because
the acoustic power of the clash (and hence its variance) diminishes with
time

Some AR and MA processes may be either stationary or non-stationary,
depending on the parameter values (poles inside/outside unit circle in
z-domain)

Let Y have a uniform distribution on (0, 2π] and define the time series
{Xt} by

Xt = cos(t + Y ) for t ∈ R

Then {Xt} is strictly stationary
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Wide-sense stationarity (WSS): AKA weak-sense stationarity, covariance
stationarity, or second-order stationarity

WSS random processes only require that 1st moment and covariance do
not vary with respect to time

The mean function of a WSS continuous-time random process x(t):

E[x(t)] = mx (t) = mx (t + τ) for all τ ∈ R

→ the mean function mx (t) must be constant

The autocovariance function of a WSS continuous-time RP x(t):

E[(x(t1)−mx (t1))(x(t2)−mx (t2))] = Cx (t1, t2) =

= Cx (t1 + (−t2), t2 + (−t2)) = Cx (t1 − t2, 0).

→ the covariance function depends only on the difference between t1 and
t2, and only needs to be indexed by one variable rather than two variables:

Cx (t1 − t2, 0)→ Cx (τ) where τ = t1 − t2.

This implies that the autocorrelation depends only on τ = t1 − t2:

Rx (t1, t2) = Rx (t1 − t2)
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Weak or wide-sense stationarity (WSS), advantages:

When processing WSS random signals with linear, time-invariant (LTI)
filters, it is helpful to think of the correlation function as a linear operator

Since it is a circulant operator (depends only on the difference between the
two arguments), its eigenfunctions are the Fourier complex exponentials

Additionally, since the eigenfunctions of LTI operators are also complex
exponentials, LTI processing of WSS random signals is highly tractable–all
computations can be performed in the frequency domain

Thus, the WSS assumption is widely employed in signal processing
algorithms

Jointly wide-sense stationarity:
Two processes Xt and Yt are jointly WSS if each one is WSS and the
cross-correlation depends only on the difference between time-indices:

RXY (τ) = E{XtYt−τ}
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Ergodicity:

An ergodic dynamical system has the same behavior averaged over time as
averaged over the space of all the system’s states (phase space)

Ergodicity is where the ensemble average equals the time average

Examples:
In physics, a system satisfies the ergodic hypothesis of thermodynamics
In statistics, a RP for which the time average of one sequence of events is
the same as the ensemble average
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Ergodicity:

When a random process is WSS, its mean does not depend on time

Hence, the RVs {...,X (−1),X (0),X (l), ...} all have the same mean

At least as far as the mean is concerned, when we observe a realization of
a random process, it is as if we are observing multiple realizations of the
same random variable

This suggests that we may be able to determine the value of the mean
from a single infinite length realization

If it is true that the temporal average converges to the true mean µ = 1,
then the temporal averaging is equivalent to ensemble averaging or that
the “random process is ergodic in the mean”

This property is of great practical importance
since it assures us that by averaging enough
samples of the realization, we can determine the
mean of the random process

A random process is ergodic in the autocorrelation
if we can determine the autocorrelation by
averaging enough autocorrelation samples of the
realization
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Ergodicity, example in electronics:

Each resistor has thermal noise associated with it and it depends on the
temperature

Take N resistors (N should be very large) and plot the voltage across
those resistors for a long period

For each resistor you will have a waveform

Calculate the average value of that waveform

This gives you the time average

You should also note that you have N waveforms as we have N resistors

These N plots are known as an ensembles

Now take a particular instant of time in all those plots and find the
average value of the voltage

That gives you the ensemble average for each plot

If both ensemble average and time average are the same then it is ergodic.
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(Discrete) ergodicity, summarizing:

Not always possible to obtain different samples from the RP

Sometimes we only have one sample!

Can we infer the statistical properties of the process using just one sample
from the process? If so, the process is ergodic.

A process is ergodic if the mean is:

〈X (n)〉 =
1

2N + 1

N∑
n=−N

X (n) = E{X (n)}

A process is ergodic if the autocorrelation is:

〈X (n)X (n − l)〉 = E{X (n)X (n − l)}

Two processes X and Y are joint ergodic if:

〈X (n)Y (n − l)〉 = E{X (n)Y (n − l)}
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Remember the important definitions:

Mean of a random process:

E{X (t)} = mX (t), where mX (·) is a ‘mean waveform’

Autocorrelation of a random process:

E{X (t1)X (t2)} = RX (t1, t2), E{X (t)X (t + τ)} = RX (t, t + τ)

Autocorrelation of a WSS random process:

RX (τ) = RX (t, t + τ), RX (τ) = RX (−τ), RX (0) = E{X 2(t)}

Autocovariance of a random process:

E{[X (t1)−mX (t1)][X (t2)−mX (t2)]} = KX (t1, t2)

Cross-correlation for two random processes:

E{X (t1)Y (t2)} = RXY (t1, t2)

Cross-covariance for two random processes:

E{[X (t1)−mX (t1)][Y (t2)−mY (t2)]} = KXY (t1, t2)
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Expectation in MATLAB:

Recall:

E{X} =

∫ ∞
−∞

αfX (α)dα

In real life we don’t have the PDF, just observations (samples)!

In real life we never have all realizations, so we need to assume ergodicity!

Given X (n), approximate the ensemble average with the time average:

E{X} ≈ 1

N

N∑
n=1

X (n)
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PDF estimation in MATLAB:

The PDF is estimated by the normalised histogram
>> hist(x)

>> [counts,centers] = hist(x,nbin)

>> histfit(x)

The histogram gives directly the count of all different values per bin

Normalise this, and we obtain the probability that any value can occur
(density).

This multiplied with the hit number of all possible values gives, naturally,
the count of all values

Explore: >> help ksdensity

Discuss: the problems in multidimensional PDF estimation
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Autocorrelation function estimation in MATLAB:

The ACF contains information about the history of the random process

Assuming a large time interval 2T and ergodicity (the RP is WSS)

RX (t, t + τ) = E{X (t, t + τ)} ≈ 1

2T

∫ t+T

t−T

x(t)x(t + τ)dt ≈ RX (τ),

or in discrete notation

RX (t, t + τ) ≈ 1

N

N∑
n=1

x(n)x(n + k),

which is simply a convolution without reversing

Autocorrelation in MATLAB
>> [acf,lags,bounds] = autocorr(y);

>> x=randn(1,1000); plot(x); hist(x,100); plot(autocorr(x));
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Autocorrelation function estimation in MATLAB:

The ACF contains information about the history of the random process

Assuming a large time interval 2T and ergodicity (the RP is WSS)

RX (t, t + τ) = E{(t, t + τ)} ≈ 1

2T

∫ t+T

t−T

x(t)x(t + τ)dt ≈ RX (τ),

or in discrete notation

RX (t, t + τ) ≈ 1

N

N∑
n=1

x(n)x(n + k),

which is simply a convolution without reversing

Autocorrelation in MATLAB
>> [acf,lags,bounds] = autocorr(y);

>> x=sin(1:(2*pi/1000):2*pi)+0.1*randn(1,1001);

Play around with: >> load sunspot.dat
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Cross-correlation function (XCF) estimation in MATLAB:

The XCF contains information about the cross-history between two
random processes

E{X (t1)Y (t2)} = RXY (t1, t2)

Cross-correlation in MATLAB
>> [xcf,lags,bounds] = crosscorr(y1,y2);

Toy example in MATLAB
% Random sequence of 100 Gaussian deviates and a delayed

% version lagged by 4 samples

>> x = randn(100,1); % 100 Gaussian deviates N(0,1)

>> y = lagmatrix(x,4); % Delay it by 4 samples

>> y(isnan(y)) = 0; % Replace NaN’s with zeros

>> plot(x,’b’);hold on,plot(y,’r’)

>> crosscorr(x,y) % It should peak at the 4th lag
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Real data collected by a sonar:

The HUGIN autonomous underwater vehicle

Wideband interferometric synthetic aperture sonar

Transmitter that insonifies the seafloor with a LFM pulse

Array of receivers that collects the echoes from the seafloor

The signal scattered from the seafloor is considered to be random

The signal consists of a signal part and additive noise
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Question 1: is the process stationary?

Single channel timeseries from one ping

Consider the collected data a random process.

>> load sonardata2;

>> channel = 10;

>> plot(1:10000,real(data(:,channel)));
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Question 1: is the process stationary?

nblocks = 200;
blocksize = 50;
step = (blocksize/4);
for n = 1:nblocks

statarr(n,1) = mean( data( (n-1)*step+1:(n-1)*step+blocksize ) );
statarr(n,2) = std( data( (n-1)*step+1:(n-1)*step+blocksize ) );

end
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Question 1: is the process stationary? No!

Divide into “similar” regions before we continue our statistical analysis

Region 1: Backscattered signal from the seafloor

Region 2: Additive noise
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Question 2: Is the probability density function Gaussian?

Approach: Compare the theoretical PDF with the estimated PDF (from
the normalised histogram)

Easier: >> histfit

Play around with other statistics to assess deviation from a Gaussian
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Question 2: PDF estimation is more complex than expected!

The sonar data is complex!

x(t) = xRe(t) + jxIm(t) = ae jφ(t)

The complex random sequence can be considered two independent random
sequences (in a vector) with joint PDF

We can check the PDF of the real and imaginary part separately

If xRe(t) and xIm(t) are statistically independent, it can be shown that the
PDF of the amplitude (or magnitude)

a(t) =
√

xRe(t)2 + xIm(t)2

should be a Rayleigh distrbution, and that the PDF of the phase

φ(t) = tan−1(xIm/xIm)

should be uniform
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Question 2: PDF estimation in region 1

>> help pdf, raylpdf
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Question 2: PDF estimation in region 2

>> help pdf, raylpdf
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Question 2, conclusions

In region 2, the real and imaginary part fits a Gauss well

The phase is also uniform (all phase values are equally probable)

The magnitude also fits well a Rayleigh distribution

In region 1, this is not the case.

The histogram indicates that the PDF is heavy tailed.

This means that it is more likely to have spikes (large amplitude values) in
the time-series than in a time-series with Gaussian PDF.

This actually fits well the theory of acoustic scattering.

Discuss: What can an estimate of the PDF be used to?
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Question 3: are real and complex parts dependent?

If the normalised cross-covariance is zero, the two processes are said to be
uncorrelated

Play around with >> corr, corrcoef, cov,
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Question 3: are channels dependent?

If the normalised cross-covariance is zero, the two processes are said to be
uncorrelated

Play around with >> corr, corrcoef, cov,
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Question 3: are real and complex channels dependent?

The real and imaginary part of the signal is uncorrelated

The individual channels (receiver elements) are correlated

What physical phenomenon could cause this?

The channels are strongly correlated in region 2 (the noise region)

Discuss: Why is this?
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Remember: The ACF characterizes the temporal properties of the signals
Now: What about the spectral properties?

Empirical auto-correlation decreases with delay τ

RX (τ) = lim
N→∞

1

2N + 1

N∑
n=−N

X (nτ + n)X (nτ)

Y (t) is narrow-band: thermal noise at a lower temperature (less collisions,
lower frequencies)
X (t) is wide-band: thermal noise at a higher temperature (more collisions,
higher frequencies)
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Fourier transform

For a deterministic sequence xT (t), the Fourier transform is defined as

F [XT (t)] = X̃T (f ) = X̃T (ω) =

∫ ∞
−∞

XT (t)e−j2πftdt

The Fourier transform is simply called the spectrum

ω = 2πf is understood as angular frequency (if t is time)

The inverse Fourier transform

XT (f ) := XT (ω) =

∫ ∞
−∞

X̃T (t)e+j2πftdf
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Periodogram or finite-time spectrum

R̂X (τ) = lim
N→∞

1

T

∫ T/2

t=−T/2

X (t + n)X (t)dt

Consider the finite segment:

XT (t) =

{
X (t) |t| ≤ T/2

0 |t| > T/2

Compute the Fourier transform:

F [XT (t)] = X̃T (f ) =

∫ ∞
−∞

XT (t)e−j2πftdt, XT (f ) =

∫ ∞
−∞

X̃T (t)e+j2πftdf

X̃T (f ) is the complex density of complex sinusoids

Periodogram is the (convenient) time-normalized squared magnitude:

(1/T )|X̃T (f )|2 =

∫ ∞
−∞

RX (τ)T e−j2πf τdτ

where

RX (τ) =
1

T

∫ T/2

t=−T/2

XT (t + n)XT (t)dt

is the correlogram
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Periodogram or finite-time spectrum
>> Fs = 1000;

>> t = 0:1/Fs:.3;

>> x = cos(2*pi*t*200)+0.1*randn(size(t));

>> periodogram(x,[],’onesided’,512,Fs)
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Correlogram or finite-time autocorrelation

Correlogram:

RX (τ) =
1

T

∫ T/2

t=−T/2

XT (t + n)XT (t)dt =
1

T

∫ T/2−|τ |

−T/2

X (t + |τ |)X (t)dt

Kind of autocorrelation related to the frequency composition of the finite
segment XT (t):

lim
T→∞

RX (τ)T = R̂X (τ)

“The autocorrelation R̂X is related to the frequency composition of X (t)
through the Fourier transform”
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Correlogram or finite-time autocorrelation

The autocorrelation function is an important diagnostic tool for analyzing
time series in the time domain

We use the autocorrelation plot, or correlogram, to better understand the
evolution of a process through time by the probability of relationship
between data values separated by a specific number of time steps

The correlogram plots correlation coefficients on the vertical axis, and lag
values on the horizontal axis

A correlogram is not useful when the data contains a trend; data at all
lags will appear to be correlated because a data value on one side of the
mean tends to be followed by a large number of values on the same side of
the mean. We must remove any trend in the data before you create a
correlogram

Explore: >> diff, parcorr

>> [acf,lags,bounds] = autocorr(y);

>> x=sin(1:(2*pi/1000):2*pi)+0.1*randn(1,1001);
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Power spectral density (PSD):

Problem: Since (1/T )|X̃T (f )|2 shows erratic behavior as T →∞, we do a
sliding averaging (centered in u):

ŜX (f ) = lim
T→∞

lim
U→∞

1

U

∫ U/2

−U/2

1

T
|X̃T (u, f )|2du =

∫ ∞
−∞

R̂X (τ)e−j2πf τdτ

Example: Power spectral density (PSD) for the waveform X is the frequency
density of the time-averaged power that the voltage X (t) would disipate in a
resistance:

1

2∆
〈P〉 ≈ ŜX (f )

r
[watts], ∆ : small bandwidth
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Power spectral density (PSD) example: The power spectral density reveals
frequency selective information

>> clear;clc;close all;
>> n = 1000; dt = 0.001; n = 1000; t= [0:n-1] * dt; f = 5;
>> x = sin(2*pi*f*t) + 0.1*randn(1,n);
>> [covx,lags] = xcov(x);
>> figure,plot(t,x); xlabel(’Time’),ylabel(’Magnitude’)
>> figure,plot(lags,covx); xlabel(’Lags’),ylabel(’Autocovariance’)
>> Sx = abs(fftshift( fft( x ) ));
>> nfreq = [-n/2:n/2-1]/n / dt;
>> figure,plot(nfreq,Sx);
>> xlabel(’Normalized frequency’),ylabel(’Power spectral density (PSD)’)
>> st = exp( j*2*pi*f*t ); Sw = abs(fftshift(fft(st)));
>> figure,plot(nfreq,Sw);

>> xlabel(’Normalized frequency’),ylabel(’Fourier spectrum’)
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Power spectral density (PSD) in MATLAB:

>> pburg PSD using Burg method
>> pcov PSD using covariance method
>> peig Pseudospectrum using eigenvector method
>> periodogram PSD using periodogram
>> pmcov PSD using modified covariance method
>> pmtm PSD using multitaper method (MTM)
>> pmusic Pseudospectrum using MUSIC algorithm
>> pwelch PSD using Welch’s method
>> pyulear PSD using Yule-Walker AR method

Spectral estimation will be a separate topic in this course ...

