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Theory:

@ Probability and random variables

@ Discrete time random processes

© Spectral estimation

@ Signal decomposition and transforms

© Introduction to information theory (bonus track)
Examples, demos and practices:

[J Matlab source code, online material

[0 Examples and lab sessions



Chapters 1+2: Probability, random signals and variables

¥ “Introduction to random processes (with applications to signals and
systems)”, Gardner (1989)

® “Intuitive probability and random processes using MATLAB”, Kay (2006)

® “Probability, random variables and random signal principles”, Peebles
(1987)

® “An introduction to statistical signal processing”, Gray and Davisson
(2004)

® “Probability and measure”, Billingsley (1995)
Chapters 3+4: Spectral analysis and transforms
¥ “Spectral analysis of signals”, Stoica and Moses (2005)

® Chapter 14 “Spectrum Estimation and Modeling” in Digital Signal
Processing Handbook, Djuric and Kay (2005)

® Chapters 35-27 in Digital Signal Processing Handbook, Djuric and Kay
(2005)
B Wikipedia, Vetterli and Gilles slides
Chapter 5 (bonus track): Introduction to information theory
® “Elements of Information Theory”, Cover and Thomas (1991)

¥ “Information theory, inference and learning algorithms”, D. MacKay
(2004), http://www.inference.phy.cam.ac.uk/mackay
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Part 1: Probability and random variables
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

‘Probability is the chance that a given event will occur”

— Webster dictionary

‘Probability is simply an average value’

‘Probability theory is simply a calculus of averages’

‘Probability theory is useful to design and analyze signal
processing systems’

— Gardner, 1989
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Probability

Ingredients of probability:
@ We have a random experiment
@ A set of outcomes
@ The probabilities associated to these outcomes
@ We cannot predict with certainty the outcome of the experiment
@ We can predict “averages”!
Philosophical aspects of probability:
@ We want a probabilistic description of the physical problem

@ We believe that there's a statistical regularity that describes the physical
phenomenon
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Example 1: cannot predict how much rain, but the average suggests not to
plant in Arizona

Average = 9.76 inches Average = 4.40 inches

L (il

2
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ar

Example 2: result of tossing a coin is not predictable, but the average 53%
tells me it is fair coin

heads
1 +
g
g tails
0 [ At £
o
0 20 40 80 100

Toss
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Probability

Types of probability: Probabilistic problems (and methods) can be discrete or

continuous:
Q1 How many of the N = 4 people is chatting now via WhatsApp?
o Discrete answer: 0,..., N

e Simple equiprobable decision: 1/(N + 1) = 1/5 = 20%
Q2 How long a particular guy is chatting between 15:00-15:107

o Infinite answers: T = [0, 10] min
o We need to decide if the outcome is discrete or continuous
o We need a probabilistic model!



Probability

[Q2] How long a particular guy is chatting between 15:00-15:10?
Al Assume a simple probabilistic model with discrete answer:

o Assign a probability to each guy being on the phone in T, e.g.: p=0.75

o Assume a Bernoulli distribution:

N!
Plk] = k(1 — p)N—k
[K] PO (1-p)
e Too strong assumptions?: 1) each guy has a different p, 2) every p is
affected by friends p; and 3) p changes over time

A2 Assume a more complex probabilistic model with continuous answer:

e Assume an average time of chat = 7min
o Assume a Gaussian model for the time on the phone:

1 1 2) /6
t) = exp| —=(t—7 —P5<T<L6]= t)dt = 0.1359

pr(0) = e (< 3(e=77) > PE< T <6l = [ or(0)
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Probability

Notion of probability

:_(

v(t)

@ The thermal noise voltage: composition of +/- pulses

@ What's the probability that V/(t) > 1uV at t = t,? Need a probabilistic
model for this physical situation!

@ Event of interest A: V(t,) > 1uV

@ Event indicator: /o = 1 if A occurs, /4 = 0 otherwise

@ Imagine n resistors, and average the values of the indicator function:

P = i 2310
o If we have m resistors that fullfil A, then:

P(A) = lim =

n—oco n

@ P(A) is the relative frequency of occurrence of event A
@ P(A) is the probability of occurrence of event A
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Probability

Sets

@ A set S is a collection of entities (or
elements):

S={s1,...,sn}

@ A set S belongs to a larger set S,

@ S is the set of all s contained in S, that (a) Set containment and complement

fullfill property Qs:

(b) Set union

S={s€S,:s satisfies Qs}

Sisasubsetof S,: SCS,, SCS,
Complement of S'is §
Union: AUB={seS:scAorsec B}

Intersection:

ANB={se€S:scAandsec B} aﬂ
DeMorgan's laws: ///

AUB

(c) Set intersection

I

hN]|
C )

los]}

Il
pN|
wy]]

ANB
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Probability

Sets operations
pukhali

Sets relations

| n =
¢
(8) Universal set § (b) Set A (c) Set A° E—

Sets partition

v oo .-

(d)Set AUB (e) Set ANB. (f)Set A—B

DeMorgan’s Law

(a) Set AUB (b) Set A° N B¢



Probability RV PDF Functions Expectation Moments Convergence Conclusions

Sample space
o Experiment: process of observing the state of the resistor at t = t,

o Sample point: outcome of the experiment, sets of positions and velocities
of all electrons/ions in the resistor

@ Sample space: set S of all possible sample points (infinite possibilities!)

@ Event: event A C S that occurs (happens)

® s1, 52 and s3: sample points
@ A, B: events

@ S: sample space

If enough net negatively charged regions reside near the — terminal, and/or
enough positively charged regions are near the + terminal, then the event
A: V(to) > 1pV will occur.




Expectation Moments Convergence Conclusions

Probability RV PDF Functions

Probability space
The sample space S is a probability space iff to every event A there is a

number P(A) that fulfils:
e 0<P(A) <
o P(AUB) = P(A)+P(B) iff ANB=10
o P(AUB) = P(A)+ P(B) — P(AN B)
e P(S)=

Probability as a volume over a planar sample space
Surface

The infinitesimal probability of the event ds,
centered at point s in set A is dP(s) then the
probability of the event A is the continuous integral
(sum) of all the individual probabilities over the set:

P(A) B /SEA dP(S) - lEA dZ£S)

This representation is not very useful because most of the problems are
multidimensional, e.g. our problem is defined in a 6-dim space positions
and velocities of a single electron.

Volume=P(A)
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Conditional probability

What if we have an extra condition on our problem? Given that
V(t,) > 0, what is the probability that V(t,) > 1uV?

Conditional probability
P(ANB)
P(B)
In this example, A is a subset of B, AC B, so ANB = A:

P(AIB) =

P(A|B) = —=% = 2P(A), because P(B)=0.5

A conditional probability is a simple (unconditional) probability defined on
a new (conditional) probability space, e.g. in our case Sg = B, and the
new probability function is:

P(-N B)
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Probability

Bayes’ theorem

Bayes was concerned about...

@ Forward problem: Given a specified number of white and black balls in a
box, what is the probability of drawing a black ball?

@ Reverse problem: Given that one or more balls have been drawn, what can
be said about the number of white and black balls in the box?
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Bayes’ Theorem: “Bayes’ theorem relates the conditional and marginal
probabilities of events A and B, where B has a non-zero probability”
P(B|A)P(A) likelihood X prior

terior = P(A|B) = =
posterior = P(A[B) P(B) marginal likelihood

Example “The department is formed by 60% men and 40% women. Men
always wear trousers, women wear trousers or skirts in equal numbers”.

@ A: |l see a girl

@ B: A person is wearing trousers

@ The probability of meeting a girl with trousers is:
P(B|A)P(A) 0.5x 0.4

- =0.25
P(B) 05x04+1x06

P(A|B) =

@ Simple non-Bayesian probabilities would say: 0.4 x 0.5 = 0.2
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Independent events

If the occurrence of event B has no effect on the occurrence of event A,
we say that A is independent of B, P(A|B) = P(A)

Remember Bayes’ theorem:

P(AIB) = P(B|A>%
then
P(A n B) — P(A)P(B), P(B|A) = P(B)

so if A is independent of B, then B is independent of A
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Random variable

A random variable is a real-valued function X(-) of sample points in a
sample space: a function that assigns a real number x = X(s) to each
sample point s. The real number x is called realization, or statistical
sample of X(+)

Representation of a random variable

real line

x3= X(sz) xz=X(sp) x)=X(s))

Our example:

X = V(t,) is a random variable, and after the experiment, the specific
value v(t,) measured is a sample of the random variable V/(t,):
x =v(t,) = V(to,s) = X(s)
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Discrete random variables

zo=1

Sx ={0,1}

d

One-to-one map Many-to-one map

Sx = {1, 3,23,...}

§={s1,82,83,...} 8§ ={s51,52,83,...}



Probability RV PDF Functions Expectation Moments Convergence Conclusions

Why “random” in random variable?

“Nothing in nature is random . . . A thing appears random only through
the incompleteness of our knowledge.”

—Spinoza, Ethics |

“l do not believe that God rolls dice.”

—attributed to Einstein



Probability RV PDF Functions Expectation Moments Convergence Conclusions

Why “random” in random variable?

“A random or stochastic process is a mathematical model for a phenomenon
that evolves in time in an unpredictable manner from the viewpoint of the
observer.

The phenomenon may be a sequence of real-valued measurements of voltage or
temperature, a binary data stream from a computer, a modulated binary data
stream from a modem, a sequence of coin tosses, the daily Dow—Jones average,
radiometer data or photographs from deep space probes, a sequence of images
from a cable television, or any of an infinite number of possible sequences,
waveforms, or signals of any imaginable type.

It may be unpredictable because of such effects as interference or noise in a
communication link or storage medium, or it may be an information-bearing
signal, deterministic from the viewpoint of an observer at the transmitter but
random to an observer at the receiver.”

—Gray, 2004



Probability RV PDF Functions Expectation Moments Convergence Conclusions

Why “random” in random variable? (Il)

“The theory of random processes quantifies the above notions so that one can
construct mathematical models of real phenomena that are both tractable and
meaningful in the sense of yielding useful predictions of future behavior.