We will see details of these algorithms and more examples ...

116 / 335



Intro Random Process Temporal Spectral Applications Examples Conclusions

Transfer function of a filter
If X (t) is the input to a linear time-invariant filter with impulsive-response
function h(t), and Y (t) is the output

Y (t) =

∫ ∞
−∞

h(t − u)X (u)du = X (t)⊗ h(t),

then the input and output autocorrelations are related via convolution

R̂Y (τ) =

∫ ∞
−∞

R̂X (τ − u)rh(u)du = R̂X (τ)⊗ rh(τ)

rh(τ) =

∫ ∞
−∞

h(τ + v)h(v)dv = h(τ)⊗ h(−τ)

Convolution theorem for Fourier transforms allows to show:

ŜY (f ) = ŜX (f )|H(f )|2

where

H(f ) =

∫ ∞
−∞

h(t)e−j2πftdt

which is the transfer function.
Analogy:

Ỹ (f ) = X̃ (f )H(f )

where X̃ (f ), Ỹ (f ) are the Fourier transforms of the input and output
waveforms (equivalent for the finite case, sequences and summations)
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1: Interpolation of time-sampled waveforms

Let X (t) be a random (unpredictable) waveform

Let {X (iT ) : i = 0,±1,±2, . . .} the time-sampled version

Let be p(t) an interpolating pulse

The approximation to the waveform is:

X (t) ≈ X̂ (t) =
∞∑
−∞

X (iT )p(t − iT )

How well do we do it?

Error power = MSE = 〈[X (t)− X̂ (t)]2〉

Nyquist-Shannon sampling theorem: MSE=0 iff PSD is bandlimited to
less than half the sampling rate:

ŜX (f ) = 0, |f | ≥ B >
1

2T
,

and the interpolating pulse is an appropriately designed bandlimited pulse:

p(t) =
sin(πt/T )

πt/T
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2: Signal detection

Detection of a finite-energy signal buried in noise is very important in
signal processing (radar, sonar, communications, etc.)!

Try to design detectors that maximize SNR

SNR defined as the ratio of the detector output Y when the signal alone is
present over the time-average power of the detector output when the noise
alone is present

H(f ) =
S∗(f )e−j2πfto

ŜN (f )
,

where S are the Fourier transforms of the signal and the noise

This is known as the matched filter!

Optimal detection statistic:

SNRmax =

∫ ∞
−∞

|S(f )|2

ŜN (f )
df ≈

√
T

2

∫ ∞
−∞

(
SS (f )

SN (f )

)2

df

Problem: How to estimate the noise spectrum? Let’s see the signal
extraction problem ...
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3: Signal extraction

Extract a random signal buried in noise:

X (t) = S(t) + N(t), Ŝ(t) = X (t)⊗ h(t)

We want to determine the filter transfer function H(f ) that minimizes
MSE:

Error power = MSE = 〈[S(t)− Ŝ(t)]2〉

We will see that:

H(f ) =
ŜS (f )

ŜS (f ) + ŜN (f )

This minimizes MSE:

MSEmin =

∫ ∞
−∞

ŜS (f )ŜN (f )

ŜS (f ) + ŜN (f )
df

High attenuation at the frequencies where noise dominates the signal
power, and viceversa
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4: Signal prediction

Prediction of the future value of a time-discrete random process is very
important (forecasting in economics, meteorology, bioengineering,
electronics, ...)

Let’s use {X ([k − i ]T ) : i = 0, 1, 2, . . . , n − 1} to predict value
X ([k + p]T ) (p steps into the future!):

X̂ ([k + p]T ) =
n−1∑
i=0

hi X ([k − i ]T )

We want to determine the transfer function H(f ) that minimizes MSE:

Error power = MSE = 〈[X ([k − i ]T )− X ([k − i ]T )]2〉

We will see that the optimal n prediction coefficients satisfy:

n−1∑
i=0

R̂X ([j − i ]T )hi = R̂X ([j + p]T ), j = 0, 1, 2, . . . , n − 1,

This minimizes MSE:

MSEmin = R̂X (0)−
n−1∑
i=0

hi R̂X ([i + p]T )
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Main conclusion: The PSD and the autocorrelation
function play a fundamental role in signal processing
applications!
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Example 1: Bernouilli process: consider an infinite sequence of independent
Bernoulli trials of a binary experiment, such as flipping a coin. The resultant
sequence of event indicators:

xn =

{
1 success in n − th trial

0 failure in n − th trial

Example of a discrete-value, discrete-time random process

Probability of success:
P{Xn = 1} = p

Mean:
mX (n) = p,

which is independent of time n

Autocovariance:

KX (n1, n2) =

{
p(1− p) n1 − n2 = 0

0 n1 − n2 6= 0
,

which depends only on time difference n1 − n2
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Example 2: Binomial counting process: consider counting the number of
successes in the Bernoulli process:

Yn =
n∑

i=1

Xi

The infinite sequence {Yn} is an example of a discrete-value, discrete-time
random process
Mean:

mY (n) = n p,

which depends on time n
Autocovariance:

KY (n1, n2) = p(1− p) min{n1, n2},
where

min{n1, n2} =

{
n1 n1 − n2 ≤ 0

n2 n1 − n2 ≥ 0
,

which depends on more than time difference n1 − n2

Probability distribution for n Bernoulli trials yielding k successess:

pk (1− p)n−k

The total number of of sequences is the binomial coefficient:

n!
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Example 3: Random-walking process: modify the Bernoulli process to ±1:

zn =

{
+1 success in n − th trial

−1 failure in n − th trial

and consider the sum of these binary variables Wn =
∑n

i=1 Zi

The underlying process Z is related to the
Bernoulli process X :

Zi = 2(Xi −
1

2

and then the random-walk process W is
related to the binomial counting process Y by

Wn = 2Yn − n

Mean: mW (n) = n(2p − 1)

Autocovariance: KW (n1, n2) = 4p(1− p) min{n1, n2}
The underlying Bernoulli process Z can be recovered from the random
walk W by differencing:

Zn = Wn −Wn−1

The random walk is called an independent-increment process
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Example 4: Random-amplitude sine wave random process: a
continuous-time process:

X (t) = A sin(ωot + θ),

for which ωo and θ are non-random

Mean:
mX (t) = mA sin(ωot + θ),

Autocovariance:

KX (t1, t2) = E{A2} sin(ωot1 + θ)(ωot2 + θ)

Exercise: compute the mean mY (t) and autocovariance RY (t1, t2) of a
random-amplitude-and-phase sine wave process

Y (t) = A sin(ωot + θ),

where the random θ is independent of the random amplitude A and is
uniformly distributed on the interval [−π, π)
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Example 5: Markov process: stochastic process that satisfies the Markov
property

The Markov property: if one can make predictions for the future of the
process based solely on its present state just as well as one could knowing
the process’s full history

Conditional on the present state of the system, its future and past are
independent

A Markov process can be thought of as ‘memoryless’ process

The specific values x1, x2, x3, . . . that can be taken on by the discrete
random variables in a Markov chain are called states

Chapman-Kolmogorov Binary digital system
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Example 5a of Markov process: Gambling:

Suppose that you start with $10, and you wager $1 on an unending, fair,
coin toss indefinitely, or until you lose all of your money.

If Xn represents the number of dollars you have after n tosses, with
X0 = 10, then the sequence {Xn : n ∈ [0,∞)} is a Markov process.

If I know that you have $12 now, then it would be expected that with even
odds, you will either have $11 or $13 after the next toss.

This guess is not improved by the added knowledge that you started with
$10, then went up to $11, down to $10, up to $11, and then to $12.

The process described here is a Markov chain on a countable state space
that follows a random walk
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Example 5b of Markov process: A birth-death process:

Suppose that you are popping one hundred kernels of popcorn, and each
kernel will pop at an independent, exponentially-distributed time.

Let Xt denote the number of kernels which have popped up to time t.
Then this is a continuous-time Markov process.

If after some amount of time, I want to guess how many kernels will pop
in the next second, I need only to know how many kernels have popped so
far.

It will not help me to know when they popped, so knowing Xt for previous
times t will not inform my guess.

The process described here is an approximation of a Poisson process –
Poisson processes are also Markov.
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Example 5c of Markov process: Dynamical systems:

Markov processes are present in the finite-order linear discrete-time
systems described by the difference equation:

Xn+1 = anXn + Zn,

where {Zn} is the excitation sequence, {Xn} is the sequence of system
states, and {an} models the internal feedback.

Future state Xn+1 depends on only the current state, past states are
irrelevant.

Thus, if excitation {Zn} has no memory (i.e. sequence of independent
random variables), then the sequence of states is a Markov process.

In continuous-time dynamical systems happens the same:

dX

dt
= a(t)X (t) + Z(t)→ dX (t) = a(t)X (t)dt + Z(t)dt︸ ︷︷ ︸

dW (t)

,

where dX (t) depends on only the current state X (t) and if the increment
dW (t) is independent of the past, X (t) is a Markov process
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Example 6: Wiener process: is a continuous-time stochastic process, aka
Brownian motion process very useful to model motion in gases and liquids,
thermal noise in electrical conductors and various diffusions
Three conditions:

The initial position is zero: W (0) = 0

The mean is zero: E{W (t)} = 0

The increments of W (t) are independent, stationary and Gaussian

Unconditional probability density function:

fWt (x , t) =
1√
2πt

e−
x2

2t

The expectation is zero: E[Wt ] = 0.

The variance is t:

V(Wt) = E
[
W 2

t

]
− E2[Wt ] = E

[
W 2

t

]
= t

Covariance: K(Ws ,Wt) = min(s, t)

Correlation:

R(Ws ,Wt) =
K(Ws ,Wt)

σWsσWt

=

√
min(s, t)

max(s, t)
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Example 7: Poisson process: stochastic process that counts the number of
events and the time points at which these events occur in a given time interval.

Good model of radioactive decay, shot noise in electronic devices, photon
detection, telephone calls, and document retrieval
Place at random m points in [0,T ], seek the probability Pt(n) of the event
that n ≤ m lie in the subinterval [0, t], t < T
Binomial distribution:

Pt(n) =
m!

m!(m − n)!
pn(1− p)m−n, p = t/T : prob. success

The Poisson theorem (n ∼ mp, limm→∞(n/m) = p):

Pt(n) ≈ (mp)n

n!
e−mp =

(λt)n

n!
e−λt

Consequences: (1) number of points in two disjoint intervals are
statistically independent; (2) probability that n1 points lie in [τ1, τ1 + t1]
and n2 points lie in [τ2, τ1 + t2] is Pt1 (n1)Pt2 (n2)
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Example 7a of a Poisson process: Shot noise

Consider a vacuum-tube diode in which electrons emitted from the heated
cathode are attracted to the anode

Let the electron emission rate be temperature-limited

Emission times is well modelled by a Poisson process

The current through the diode resulting from these emissions:

X (t) =
N∑

i=1

(t)h(t − Ti ), t ≥ 0,

where t = 0 is the time at which the diode is energized, N(t) is the
number of emissions during [0, t), {Ti} are the emission times, and the
form of the pulse h is a function of the cathode-anode geometry,
temperature and voltage.