Tractability is required in order for the engineer (or anyone else) to be able to
perform analyses and syntheses of random processes, perhaps with the aid of
computers. The meaningful requirement is that the models must provide a
reasonably good approximation of the actual phenomena.

An oversimplified model may provide results and conclusions that do not apply
to the real phenomenon being modeled. An overcomplicated one may constrain
potential applications, render theory too difficult to be useful, and strain
available computational resources. Perhaps the most distinguishing
characteristic between an average engineer and an outstanding engineer is the
ability to derive effective models providing a good balance between complexity
and accuracy.”

—Gray, 2004



Why “random” in random variable? (l11)

“Random processes usually occur in applications in the context of environments
or systems which change the processes to produce other processes.

The intentional operation on a signal produced by one process, an input signal,
to produce a new signal, an output signal, is generally referred to as signal
processing, a topic easily illustrated by examples.”

—Gray, 2004
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Why “random” in random variable? (1V)

¢ A time-varying voltage waveform is produced by a human speaking into a mi-
crophone or telephone. The signal can be modeled by a random process. This
signal might be modulated for transmission, then it might be digitized and coded
for transmission on a digital link. Noise in the digital link can cause errors in
reconstructed bits, the bits can then be used to reconstruct the original signal
within some fidelity. All of these operations on signals can be considered as signal
processing, although the name is most commonly used for manmade operations
such as modulation, digitization, and coding, rather than the natural possibly
unavoidable changes such as the addition of thermal noise or other changes out
of our control.

For digital speech communications at very low bit rates, speech is sometimes
converted into a model consisting of a simple linear filter (called an autoregressive
filter) and an input process. The idea is that the parameters describing the model
can be communicated with fewer bits than can the original signal, but the receiver
can synthesize the human voice at the other end using the model so that it sounds
very much like the original signal. A system of this type is called a vocoder.
Signals including image data transmitted from remote spacecraft are virtually
buried in noise added to them on route and in the front end amplifiers of the
receivers used to retrieve the signals. By suitably preparing the signals prior to
transmission, by suitable filtering of the received signal plus noise, and by suitable
decision or estimation rules, high quality images are transmitted through this very
poor channel.

Signals produced by biomedical measuring devices can display specific behavior
when a patient suddenly changes for the worse. Signal processing systems can look
for these changes and warn medical personnel when suspicious behavior occurs.
¢ Images produced by laser cameras inside elderly North Atlantic pipelines can
be automatically analyzed to locate possible anomalies indicating corrosion by
looking for locally distinct random behavior.



Probability RV PDF Functions Expectation Moments Convergence Conclusions

Distribution function (DF) or Cumulative Density Function (CDF):
The probability distribution function for a random variable X is denoted by
Fx(-), and is defined by

Fx(x) = Prob{X < x},

that is, Fx(x) is the probability that the random variable X will take on a value
less than the number x

Fy(x)
@ Fx(—o0) =
@ Fx(+o0)=1

Let X = V(t,), then:
o Ax: V(to) < 1uV =10"°V
o Ax: V(t,) >107°V
o Prob{V(t,) >107°V} = P(Ax) =1 — Fx(107%V)

Therefore, we can answer the question if we determine the appropriate
distribution function for the thermal noise voltage!
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PDF

Probability Density function (PDF):
The probability that a random variable X takes a value in the interval

[x—e,x+¢)is
Prob{x —e < X < x + ¢},

then the density of probability a the point x is
f(x) = lim - Prob{x — & < X < x + £}
x(x) = lim > Probix —e < x+e

A fx(x)

@ Non-negative function: fx(x) >0
o Unit area: [% fx(x)dx =1

Properties:

28
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PDF
PDF and CDF are related:

d X
KO = g Feb) Fx0)= [ Ayl
Fy(x) fx(x)
| -
- N -
Intuition:
@ Probability of the event Ax : x € [x1, x2) is
2 dF
P(Ax) = Fx(x2) — Fx(x) :/ %dx
X1

(oo}
Prob{xi < X < x2} = / x(x)dx
—o0
o “The probability that x is contained in some subset of real numbers Ax
can be interpreted as the area under the probability density function x(-)
above the subset”
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PDF

The Gaussian (or normal) density function:

_lﬁ;ﬂ3 A2 % < oo

bl 222 o
V2mo? 2 o2

where p is the mean and o is the standard deviation.

>> x -10:0.1:10;

>> f normpdf (x,1,1);

>> plot(x,f)

>> xlabel(’Sample space x’); ylabel(’Gaussian density £ X(x)’);
>> x = randn(1000,1);

>> histfit(x);

>> x = rand(1000,1);

>> histfit(x);



Probability RV PDF Functions Expectation Moments Convergence Conclusions

The thermal noise voltage solution with the Gaussian model:

Assume p = 0 and 0 = 4KTBR [V?], where K is the Boltzmann's
constant, T is the temperature [K], B is the bandwidth of the voltmeter
[Hz], and R is the resistance [Q2]. For T = 290K and a 100-MHz
voltmeter, 0° = 1.6 1071° [V?]

eThe probability of having V(t,) > 107°V:

106
Prob{V(t,) > 10 °V} =1 —/ fx (x)dx,

— o0

4 2
and using the Gaussian density fx(x) = M) we obtain

1 1
_ . S X
V2ro p ( 2 o?
Prob{V(t,) >107°V} =1/2 - erf<10_6/\/1.6 10710> ~ 0.48,

where erf(-) is the error function:
1 y >> help erf;
erf(y) = ﬁ/o exp(—x°/2)dx >> help erfinv;
eThe conditional question: P[V/(t,) > 107°V | V(t,) > 0V] = 2 x 0.48 = 0.96
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Probability density function of a discrete random variable:

Random variables with a Gaussian distribution are continuous random
variables. The other interesting case are random variables that can take
on only a countable number of values, the discrete random variables (e.g.

quantized signals)

Rl o x)

—» X

Intuition:
@ The density function is just the differentiation of the (piecewise constant)
distribution function
@ Only two Dirac delta functions (impulses) are obtained (as expected)



PDF

Probability density function of mixed random variable:

Sometimes the systems provide a mixed (continuous+discrete) random
variables.

fy (x)
kX

Intuition:
°
Fx(x) = (P1+ P2) Fy(x) + P3 Fz(x),
where Y denotes the random (discrete) battery and Z denotes the
thermal-noise voltage (continuous)

@ The density function is an additive function (yet not invertible)!
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PDF

Probability mass function (PMF):

Useful to characterize the random variable instead of using the distribution
function

fy (x)
A X

P1 X =Ww
Px(x) = Pg X =W
0  otherwise




Probability RV PDF Functions Expectation Moments Convergence Conclusions

Joint distributions and densities:

The previous definitions extend from a single random variable to several
random variables

For two RVs X and Y:
@ Joint distribution function:

Fxy(x,y) = Prob{X < x and Y < y}

@ Joint density function:
2

19}
£ = F;
XY(X7.y) 8Xay XY(X7.y)
@ Marginal distributions obtained from the joint distribution and density:
+oo
Pl = For(xioe) b = [ eyl
@ Conditional density:
fxv (X, y)
xiy(x|Y =y) =
Xy (x]Y =) ()
@ Conditional distribution:
Fxy(x,
Fav(x]Y < y) = Bobey)

Fy(y) 35/335
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Independent random variables:

If X and Y are statistically independent then:
Fxy(x,y) = Fx(x) Fy(y)

and therefore
fxv (x,y) = fx(x) fr(y)

Intuition: Independent variables only when you can describe X without the

need of observing Y
15

E

0.5

(a) No dependency (b) Dependency

36 /335



Probability RV PDF Functions Expectation Moments Convergence Conclusions

Bivariate Gaussian density:

Two random variables X and Y are jointly Gaussian iff the random
variable Z = aX 4 bY is Gaussian for any real numbers a and b.

@ If X and Y are not linearly dependent (Bc,d : Y = cX + d), then the

joint Gaussian density is:
1

2roa’y/1 — p?

(x = 1)*/0* = 2p(x — p)a(y — )0’ + (y — 1/')?/o
e ( 21 p)? )

o If X and Y are linearly dependent, then p = 1, and this does not apply

fxy(x,y) =
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Multivariate Gaussian density:

The multivariate normal distribution or multivariate Gaussian distribution,

is a generalization of the one-dimensional (univariate) normal distribution
to higher dimensions

The multivariate normal distribution of a
k-dimensional random variable

X = [X1, Xz, ..., Xi] is written:

X ~ N(p, X),

with k-dimensional mean vector

(x)d

/"‘:[Mh.u‘?w"y,uk]

and k x k covariance matrix

z:[UU]vivj:sz“ak

http://en.wikipedia.org/wiki/Multivariate_normal_distribution


http://en.wikipedia.org/wiki/Multivariate_normal_distribution

PDF

Multidimensional Probability density function (PDF)
@ Joint PDF of a vector a:

Pa(a) = Pa(a1, az, ..., ad), /Pa(a)da =1

@ Marginal PDF (of ith component of a):

P, (ai) Z/Pa(a)dald3[—1d3i+1dad

is the integral of the joint PDF in all directions except i
© Conditional PDF (of a component i fixing the rest):

P aj, dj g .
aj\9dj

@ Bayes' rule says:
p(ai7aj) p(ai7aj)
P(aila)) = ===, P(ajlai) = ——=*
@2) = "5y > PO = o)

P(aila;) = 7P(ajF|>a(,-3jF)’(a,-)

39 /335



2

P(az) MARGINALZ

ConD CLON AL

PDF

2 CONJUNTA

o MAZ&NAL )

'[’Az(a,,IAK—ﬂ\,.)