Shot noise occurs also in oher electronic devices: generation recombination
noise in semiconductors, emission noise in PN devices, microwave tube
noise, etc.
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Example 7b of a Poisson process: Photon detection

Photon counting in optical devices, where shot noise is associated with the
particle nature of light

For large numbers the Poisson distribution approaches a normal
distribution

Since the standard deviation of shot noise is equal to the square root of the
average number of events N, the signal-to-noise ratio (SNR) is given by:

SNR =
N√
N

=
√

N

Thus when N is very large, the SNR is very
large as well, and any relative fluctuations in
N due to other sources are more likely to
dominate over shot noise

However when the other noise source is at a
fixed level, such as thermal noise, increasing N
(the DC current or light level, etc.) can
sometimes lead to dominance of shot noise

134 / 335



Intro Random Process Temporal Spectral Applications Examples Conclusions

Example 8: MA: Moving average process:
Many complicated random processes are well modeled as a linear
operation on a simple process
For example, a complicated process with memory might be constructed by
passing a simple iid process through a linear filter
If Xn inputs a linear system described by a convolution, there is a
δ-response hk such that the output process Yn is given by

Yn =
∑

k

Xn−k hk

A linear filter like this is called a moving-average filter since the output is a
weighted running average of the inputs

If only a finite number of the hk are not zero, then
the filter is called a finite-order moving-average
filter (or an FIR filter, for “finite impulse
response”)

The order of the filter is equal to the maximum
minus the minimum value of k for which the hk

are nonzero. For example, if Yn = Xn + Xn1, we
have a first-order moving-average filter

The associated transfer function is stable, “all
zeros” filter
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Example 9: AR: Autorregressive process:

Another form of difference equation describing a linear system is obtained
by convolving the outputs to get the inputs instead of vice versa

For example, the output process may satisfy a difference equation of the
form

Xn =
∑

k

ak Yn−k

For convenience it is usually assumed that a0 = 1 and ak = 0 for negative
k and hence that the equation can be expressed as

Yn = Xn −
∞∑

k=1

ak Yn−k

The numbers {ak} are the regression coefficients,
and the filter is called auto-regressive (or an IIR
filter, for “infinite impulse response”)

The order of the filter is equal to the maximum
minus the minimum value of k for which the ak

are nonzero

The associated transfer function may not be
stable, “all poles” filter
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Example 10: ARMA: Autorregressive and moving average process:

Combination of AR + MA

ARMA filters are said to be finite-order if only a finite number of the ak ’s
and bk ’s are not zero

The output process may satisfy a (finite) difference equation of the form

Yn =
P∑

k=1

ak Yn−k +
Q∑

k=0

bk Xn−k

One can often describe a linear system by any of
these filters, and hence one often chooses the
simplest model for the desired application

Occam’s razor and parsimonious

An ARMA filter representation with only three
nonzero ak and two nonzero bk would be simpler
than either a pure AR or pure MA representation,
which would in general require an infinite number
of parameters
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Reviewed:
Random variables, continuous/discrete
process, SNR, MSE, PE, duality between
probability models of ensembles of
waveforms/sequences and random
processes, applications in signal
processing (interpolation, signal
detection, extraction, prediction),
examples of processes (Bernoulli,
Binomial, random walk, Markov, Wiener,
Poisson, AR/MA/ARMA), types of
random processes, mean,
autocorrelation, autocovariance,
cross-correlation, cross-covariance,
stationarity, WSS, Ergodicity, etc.
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Part 3: Spectral estimation
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Basic Physics: travelling waves

Travelling waves are efficient information carriers

Examples: electromagnetic, acoustic (pressure waves), seismic (shear
waves), optical (light)

When do we use waves and need frequency domain representations:
wireless communications
audio, music
imaging: radar, sonar, seismics
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Waves and frequency representation

The waves can be described by their frequency coverage

Parameters to characterise the waves are:
Wave period T [s]
Frequency f = 1/T [Hz]
Angular frequency ω = 2πf [rad/s]
Wavelength λ = c/f [m]
Wavenumber k = 2π/λ [1/m]
Phase velocity c [m/s]

141 / 335



Introduction Periodogram Nonparametric Parametric Conclusions

Applications of spectral estimation

Vibration analysis, resonance characterisation, harmonic analysis

Signal analysis: Classify signals: NB, BB, LP, HP, non-stationary...

System identification: Identify LTI system transfer functions

Linear prediction, filtering, detection: Spectrum determines optimum
methods

Signal compression, audio/video, voice encoding/decoding

Beamforming/Direction finding/imaging

142 / 335



Introduction Periodogram Nonparametric Parametric Conclusions

Waves and frequency representation

Narrow band signal description

s(t) = a(t)cos(ωot + φ(t)) = <{a(t)e j(ωo t+φ(t))}

where ωo = 2πfo is called the center frequency

a(t) and φ(t) are often assumed as slowly varying (compared to the wave
period)
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The Fourier transform

For a deterministic sequence xT (t), the Fourier transform is defined as

F [XT (t)] = X̃T (f ) = X̃T (ω) =

∫ ∞
−∞

XT (t)e−j2πftdt

The Fourier transform is simply called the spectrum

ω = 2πf is understood as angular frequency (if t is time)

The inverse Fourier transform

XT (f ) := XT (ω) =

∫ ∞
−∞

X̃T (t)e+j2πftdf
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The Fourier transform of a deterministic signal

The frequency coverage is related to the sampling interval as ftot = 1/δt

The frequency disctretization is related to the time series length as
δf = 1/ttot = 1/Nδt

dt = 0.001;

n = 1000;

t = [0:n-1] * dt; f = 33;

st = cos( 2*pi*f*t );

Sw = abs(fftshift(fft(st)));

faxe = [-n/2:n/2-1]/n / dt;

figure, plot(t,st)

figure, plot(faxe,Sw)
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The Fourier transform of a deterministic complex signal

The Fourier transform of a real sequence results in a real symmetric
spectrum

The Fourier transform of a complex sequence results in a complex
unsymmetric spectrum

dt = 0.001;

n = 1000;

t = [0:n-1] * dt; f = 33;

st = exp( j*2*pi*f*t );

Sw = abs(fftshift(fft(st)));

faxe = [-n/2:n/2-1]/n / dt;

figure, plot(t,st)

figure, plot(faxe,Sw)
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The power spectrum

A random process is an ensemble of discrete-time signals

Assume that the random process is Wide Sense Stationary

The autocorrelation of a WSS random process is a deterministic function
of delay (only)

The Fourier transform of the autocorrelation function is the power
spectrum or the power spectral density (Einstein-Wiener-Khintchine)

PX (ω) =

∫ ∞
−∞

RX (τ)e−jωτdτ

RX (τ) =
1

2π

∫ ∞
−∞

PX (ω)e jωτdω
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Spectral estimation

PSD estimation ≈ XCORR estimation
The basic method: the periodogram!
Performace measures: Bias, variance, spectral resolution
Many methods that improve performance:
>> pburg PSD using Burg method
>> pcov PSD using covariance method
>> peig Pseudospectrum using eigenvector method
>> periodogram PSD using periodogram
>> pmcov PSD using modified covariance method
>> pmtm PSD using multitaper method (MTM)
>> pmusic Pseudospectrum using MUSIC algorithm
>> pwelch PSD using Welch’s method
>> pyulear PSD using Yule-Walker AR method
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Overview of spectrum estimation techniques
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The periodogram

The periodogram is simply the discrete Fourier transform of the biased
estimator of the autocorrelation sequence

PX (ω) =
N−1∑

k=−N+1

R̂X (k)e−jωk

We introduce a window function and rewrite the autocorrelation

xN (n) = wR (n)x(n)

with the window function

wR (n) =

{
1 0 ≤ n < N

0 otherwise

The autocorrelation sequence becomes then

R̂X (k) =
1

N

∞∑
n=−∞

xN (n + k)x∗N (n) =
1

N
xN (k) ∗ x∗N (−k)
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The periodogram – alternative form

Taking the Fourier transform and applying the convolution theorem
(“convolution becomes multiplication in the other domain”), the
periodogram becomes

PX (ω) =
1

N
XN (ω) ∗ X ∗N (ω) =

1

N
|XN (ω)|2,

where

XN (ω) =
∞∑

n=−∞
xN (n)e−jωn =

N−1∑
n=0

x(n)e−jωn

is the discrete Fourier transform of the random sequence

Note the difference between the two different spectral estimates: One has
2N − 1 output frequencies, the other has N output frequencies
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Spectral estimation: which ACF estimator to use?
Estimating the power spectral density (PSD) is equivalent to estimating the
autocorrelation function (ACF).
→Which estimator do we choose?

The asymptotically unbiased (but still biased) estimator of the
autocorrelation is:

R̂b
X (k) =

1

N

N−1−k∑
n=0

xN (n + k)x∗N (n)

Why not choose the unbiased estimator (superscript u)

R̂u
X (k) =

1

N

N−1−|k|∑
n=0

xN (n + |k|)x∗N (n), |k| < N
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Spectral estimation: which ACF estimator to use?
For many stationary random processes of practical interest, the mean square
error (MSE) is

MSE(R̂b
X (k)) := E{(R̂b

X − R̂X )2} < E{(R̂u
X − R̂X )2} := MSE(R̂u

X (k))

MSE is a quality measure – Low MSE is good

We recall that the MSE is related to the variance and bias as

MSE(θ̂) = V(θ̂)︸︷︷︸
variance

+ (E(θ̂))2︸ ︷︷ ︸
bias2

This means that reducing the bias increases the variance for a given mean
square error — bias-variance dilemma
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Spectral estimation: which ACF estimator to use?

Variance: Consider maximum lag k = N − 1, then

R̂b
X (N − 1) =

1

N
x(N − 1)x∗(0)

while
R̂u

X (N − 1) = x(N − 1)x∗(0)

for which we see that the variance of R̂u
X (N − 1) is N2 times larger than

the variance of R̂b
X (N − 1)

Is all about variance of the estimator?

The performance of a spectral estimator can be characterised by several
different measures:

Bias and spectral leakage
Frequency resolution
Variance
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Bias and spectral leakage

The periodogram is the Fourier transform of the estimated autocorrelation
sequence

PX (ω) =
N−1∑

k=−N+1

R̂X (k)e−jωk

where

R̂u
X (k) =

1

N

N−1−|k|∑
n=0

x(n + |k|)x∗(n)

Even this unbiased estimator is biased!

E{R̂u
X (k)} =

1

N

N−1−|l|∑
n=0

E{x(n + |k|)x∗(n)} =
N − |k|

N
E{R̂X (k)}

The bias reduces with N
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Bias and spectral leakage

We write this as
E{R̂u

X (k)} = wB (k)RX (k)

where wB (k) is called a Bartlett window (triangular shape)

wB (n) =

{
N−|k|

N
|k| ≤ N

0 |k| > N

Using the convolution theorem, this becomes

E{P̂X (ω)} =
1

2π
WB (ω) ∗ PX (ω)

where WB is the Fourier transform of wB , which is a sinc squared

WB (ω) =

(
sin(Nω/2)

N sin(ω/2)

)2

156 / 335



Introduction Periodogram Nonparametric Parametric Conclusions

Bias and spectral leakage

The expected value of the periodogram is the true power spectrum
convolved with a sinc squared

The periodogram is a biased spectral estimator

It is however, asymptotically unbiased since

lim
N→∞

E{P̂X (ω)} = PX (ω)

This does not mean that everything’s fine!

“... for processes with spectra typical of those encountered in engineering,
the sample size must be extraordinarily large for the periodogram to be
reasonable unbiased.

Thomson
(1982)
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Bias example: single sinusoid without noise (deterministic)

The very slowly fall-off of the sinc-pattern causes the bias

This is also referred to as spectral leakage

Example: Autoregressive Moving Average (ARMA) process Spectral
leakage is especially evident when data records are short
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Bias example: random signal

Remember PDS: An ARMA process may be generated by filtering white
noise with a linear shift-invariant filter that has a rational system function

Algorithm: construct b and a coefficients

Theoretical spectrum is then calculated by using MATLAB freqz

ARMA model:

NZ = 1024;
b = poly( [-0.8, 0.97*exp(j*pi/4), 0.97*exp(-j*pi/4), ...
0.97*exp(j*pi/6), 0.97*exp(-j*pi/6) ] );
a = poly( [ 0.8, 0.95*exp(j*3*pi/4), 0.95*exp(-j*3*pi/4), ...
0.95*exp(j*2.5*pi/4), 0.95*exp(-j*2.5*pi/4) ] );
b = b*sum(a)/sum(b);
[h,faxe m] = freqz(b,a,NZ);
faxe m = faxe m / (2*pi);
P model = abs(h).2;
n=1024; % Data size
M=100; % Leading size (transient)
w=randn(M+n,1); % WGN sequence
x=filter(b,a,w); % Apply filter on WGN sequence
x=x(M+1:M+n); % remove transient
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Bias example: random signal

Now we filter a WGN throughout the filter

n=1024; % Data size
M=100; % Leading size (transient)
w=randn(M+n,1); % WGN sequence
x=filter(b,a,w); % Apply filter on WGN sequence
x=x(M+1:M+n); % remove transient
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Bias example: random signal

We want to investigate estimator bias which implies that we must suppress
estimator variance

We average 40 realizations to reduce the variance
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Window size and resolution

The periodogram is based on the autocorrelation sequence

R̂X (k) =
1

N

∞∑
n=−∞

xN (n + k)x∗N (n) =
1

N
xN (k) ∗ x∗N (−k)

where xN (n) = wR (n)x(n) and wR = 0 outside the data interval

This is in effect applying a rectangular window on the data

In Fourier domain (using the convolution theorem)

XN (ω) = X (ω)WR (ω)

The Fourier transform of a rectangular window is a sinc

WR (ω) =
sin(Nω/2)

N sin(ω/2)
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Window size and resolution: single sinusoid without noise (deterministic)

The frequency resolution is the smallest distance two different signals are
displaced (in frequency domain) and still resolved

This is related to the main-lobe width (simple to approximate)

∆ω ≈ 2π

N
↔ ∆f ≈ fs

N

where fs is the sampling frequency and N is the data window size
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Variance

The variance of the periodogram spectral estimator is (after rather
complicated calculations)

The variance does not approach zero as the data length N increases

The periodogram is not a consistent estimator (i.e. converges in some
sense to the true value)

Why does the variance not decrease with increasing N?

Increasing N means increasing the number of individual frequencies
(instead of increasing the accuracy of each frequency)
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Periodogram variance WGN with N = 100 and N = 1000, and 100
realizations
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Classical spectral estimation

The periodogram spectral estimator suffers from bias and variance

Classical spectral estimation is all about improving Fourier based spectral
estimation techniques

Three different approaches to improve performance:
1 Bias reduction by ‘tapering’: The modified periodogram
2 Variance reduction by ‘smoothing’ (averaging):

Welch-Bartlett method
Blackman-Tukey method

3 Bias-Variance reduction by ‘smoothing+averaging’: the multitappering
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Method 1: The modified (windowed) periodogram

The main contributor to bias is the sinc-pattern caused by the rectangular
(on the data) / triangular (on the ACF) window

We can reduce the bias by applying another window function:

P̂
(modified)
X (ω) =

1

NU
|XN (ω)|2 =

1

NU

∣∣∣∣ ∞∑
n=−∞

x(n)w(n)e−jωn

∣∣∣∣2
where

U =
1

NU

N−1∑
n=0

|w(n)|2

is a factor to ensure that P̂X (ω) is asymptotically unbiased
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Method 1: The modified (windowed) periodogram

Following the previous calculations, we find that the bias becomes

E{P̂X (ω)} =
1

2πNU
PX (ω) ∗ |W (ω)|2

The choice of window provides a trade-off between bias and spectral
resolution

The choice of window does not affect the estimator variance

The modified periodogram is (also) not a consistent estimate of the power
spectrum

The window is characterised by the main-lobe 3dB-width, peak sidelobe
level and integrated sidelobe level

Windowing is also called “tapering”
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Method 1: Examples of windows (tapers)

There are a lot of windows with different characteristics
Hamming: easy to implement - decent performance
Kaiser: optimised to minimise energy outside mainlobe. Parameter choice
to trade resolution vs sidelobe suppression. Medium difficulty in
implementation
Chebyshev: optimised to control peak sidelobe level. Parameter choice gives
directly (flat) sidelobe level. Difficult to implement

See also wvtool for visualization of different windows
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Method 1: Examples of windows (tapers)
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Method 1: Examples of windows (tapers) Resolution test: Two closely
spaced sinusoids at f = [0.145, 0.150] in WGN
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Method 1: Examples of windows (tapers) Bias test: Worst case ARMA
process (40 realizations averaged)
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Method 1: Examples of windows (tapers) We still have problems with the
variance (single realization)
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Method 2: Reducing variance with periodogram averaging

A simple straight forward approach to reduce variance is as follows:
1 Divide the sequence into segments
2 Estimate the PSD of each segment
3 Average (incoherently) the estimates to reduce variance

The technique obviously reduces the spectral resolution since each PSD
estimate uses fewer samples

The reduction in variance is obviously related to the number of estimates
averaged

We are going to review two classical methods:
Bartlett’s method: non-overlapping periodograms
Welch’s method: overlapping modified periodograms
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Method 2: Welch’s method to reduce variance via averaging

Divide the total sequence of N samples into segments of size L, offset
each segment by D points into a total of K segments such that

N = L + D(K − 1)

See MATLAB’s command >> buffer, tapdelay

The estimator is defined as

P̂
(welch)
X (ω) =

1

KLU

K−1∑
i=0

∣∣∣∣ L−1∑
n=0

x(n + iD)w(n)e−jωn

∣∣∣∣2 =
1

K

K−1∑
i=0

P̂
(m,i)
X (ω)

where

U =
1

NU

N−1∑
n=0

|w(n)|2

where w(n) is a window of choice and P̂
(m,i)
X (ω) is the i-th modified

periodogram
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Method 2: Welch’s method, properties

The bias and resolution of the estimator is given by the modified
periodogram that is applied on each segment

The variance becomes dependent on the overlap, window type and number
of segments

For 50% overlap and a Bartlett window

V{P̂(welch)
X (ω)} ≈ 9L

16N
P2

X (ω)

The variance decreases with increasing N

The estimator is consistent

The estimator is asymptotically unbiased, since the modified periodogram
estimator is asymptotically unbiased
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Method 2: Welch’s method Single realization of ARMA process
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Method 2: Blackman-Tukey method of periodogram smoothing

We realise that the variance in the autocorrelation estimate increases with
increasing absolute lag

We apply a window on the ACF to suppress the elements that contribute
to the variance

P̂
(Blackman−Tukey)
X (ω) =

M∑
k=−M

R̂X (k)w(k)e−jωk , M ≤ N − 1

Again, the convolution theorem states that the PSD becomes

P̂
(Blackman−Tukey)
X (ω) =

1

2π
P̂

(b)
X (ω) ∗W (ω)

where W is the Fourier transform of w

Similar to the modified periodogram but different results
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Method 2: Blackman-Tukey method of periodogram smoothing

The bias of the Blackman-Tukey spectral estimator is

E{P̂(Blackman−Tukey)
X (ω)} =

1

2π
E{P̂(b)

X (ω)} ∗W (ω)

After some maths, we find the variance (see Hayes) to be

V{P̂(Blackman−Tukey)
X (ω)} ≈ P2

X (ω)
1

N

M∑
k=−M

w 2(k), N � M � 1 ∗W (ω)

This estimator is consistent. The variance reduces with increasing N

There is a trade-off (again) between bias and variance:
M should be large to minimise bias
Large M, however, increases the variance
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Review of spectral estimation methods

Bias reduction, windows Variance reduction, averaging
Windows: Rectangular, Hamming,
Kaiser, Chebyshev,

Welch’s, Blackman-Tukey, etc.

Bias can be reduced by applying ta-
pering (or windowing)

Variance can be reduced by averaging
multiple modified periodograms

At the cost of loss in spectral resolu-
tion

At the cost of loss in spectral resolu-
tion

Does not affect variance Does not affect bias
Bias due to sidelobes is referred to as
spectral leakage

More or less equivalent to spectral
smoothing

Let’s combine the best of both worlds!
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Method 3: Multitaper spectral estimation

Inspired by the success of tapering and averaging, one could construct a
new spectral estimator as follows:

1 Construct several different tapers of size N (full size)
2 Ensure that the tapers are properly designed orthogonal functions
3 Produce modified periodograms using each taper (with low bias)
4 Average (with or without weighting) to reduce variance

First suggested by Thomson in 1982

This estimator is consistent. The variance reduces with increasing N

Windows based on Discrete Prolate Spheroidal Sequences (DPSS)

MATLAB function >> pmtm for multitaper spectral estimator

MATLAB function >> dpss to produce the tapers
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Method 3: Multitaper spectral estimation

Assume a sequence of data x(n) of size N, and a set of K different tapers

The multitaper spectral estimator is

P̂
(m,k)
X (ω) =

1

N

∣∣∣∣ N−1∑
n=0

∣∣∣∣x(n)wk (n)e−jωn

∣∣∣∣2

P̂
(multitaper)
X (ω) =

1

K

K−1∑
k=0

P̂
(m,k)
X (ω)

Each taper wk (n) must have low sidelobe level to prevent bias

The individual modified periodograms P̂
(m,k)
X (ω) must be pairwise

uncorrelated with common variance
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Method 3: Discrete Prolate Spheroidal Sequences (DPSS)

Discrete Prolate Spheroidal Sequences (DPSS) are optimal tapers

DPSS are, however, complicated to construct (from scratch)

Simple in MATLAB: >> [e,v] = dpss(1000,2);
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Method 3: Poor-mans multitapers

A simpler set of orthonormal tapers can be constructed from sinusoidal
tapers

wk (n) =

√
2

N + 1
sin

(
π(k + 1)(n + 1)

N + 1

)
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Method 3: Performance of multitaper spectral estimation: ARMA random
process with large dynamic range
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Method 3: Performance of multitaper spectral estimation: Single sinusoid
in White Gaussian Noise
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Parametric density estimation methods:

Previous nonparametric methods based on windowing/tapering of the
signal assume that the signal is null outside the window

Let’s fit a parametric model for the signal so we get rid of such assumption

This should improve the resolution if the model is correct (too rigid, too
flexible, overfitted, order/lag size)

Several processes can model a discrete-time signal (aka time-series):
AutoRegressive (AR)
Moving Average (MA)
AutoRegressive and Moving Average (ARMA)
Sum of harmonics (complex sinuosoids)
Multiple Signal Classification (MUSIC)

We need an accurate estimate of model parameters

All of them are based on autocorrelation and partial correlation
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Four approaches:

AutoRegressive, AR(p):

X (n) =

p∑
k=1

ak Y (n − k)

Moving Average, MA(q):

Y (n) =

q∑
k=0

bk X (n − k)

AutoRegressive and Moving Average, ARMA(p, q):

Y (n) =

p∑
k=1

ak Y (n − k) +

q∑
k=0

bk X (n − k)

Sum of harmonics (complex sinuosoids) in noise:

Y (n) =
M∑

k=1

Ak e j2πfk n + X (n)

where Yn is the observed output of the system, Xn is the unobserved input of
the system (zero mean white Gaussian noise process with unknown variance),
and ak , bk ,Ak are coefficients to be estimated
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Spectrum Estimation with AR Models:

AutoRegressive, AR(p):

Xn =

p∑
k=1

ak Y (n − k)

PSD of the process is given by:

PAR(f ) =
σ2

|1 +
∑p

k=1 ak e−j2πfk |2

We need to estimate ak and the noise variance σ2

How?
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The autocorrelation, or the Yule-Walker method

Pre-multiply by x∗(n − k) and take expectations. After some maths,
Yule-Walker solution:

R̂a = −r̂,

where R̂ is a p × p matrix

R̂ =


r̂(0) r̂(−1) . . . r̂(−p + 1)
r̂(1) r̂(0) . . . r̂(−p + 2)

...
...

...
...

r̂(p − 1) r̂(p − 2) . . . r̂(0)

 r̂ = (r̂(1), r̂(1), . . . , r̂(p))>

Parameters â = −R̂−1r

Noise variance: σ̂2 = r̂(0) +
∑p

k=1 ak r̂(k)
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Several alternative methods with AR models:

Yule-Walker method >> pyulear

Covariance method >> pcov

Burg method >> pburg
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Spectrum Estimation with AR Models

% Define AR filter coefficients
a = [1 -2.2137 2.9403 -2.1697 0.9606];
[H,w] = freqz(1,a,256); % AR filter freq response
% Scale to make one-sided PSD
Hp = plot(w/pi,20*log10(2*abs(H)/(2*pi)),’r’); hold on;
x = filter(1,a,randn(256,1)); % AR system output
Pcov = pcov(x,4,511); Pyulear = pyulear(x,4,511); [Pburg,W] =
pburg(x,4,511);
plot(W/pi,20*log10(Pcov),’b’); plot(W/pi,20*log10(Pyulear),’k’);
plot(W/pi,20*log10(Pburg),’m’)
xlabel(’Normalized frequency (×π rad/sample)’)
ylabel(’One-sided PSD (dB/rad/sample)’)

legend(’Model’,’Covariance’,’Yule’, ’Burg’); grid
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Spectrum Estimation with AR Models: choosing p

Akaike Information Criterion (AIC):

AIC(k) = N log σ̂2
k + 2k, k : order

Bayesian Information Criterion (BIC)

Minimum Description Length (MDL) principle:

MDL(k) = N log σ̂2
k + k log N, k : order

When to use AR-based spectrum estimation?

The AR-based spectrum estimation methods show very good performance
if the processes are narrowband and have sharp peaks in their spectra

Also, many good results have been reported when they are applied to
short data records
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Spectrum Estimation with MA Models:

Moving Average, MA(q):

Y (n) =

q∑
k=0

bk X (n − k)

PSD of the process is given by:

PMA(f ) = σ2

∣∣∣∣1 +

q∑
k=1

bk e−j2πfk

∣∣∣∣2
One can show that r(k) = 0, ∀|k| > q, so:

PMA(f ) =

q∑
k=−q

r(k)e−j2πfk

We need to estimate rk , which is nonlinear
Durbin proposed an approximate procedure that is based on a high order
AR approximation of the MA process:

Data are modeled by an AR model of order L, where L� q
Coefficients are estimated using the AR equation
Sequence {â1, . . . , âL} is fitted with an AR(q) model, whose parameters are
also estimated using the autocorrelation method

Estimated coefficients {b̂1, . . . , b̂q} are then used in PMA(f )
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Spectrum Estimation with ARMA Models:

AutoRegressive and Moving Average, ARMA(p, q), M = p + q:

Y (n) =

p∑
k=1

ak Y (n − k) +

q∑
k=0

bk X (n − k)

PSD of the process is given by:

PARMA(f ) = σ2 |1 +
∑q

k=1 bk e−j2πfk |2

|1 +
∑p

k=1 ak e−j2πfk |2

The ML estimates of the ARMA coefficients are difficult to obtain

We usually resort to methods that yield suboptimal estimates


r̂(q) r̂(q − 1) . . . r̂(q − p + 1)

r̂(q + 1) r̂(q) . . . r̂(q − p + 2)
...

...
...