PO
CoNDICLONVAL,

PDOF
CONJUNTA

POF
MaROANAL A

40 /335



Probability RV PDF Functions Expectation Moments Convergence

Probabilities and ensembles

s

An ensemble is a triple (z, Ax, Px):

e the outcome z is the value of a random variable,
e 1 takes values from set Ay = {a1,az,...,ar},
e with probabilities Px = {p1,p2,...,pr}-

e P(x=a;)=p; p;i=>0 1

L
® ZaleAX Pla=a)=3%,_,pi=1 18

Simpler notation: 22

0.0119
0.0073
0.0164
0.0007

27 0.1928

&
N<“ X2 <EcduH0DOBEHKGEDT®RHO A0 O D
N<“XS<ETNHO0POHEEHRGHKEF@MDAOT D

(from David MacKay)



Probability RV PDF Functions Expectation Moments Convergence Conclusions

Example of joint probability

8

e Bigrams: probability of letter x
followed by leter y

e Marginal probability from joint:

Pz =qa;) = Z Pz =a;y) .

y€Ay

e Similarly

Ply) = Y Plx,y).

N<HES<Edtn R OTO BEHKFUHERHADOAOND ®

.-llil-l-- LR TRRY | [N KNI
abcdefghijklmnopgqrstuvwxyz— y

(figure from David MacKay)



Functions

Functions of random variables:

Imagine that we have a function g(-) that transform random variable X
into Y, Y = g(X).

Can we determine the probability of Y from the probability of X7 For
some cases, yes!

If X is continuous and the inverse of g(-), denoted by g=*(-) exists and is
differentiable, the probability density for Y is:

fx(x) _ 1
/e <= W

fly )—f[g*y)]\dg ~E

@ This is very powerful! Avoid computing density fy(y) directly (which is
hard) and just derive the transformation

@ Watch out with non-continuous functions (holes in the space) and
bivalued (ambiguous) functions!
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Functions

Density estimation under arbitrary transform

Now we are given Y = [Y41, Y, ..., Yk]T obtained from X = [X1, Xz, ... ,Xk]T
using a deterministic function g() : Y = g(X), and g~' exists and is
differentiable, then the joint probability density of Y is:

fly) = fx[g*(y)l\ag;—y(’)

where |0g ™' (y)/dy| is the absolute value of the determinant of the matrix of

first-order partial derivatives dg; '(y)/dy; which is called the Jacobian of
-1
g ()
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Functions

Density estimation under arbitrary transform, intuition
Let a € R* be a RV with PDF, p,(a). Given some bijective, differentiable

transform of a into y using F : R¥ — R*, y = F(a), the PDFs are related:

—1

@) _ b (F(@)|VaF(a)

pu(a) = (F@)| 5

where |V, F| is the determinant of the transform’s Jacobian matrix.

1.,1.\.‘,(0;0(,,‘ (cn caso 4.‘0) B Fla)

L ?a(-\«r,\‘ow [
.F.Mh, 3‘ , s lo suma

de \as oblacioues en

los qutes o= F ) A,
esade por lo iuversa ;;9; L)
de (a 'Fw«JiZM*e en eses l _[ s
a2 N a, &5 a" o
?un‘\'os‘ IVF[‘\X\ ' * .
& = F ()
St VER) D> S py(FR) < a2 E'Y)
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Example 1: A linear transformation

Y=AX+b

Preliminaries:

X=g(y)=A""y—b]

ag_l(Y) -1

% YY) _pa
dy

A7 =1/|A|

Therefore:

c’)g’l(Y)' _ KAy —b]) _ A&(X)

fv(y):fx[g_l(Y)]‘ By A| L

where A~ is the inverse of A, and |A| is the absolute value of the determinant
of A
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Example 2: Sum of random variables

Let us define the sum of random variables X; and X, as Y = Y1 = X1 + X5
and the second component Y> = X,. Compute fy(y1, y2).
Note that equivalently:
T T 11
Y=AX, Y=[V1 Y] , X=[X1 Xz] , A= (0 1
Therefore:
A—l
A(y) = Al KA y) _ ( { } ) = (V1 = y2,52) = fx (¥ — x, xe)
and

Y(y1, y2) / y)dy: = / Hx, (Y — X2, x2) dxa

[e9] —o0
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Example 3: Data rotation

Let X; and X, be independent Gaussian random variables with zero means
and unity variances. Let us define the transform:

Yi= (X2 4+ XD)Y?, Yo =tan ' ( X2/ X1)

Compute the joint density fy(y1,y2), and the marginals fy, (y1) and fv,(y2).

Note that: Y = AX, Y =[Y1 YV2]", X=[Xi X]" and

r_ _ (X12+X22)1/2 o (Y1 cosY;
Y_g(x)_<t3f771(X2/X1) » X=g (V)= Y., sinYs

Joint density:

fly) = fulg™\( y))\

Marginal densities:

oS} 27
le(}ﬁ):/ fy(Y)d)/2=/o ;%GXP(

[e’e) 27 2
1
fro(y2) = / fy(y)dy :/0 % exp ( - %)dyl =5 0<y<om

1 2
g (y) .:ﬂexp _Ea , 120,08y <21
2w 2

m‘*

2 1
)dyz—ylexp( 2>, y12>0



Expectation

Notion of expectation:

What do you expect the absolute value of the thermal-noise voltage to be?
We need a mathematical definition of expected value!

Given a sample space S with only two points:
X S=S§
X(s) = 1 1
X2 S=5

and perform n identical experiments that yield {s(1),s(2),...,s(n)}
Average value of the random variable X(s) with n — co?

1S .
B{X} = lim & 3 X(6(0)
If m1 and my are the total number of times that equal s; and s;:

n—oo N n—oo N

E{X} = n';”;o [%Xl + %Xz}, and lim iy P(s1), lim m P(s,)

@ Average of X(s) is the probability-weighted sum of all possible values
]E{X} = X(Sl)P(Sl) + X(Sz)P(Sz)
o E{X} is the expected value of X
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Expected value:

The expected value of a random variable X is denoted by E{X}, and is a
real (nonrandom) number defined by:

E{X} = X(s)P(s)

sES

Note:
@ The expected value is a probability-weighted average over the entire
sample space of the sample values
@ For continuous random variables, replace Y with [:

E{X} = X(s)dP(s)
ses
Example: S = {si, s, s3, 51,55} and the probability function
P(s1)=1/8, P(s2)=1/8, P(s3)=1/8, P(ss)=3/8, P(ss)=1/8
and the random variable
X(s1) = -1, X(s2) =41, X(s3) =41, X(s:) =42, X(s5)=-1
Then: E{X} =3 s X(s)P(s)=...=7/8
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Expectation

Properties of expectation:
@ Linearity: for any two RVs X and Y/, two real numbers a and b, and the
RV Z = aX + bY:
E{Z} = aE{X} + bE{Y}
@ Expected value of a function of a random variable: for any function g(-) of
a RV X, and Y = g(x), we can show that

B(g()} = [ g()fx)dx

Important note: this is the fundamental theorem of expectation, which is
far much easier than estimating the PDF of Y and then using the
definition:

E{g(X)} = E{Y} = / Y R () dy
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Expectation

Expected value of the thermal-noise voltage?

@ Let define X = V(t,) and g(-) = | - | the absolute value function. Then
the expected value is:
B(g(0)} = [ g()f(x)dx

E{V(t.)} :/ | x| Fx (x)dx
@ For the Gaussian density:
E{V(£)} = ay/ 2, a=2VKTBR
™

For T = 290K, R = 1008, B = 100 MHz, o ~ 1.3 10™° [V?], and thus

E{V(to)} ~ 10uV
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Characteristic function

Example of a function of a random variable:

g() = ei“’('), with parameter w

@ The characteristic function is defined as:
bx(w) =E{e“*}, i=+v-1
@ Equivalent to:

dx(w) :/ e" i (x)dx,

—oo
which is the conjugate (sign reversed) Fourier transform of fx(-)

@ A useful property of the characteristic function is that it yields the
moments of the random variable: the n-th moment of X can be obtained
by differentiation of ®x:

ey - (£) 222

in dwn

w=0
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Probability RV PDF Functions Expectation Moments Convergence Conclusi

Characteristic functions:

@ In probability theory and statistics, the characteristic function of any
real-valued random variable completely defines its probability distribution

@ If a random variable admits a probability density function, then the
characteristic function is the inverse Fourier transform of the probability
density function

@ It provides the basis of an alternative route to analytical results compared
with working directly with probability density functions or cumulative
distribution functions

Distribution Characteristic function ¢(t)
Degenerate §a e'ta )
Bernoulli Bern(p) 1—p+ pe_’r
Binomial B(n, p) (1 —p+pet)"
v
Negative binomial NB(r, p) 1-p
T—pel
it
Poisson Pois(\) Gt
) itb___ita
Uniform U(a, b) eh“?ifa)
eith
Laplace L(u, b) 1+bft22 >
Normal N(p, o2) etHT 2ot
Chi-squared x2 1- 2/'t)_k/2
Cauchy C(u, 6) eitn—0ltl
Gamma [(k, 0) (1—ite)~k
Exponential Exp()) (1—iex~hH—t
8T 1.,T
Multivariate normal N(u, ¥) et BTt Bt
WT o fiT
Multivariate Cauchy MultiCauchy(pu, ) gt p— Vit Tt
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Sums of independent random variables: exploit the characteristic function

Let W be a random variable equal to the sum of two statistically
independent random variables X and Y:

W=X+Y

@ The characteristic function of W is defined as:
¢W(w) — ]E{ein} _ E{eiw(X+Y)} 2 E{ein}E{eti} _ ¢X(w)¢y(w)

which is the product of characteristic functions

@ From the convolution property of the Fourier transform

fu(a) = fila) + f(a) = /oo F(u)F(u — a)du

— o0

The PDF of a sum of two statistically independent random variables
is the convolution of the individual PDFs
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First moments of a probability density function fx:

Since the fx is a non-negative function with unit area, the expected value
E{X} =/ xfx (x)dx

can be interpreted as the first moment of the function fx(-), which is a
measure of the center of a function.