...
r̂(M − 1) r̂(M − 2) . . . r̂(M − p)




a1

a2

...
ap

+


εq+1

εq+2

...
εM

 =


r̂(q + 1)
r̂(q + 2)

...
r̂(M)


or

R̂a + ε = −r̂,

where εi is a term that models the errors in the Yule-Walker equations
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Spectrum Estimation with ARMA Models:

The Yule-Walker expression now is:

R̂a + ε = −r̂,

where εi is a term that models the errors in the Yule-Walker equations

The least-squares estimates of a:

â = (R̂H R̂)−1R̂H r̂

Once the AR coefficients are estimated, we can filter the observed data
and obtain a sequence that is approximately modeled by an MA(q) model

From the data y(n) we can estimate the MA PSD and obtain the PSD
estimate of the data x(n):

PARMA(f ) =
P̂MA(f )

|1 +
∑p

k=1 ak e−j2πfk |2
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Pisarenko Harmonic Decomposition (PHD) method:

Sum of harmonics (complex sinuosoids) in noise:

Y (n) =
M∑

k=1

Ak e j2πfk n + X (n),

where fk is the frequency of the k-th complex sinusoid, Ak is the complex
amplitude: Ak = |Ak |e jφk , and X (n) is a sample of a zero mean white
noise

The PSD of the process is a sum of the continuous spectrum of the noise
and a set of impulses with area |Ak |2 at the frequencies fk :

P(f ) =
m∑

k=1

|Ak |2δ(f − fk ) + Pε(f )

Pisarenko found that the frequencies of the sinusoids can be obtained from
the eigenvector corresponding to the smallest eigenvalue of the
autocorrelation matrix: >> [V Lambda] = eigs(R,’ascend’);
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Pisarenko Harmonic Decomposition (PHD) method:
1 Estimate the (m + 1)× (m + 1) autocorrelation matrix

R =
m∑

i=1

(λi + σ2)vi v
H
i +

M∑
i=m+1

σ2vi v
H
i ,

provided it is known that the number of complex sinusoids is m, where
{λi}m

i=1 are the nonzero eigenvalues of R with associated eigenvectors vi

2 Evaluate the minimum eigenvalue λm+1 and the eigenvectors of R .
3 Set the white-noise power to σ̂2 = λm+1, estimate the frequencies of the

complex sinusoids from the peak locations of P̂PHD (f ) in

P̂PHD (f ) =
1

|XH (f )vm+1|2

4 Compute the powers of the complex sinusoids Pi = |Ai |2 solving a problem
with m linear equations

5 Substitute the estimated parameters in

P(f ) =
m∑

k=1

|Ak |2δ(f − fk ) + Pε(f )

Pisarenko’s method is not used frequently in practice because its
performance is much poorer than the performance of some other signal
and noise subspace based methods developed later
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Multiple Signal Classification (MUSIC):

A procedure very similar to Pisarenko’s proposed by Schmidt (late 1970s)

Suppose again that the process {Y (n)} is described by m complex
sinusoids in white noise

Eigendecompose the correlation matrix: we actually assume that the m
largest eigenvalues span the signal subspace, and the remaining
eigenvectors, the noise subspace

Estimate the noise variance from the M −m smallest eigenvalues:

σ̂2 =
1

M −m

M∑
i=m+1

λi

and the frequencies from the peak locations of the pseudospectrum

PMUSIC (f ) =
1∑M

i=m+1 |XH vi (f )|2

The powers of the complex sinusoids and the parameters are estimated as
in Pisarenko’s
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Improving MUSIC: the Eigenvector method (EV)

MUSIC has better performance than Pisarenko’s method because of the
introduced averaging via the extra noise eigenvectors

The averaging reduces the statistical fluctuations present in Pisarenko’s
pseudospectrum, which arise due to the errors in estimating the
autocorrelation matrix

These fluctuations can further be reduced by applying the Eigenvector
method, which is amodification of MUSIC and whose pseudospectrum is
given by:

PEV (f ) =
1∑M

i=m+1 |
1
λi

XH vi (f )|2
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MUSIC example 1: This example analyzes a signal vector x , assuming that
two real sinusoidal components are present in the signal subspace. In this case,
the dimension of the signal subspace is 4 because each real sinusoid is the sum
of two complex exponentials

>> randn(’state’,0);

>> n = 0:199;

>> x = cos(0.257*pi*n) + sin(0.2*pi*n) + 0.01*randn(size(n));

>> pmusic(x,4) % Set p to 4 because two real inputs
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MUSIC example 2: This example analyzes the same signal vector x with an
eigenvalue cutoff of 10% above the minimum. Setting p(1) = Inf forces the
signal/noise subspace decision to be based on the threshold parameter p(2).
Specify the eigenvectors of length 7 using the nwin argument, and set the
sampling frequency fs to 8 kHz:

>> randn(’state’,0);

>> n = 0:199;

>> x = cos(0.257*pi*n) + sin(0.2*pi*n) + 0.01*randn(size(n));

>> pmusic(x,[Inf,1.1],[],8000,7); % Window length = 7
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AR-based PSD estimation: Advantages and shortcomings:
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Spectral estimation in MATLAB:
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Reviewed:
Spectral estimation, Fourier transform,
power spectrum, parametric vs
non-parametric spectral estimation, ACF
windowing, periodogram averaging,
multitaper methods, ARMA modeling,
etc.
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Part 4: Signal decomposition and transforms
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Spectral analysis of non-stationary signals

What happens when the signals are non-stationary?

The autocorrelation function is no longer a function of lag only

Non-trivial problem

Simple intuitive approach:
Break the timeseries into segments that are locally WSS
Estimate the spectrum for each segment

This is then a time-frequency representation

Different approaches to time-frequency analysis:
Gabor filtering/transform
Short Time Fourier Transform
Second order time-frequency analysis (Cohen class)
Wavelet analysis
Spectrogram
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Gabor transform is a ‘local Fourier Transform’:

The Gabor transform, named after Dennis
Gabor, is a special case of the short-time
Fourier transform.

It is used to determine the sinusoidal
frequency and phase content of local sections
of a signal as it changes over time.

The function to be transformed is first multiplied by a Gaussian function
(window) and then transformed with a Fourier transform to derive the
time-frequency analysis

The window function means that the signal near the time being analyzed
will have higher weight

The Gabor transform of a signal x(t) is defined by this formula:

Gx (t, f ) =

∫ ∞
−∞

e−π(τ−t)2

e−j2πf τx(τ) dτ

The Gabor transform is invertible:

x(t) =

∫ ∞
−∞

∫ ∞
−∞

Gx (τ, f )e j2πtf df dτ
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Gabor transform implementation:

The Gaussian function has infinite range and it is impractical for
implementation

However, a level of significance can be chosen (for instance 0.00001) for
the distribution of the Gaussian function.{

e−πa2

≥ 0.00001; |a| ≤ 1.9143

e−πa2

< 0.00001; |a| > 1.9143

Outside these limits of integration |a| > 1.9143, the Gaussian function is
small enough to be ignored

Thus the Gabor transform can be satisfactorily approximated as

Gx (t, f ) =

∫ 1.9143+t

−1.9143+t

e−π(τ−t)2

e−j2πf τx(τ) dτ

This simplification makes the Gabor transform practical and realizable

The window function width can also be varied to optimize the
time-frequency resolution tradeoff replacing:

−π(τ − t)2 → −πα(τ − t)2

Selection of α is critical to achieve good frequency resolution in short
time-windows (and viceversa) → Heisenberg principle
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Properties of the Gabor transform:

Signal Gabor transform Remarks

x(t) Gx (t, f ) =
∫∞
−∞ e−π(τ−t)2

e−j2πf τx(τ) dτ -

a · x(t) + b · y(t) a · Gx (t, f ) + b · Gy (t, f ) Linearity

x(t − t0) Gx (t − t0, f )e−j2πft0 Shifting

x(t)e j2πf0t Gx (t, f − f0) Modulation

Example of the Gabor transform: Adding the frequency axis we can detect
different time-dependent components in the signal

x(t) =

{
cos(2πt) for t ≤ 0,

cos(4πt) for t > 0.
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Example of time-frequency representation
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Short time Fourier transform (STFT)

Divide the total sequence of N data samples into segments of size L, and
offset each segment by D points into a total number of K segments such
that N = L + D(K − 1)

The Short Time Fourier Transform is

SFTF (i , ω) =
L−1∑
n=0

x(n + iD)w(n)e−jωn

where w(n) is a window of choice

Note the similarity with Welch’s method of
periodogram averaging

Also known as sliding window Fourier transform and
spectrogram
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Short time Fourier transform (STFT)

The STFT can be generalised to use any Fourier based spectral estimator

Example: Spectrogram based on the modified periodogram:

P̂X (t, ω) =
1

L

∣∣∣∣ L−1∑
n=0

x(n + iD)w(n)e−jωn

∣∣∣∣2, t = (i + D/2)δt

where δt is the sampling frequency

See spectrogram and specgramdemo in MATLAB

Note: STFTs should really be viewed as a stack of individual spectral
estimates. In order to construct a proper density P̂X (t, ω) as a function of
time and frequency, energy conservation has to be taken into account.
This is not the case for STFT-based representations.
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Time and frequency resolution in STFT

The uncertainty principle states that the time duration ∆t and frequency
bandwidth ∆ω are related by

∆t∆ω ≥ 1

2

A fundamental property of the Fourier transform pair s(t) and S(ω)

First derived by Heisenberg in 1927 in quantum mechanics

Example: rectangular time window and sinc frequency window
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Time and frequency resolution in STFT

The time-frequency resolution relation leads to the following:

Higher frequency resolution requires larger time duration and thereby lower
time resolution

Higher time resolution requires shorter time duration and thereby lower
frequency resolution
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Time-frequency analysis generalizes Gabor analysis

The Gabor transform of a signal x(t):

Gx (t, f ) =

∫ ∞
−∞

e−π(τ−t)2

e−j2πf τx(τ) dτ

Time-frequency analysis:

Gx (t, f ) =

∫ ∞
−∞

w(t − τ)e−j2πf τx(τ) dτ

Windows (the same as in Fourier-based spectral analysis):
1 Rectangular: w(t) = 1
2 Hann (Hanning): w(t) = 0.5 (1− cos( 2πt

N−1
))

3 Hamming: w(t) = α− β cos( 2πt
N−1

)

4 Blackman: w(t) = a0 − a1 cos( 2πt
N−1

) + a2 cos( 4πt
N−1

)

5 Blackman-Harris: w(t) = a0 − a1 cos( 2πt
N−1

) + a2 cos( 4πt
N−1

)− a3 cos( 6πn
N−1

)
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Example: STFT of FM signal

Consider a simple deterministic mono-component signal

s(t) = a(t)e jφ(t), φ(t) = ωot +
a1

ω1
cos(ω1t)

The instantaneous frequency is defined as

ωIF (t) =
dφ(t)

dt

For our signal, the IF becomes

ωIF (t) = ωo − a1 sin(ω1t)
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Example: STFT of FM signal

The effect of choosing segment size L
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Example: STFT of FM signal

Comments on choosing segment size:

The first spectrogram has a long time
window L = 512

During the window length, the
frequency changes

This causes smearing which appears as
poorer resolution in the frequency
domain

The last spectrogram has a short time
window L = 64

Here, we observe “true” lowering of
the spectral resolution due to window
length

This example shows the importance of window length in the time-frequency
representation
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A dirty trick: Zeropadding
A simple trick to get smoother spectral representation is zeropadding:

Zeropadding is adding zeros in the sequence to be FT’ed

Done in MATLAB for you: fft(x, N) will zeropad the sequence x to a
total of N elements before FT is applied

>> N = 16; ii = 3;
>> NN = N * 2(ii-1);
% Number of samples (including zeropadding)
>> xax = [-NN/2:NN/2-1]/NN; % Proper x-axis for plotting
>> X = 1/N*abs(fftshift(fft( ones(N,1), NN ))); % Rectangular window
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A dirty trick: Zeropadding

Example: STFT of FM signal
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Time-frequency representation of sonar data
Short Time Fourier Transform of single ping of sonar rawdata Modified
periodogram with Kaiser 4.5 window and zeropadding
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Time-frequency representation of sonar data
Short Time Fourier Transform of navigation data
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Time-frequency representation of sonar data
STFT of sonar data before and after beamforming
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Second order time-frequency representations

The uncertainty principle limits directly the ability to resolve transient
frequencies in the STFT

How do we approach this?

We capture the time variantion (non-stationarity) into a time-varying
autocorrelation function

RX (t, τ) = x(t + τ/2)x (t − τ/2)

and directly transform into time-frequency domain

The Wigner-Ville distribution does this

W (t, ω) =

∫
x(t + τ/2)x (t − τ/2)e−jωτdτ

Introduced by Wigner in 1932 in quantum mechanics, and introduced to
signal analysis by Ville in 1948
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Second order Time-frequency representations

This approach has a number of desirable properties
It obtains “full” resolution for LFM type signals
It is energy preserving (and as such a proper distribution)
It does however, produce cross terms (ghosts)

A generalised form (referred to as Cohen’s class) is

C(t, τ) = W (t, ω)Φ(t, ω)

where the kernel function Φ(t, ω) can be chosen

The generalised form can describe any time-frequency representation
(including the STFT)

By choosing the kernel function, the cross terms can be supressed at the
cost of loss in resolution

MATLAB Toolbox, and Octave Toolbox: http://tftb.nongnu.org/
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Example: Time-frequency representations
Example: STFT of LFM signal
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Example: Time-frequency representations
Example: Wigner-Ville distribution of LFM signal
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Example: Time-frequency representations
Example: STFT of FM signal
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Example: Time-frequency representations
Example: Wigner-Ville distribution of FM signal
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Example: Time-frequency representations
Example: Choi-Williams distribution of FM signal
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1946, Denis Gabor: STFT with Gaussian windows
1982, Jean Morlet: geophysics application, propose to replace the
modulation by the dilation of a fixed function
1984, Alex Grossmann: link between Morlet’s wavelet and coherent states
in quantum physics + link with frame theory
1985, Yves Meyer (Gauss Prize 2010): link with harmonic analysis and
establishment of mathematical foundations for a wavelet theory +
discovery of the first orthonormal wavelet basis (1986)
followers . . . : S. Mallat, I. Daubechies, R. Coiffman, A. Cohen, . . .
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Wavelets applications:

All started in seismic signals analysis (events occur at different time and
frequency regions ... and scales!)

Soon become a standard technique for many change detection problems

Wavelets appropriate fot detecting changes, discontinuities, trends, etc

They capture/describe the signal statistics with few
components/coefficients: ideal for signal/image coding/compression and
denoising/restoration

Wavelets main properties:

Wavelets are invertible transforms

Wavelets have two main parameters: scale and shift translation; more
flexible than Fourier to study local behaviors of the signal!

The basis functions in wavelets are time-limited (in Fourier sin/cos are
extended ±∞)
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Wavelets generalize time-frequency analysis and Gabor analysis

The Gabor transform of a signal x(t):

Gx (t, f ) =

∫ ∞
−∞

e−π(τ−t)2

e−j2πf τx(τ) dτ

Time-frequency analysis:

Gx (t, f ) =

∫ ∞
−∞

w(t − τ)e−j2πf τx(τ) dτ

Wavelet analysis:

Gx (t, f ) =

∫ ∞
−∞

w(t − τ)e−j2πf τx(τ) dτ

but now the window is

w(t − τ) =
1√
s

∫ ∞
−∞

x(t)ψ

(
t − τ

s

)
︸ ︷︷ ︸

mother

dt

The wavelet transform is simply a kind of correlation function between the
mother wavelet ψ(t), scaled and shifted, and the input signal

234 / 335



Introduction Gabor Time-frequency CWT DWT MRA Applications Conclusions

Continuous wavelet transforms:

Wavelet analysis:

Gx (t, f ) =

∫ ∞
−∞

w(t)e−j2πf τx(τ) dτ, w(t) =
1√
s

∫ ∞
−∞

x(t)ψ

(
t − τ

s

)
︸ ︷︷ ︸

mother

dt

The wavelet transform is simply a kind of correlation function between the
mother wavelet ψ(t), scaled and shifted, and the input signal

Standard mother wavelets: Meyer, Morlet, Mexican hat:

Intuition: The scale factor s will control the ‘shape’ of the mother wavelet:
s > 1 dilates the wavelet and s < 1 compresses the wavelet in time

This property is not shared by the Gabor or the Time-Frequency transforms
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What do we gain with all this?