@ The center of the PDF fx(-) is
the mean: fyx)

mx =E{X}  >> mean(X)

@ The square root of the second
centralized moment measures '
the width of the function and is ‘
the standard deviation:

+
mx

—-20')(

—t X

ox = VE{(X — mx)?} >>std(X)
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Higher moments of a probability density function fx:

@ The center of the PDF fx(-) is the mean:
mx = E{X} >> mean(X)
— "“average value” of the distribution

@ The square root of the second centralized moment measures the width of
the function and is the standard deviation:

ox = VE{(X —mx)?} >> std(X)

— "“average dispersion” of the distribution
@ The squared standard deviation is the variance:

0% =E{(X — mx)*} = E{X?} —m}k  >> var(X)
— "“average dispersion” of the distribution
@ The normalized 3rd central moment is the skewness:
E{(X — mx)’}/ox  >> skewness(X)

— “asymmetry of the data around the sample mean” of the distribution
@ The normalized 4th central moment is the kurtosis:

E{(X — mx)*}/ox  >> kurtosis(X)

— "“outlier-prone” of the distribution

57 /335



Moments

Uniform distribution:
@ Equal probability of all values within bounds
o Matlab: >> rand, pdf, cdf
@ Probability density function (PDF)

0 x<a
fx(x) =435 a<x<b
0 x>b
@ Example: a=—-1,b=1

04 08
203 : 206
02 04

01 : 1 02

>> x = -4:0.1:4;

>> p = pdf (’Uniform’,x,-1,1); plot(x,p,’b’)

>> ¢ = cdf (’Uniform’,x,-1,1); plot(x,c,’b’)

Exercise: Generate a random vector with 1000 samples from a uniform
distribution and compute the first and higher moments. Discuss.
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Moments

Gaussian (normal) distribution:

Matlab: >> randn, pdf, cdf

@ Probability density function (PDF)
1 1 (x = px)?
f = i r o
x(x) oo exp ( T , 00 < x < 00

Denoted as: x ~ N (pix, 0%)
@ Example: ux =05, o =1

PDF CDF

>> x = -4:0.1:4;

>> p = pdf (’Normal’,x,0.5,1); plot(x,p,’b’)

>> ¢ = cdf (’Normal’,x,0.5,1); plot(x,c,’b’)

Exercise: Generate a random vector with 1000 samples drawn from a normal
distribution and compute the first and higher moments. Discuss.
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Other important PDFs:

Values PDF E[X] | var(X) dx(w)
—a)? iwb)—
Uniform a<z<b = L(atb) (b 1;) eXP(J\;{z)(bE’;I)J(JWa)
Exponential z>0 Aexp(—Az) % le X:/\j_w
- 2 —)2
Gaussian —oo<a<os | P (1/\%@ e} I o? expljwp—o?w?/2)
2
Laplacian —oo<z <00 —ﬁexp(f\ﬂ/az}zn 0 o? ;12_'%;
Gamma T 2 0 ﬁ%ma_lexp(—z\x) % fz‘ m
[Johnson
Rayleigh x>0 Syexp[—2?/(202)] \/% (2—7/2)a? et al 1994]

Exercise: Play around in MATLAB with: pdf, cdf, mean, var
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Correlation: The second joint moment of two random variables X and Y is
the correlation:

Rxy = E{XY} = / / xyfx(x)fy(y)dxdy — >> corr(X,Y)

Covariance: The second joint (centralized) moment of two random variables X
and Y is the covariance:

Kxy = E{(X — mx)(Y — my)} >> COV(X,Y)
Correlation and covariance:
Kxy = Rxy — mxmy

Correlation coefficient:

K
p= 2 —1<p<+1 >> corrcoef(X,Y)
oXOy

o If Kxy =0, then X and Y are linearly uncorrelated

o If Rxy =0, then X and Y are orthogonal
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Scatterplot: correlation and dependence

y’ v/ y’

X’/ X/ X/

@ Simple method to identify variable relations

@ Simple transformations, e.g. Y = X2, make the correlation coefficient
useless

® >> help scatter

@ >> scatterhist
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Correlation matrix: For an n-tuple of random variables, X = [Xq, ... ,Xk]T,
there are k? pairs of random variables and associated correlations:

Rxx, = E{XiX;}, i,j=12,. ...k
This is a matrix of pairwise correlations:

Rx = E{X "X}

Covariance matrix: The matrix of covariances with (/,j)-th element:
Kxix; = E{(Xi — mx;)(Xj — mx;)},

which in matrix form is:
Kx = Rx — pixfix ,

where py is the n-tuple of means with element E{X;}.
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Convergence

Notion of convergence

If we measure two time samples X = V/(t) and Y = V(t + 7) being T a
small enough delay, we expect that X and Y to be correlated. If we repeat
the experiment for an increasing number of n resistors, we obtain

{ﬁhﬁ% . aﬁ"}

which should converge to the true probabilistic correlation coefficient, p.

We aim to assess
lim p,=p
n—o0
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Stochastic convergence

A sequence of random variables {X,} is actually a family of sequences of

real numbers,
{{X:(s)} : s € S}

together with a sequence of joint probability distributions

{Fxix... %0 }-

There are four types of convergence:
@ Convergence almost surely:

lim X.(s)=X(s) VseSCS, P(S)=1— Prob{ lim X,=X}=1
n— oo n— o0
@ Convergence in MSE (aka expected square convergence):
. 29
Tim E{(X, ~ X’} =0
© Convergence in Probability:
lim Prob{|X,—X|>¢e} =1, Ve >0
n—oo
@ Convergence in Distribution:
lim Fx,(x) = Fx(x)
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Laws of large numbers

Imagine we actually repeat the experiment with n resistors of the same
resistance and temperature and with voltmeters with the same bandwidth.
Each set of n executions can be interpreted as either 1) n statistically
independent experiments, or as 2) a composite experiment.

© Weak law of large numbers: The sequence of random variables {X,}
converges in probability to the nonrandom variable P(A) :

lim Prob{’% = P(A)‘ > s} =1, Ve>0

n—oo

@ Strong law of large numbers:

Prob{ lim Ko P(A)} =1
n—oo N

>> X = randn(10,1); histfit(X)
>> X = randn(1000,1); histfit(X)
>> X = randn(10000,1); histfit(X)
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Probability RV PDF Functions Expectation Moments Convergence Conclusions

Central limit theorem and the convergence of partial sums:

Consider .,
=32,
i=1

and the standardized variables

where m,, and aﬁ are the mean and variance of X,. If {Z;} are independent
and identically distributed (i.i.d) random variables, then Y, converges in
distribution to a Gaussian variable with zero mean and unity variance.

@ Many phenomena are modeled in terms of Gaussian random variables

@ The value of a variable (e.g. V/(t)) is the result of a superposition of a
large number of elementary effects (e.g. tiny voltage impulses).

>> X = randn(10,1); histfit(X)
>> X = randn(1000,1); histfit(X)
>> X = randn(10000,1); histfit(X)
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Reviewed:

Sample point, sample space, sets,
probability space, conditional probability,
independence, random variable,
correlation, covariance, distribution
function, density function, Gaussian
density, continuous/ discrete/ mixed
random variable, probability mass
function, joint distribution and density,
multivariate Gaussian,
functions/transformations of random
variables, expectation, moments,
characteristic function, conditional
expectation, convergence, law of large

numbers, central limit theorem, etc. *T Nk Mou THOULD & MORE
EXPLIUT HEZE N STEP Two,W

Conclusions




Intro Random Process Temporal Spectral Applications Examples Conclusions

Part 2: Discrete time random processes
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Remember: Random variables

@ The name random variable suggests a variable that takes on values
randomly

@ An observer measuring the amount of ‘noise’ on a communication
link sees a random variable
@ Mathematically, a random variable is neither random nor a variable

@ A random variable is just a function mapping one sample space (part
of a probability space) into another space (subset of the real-line
space)

Random variables in signal processing

@ A system transfers some ‘signal’ (of interest) through a noisy channel
(electronic systems, medium of propagation, interfering signals)

@ Signal and noise are uncertain, unpredictable, random

@ No matter how much we know about the past, the future is hard to
predict




Intro

Discrete-time random processes:

@ A process is the result of an experiment
@ Digital signal processing generates tons of examples:
e speech,
e visual signals (images, videos),
e sonar and radar,
e geophysical,
e astrophysical,
e biological signals, ...
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Intro

Signal processing systems

@ Basic operations: differentiation, integration/summation,
multiplication, convolution, ...

@ Both with (quasi) continuous (waveforms) and discrete-time signals
(sequences)

@ Probabilistic study of signals = study of averages over ensembles of
waveforms or sequences

@ The underlying probability theory = calculus of averages

What and how do we measure? Typically on a single member of the
ensemble (a waveform/sequence) + averaging

o Signal-to-noise error (SNR): mean /variance measured by time averaging
o Channel equalizer: which removes distortion — (time-averaged) MSE

@ Binary digital transmission system: probability error (PE) is measured by
computing the relative frequency of received bits in error over a long
stream of bits
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Intro

Random Process Temporal Spectral Applications Examples Conclusions

Example: The SNR problem in communication systems

@ Study a communication system cannot be done looking at just one
signal, but an ensemble of signal+noise processes

@ We want to measure expected values (prob. params.) over the
ensembles:

@ Signal-to-noise ratio (SNR): relative strength of signal and noise
o2
SNR (dB) =10log | =5 |, x=s+n

On

@ Mean-square-error (MSE): dissimilarity between a noisy signal and the

clean version
MSE = E{(x — s)°}

@ Probability of error (PE): likelihood of making an incorrect decision

PE = E{[3 = s}



Random Process Temporal Spectral Applications

Random processes

Examples

Conclusi

“Random processes are the probabilistic models of ensembles of

waveforms and sequences”

Outline:

@ Definition of a random process
@ Temporal characteristics of random processes
e Stationarity, WSS, and Ergodicity
e Auto-correlation, auto-covariance
e Cross-correlation, cross-covariance
o Dependence
© Spectral characteristics of random processes
o Periodogram
o Correlogram
o Power spectral density (PSD)
@ Signal Processing applications
o Interpolation
o Noise-immunity
o Signal detection, extraction and prediction
© Examples of random processes
e Bernoulli, Binomial, random walk
o Markov, Wiener and Poisson processes
o Autorregressive and moving average processes




Intro

Random Process Temporal Spectral Applications Examples Conclusions

Definition of random process

@ A random process X(t,s) is a random function of time t and a
sample-point variable s

@ X(t,-) is a function of sample points, i.e. a random variable
@ X(-,s) is a function of time, i.e. a sample function
Intuition and notation for random processes
@ Concept: Enlarging the random variable to include time
@ Sometimes we use stochastic process instead of random process

@ A random variable x becomes a function of the possible outcomes (values)
s of an experiment and time t: x(s, t)

@ The family of all such functions is called a random process, X(s, t)

@ A random process becomes a random variable for fixed time
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Random Process

Ensemble and realization
@ X(s,t) represents a family or ensemble of time functions

@ Convenient short form x(t) for specific waveform of the random process
X(t)

@ Each member time function is called a realization

@ The complete collection of sample functions of a random process is called
the ensemble

10 T T T

| |
| 1
I i
| |
| |

;,f%ww% M "W“\:NV\N oY, Nf"‘m’“‘*%

Realisations
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Random Process

V(t,s)) Vinty,s))
Vit,s) I
| | 1 l | Lon
2 3 T I I |

! !
|
! | V(nty, s2)

V(t,sp) | :
1 |
i

| l}

V(ty,sp) . | | I | L.,

! T I I I
1
1
}

Vit,sg) | Vlnto, s3)
I
I
9

V(t),s3)F

Statistical samples of a:
@ Continuous-time random process

@ Discrete-time random process
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Random Process

Vit s)) Xns))

_,—lljr Tuﬂuﬂur ..IililljlJl

Vit,sp) Xnlsz)
-

1 |
RN L1 L

Vi1, s3)

mmn . o
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Statistical samples of a:

@ Discrete-value, continuous-time random process

@ Discrete-value, discrete-time random process
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(Generalized) Harmonic Analysis Studies the deterministic (non-probabilistic)
theory of random processes based on time-averages

ﬁx(r)

@ Empirical auto-correlation decreases with delay 7

Rx(t) = lim ﬁn;NX(nT-l-n)X(nT)

N— oo

@ Y/(t) is narrow-band: thermal noise at a lower temperature (less collisions)

@ X(t) is wide-band: thermal noise at a higher temperature (more collisions)
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Random Process Temporal Spectral Applications Examples

Empirical auto-correlation function (from a discrete-time average)

Rx(7) = NI|_>mOO 2N—|— 1 Z X(n7 4+ n)X(nT)

Autocorrelation function (from a continuous-time average):

R = tim L 77 x(e 4 mx(o)dt

N— oo T t=—T/2

@ Autocorrelation is related to the frequency composition of signals!
@ We can study the frequency components via time-averages!

@ Discrete/continuous autocorr are related for a finite (window)
computation of the averaging/integration

Conclusions
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Stationary process:

@ “A stationary process (or strict(ly) stationary process or strong(ly)
stationary process) is a stochastic process whose joint probability
distribution does not change when shifted in time.”

@ Parameters such as the mean and variance, if they are present, also do not
change over time and do not follow any trends

@ Stationarity is useful in time series analysis

Cyclostationary process:

@ “A cyclostationary process is a signal having statistical properties that vary
cyclically with time”.

@ A cyclostationary process can be viewed as multiple interleaved stationary

processes
@ Examples: temperature, solar radiation, etc.
0.6 2
04
Z 02
0
02 - 2 L
0 2 4 6 8 10 0 2 4 6 8 10
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Stationary process, formally:

@ Let {X;} be a stochastic process and let Fx(X¢+r, ..., Xy +r) represent the
cumulative distribution function of the joint distribution of {X;} at times
th+7,...,t+T

@ Then, {X:;} is said to be stationary if, for all k, for all 7, and for all
ty .oyt Fx(Xeygry ooy Xerr) = Fx(Xeyy - - -y Xt )

@ Since 7 does not affect Fx(-), Fx is not a function of time

Stationary Time Series

| i W
- jl.;www,mi‘le,./w""\m"’\,ﬂf'a”LMM‘W Y
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Stationary process, examples:
@ White noise is stationary

@ The sound of a cymbal clashing, if hit only once, is not stationary because
the acoustic power of the clash (and hence its variance) diminishes with
time

@ Some AR and MA processes may be either stationary or non-stationary,
depending on the parameter values (poles inside/outside unit circle in
z-domain)

@ Let Y have a uniform distribution on (0,27] and define the time series
{X:} by

Xe=cos(t+Y) forteR

Then {X;} is strictly stationary
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Wide-sense stationarity (WSS): AKA weak-sense stationarity, covariance
stationarity, or second-order stationarity

@ WSS random processes only require that 1st moment and covariance do
not vary with respect to time

@ The mean function of a WSS continuous-time random process x(t):
E[x(t)] = m«(t) = mi(t +7) forall T €R

— the mean function m,(t) must be constant

@ The autocovariance function of a WSS continuous-time RP x(t):
E[(x(t1) = mx(01))(x(22) — mx(22))] = Cu(t1, 22) =
= CG(t1 + (—t), 2+ (—t2)) = C(t1 — 12, 0).

— the covariance function depends only on the difference between t; and
t2, and only needs to be indexed by one variable rather than two variables:

Cx(tl < t2,0) — CX(T) where 7 = t; — B,
@ This implies that the autocorrelation depends only on 7 = t; — t:

R(t1, £2) = Re(t1 — t2)
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Random Process Temporal Spectral Applications Examples Conclusions

Weak or wide-sense stationarity (WSS), advantages:
@ When processing WSS random signals with linear, time-invariant (LTI)
filters, it is helpful to think of the correlation function as a linear operator
o Since it is a circulant operator (depends only on the difference between the
two arguments), its eigenfunctions are the Fourier complex exponentials

@ Additionally, since the eigenfunctions of LTI operators are also complex
exponentials, LTI processing of WSS random signals is highly tractable-all
computations can be performed in the frequency domain

@ Thus, the WSS assumption is widely employed in signal processing
algorithms

Jointly wide-sense stationarity:
Two processes X;: and Y; are jointly WSS if each one is WSS and the
cross-correlation depends only on the difference between time-indices:

Rxy (1) = E{X;Y:—+}
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Ergodicity:
o An ergodic dynamical system has the same behavior averaged over time as
averaged over the space of all the system’s states (phase space)

@ Ergodicity is where the ensemble average equals the time average
@ Examples:

o In physics, a system satisfies the ergodic hypothesis of thermodynamics

o In statistics, a RP for which the time average of one sequence of events is
the same as the ensemble average
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Ergodicity:

@ When a random process is WSS, its mean does not depend on time

@ Hence, the RVs {..., X(—1), X(0), X(/), ...} all have the same mean

@ At least as far as the mean is concerned, when we observe a realization of
a random process, it is as if we are observing multiple realizations of the
same random variable

@ This suggests that we may be able to determine the value of the mean
from a single infinite length realization

o If it is true that the temporal average converges to the true mean y =1,
then the temporal averaging is equivalent to ensemble averaging or that
the “random process is ergodic in the mean”

1

1fn]

|
Rl

1] .
T T cmporst aversging

11 1 1
o T @ This property is of great practical importance

since it assures us that by averaging enough
; ”m ] ] ”h samples of the realization, we can determine the
o Lk I'l ML mean of the random process

s 10 is 2 E3 30

x2[n}

o s 10 i EY 2 0

. @ A random process is ergodic in the autocorrelation
: if we can determine the autocorrelation b
Al MR 1”[1 ”.H..II]I. ; i y

I ! averaging enough autocorrelation samples of the
s | = realization

3[n]

ensemble averaging

87 /335



Ergodicity, example in electronics:

@ Each resistor has thermal noise associated with it and it depends on the
temperature

o Take N resistors (N should be very large) and plot the voltage across
those resistors for a long period

For each resistor you will have a waveform

Calculate the average value of that waveform

This gives you the time average

You should also note that you have N waveforms as we have N resistors

These N plots are known as an ensembles

Now take a particular instant of time in all those plots and find the
average value of the voltage

That gives you the ensemble average for each plot

@ If both ensemble average and time average are the same then it is ergodic.

P\ AT AR W
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(Discrete) ergodicity, summarizing:
@ Not always possible to obtain different samples from the RP
@ Sometimes we only have one sample!

@ Can we infer the statistical properties of the process using just one sample
from the process? If so, the process is ergodic.

® A process is ergodic if the mean is:

N

LS X(n) = E{X(n)}

X)) = 35

@ A process is ergodic if the autocorrelation is:
(X(mX(n —1)) = E{X(n)X(n - 1)}
@ Two processes X and Y are joint ergodic if:

(X(mY(n—1) =E{X(n)Y(n—1)}
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Remember the important definitions:

@ Mean of a random process:

E{X(t)} = mx(t), where mx(-) is a ‘mean waveform’

Autocorrelation of a random process:
E{X(t1)X(t2)} = Rx(t1, t2), E{X(t)X(t+7)} = Rx(t,t+7)

@ Autocorrelation of a WSS random process:

Rx(7) = Rx(t,t +7), Rx(7) = Rx(—7), Rx(0)=E{X?*(t)}
@ Autocovariance of a random process:

E{[X(t1) — mx(t2)][X(t2) — mx(&2)]} = Kx(t1, 12)
@ Cross-correlation for two random processes:

E{X(t1)Y(t2)} = Rxv(t1, t2)
@ Cross-covariance for two random processes:

E{[X(t:) — mx(t)][Y (t2) — mv(t2)]} = Kxv(t1, t2)
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Expectation in MATLAB:

@ Recall:

E{X} = /_D:o afx(a)da

@ In real life we don’t have the PDF, just observations (samples)!
@ In real life we never have all realizations, so we need to assume ergodicity!

e Given X(n), approximate the ensemble average with the time average:

E{X}~ % > X(n)
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PDF estimation in MATLAB:

The PDF is estimated by the normalised histogram
>> hist(x)

>> [counts,centers] = hist(x,nbin)

>> histfit(x)

The histogram gives directly the count of all different values per bin

Normalise this, and we obtain the probability that any value can occur
(density).