Fast changes: low frequency resolution, high time resolution

Slow changes: high frequency resolution, low time resolution
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What do we gain with all this?

Fast changes: low frequency resolution, high time resolution

Slow changes: high frequency resolution, low time resolution
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Intuition on the scale parameter:

Low (time) scales is equivalent to study low frequency components, i.e.
the rough features of the signal

High (time) scales is equivalent to study high frequency components, i.e.
the details in the signal

There’s a tradeoff between time scale and frequency resolution too!
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Time-frequency plane tiling:
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Time-frequency plane tiling:
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The discrete wavelet transform:

When the signal is not continuous, just discretize the wavelets:
Sampled signals (timestep = N − 1).
Discrete scales: (sj , uk ) = {2j , k · 2j |j , k ∈ Z}
Example: N = 512 samples and take j = 3, we study relations for s = 8 at
positions n = 8, 16, 32, . . . , 512

MATLAB: wavedemo
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The wavelet transform is a band-pass filtering:

We cannot get the zero frequency
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The wavelet transform is a band-pass filtering:

The missing part is obtained with the scaling function
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The wavelet transform is a band-pass filtering:

WT are essentially a filter bank with different central frequencies and
widths that increase with f

WT can be casted as a spectral analyzer
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Scaleogram or scalogram: visual method of displaying a wavelet transform: x
representing time, y representing scale, and z representing wavelet coefficient
value

1 Take a mother wavelet
2 Fix the scale and shift the mother wavelet to compute the CWT
3 Change the scale parameter and back to step 2
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The discrete wavelet transform is a multiresolution spectral analyzer:

DWT decompose the signal in ‘approximation’ (low f ) and ‘detail’ (high
f ) coefficients

Reconstruction of the signal from the coefficients is trivial; just reverse the
operations
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The DWT is a multiresolution spectral analyzer:

s = sin(20.*linspace(0,pi,1000)) + 0.5.*rand(1,1000);
[cA,cD] = dwt(s,’db2’);
ss = idwt(cA,cD,’db2’); % Full reconstruction
ss = idwt(cA,zeros(1,501),’db2’); % Inverse using the LF approximation)
ss = idwt(zeros(1,501),cD,’db2’); % Inverse using the HF approximation)
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Important wavelet features:

Simple, fast implementation: Mallat’s filterbank algorithm

Mathematical properties: Riesz basis, vanishing moments,...

Good modeling of the organization of the primary visual system

Many successful applications:

Data compression

Filtering, denoising

Fusion

Detection and feature extraction

Inverse problems: wavelet regularization

Current topics in wavelet research and “compressed sensing”

Better wavelet dictionaries (frames): steerable wavelets, ...

Better (model-based) regularization schemes

Automatic parameter adjustment (e.g., scale-dependent threshold)

Addressing harder inverse problems
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Seismic signal processing

249 / 335



Introduction Gabor Time-frequency CWT DWT MRA Applications Conclusions

Audio processing
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Communications
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Geosciences
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Times series analysis
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Neuroscience
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Bioengineering
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Bioengineering
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Bioengineering: Murmour detection: healthy vs pathologic
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Bioengineering: Sleep phase detection from EEG recordings
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Bioengineering: Removing noise from fMRI images
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Image processing
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Image processing: coding/compression
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Image processing: denoising/restoration
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Image processing: image fusion
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Image processing: multi-resolution fusion
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Reviewed:
Non-stationary signals, Gabor filter and
the Heisenberg uncertainty principle,
Time-frequency analysis, Short Time
Fourier Transform (STFT), Spectrogram,
Uncertainty principle, Instantaneous
frequency, Second order time-frequency
relations, wavelets, multiresolution
analysis, applications to signal/image
processing.
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Part 5: Introduction to Information Theory
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Information theory framework

Physics

Computer
science

Mathematics

Economics

Statistics

Probability
theoryCommunication

theory

Fisher information
Hypothesis testing

Portfolio theory
Kelly gambling

Inequalities

Kolmogorov
complexity

Thermodynamics
Quantum information
theory

Limits theorems
Large variations

Limits of
communication
theory

Information
theory
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Introduction

“Information theory is a branch of
applied mathematics and electrical
engineering involving the quantification
of information.”

Claude E. Shannon (1948) finds
fundamental limits on signal processing
operations, such as compressing data
and reliably storing and communicating
data

Tons of applications:

statistical inference and machine learning

signal/image processing: natural language processing, compression,
estimation, ...

communication: routing, transmission, networks, ...

bio-things: neurobiology, bioinformatics, neuroscience, bioengineering, ...

eco-things: ecology, remote sensing, enviromental monitoring, ...

physics: thermal, quantum computing, ...

security: plagiarism detection, cryptography, ...
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Resources on information theory

Thomas M. Cover & Joy A. Thomas, Elements of Information Theory,
Wiley & Sons, 1991

David J.C. MacKay, Information theory, inference and learning algorithms,
Cambridge University Press, 2004. Free at
http://www.inference.phy.cam.ac.uk/mackay

IEEE Transactions on Information Theory

http://videolectures.net/

http://en.wikipedia.org/wiki/Information theory

http://www.inference.phy.cam.ac.uk/mackay/

http://www.youtube.com/watch?v=z2Whj nL-x8
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5 equations that changed Science

1 2nd Newton law: F = ma

2 Maxwell-Faraday equation: ∆E = − dB
dt

3 Einstein’s mass-energy equivalence: E = mc2

4 Nyquist-Shannon theorem: Fsampling ≥ 2× B

5 Shannon-Hartley equation: C = B log2(1 + SNR)

TWO OUT OF 5!
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Communication Channels
INFORMATION

SOURCE

MESSAGE

TRANSMITTER

SIGNAL RECEIVED
SIGNAL

RECEIVER

MESSAGE

DESTINATION

NOISE
SOURCE

Fig. 1—Schematic diagram of a general communication system.

a decimal digit is about 313 bits. A digit wheel on a desk computing machine has ten stable positions and
therefore has a storage capacity of one decimal digit. In analytical work where integration and differentiation
are involved the basee is sometimes useful. The resulting units of information will be called natural units.
Change from the basea to baseb merely requires multiplication by logba.

By a communication system we will mean a system of the type indicated schematically in Fig. 1. It
consists of essentially five parts:

1. An information sourcewhich produces a message or sequence of messages to be communicated to the
receiving terminal. The message may be of various types: (a) A sequence of letters as in a telegraph
of teletype system; (b) A single function of timef (t) as in radio or telephony; (c) A function of
time and other variables as in black and white television — here the message may be thought of as a
function f (x;y; t) of two space coordinates and time, the light intensity at point(x;y) and timet on a
pickup tube plate; (d) Two or more functions of time, sayf (t), g(t), h(t) — this is the case in “three-
dimensional” sound transmission or if the system is intended to service several individual channels in
multiplex; (e) Several functions of several variables — in color television the message consists of three
functionsf (x;y; t), g(x;y; t), h(x;y; t) defined in a three-dimensional continuum — we may also think
of these three functions as components of a vector field defined in the region — similarly, several
black and white television sources would produce “messages” consisting of a number of functions
of three variables; (f) Various combinations also occur, for example in television with an associated
audio channel.

2. A transmitterwhich operates on the message in some way to produce a signal suitable for trans-
mission over the channel. In telephony this operation consists merely of changing sound pressure
into a proportional electrical current. In telegraphy we have an encoding operation which produces
a sequence of dots, dashes and spaces on the channel corresponding to the message. In a multiplex
PCM system the different speech functions must be sampled, compressed, quantized and encoded,
and finally interleaved properly to construct the signal. Vocoder systems, television and frequency
modulation are other examples of complex operations applied to the message to obtain the signal.

3. Thechannelis merely the medium used to transmit the signal from transmitter to receiver. It may be
a pair of wires, a coaxial cable, a band of radio frequencies, a beam of light, etc.

4. Thereceiverordinarily performs the inverse operation of that done by the transmitter, reconstructing
the message from the signal.

5. Thedestinationis the person (or thing) for whom the message is intended.

We wish to consider certain general problems involving communication systems. To do this it is first
necessary to represent the various elements involved as mathematical entities, suitably idealized from their

2

Examples:

Voice — AIR — ear

spacecraft — VACUUM — Earth

modem1 — WIRE — modem2

file — HDD — file

transmitted signal — CHANNEL — received signal (=transm.+noise)

Main concern: ‘reliable communication over unreliable channel’
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Solutions to the communication problem

Physical solution
thicker films
higher magnetic field ~B
more bandwidth
more $ !!!

System solution
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The encoder adds redundancy
The channel adds noise
The decoder decodes s and n, hence it does inference
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Problem 1. The binary symmetric channel (BSC)
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Probability graph of the flip

f is the probability of a wrong flip
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Problem 1: The binary symmetric channel ...
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The binomial distribution

0
0.05

0.1
0.15

0.2
0.25

0.3

0 1 2 3 4 5 6 7 8 9 10

�

“The binomial (Bernoulli) distribution
is the discrete probability distribution
of the number of successes/failures in
a sequence of n independent yes/no
experiments each with probability p”

We have n = 10000, f = p = 0.1 then
...

Mean: x̄ = np = 1000

Variance:
σ2

x = np(1− p) = 900→ σ = 30

Solution: x̄ ± σx = 1000± 30

Sometimes: x̄ ± 2σx = 1000± 60
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Problem 2: The binary symmetric channel ...
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The binomial distribution

Successful means no error for the living time of the device

We have n = 1 Gb = 109 · 8 bits, then ...
Trivial solution: if we want the HDD live forever without error, then ...

x̄ ± σx = 0± 0

Realistic solution:

f =
1

1Gbyte/day × 365days/year × 5years × 106customers
≈ 10−19

The standard in HDD and storage devices is f = 1/1018 errors !

Let’s look for just f = 1/1015 errors !
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Repetition code ‘R3’

A trick for building a successful encoder is repetition!

Example of the repetition code ‘R3’:

Source sequence s Transmitted sequence t

0 000
1 111

We transmit the source message s= 0 0 1 0 1 1 0 over a binary
symmetric channel (BSC) with noise level f = 0.1 using R3.

A possible noise vector n and received vector r = t + n:
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How to decode this received vector to obtain a good estimate of s?
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Ideas for a decoder

Possibility 1: read the middle and discard the rest

Received r Estimated ŝ

111 1
110 1
101 0
000 0
· · · · · ·

Possibility 2: majority vote: ‘find the hypothesis about s that involves
least flips’

Received r Estimated ŝ

111 1
110 1
101 1
000 0
· · · · · ·

Possibility 3: learn a neural network or SVM → overfitting!
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Possibility 4: use Bayes’ theorem with a reasonable prior
p(s = 0) = p(s = 1) = 0.5

p(s = 0|r = 011) =

p(r = 011|s = 0)p(s = 0)

p(r = 011|s = 0)p(s = 0) + p(r = 011|s = 1)p(s = 1)
=

(1− f )f · f · 1
2

(1− f )f · f · 1
2

+ f · (1− f ) · (1− f ) · 1
2

= · · · = f = 0.1

where the likelihood is (bits not to be flipped)× (flip)×(flip)
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Possibility 2 revisited: the majority vote encoder
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Quite robust to noise: repetition is great!

Not all errors are corrected: depends on block sizes too...
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Illustration of the decoding with R3 encoder ...

The error probability is dominated by the probability that two bits in a
block of three are flipped, which scales as f 2

In the case of the BSC with f = 0.1, the R3 code has a probability of error
after decoding of p ≈ 0.03 per bit
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Majority vote decoder in R2

Probability of p(s 6= ŝ) in R2 for f < 1:

pR2 ≈ f 2 + f (1− f ) + (1− f )f ≈ 2f

Probability of p(s 6= ŝ) in R3 for f < 1:

pR3 ≈ f 3︸︷︷︸
3flips

+ f (1− f )f + ff (1− f ) + (1− f )ff︸ ︷︷ ︸
2flips

≈ 3f 2

MATLAB:
>> f=0.1

>> p2 = f*f + 2*(1-f)*f = 0.1900

>> p3 = f*f*f + 3*f*f*(1-f) = 0.0280

Why not going further and increase the repetition to Rn?
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Repetition code RN

Probability of p(s 6= ŝ) in RN for f < 1 is dominated by the probability
that [N/2] bits are flipped:

pb ≈ 2N (f (1− f ))N/2 = (4f (1− f ))N/2

Setting this equal to the required value of pb = 10−15, we find that:

N ≈ 2
log2(10−15)

log2(4f (1− f ))
= 68

Better estimate without approx.: N ≈ 61 to get pb = 10−15

So ... a trick would be to hide in a big box 60 hard disk drives! :)
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We have a nice encoder: repetition gives rise to zero error probability!

Problem: we use the channel n times or send three times more information

Distortion = error

Rate = efficiency:
]bits to be sent

]times we use the channel

This is the rate-distortion problem

285 / 335



Intro Channels Hamming Capacity Information Huffman Entropy KLD MI Conclusions

Redundancy without repetition?