This multiplied with the hit number of all possible values gives, naturally,
the count of all values

Explore: >> help ksdensity

Discuss: the problems in multidimensional PDF estimation
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Autocorrelation function estimation in MATLAB:
@ The ACF contains information about the history of the random process
@ Assuming a large time interval 2T and ergodicity (the RP is WSS)

1 t+T
Reltt+7) = E(X(t,t +7)} ~ o /_T X(B)x(t + 7)dt ~ Rx(7),

or in discrete notation

N
1
Rx(t,t+7) ~ N ;X(n)x(n + k),
which is simply a convolution without reversing

@ Autocorrelation in MATLAB
>> [acf,lags,bounds] = autocorr(y);
>> x=randn(1,1000); plot(x); hist(x,100); plot(autocorr(x));

|
|
|

—
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Autocorrelation function estimation in MATLAB:
@ The ACF contains information about the history of the random process
@ Assuming a large time interval 2T and ergodicity (the RP is WSS)

Rx(t,t+7)=E{(t,t+7)} = 217_ /t+ x(t)x(t + 7)dt =~ Rx(1),

or in discrete notation

Rx(t,t + ) Z n)x(n+ k),

which is simply a convolution without reversing
@ Autocorrelation in MATLAB
>> [acf,lags,bounds] = autocorr(y);
>> x=sin(1:(2*pi/1000) : 2*pi)+0.1*randn(1,1001);

1

2 9 5
0200 400 600 800 1000 1200 15 1 05 0 05 1 L5 0200 400 600 800 1000 1200

e Play around with: >> load sunspot.dat



Cross-correlation function (XCF) estimation in MATLAB:

@ The XCF contains information about the cross-history between two

random processes
E{X(h)Y(tz)} = F\’xv(iﬁ7 tz)

o Cross-correlation in MATLAB
>> [xcf,lags,bounds] = crosscorr(yl,y2);

@ Toy example in MATLAB
% Random sequence of 100 Gaussian deviates and a delayed
% version lagged by 4 samples
>> x = randn(100,1); % 100 Gaussian deviates N(0,1)
>> y = lagmatrix(x,4); % Delay it by 4 samples
>> y(isnan(y)) = 0; % Replace NaN’s with zeros
>> plot(x,’b’);hold on,plot(y,’r’)
>> crosscorr(x,y) % It should peak at the 4th lag

Sample Cross Correlation Function

1

0.5

eals s 2

i O M 2 O
llll]ll -plulll;

Sample Cross Correlation

0.5
-4 20 -10 0 10 20

Lag
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Real data collected by a sonar:

The HUGIN autonomous underwater vehicle

Wideband interferometric synthetic aperture sonar

Transmitter that insonifies the seafloor with a LFM pulse

°
°

@ Array of receivers that collects the echoes from the seafloor

@ The signal scattered from the seafloor is considered to be random
°

The signal consists of a signal part and additive noise

=7
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Question 1: is the process stationary?
@ Single channel timeseries from one ping
@ Consider the collected data a random process.

>> load sonardata2;
>> channel = 10;
>> plot(1:10000,real(data(:,channel)));

Sonar raw data, single channel, real pan
200 T T T T T

150 Backscattered 4
signal
100 iy -
Water
s0f-| column i Additive noise s
H .
H 1] v
%
50 - -
100 -
150 .
200 L L L 1 1
0 50 100 150 0 250 10

Time [me]
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Temporal

Question 1: is the process stationary?

nblocks = 200;

blocksize = 50;

step = (blocksize/4);

for n = 1:nblocks
statarr(n,1) = mean( data( (n-1)*step+l:(n-1)*step+blocksize ) );
statarr(n,2) = std( data( (n-1)*step+l:(n-1)*step+blocksize ) );

end
1000 100 250
0 £ 200
o 507 3
E < Z 150
2 0 3 :
£ = E
z = 100
g ]
-500 &
50
-1000 —— 50 0
0 2000 4000 6000 8000 10000 0 50 100 150 200 0 50 100 150 200

Time x f, Block Block
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Question 1: is the process stationary? No!
@ Divide into “similar” regions before we continue our statistical analysis
@ Region 1: Backscattered signal from the seafloor

@ Region 2: Additive noise

Sonar raw data, single channel, real part
T

200

Amplitude

-100 -

150 -

B L I I
2UDD 50 100 150 200 250 3

Time [ms]



Question 2: Is the probability density function Gaussian?

o Approach: Compare the theoretical PDF with the estimated PDF (from
the normalised histogram)

@ Easier: >> histfit

@ Play around with other statistics to assess deviation from a Gaussian

PDF, Region 1 PDF, Region 2

)
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Question 2: PDF estimation is more complex than expected!

@ The sonar data is complex!
x(t) = xre(t) + jxim(t) = ae/®®)

@ The complex random sequence can be considered two independent random
sequences (in a vector) with joint PDF

@ We can check the PDF of the real and imaginary part separately

@ If xre(t) and xim(t) are statistically independent, it can be shown that the
PDF of the amplitude (or magnitude)

a(t) = V/xre(t)? + xim(t)?
should be a Rayleigh distrbution, and that the PDF of the phase
¢(t) = tan™" (Xim/Xim)

should be uniform
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Question 2: PDF estimation in region 1

Histogram of Real Histogram of Imag
07 07
ata, s1d 40 59 Data, s1d 4073
06 auss based on std 08 Gauss based on std
05 £ : . 05 : g
_ 04 4 _ 04
03 03
02 4 02 4
01 4 01
0 H H j H R 0 L i H H R
2 A 0 1 2 < 2 El [ 1 2
Mormalised value x/std(x) Normalised value x/std(x)
Histogram of Phase Histogram of Magnitude
0175 1
017 B "
s ayleigh based on std
0.165 e
_ 016 4 _
o1 -
015 4
0.145 1
-4 -3 2 1 o 1 2 3 1 0 1 2 3 4 5 6

Value x Normalised value x/std(x)

>> help pdf, raylpdf




Question 2: PDF estimation in region 2

Histogram of Real Histogram of Imag
05 05
Data, std 2.55 Data, 51d 2.48
04 Gauss based on std 04 Gauss based on std
03 1
02
01 g 01
0 L i i H 0 i i H R
3 2 E] 0 1 2 3 3 2 - 0 1 2 3
Normalised value x/std(x) Normalised value x/std(x)
Histogram of Phase Histogram of Magnitude
019 07
ata
1 08 ayleigh based on std
05 8
1 _ 04
“o3
02
1 01
i i 0
-4 3 2 A 0 1 2 3 4 0 1 2 3 4 5 6
Value x Normalised value x/std(x)

>> help pdf, raylpdf
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Intro Random Process

Question 2, conclusions

In region 2, the real and imaginary part fits a Gauss well

The phase is also uniform (all phase values are equally probable)
The magnitude also fits well a Rayleigh distribution

In region 1, this is not the case.

The histogram indicates that the PDF is heavy tailed.

This means that it is more likely to have spikes (large amplitude values) in
the time-series than in a time-series with Gaussian PDF.

This actually fits well the theory of acoustic scattering.

Discuss: What can an estimate of the PDF be used to?

Temporal Spectral Applications Examples Conclusions



Question 3: are real and complex parts dependent?

o If the normalised cross-covariance is zero, the two processes are said to be
uncorrelated

@ Play around with >> corr, corrcoef, cov,

Cross covariance Region 1 Autocovariance Region 1
1 T 1 T
S o8 508t
T 06 B 06}
S =
S S
F Db § Dafrmni
= 2
g 02 - 802
0 —""m‘"‘* 0 B
-100 -50 o] 50 100 -100 -50 0 50 100
Lag [ms] Lag [ms]
Cross covariance Region 2 Autocovariance Region 2
1 1
B 0B : ; : — § 08
15 <]
B QB[ : ; : E T 06
3 3
S 04 : it R S04 . : I ;
ISR P 0 e T
-150 -100 -50 o0 50 100 150 -150 -100 -50 u} 50 100 150
Lag [ms] Lag [ms]
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Question 3: are channels dependent?

@ If the normalised cross-covariance is zero, the two processes are said to be
uncorrelated

o Play around with >> corr, corrcoef, cov,

Cross covariance Region 1 Autocovariance Region 1
1 1
o8t 5 08 : . oo
&2 2 :
& 06l 2 06 R . - 1
S g :
S S :
% 04 - % 04 - - E 4
3 ® : :
S 02 . i S 02} - I weed
0 .__‘nLer 0 ittt
-100 -50 0 50 100 -100 -50 0 50 100
Lag [ms] Lag [ms]
Cross covariance Region 2 Autocovariance Region 2
1 1 T
=} S :
2 E 06 B S 1
e °
3 S 02 . . H D

0 ]
-150 100 50 0 50 100 150 -150  -100 50 0 50 100 150
Lag [ms] Lag [ms]
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Question 3: are real and complex channels dependent?

@ The real and imaginary part of the signal is uncorrelated

@ The individual channels (receiver elements) are correlated

@ What physical phenomenon could cause this?

@ The channels are strongly correlated in region 2 (the noise region)
Discuss: Why is this?

Rx 1 Rx N
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Remember: The ACF characterizes the temporal properties of the signals
Now: What about the spectral properties?

ﬁx(r)

@ Empirical auto-correlation decreases with delay 7
N

. 1

Rx(1) = N|L>moo N1 ;NX(HT + n)X(nT)

@ Y(t) is narrow-band: thermal noise at a lower temperature (less collisions,
lower frequencies)

e X(t) is wide-band: thermal noise at a higher temperature (more collisions,
higher frequencies)
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Fourier transform
@ For a deterministic sequence x7(t), the Fourier transform is defined as
FIX7(t)] = X7(f) = Xr(w) = / Xr(t)e 2 dt

@ The Fourier transform is simply called the spectrum
@ w = 27f is understood as angular frequency (if t is time)

@ The inverse Fourier transform

X7(f) = Xr(w) = /_ T Kr(t)e 2 df
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Periodogram or finite-time spectrum

p 1 (T2
Rx(r) = lim = X(t + n)X(t)dt
()= Jim 3 [ X+ mx(
o Consider the finite segment:
X(t) |t|<T/2
so(e) = [XO 1H<T)
0 [t| > T/2

@ Compute the Fourier transform:
FIXr(8)] = Kr(f) = / Xr(t)e P dt,  Xr(f) = / Xr(t)e 2" df

° )~<T(f) is the complex density of complex sinusoids
@ Periodogram is the (convenient) time-normalized squared magnitude:

(1/T)|)~<T(f)|2 = /jo RX(T)Te7j27rdeT

where
1 [T/2
Rx(T) = ?/ XT(t+n)XT(t)dt
t=—T/2
is the correlogram
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Periodogram or finite-time spectrum

>>
>>
>>
>>

Fs
t =
x =

= 1000;
0:1/Fs:.