Parity checks: ‘add a bit for checking’ (mod2). Here the rate is R = 3/4

Source r (k = 3) transmitted t (N = 4)

111 1111
110 1100
101 1010
· · · · · ·

Hamming (7,4)-codes:

‘Add three parity checks’, i.e map R4 → R7:
The number of ‘1’ must even in each circle!
Linearity property: 1000 + 0111 = 1111, i.e. s1 + s2 = t1 + t2

���

s
ss

t t

t

7 6

5

4
s

3
21

���

1 0
0

0

1

01

Source r (k = 3) transmitted t (N = 4)

1000 1000101
0111 0111010
1111 1111111
· · · · · ·
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Let’s encode/decode with (7,4)-Hamming code

s=1000101 → r=1100101→ ŝ=1000101

Steps:
Take the diagram and ask about fulfilment
All circles must be happy if no flip occurs
This is called the ‘syndrome’
The decoder locates the common bit between circles and unflips it!

���

s
ss

t t

t

7 6

5

4
s

3
21

���

1 0
0

0

1

01

Property 1: for one bit flip, H(7,4) can detect the error and correct it

Property 2: for more than 2 errors, p(si 6= ŝi ) ≈ 9f 2
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More on Hamming code ...

The Hamming code is a linear code, it can be written compactly in matrix
notation:

t = sG

where G is the generator matrix of the code,

G> =


1 0 0 0 1 0 1

0 1 0 0 1 1 0

0 0 1 0 1 1 1

0 0 0 1 0 1 1


The encoding operation uses mod2 arithmetic:

1 + 1 = 0

0 + 1 = 1

The rows are like the four basis vectors lying in a 7D binary space

The 16 codewords are obtained by linear combinations of these vectors

Linear algebra very useful to solve the so-called maximum-likelihood
decoder
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Reprinted with corrections fromThe Bell System Technical Journal,
Vol. 27, pp. 379–423, 623–656, July, October, 1948.

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

T
HE recent development of various methods of modulation such as PCM and PPM which exchange
bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A

basis for such a theory is contained in the important papers of Nyquist1 and Hartley2 on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. Frequently the messages havemeaning; that is they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual
message is oneselected from a setof possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any monotonic function of this number
can be regarded as a measure of the information produced when one message is chosen from the set, all
choices being equally likely. As was pointed out by Hartley the most natural choice is the logarithmic
function. Although this definition must be generalized considerably when we consider the influence of the
statistics of the message and when we have a continuous range of messages, we will in all cases use an
essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. It is practically more useful. Parameters of engineering importance such as time, bandwidth, number
of relays, etc., tend to vary linearly with the logarithm of the number of possibilities. For example,
adding one relay to a group doubles the number of possible states of the relays. It adds 1 to the base 2
logarithm of this number. Doubling the time roughly squares the number of possible messages, or
doubles the logarithm, etc.

2. It is nearer to our intuitive feeling as to the proper measure. This is closely related to (1) since we in-
tuitively measures entities by linear comparison with common standards. One feels, for example, that
two punched cards should have twice the capacity of one for information storage, and two identical
channels twice the capacity of one for transmitting information.

3. It is mathematically more suitable. Many of the limiting operations are simple in terms of the loga-
rithm but would require clumsy restatement in terms of the number of possibilities.

The choice of a logarithmic base corresponds to the choice of a unit for measuring information. If the
base 2 is used the resulting units may be called binary digits, or more brieflybits, a word suggested by
J. W. Tukey. A device with two stable positions, such as a relay or a flip-flop circuit, can store one bit of
information.N such devices can storeN bits, since the total number of possible states is 2N and log22N = N.
If the base 10 is used the units may be called decimal digits. Since

log2M = log10M= log102

= 3:32log10M;

1Nyquist, H., “Certain Factors Affecting Telegraph Speed,”Bell System Technical Journal,April 1924, p. 324; “Certain Topics in
Telegraph Transmission Theory,”A.I.E.E. Trans.,v. 47, April 1928, p. 617.

2Hartley, R. V. L., “Transmission of Information,”Bell System Technical Journal,July 1928, p. 535.

1
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Shannon’s noisy channel coding theorem
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After WW-2: The achievability curve should cross the origin, i.e. ‘no free
lunch’ or ‘no pain, no gain’

Shannon: “For any channel, reliable (virtually error-free) communication
is possible at rates up to C”

Intuition: ‘one can design an encoder such that any R < C ’

Watch out!: nothing said about channel complexity (non-constructive th.)
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Shannon’s noisy channel coding theorem
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For the binary symmetric channel (BSC) and f = 0.1:

CBSC = 1− H2(f ) ≈ 0.53

H2(f ) = f · log2

(
1

f

)
+ (1− f ) log2

(
1

1− f

)

292 / 335



Intro Channels Hamming Capacity Information Huffman Entropy KLD MI Conclusions

Shannon’s noisy channel coding theorem
Problem: Suppose we want to sell 1Gbyte hdd with a pb = 10−15

Gustau: We showed that 60 noisy disk drives would meet the specification to
achieve 1 high-quality disk drive
—forget about the money, the size and trying to convince the client!

Shannon:

‘What performance are you trying to achieve? 10−15? You don’t need
sixty disk drives: you can get that performance with just two disk
drives (since 1/2 is less than 0.53). The capacity for f = 0.1 is 0.53,
so the number of disk drives needed at capacity is 1/0.53 = 1.88. And
if you want pb = 10−18, or 10−21, or 10−24 or anything, you can get
there with two disc drives too!’

Gustau:

‘Are you kidding me? your theorem is only useful for sequences of
block codes with ever increasing blocklengths, and to achieve that rate
you should use blocklengths bigger than 1 Gbyte!’

Shannon:

‘I agree: you cannot do it with such tiny disk drives but... if you had
two noisy terabyte drives, you could make a single high-quality
terabyte from them’

Gustau:

‘Ummm... you’re right!’
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How to compress a redundant file?

Key questions:

Compressibility of a dataset!?

How to measure the information content?

How much compression could be expected?

Why fixed rates for transmission/storage? Speech, images, time series, ...

Entropy codes ...

are simple to implement

put more effort in low probability events ...

are used jointly with scalar quantizers (to conserve the average bit rate)

based on INFORMATION
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What’s information?

Information is the reduction of uncertainty

Some (informal) axioms:
1 if something is certain its uncertainty = 0
2 uncertainty should be maximum if all choices are equally probable
3 uncertainty (information) should add for independent sources
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How to measure information content?

Let X be a random variable whose outcome x takes values in {a1, . . . , aL}
with probabilities {p1, . . . , pL}
Shannon’s information content for the outcome x = ai :

H(x = ai ) = log2

(
1

P(x = ai )

)
= log2

(
1

pi

)
is a sensible measure of information content

The entropy

H(X ) =
∑

i

pi log2

(
1

pi

)
= −

∑
i

pi log2(pi )

is a sensible measure of expected (average) information content

Entropy is measured in:
bits (binary digits) if base 2 log is used
nats (natural digits): natural (base e) log.

Good things to do, but not the only one!
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Measuring information content ...

How many bits needed to compress your data?

Shannon’s information content:

H(x = ai ) = log2

(
1

P(x = ai )

)
Example: Observe a sequence ‘...00000100’ with p1 = 0.1 (or p0 = 0.9):

H(x = 1) = log2

(
1

0.1

)
= 3.3bits

H(x = 0) = log2

(
1

0.9

)
= 0.15bits

Intuition:
The ‘1’ has less information, you don’t get too much surprised with a 0!
You don’t learn too much with a 0!
The ‘1’ is more improbable, more surprising, more informative!
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Axiom 1-2: Information and uncertainty

Consider a binary random variable that can take two values with
probabilities p and 1− p.

Entropy of a Binary Random Variable

Consider a binary random variable, that can take two values with probabilities p and 1− p.

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(fig 4.1 in David MacKay’s book)

Improbable events are more informative, but less frequent on average.

The entropy satisfies the two first axioms

• observation of a certain event carries no information

• maximum information is carried by uniformly probable events

MATLAB:
>> p=hist(x,b);

>> h=log2(1./p);

>> H=p.*log2(1./p) + (1-p).*log2(1./(1-p));

>> figure(1),plot(p,h)

>> figure(2),plot(p,H)

Improbable events are more informative, but less frequent on average

The entropy satisfies the two first axioms
observation of a certain event carries no information
maximum information is carried by uniformly probable events
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Axiom 3: Information under independence

What about more than one variable?

Example: we learn two variables {x, y} that are independent, then

P(x, y) = P(x)P(y)

Shannon’s information content is:

H(x, y) = log2

(
1

P(x, y)

)
= log2

(
1

P(x)

)
+ log2

(
1

P(y)

)
= H(x) + H(y)

Additive property: If variables are independent, the information content is
the sum of their informations!
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Huffman algorithm

Huffman (1952), “A Method
for the Construction of
Minimum-Redundancy Codes”

Huffman coding is an entropy
encoding algorithm used for
lossless data compression

Huffman enconding gives the
optimal compression for any
distribution

Huffman coding uses a specific
method for choosing the
representation for each symbol

The most common characters
use shorter strings of bits

It is optimal if the
representation rates are
preserved
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Example 1: Huffman algorithm
Let AX = { a, b, c, d, e }
and PX = { 0.25, 0.25, 0.2, 0.15, 0.15 }.

0.25

0.25

0.2

0.15

0.15

0.25

0.25

0.2

0.3

0.25

0.45

0.3

0.55

0.45

1.0a

b

c

d

e

0

1

0

1

0

1

0

1

�
�

�
�

�
�
�
�
�

�
�

x step 1 step 2 step 3 step 4

The codewords are obtained by reverse concatenation, C = {00, 10, 11, 010, 011}.

ai pi H(pi ) li c(ai )
a 0.25 2.0 2 00
b 0.25 2.0 2 10
c 0.2 2.3 2 11
d 0.15 2.7 3 010
e 0.15 2.7 3 011
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Example 2: Huffman algorithm in MATLAB
>> help huffmandict

>> symbols = [1:5]

>> prob = [.3 .3 .2 .1 .1]

>> dict = huffmandict(symbols,p); % Create the dictionary.

>> hcode = huffmanenco(sig,dict); % Encode the data.

>> dhsig = huffmandeco(hcode,dict); % Decode the code.
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Symbol codes, recap.

Simple way to compress things

Everything in the alphabet will be given a simple word

Essentially, Huffman gives short codes to most probable things

Huffman makes optimal symbol codes! (not trivial to show)

Notes

The receiver has to know how to decode: either having a table or to know
the encoding rule (e.g. a header bit)

How to decode? go from top of the tree to the leaves

Vast literature on error correcting codes (flips corrections)

There are some cases where compression and encoding are merged (e.g.
Mackay-Nils code)
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Problems with Huffman codes

Huffman coding is optimal for a symbol-by-symbol coding (i.e. a stream of
unrelated symbols)

Symbol coding fails for extreme distributions!

What if the PDF changes?
not identically distributed, (e.g. ‘a’ is far much more common than ‘z’)
not independent (e.g., ‘cat’ is more common than ‘cta’)
over time, context-dependent, adaptive (learning), ...

Arithmetic coding and Lempel-Ziv-Welch (LZW) coding often have better
compression capability

Solutions for Huffman codes

Grouping symbols can help in changing environments

Block-wise Huffman coding solves changes in repetition rates

Huffman coding is widely used because of its simplicity, high speed and
patent-free

Huffman coding is often used as a ‘back-end’ to PKZIP, JPEG and MP3
compression
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Run-length encoding (RLE)

Simple way to encode things

Runs (repetitive sequences) of data are stored as a single data value and
count, rather than as the original run:

WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWW

WWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW

is encoded as

12W1B12W3B24W1B14W

The run-length code represents the original 67 characters in only 18!

It is also useful for binary streams

It is well suited to palette-based iconic images

Common formats for RLE: Truevision TGA, PackBits, PCX and ILBM.

JPEG uses it with the coefficients remaining after transform and
quantization

RLE is used in faxes!

RLE also applied to low-quality audio signals, just after a predictive filter
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“Entropy is a measure of how organized or disorganized a system is: Gain of
entropy eventually is nothing more nor less than loss of information”
Entropy in thermodynamics

entropy is measured in [J/K] Joules/Kelvin

machines are basically energy conversion devices

Greek /εντρoπια/ means ‘conversion’, ‘change’

systems tend to progress to higher entropy, change, conversion

Entropy in statistical mechanics

entropy is a measure of the number of ways to arrange a system

measure of ‘disorder’ (the higher the entropy, the higher the disorder)

amount of order, disorder, and/or chaos in a system

Entropy in other fields of science

Ecological entropy is a measure of biodiversity

Social entropy is a measure of the natural decay within a social system

Neurological entropy is the likelihood of patient’s consciousness
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Remember: How to measure information content?

Let X be a random variable whose outcome x takes values in {a1, . . . , aL}
with probabilities {p1, . . . , pL}
Shannon’s information content for the outcome x = ai :

H(x = ai ) = log2

(
1

P(x = ai )

)
= log2

(
1

pi

)
is a sensible measure of information content

The entropy

H(X ) =
∑

i

pi log2

(
1

pi

)
= −

∑
i

pi log2(pi )

is a sensible measure of expected (average) information content

Entropy is measured in:
bits (binary digits) if base 2 log is used
nats (natural digits): natural (base e) log.

Good things to do, but not the only one!
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Shannon’s information, intuitively

Shannon’s information or entropy of a vector a with PDF P(a)

H(a) =

∫
P(a) log2

(
1

P(a)

)
da = −

∫
P(a) log2(P(a))da

Intuition: ‘entropy is related to the PDF volume’

Intuition 2: ‘more volume, more uncertainty, more surprise’

Interesting properties:
1 Entropy of a unidimensional Gaussian: H(a) = 1

2
ln(2πeσ2)

2 Entropy of a Gaussian depends on the volume |Σ|:

H(a) =
1

log(2)
ln((2πe)d/2|Σ|1/2)

3 The N distrib has the highest H among all distrib. with Σ

entropies.m, hgu.m
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Change in entropy under transformations

Given F : a ∈ Rd → b ∈ Rd , then

H(a)→ H(b) = H(a) + E[log2 |∇F (a)|]
For the demo, first remember:

The differential in volume in the transformed domain depends on the
Jacobian of the transform, db = |∇F (a)|da
Remember PDFs under transforms: P(b) = P(a)|∇F (a)|−1

H(b) = −
∫

P(b) log2(P(b))db =

−
∫

P(a)|∇F (a)|−1 log2(P(a)|∇F (a)|−1)|∇F (a)|da =

−
∫

P(a) log2(P(a))da−
∫

P(a) log2(|∇F (a)|−1)da =

H(a) + E[log2 |∇F (a)|]

Orthogonal transforms (rotations) conserve entropy!

htransforms.m
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Entropy (negatively biased) estimation in MATLAB
function H = entropy(p)

p = p/sum(p); % Empirical estimate of the distribution

idx = p∼=0;
H = -sum(p(idx).*log2(p(idx)));

Entropy estimation with MM correction in MATLAB
% MLE estimator with Miller-Maddow correction

function H = entropy mm(p)

c = 0.5 * (sum(p>0)-1)/sum(p); % Miller-Maddow correction

p = p/sum(p); % Empirical estimate of the distribution

idx = p∼=0;
H = -sum(p(idx).*log2(p(idx))) + c;

hbias.m

310 / 335



Intro Channels Hamming Capacity Information Huffman Entropy KLD MI Conclusions

Entropy estimation: toy example
If X = a (with pa = 1/2), X = b (with pb = 1/4), X = c (with pa = 1/8), and
X = d (with pa = 1/8). The entropy of X is

H(X ) = −1

2
log2

(
1

2

)
− 1

4
log2

(
1

4

)
− 1

8
log2

(
1

8

)
− 1

8
log2

(
1

8

)
=

7

4
bits

Note: An efficient question would be ‘is X = a?’ because it splits the
probability in 0.5-0.5, a second best would be ‘is X = b?’ and so on...
The resulting expected number of binary questions required to know X is 1.75.
It can be demonstrated that the expected number of questions lies between

H(X ) ≤ L ≤ H(X ) + 1
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Entropy estimation in MATLAB: clean vs noisy signals.
>> help entropy

>> s = sin(0:0.01:10);

>> n = 0.75*randn(size(s));

>> r = s + n;

>> plot(0:0.1:10,s,’k’,0:0.1:10,n,’g’,0:0.1:10,r,’r’)

>> corrcoef(s,n) = -0.0396

>> entropy(s) = 1.53, entropy(n) = 1.71, entropy(r) = 2.05

>> entropy(s)+entropy(n) = 3.2457

>> jointentropy(s,n) = 3.2411

>> jointentropy(s,r) = 3.2678
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Entropy estimation in MATLAB: feature extraction.
>> help entropy

>> help entropyfilt

>> I = imread(’circuit.tif’);

>> E = entropy(I)

>> J = entropyfilt(I);

>> figure, imagesc(I),colormap gray;axis off square

>> figure, imagesc(J),colormap gray;axis off square
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Entropy estimation for time series processing
http://www.tech.plym.ac.uk/spmc/links/sp/sp entropy.html

http://www.nbb.cornell.edu/neurobio/land/PROJECTS/Complexity/index.html

http://www.mpipks-dresden.mpg.de/∼tisean/
http://www.mathworks.com/matlabcentral/fileexchange/3102
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Joint entropy H(X ,Y ) The joint entropy H(X ,Y ) of a pair of discrete
random variables (X ,Y ) with a joint distribution p(x , y) is:

H(X ,Y ) = −
∑

x

∑
y

p(x , y) log2(p(x , y))

If X and Y are independent: p(x , y) = p(x)p(y) and the Shannon
information content is:

H(X ,Y ) = log2

(
1

P(x , y)

)
= log2

(
1

P(x)

)
+ log2

(
1

P(y)

)
= H(x) + H(y)

Conditional entropy The conditional entropy is the average uncertainty
remaining about x if we have observed y :

H(X |Y ) = −
∑

x

∑
y

p(x , y) log2(p(x |y)) = H(X ,Y )− H(Y )

Relation between joint and conditional entropies The entropy of a pair of
random variables is the entropy of one plus the conditional entropy of the other.

H(X ,Y ) = H(X ) + H(Y |X )

Corollaries:
If X and Y are independent H(X |Y ) = H(X )
H(Y |X ) 6= H(X |Y ) but H(X )− H(X |Y ) = H(Y )− H(Y |X )
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Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics.

www.jstor.org
®
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Kullback-Leibler divergence (KLD)

The KLD measures differences (a kind of ‘distance’) between PDFs

Definition: Given two PDFs P(a) and Q(a), the KLD between them is

DKL(P(a)‖Q(a)) =

∫
P(a) log

(
P(a)

Q(a)

)
da

KLD properties

DKL ≥ 0

DKL = 0 iff P(a) = Q(a)

Watch out!

DKL is not a distance!

A distance d(·‖·) must fulfil three conditions:
Positiveness: d(x‖y) ≥ 0 d(x‖y) = 0 iff x = y :)
Triangle inequality: d(x‖z) ≥ d(x‖y) + d(y‖z) :)
Symmetry: d(x‖y) = d(y‖x) :(
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Kullback-Leibler divergence (KLD), ctd’

The KLD measures diferences (a kind of ‘distance’) between PDFs

Definition: Given two PDFs P(a) and Q(a), the KLD between them is

DKL(P(a)‖Q(a)) =

∫
P(a) log

(
P(a)

Q(a)

)
da

Property 1: Pythagoras in KLD
Given P, Q, there exists R such that:

DKL(P(a)‖Q(a)) = DKL(P(a)‖R(a)) + DKL(R(a)‖Q(a))

Property 2: KLD is invariant under invertible affine transforms
Given F : b = Ga + n, and ∇F = G

DKL(P(b)‖Q(b)) =

∫
P(b) log

(
P(b)

Q(b)

)
db =∫

P(a)|∇G|−1 log

(
P(a)|∇G|−1

Q(a)|∇G|−1

)
|∇G|da = DKL(P(a)‖Q(a))
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Example: Check assymetry of KLD Let X = {0, 1} and consider two
distributions p and q on X . Let p(0) = 1− r , p(1) = r , q(0) = 1− s,
q(1) = s. Then

DKL(p‖q) = (1− r) log
1− r

1− s
+ r log

r

s

and

DKL(q‖p) = (1− s) log
1− s

1− r
+ s log

s

r

If s = r , then DKL(p‖q) = DKL(q‖p) = 0.
If r = 1/2 and s = 1/4, then DKL(p‖q) = 0.21 bits and DKL(q‖p) = 0.18 bits.
In general DKL(p‖q) 6= DKL(q‖p) !
Example: Check Pythagoras and KLD under rotations KLDiv.m, JSDiv.m,

kldproperties.m
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Cross-entropy The cross entropy for two distributions p and q over the same
probability space:

H(p, q) = H(p) + DKL(p‖q)→ DKL(p‖q) = H(p, q)− H(p)

Intuition: divergence is the difference of volume between PDFs
Demo:

H(p, q) = −
∑

i

p log2(q) = −
∑

i

p log2(
pq

p
) =

−
[∑

i

(p log2(p) + p log2(
q

p
))

]
= H(p) + DKL(p‖q)

Consequence: For discrete p and q this means:

H(p, q) = −
∑

i

p log2(q) 6= H(q, p) = −
∑

i

q log2(p)
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Statistical independence

Definition: Components in vector a are statistically independent if the
joint PDF can be ‘factorized’:

Pa(a) =
d∏

i=1

Pai (ai ) = Pa1 (a1)Pa2 (a2) · · ·Pad (ad )

Intuition 1: look at the conditional PDF: “Statistical independence means
P(ai |aj 6=i ) = P(ai ) since observing (knowing) aj does not convey any
information on ai ”:

P(ai |aj ) =
P(ai , aj )

P(aj )
= (factorization) =

P(ai )P(aj )

P(aj )
= P(ai )

Intuition 2: look at the KLD and assume you can factorize
Pa(a) =

∏d
i=1 Pai (ai ), then

DKL(P(a)‖
d∏

i=1

Pai (ai )) =

∫
P(a) log

(
P(a)∏d

i=1 Pai (ai )

)
da =

∫
P(a) log(1) = 0
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Mutual information or ‘dependence’
The mutual information of two discrete random variables x and y can be
defined as:

I (x, y) =
∑

x

∑
y

p(x , y) log

(
p(x , y)

p1(x)p2(y)

)
where p(x , y) is the joint probability distribution function of x and y, and p1(x)
and p2(y) are the marginal probability distribution functions of x and y
respectively.
Intuitions

Mutual information measures the information that x and y share

I measures how much knowing one of these variables reduces our
uncertainty about the other.

If x and y are independent, then knowing x does not give any information
about y and vice versa, so I = 0

If x = y, all information conveyed by x is shared by y: knowing x
determines the value of y and vice versa, so I is the uncertainty contained
in x or y alone, i.e. the entropy of x or y

322 / 335



Intro Channels Hamming Capacity Information Huffman Entropy KLD MI Conclusions

Mutual information or ‘dependence’ The mutual information of two discrete
random variables x and y can be defined as:

I (x, y) =
∑

x

∑
y

p(x , y) log

(
p(x , y)

p1(x)p2(y)

)
where p(x , y) is the joint probability distribution function of x and y, and p1(x)
and p2(y) are the marginal probability distribution functions of x and y
respectively.
I measures independence
I (x; y) = 0 iff x and y are independent random variables.
Demo: if x and y are independent, then p(x , y) = p(x)p(y), and therefore:

log

(
p(x , y)

p1(x)p2(y)

)
= log(1) = 0

I properties I (x; y) ≥ 0 and symmetric I (x; y) = I (y; x)
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The big picture

Information Between Two Random Variables (2)

(from David MacKay’s book)

H(X,Y ) is the joint entropy of X,Y

H(X|Y ) is the conditional entropy of X given Y

I(X;Y ) is the mutual information between X and Y

324 / 335



Intro Channels Hamming Capacity Information Huffman Entropy KLD MI Conclusions

The big picture II: basic relations

H(X|Y) H(Y|X)
I(X;Y)

H(Y)H(X)

H(X,Y)

1 I (X ; Y ) = H(X )− H(X |Y )

2 I (X ; Y ) = H(Y )− H(Y |X )

3 H(X ,Y ) = H(X ) + H(Y )− I (X ; Y )

4 I (X ; X ) = H(X )− H(X |X ) = H(X )

5 I (Y ; X ) = I (X ; Y )

6 I (X ; Y ) ≥ 0, and I (X ; Y ) = 0 iff X ⊥ Y
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Multi-information
The mutual information property

H(X ,Y ) = H(X ) + H(Y )− I (X ; Y )

leads to

I (X ; Y ) = H(X ) + H(Y )− H(X ,Y )

and can be generalized to multi-dimensional spaces:

I (a) =
d∑

i=1

H(ai )− H(a)
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Intuition on mutual information

327 / 335



Intro Channels Hamming Capacity Information Huffman Entropy KLD MI Conclusions

Property 1: Information cannot hurt!
The mutual information is positive by definition:

I (X ; Y ) = H(Y )− H(Y |X ) ≥ 0 → H(Y ) ≥ H(Y |X )

Property 2: I with Gaussian random variables If you assume x and y are
Gaussian random variables [Cardoso03]:

I (x, y) = −1

2
log

(
|C|

|Cxx ||Cyy |

)
, where C =

(
Cxx Cxy

C>xy Cyy

)
See it this way: given (X ,Y ) ∼ N (0,C) correlated Gaussian variables with C

C = σ2

(
1 ρ
ρ 1

)
H(X ) = H(Y ) = 0.5 log(2πeσ2)

H(X ,Y ) = 0.5 log((2πe)2|C|) = 0.5 log((2πe)2σ4(1− ρ2))

I (X ; Y ) = H(X ) + H(Y )− H(X ,Y ) = −0.5 log(1− ρ2)

gaussianmutual.m
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Given distribution Pr, test H0 : Pr = Prx Pry

Continuous valued, multivariate: X := Rd and Y := Rd ′

X

Y

Dependent P
XY

−5 0 5
−5

0

5
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Y

Independent P
XY
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X
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Y

−5 0 5
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Gretton and Györfi (MPI) Nonparametric Indepedence Tests October, 2008, ALT 4 / 1
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Problem overview

Given distribution Pr, test H0 : Pr = Prx Pry

Finite sample observed (X1,Y1), . . . , (Xn,Yn)
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Sample from P
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Gretton and Györfi (MPI) Nonparametric Indepedence Tests October, 2008, ALT 5 / 1
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Problem overview

Given distribution Pr, test H0 : Pr = Prx Pry

Partition space X into mn bins, space Y into m′n bins

Discretized empirical P
XY

Discretized empirical P
X
 P

Y

Gretton and Györfi (MPI) Nonparametric Indepedence Tests October, 2008, ALT 6 / 1
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Problem overview

Given distribution Pr, test H0 : Pr = Prx Pry

Refine partition mn, m′n for increasing n

Discretized empirical P
XY

Discretized empirical P
X
 P

Y

Gretton and Györfi (MPI) Nonparametric Indepedence Tests October, 2008, ALT 7 / 1
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Histogram-based mutual estimation and the curse of dimensionality

In high dimensional problems, the space is typically empty ... :(

The curse of dimensionality [Fukunaga78]

We need much more samples, n, to fill in the space as d increases

Assuming n = b2 for b bins, s = b2 · d :

d s Memory [Bytes]
1 11 968
2 14641 117.128
3 1771561 14.172.488
4 214358881 1.714.871.048
5 25.937.000.000 HELP MEMORY
6 3.138.400.000.000 HELP MEMORY
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Source code for estimating mutual information

MATLAB does not have a function to do it! :(

Several toolboxes available:
http://www.mathworks.com/matlabcentral/fileexchange/14888-mutual-
information-computation
http://www.cs.rug.nl/∼rudy/matlab/
http://www.bioss.ac.uk/∼dirk/software/MutInf/
http://www.physik3.gwdg.de/tstool/
http://www.klab.caltech.edu/∼kraskov/MILCA/
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Reviewed:
Information theory, main quantities,
entropy, divergence, mutual information,
channels, communication errors,
capacity, applications in signal and image
processing, etc.
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