3;

cos (2*pi*t*200)+0.1*randn(size(t));
periodogram(x, [],’onesided’,512,Fs)

Power/frequency (dB/Hz)

Periodogram Power Spectral Density Estimate

ot

-80

100 : : : :
0 100 200 300 400 500

Frequency (Hz)

Conclusions



Spectral

Correlogram or finite-time autocorrelation

& S,
Ry(T) X
/\ 4 N
7’ \ ’ AY
/ . ¢
T <~—— Bandwidth ——
Ry(7) )
\ Syh
- N <1 f
(a) (b)

o Correlogram:
1 [T/2 1 [T/2-I7
Rx(r) = 7/ Xr(t + m)Xr(£)dt = 7/ X(¢ + [7])X(¢)de
T t=—T/2 T —T/2
o Kind of autocorrelation related to the frequency composition of the finite

segment Xr(t): .
lim Rx(T)T = R)((T)
T—o0

e “The autocorrelation Rx is related to the frequency composition of X(t)

through the Fourier transform”
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Correlogram or finite-time autocorrelation
@ The autocorrelation function is an important diagnostic tool for analyzing
time series in the time domain
@ We use the autocorrelation plot, or correlogram, to better understand the
evolution of a process through time by the probability of relationship
between data values separated by a specific number of time steps
@ The correlogram plots correlation coefficients on the vertical axis, and lag
values on the horizontal axis
@ A correlogram is not useful when the data contains a trend; data at all
lags will appear to be correlated because a data value on one side of the
mean tends to be followed by a large number of values on the same side of
the mean. We must remove any trend in the data before you create a
correlogram
o Explore: >> diff, parcorr
>> [acf,lags,bounds] = autocorr(y);
>> x=sin(1:(2%pi/1000) :2*pi)+0.1*randn(1,1001);

2
o 200 400 600 800 1000 1200 ] 200 400 600 800 1000 1200
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Spectral

Power spectral density (PSD):

] W)
Rx(r) X

/\ 4 N,

7’ \ v’ AY

/ \ ¢

T -~—— Bandwidth ——
’F;’Y('r) )
- N L1 f
(a) (b)

@ Problem: Since (1/T)|X7(f)|? shows erratic behavior as T — oo, we do a
sliding averaging (centered in u):

2 . o 1 vz 1 RPN —j2nfr
)= i fim, 5 [, Fr = [ Rriear
Example: Power spectral density (PSD) for the waveform X is the frequency
density of the time-averaged power that the voltage X(t) would disipate in a
resistance:

- Sxf(f) [watts], A : small bandwidth

2A(P)z
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Power spectral density (PSD) example: The power spectral density reveals
frequency selective information

>> clear;clc;close all;

>> n = 1000; dt = 0.001; n = 1000; t= [0:n-1] * dt; f = 5;

>> x = sin(2*pi*f*t) + O0.1l*randn(l,n);

>> [covx,lags] = xcov(x);

>> figure,plot(t,x); xlabel(’Time’),ylabel(’Magnitude’)

>> figure,plot(lags,covx); xlabel(’Lags’),ylabel(’Autocovariance’)
>> Sx = abs(fftshift( fft( x ) ));

>> nfreq = [-n/2:n/2-11/n / dt;

>> figure,plot(nfreq,Sx);

>> xlabel(’Normalized frequency’),ylabel(’Power spectral density (PSD)’)
>> st = exp( j*2xpi*f*t ); Sw = abs(fftshift(fft(st)));

>> figure,plot(nfreq,Sw);

>> xlabel(’Normalized frequency’),ylabel(’Fourier spectrum’)

1000 1000

400

500
300

200

Autocovariance
Fourier spectrum

00

Power spectral density (PSD)

3 K 0 N -
0 02 04 06 08 1 “000 500 0 500 1000 -20 -10 0 10 20 0 5 10 15 20
Time Lass Normalized frequency Normalized frequency
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Power spectral density (PSD) in MATLAB:

>> pburg PSD using Burg method

>> pcov PSD using covariance method

>> peig Pseudospectrum using eigenvector method
>> periodogram PSD using periodogram

>> pmcov PSD using modified covariance method
>> pmtm PSD using multitaper method (MTM)

>> pmusic Pseudospectrum using MUSIC algorithm
>> pwelch PSD using Welch's method

>> pyulear PSD using Yule-Walker AR method

@ Spectral estimation will be a separate topic in this course ...

@ We will see details of these algorithms and more examples ...
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Transfer function of a filter
@ If X(t) is the input to a linear time-invariant filter with impulsive-response
function h(t), and Y(t) is the output

Y(t) = /oo h(t — u)X(u)du = X(£) ® h(t),

—o0
then the input and output autocorrelations are related via convolution

f\’Y(T) = /00 :‘A?X(T — u)rp(u)du = /A?x(T) ® rp(7)

—o0

m(T) = /00 h(T + v)h(v)dv = h(7) @ h(—T)

@ Convolution theorem for Fourier transforms allows to show:
Sv(f) = Sx(A)IH(H)
where

H(f) = /_oo h(t)e > dt

which is the transfer function.
@ Analogy:
Y (f) = X(NH(f)
where X(f), Y(f) are the Fourier transforms of the input and output
waveforms (equivalent for the finite case, sequences and summations)
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Conclusions

1: Interpolation of time-sampled waveforms

Let X(t) be a random (unpredictable) waveform

Let {X(iT):i=0,%£1,+2,...} the time-sampled version
Let be p(t) an interpolating pulse

The approximation to the waveform is:

X(t) =~ X(t zX(/T (t—iT)

How well do we do it?

Error power = MSE = ([X(t) — X(¢)]*)

Nyquist-Shannon sampling theorem: MSE=0 iff PSD is bandlimited to

less than half the sampling rate:

1

5 E_ >
Sx(f) =0, |f] B>2T

and the interpolating pulse is an appropriately designed bandlimited pulse:

sin(wt/T)
wt/T

p(t) =

118 /335



Intro

Random Process Temporal Spectral Applications Examples Conclusions

2: Signal detection

Detection of a finite-energy signal buried in noise is very important in
signal processing (radar, sonar, communications, etc.)!

Try to design detectors that maximize SNR

SNR defined as the ratio of the detector output Y when the signal alone is

present over the time-average power of the detector output when the noise

alone is present

5*(f-)efj27rfto
Sw(f)

where S are the Fourier transforms of the signal and the noise

H(f) =

)

This is known as the matched filter

Optimal detection statistic:

oo f 2
SR = [ 131) / ) of
e} SN
Problem: How to estimate the noise spectrum? Let's see the signal
extraction problem ...

119 /335



Applications

3: Signal extraction

@ Extract a random signal buried in noise:
X(t) = S(t) + N(t), 5(t) = X(t) @ h(t)

@ We want to determine the filter transfer function H(f) that minimizes
MSE:
Error power = MSE = ([S(t) — 5(¢)]%)

o We will see that:

H(f) = 55
§5(f) + §N(f)

@ This minimizes MSE:
S5
—oo Ss(f) + Sn(f)

@ High attenuation at the frequencies where noise dominates the signal
power, and viceversa

MSEmin =
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4: Signal prediction
@ Prediction of the future value of a time-discrete random process is very
important (forecasting in economics, meteorology, bioengineering,
electronics, ...)
@ Let'suse {X([k—i]T):i=0,1,2,...,n— 1} to predict value
X([k + p]T) (p steps into the future!):

n—1

X(k+pIT) =D miX([k—iT)

i=0
@ We want to determine the transfer function H(f) that minimizes MSE:
Error power = MSE = ([X([k — /] T) — X([k — ] T)]*)

@ We will see that the optimal n prediction coefficients satisfy:

n—1
> Rx(li—iT)hi = Rx(li+pIT), j=0,1,2,...,n—1,
i=0

@ This minimizes MSE:
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Applications

Main conclusion: The PSD and the autocorrelation
function play a fundamental role in signal processing
applications!
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Example 1: Bernouilli process: consider an infinite sequence of independent
Bernoulli trials of a binary experiment, such as flipping a coin. The resultant
sequence of event indicators:

1 success in n— th trial
e 2
" )0 failure in n— th trial

@ Example of a discrete-value, discrete-time random process
@ Probability of success:
P{X,=1}=p
@ Mean:
mx(n) = p,
which is independent of time n
@ Autocovariance:
p(l—p) m—m=0

Kx{m, n2) = {0 n1—n27'507

which depends only on time difference ny — n
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Example 2: Binomial counting process: consider counting the number of
successes in the Bernoulli process:

Y, = z”: Xi
i=1

@ The infinite sequence {Y,} is an example of a discrete-value, discrete-time

random process
@ Mean:

my(n) =n p,

which depends on time n

@ Autocovariance:
Ky(n1, n2) = p(1 — p) min{ny, n2},

where
ny ng — np S O
ny n— n2 2 0 ’

min{ny, m} = {

which depends on more than time difference ny — n2
@ Probability distribution for n Bernoulli trials yielding k successess:

p(1—p)" "
@ The total number of of sequences is the binomial coefficient:

n!
k!(nfk)[ 124 /335
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Example 3: Random-walking process: modify the Bernoulli process to +1:

+1  success in n— th trial
zZy =
—1 failure in n — th trial
and consider the sum of these binary variables W, = >"7 | Z;

@ The underlying process Z is related to the
Bernoulli process X:

Wn _ Lo
, _ 1
1 Zi =2(Xi — =
11l o
[ T >n and then the random-walk process W is

related to the binomial counting process Y by

W, =2Y,—n
Mean: mw(n) = n(2p — 1)
Autocovariance: Kw(m, n2) = 4p(1 — p) min{ny, n>}
@ The underlying Bernoulli process Z can be recovered from the random
walk W by differencing:

Zn=Wh— W,

The random walk is called an independent-increment process
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Example 4: Random-amplitude sine wave random process: a
continuous-time process:

X(t) = Asin(wot + 6),

for which w, and 6 are non-random

@ Mean:
mx(t) = masin(wot + 0),

@ Autocovariance:

K)((t.‘l7 tg) = ]E{Az}sin(wotl -+ 0)(0.101‘2 —+ 9)

Exercise: compute the mean my(t) and autocovariance Ry (ti, t2) of a
random-amplitude-and-phase sine wave process

Y (t) = Asin(wot + ),

where the random @ is independent of the random amplitude A and is
uniformly distributed on the interval [—7, 7)
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Examples

Example 5: Markov process: stochastic process that satisfies the Markov
property

@ The Markov property: if one can make predictions for the future of the
process based solely on its present state just as well as one could knowing
the process’s full history

@ Conditional on the present state of the system, its future and past are
independent

@ A Markov process can be thought of as ‘memoryless’ process

@ The specific values xi, x2, X3, . .. that can be taken on by the discrete
random variables in a Markov chain are called states
Chapman-Kolmogorov Binary digital system
X (1) Pio

X(t) X(t3)
A Poo P
t2
; t
VAV
X(tz2) Por



Intro Random Process Temporal Spectral Applications Examples Conclusions

Example 5a of Markov process: Gambling:

@ Suppose that you start with $10, and you wager $1 on an unending, fair,
coin toss indefinitely, or until you lose all of your money.

o If X, represents the number of dollars you have after n tosses, with
Xo = 10, then the sequence {X, : n € [0,00)} is a Markov process.

@ If | know that you have $12 now, then it would be expected that with even
odds, you will either have $11 or $13 after the next toss.

@ This guess is not improved by the added knowledge that you started with
$10, then went up to $11, down to $10, up to $11, and then to $12.

@ The process described here is a Markov chain on a countable state space
that follows a random walk
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Example 5b of Markov process: A birth-death process:

Suppose that you are popping one hundred kernels of popcorn, and each
kernel will pop at an independent, exponentially-distributed time.

Let X; denote the number of kernels which have popped up to time t.
Then this is a continuous-time Markov process.

If after some amount of time, | want to guess how many kernels will pop
in the next second, | need only to know how many kernels have popped so
far.

It will not help me to know when they popped, so knowing X; for previous
times t will not inform my guess.

The process described here is an approximation of a Poisson process —
Poisson processes are also Markov.
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Example 5c of Markov process: Dynamical systems:
@ Markov processes are present in the finite-order linear discrete-time
systems described by the difference equation:
Xn+1 = apnXh + Zny
where {Z,} is the excitation sequence, {X,} is the sequence of system
states, and {a,} models the internal feedback.

@ Future state X,+1 depends on only the current state, past states are
irrelevant.

@ Thus, if excitation {Z,} has no memory (i.e. sequence of independent
random variables), then the sequence of states is a Markov process.

@ In continuous-time dynamical systems happens the same:

dX

— = a(t)X(t) + Z(t) — dX(t) = a(t)X(t)dt + Z(t)dt,
dt ——

dW(t)

where dX(t) depends on only the current state X(t) and if the increment
dW(t) is independent of the past, X(t) is a Markov process
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Example 6: Wiener process: is a continuous-time stochastic process, aka
Brownian motion process very useful to model motion in gases and liquids,
thermal noise in electrical conductors and various diffusions
Three conditions:

@ The initial position is zero: W(0) =0

@ The mean is zero: E{W(t)} =0

@ The increments of W(t) are independent, stationary and Gaussian

@ Unconditional probability density function:

1 _ 2

(X, t) = ———e =

V2t

@ The expectation is zero: E[W;] = 0.

Wwi(t)

@ The variance is t:
V(W) =E [WE] “E[W] =E [WS] —t

@ Covariance: K(Ws, W;) = min(s, t)

@ Correlation:

R(Ws, W;) = K(Ws, W:) | min(s,t)
T amow, | max(s, ©)
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Example 7: Poisson process: stochastic process that counts the number of
events and the time points at which these events occur in a given time interval.

@ Good model of radioactive decay, shot noise in electronic devices, photon
detection, telephone calls, and document retrieval
@ Place at random m points in [0, T], seek the probability P:(n) of the event
that n < m lie in the subinterval [0,t], t < T
o Binomial distribution:
Pin)= ™

m|(,,77-_,7)|P"(1 —p)""", p=t/T : prob. success

@ The Poisson theorem (n ~ mp, limm—oo(n/m) = p):
P.(n) ~ (mp) e~ — (At) e M
n! n!

N(to)= 5
4

3
2
! i IR
T T3 TaTs to Te T Tg 1 . o
Ts=Thirg) 0

@ Consequences: (1) number of points in two disjoint intervals are
statistically independent; (2) probability that ny points lie in [11, 71 + t1]
and n2 points lie in [12, 71 + to] is Py (1) Py, (n2)
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Example 7a of a Poisson process: Shot noise

@ Consider a vacuum-tube diode in which electrons emitted from the heated
cathode are attracted to the anode

@ Let the electron emission rate be temperature-limited
@ Emission times is well modelled by a Poisson process

@ The current through the diode resulting from these emissions:

X(t)=> ()h(t—T)), t=>0,

i=1

where t = 0 is the time at which the diode is energized, N(t) is the
number of emissions during [0, t), {T;} are the emission times, and the
form of the pulse h is a function of the cathode-anode geometry,
temperature and voltage.

@ Shot noise occurs also in oher electronic devices: generation recombination
noise in semiconductors, emission noise in PN devices, microwave tube
noise, etc.



Example 7b of a Poisson process: Photon detection

o Photon counting in optical devices, where shot noise is associated with the
particle nature of light

@ For large numbers the Poisson distribution approaches a normal
distribution

@ Since the standard deviation of shot noise is equal to the square root of the
average number of events N, the signal-to-noise ratio (SNR) is given by:

N
SNR = — =VN
VN

@ Thus when N is very large, the SNR is very
large as well, and any relative fluctuations in
N due to other sources are more likely to
dominate over shot noise

@ However when the other noise source is at a
fixed level, such as thermal noise, increasing N
(the DC current or light level, etc.) can
sometimes lead to dominance of shot noise
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Example 8: MA: Moving average process:
@ Many complicated random processes are well modeled as a linear
operation on a simple process
@ For example, a complicated process with memory might be constructed by
passing a simple iid process through a linear filter
o If X, inputs a linear system described by a convolution, there is a
d-response hy such that the output process Y, is given by

Y, = Z Xn—khi
K

@ A linear filter like this is called a moving-average filter since the output is a
weighted running average of the inputs

@ If only a finite number of the hi are not zero, then
the filter is called a finite-order moving-average
filter (or an FIR filter, for “finite impulse
response”)

@ The order of the filter is equal to the maximum
minus the minimum value of k for which the hy
are nonzero. For example, if Y, = X, 4+ Xy1, we
have a first-order moving-average filter

@ The associated transfer function is stable, “all

A = single sample delay operator Zeros” fl |ter
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Examples

Example 9: AR: Autorregressive process:

@ Another form of difference equation describing a linear system is obtained
by convolving the outputs to get the inputs instead of vice versa

@ For example, the output process may satisfy a difference equation of the
form
Xn = Z akYn—k
k

@ For convenience it is usually assumed that ag = 1 and ax = 0 for negative
k and hence that the equation can be expressed as

Yn F Xn - iakyn—k

k=1

Yo=Xo-YiiaYar @ The numbers {ax} are the regression coefficients,
and the filter is called auto-regressive (or an IIR
filter, for “infinite impulse response”)

@ The order of the filter is equal to the maximum
minus the minimum value of k for which the ax
are nonzero

@ The associated transfer function may not be
stable, “all poles” filter
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Example 10: ARMA: Autorregressive and moving average process:
@ Combination of AR + MA

@ ARMA filters are said to be finite-order if only a finite number of the ai's
and by’'s are not zero

@ The output process may satisfy a (finite) difference equation of the form

P Q
Y, = Z ak Y-k + Z b Xn—k
k=1 k=0

@ One can often describe a linear system by any of
Y, these filters, and hence one often chooses the
simplest model for the desired application

@ Occam'’s razor and parsimonious

[2] .
o An ARMA filter representation with only three
nonzero ax and two nonzero by would be simpler
] than either a pure AR or pure MA representation,

which would in general require an infinite number
of parameters
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Reviewed:

Random variables, continuous/discrete
process, SNR, MSE, PE, duality between
probability models of ensembles of
waveforms/sequences and random
processes, applications in signal
processing (interpolation, signal
detection, extraction, prediction),
examples of processes (Bernoulli,
Binomial, random walk, Markov, Wiener,
Poisson, AR/MA/ARMA), types of
random processes, mean,
autocorrelation, autocovariance,
cross-correlation, cross-covariance,

stationarity, WSS, Ergodicity, etc. T TNk Mou THOULD & MORE
EXPLIUT HEZE N STEP Two,W

Conclusi
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Part 3: Spectral estimation
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Introduction

Basic Physics: travelling waves
@ Travelling waves are efficient information carriers

@ Examples: electromagnetic, acoustic (pressure waves), seismic (shear
waves), optical (light)

@ When do we use waves and need frequency domain representations:
e wireless communications
e audio, music

e imaging: radar, sonar, seismics

'
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Introduction

Waves and frequency representation

@ The waves can be described by their frequency coverage
o Parameters to characterise the waves are:

o Wave period T [s]

o Frequency f =1/T [Hz]

e Angular frequency w = 2xf [rad/s]
o Wavelength A = ¢/f [m]

o Wavenumber k = 27 /A [1/m]

e Phase velocity ¢ [m/s]

A

141 /335



Introduction

Applications of spectral estimation
o Vibration analysis, resonance characterisation, harmonic analysis
@ Signal analysis: Classify signals: NB, BB, LP, HP, non-stationary...
@ System identification: Identify LTI system transfer functions

@ Linear prediction, filtering, detection: Spectrum determines optimum
methods

@ Signal compression, audio/video, voice encoding/decoding
@ Beamforming/Direction finding/imaging

Welch Power Spectral Density Estimate
80 T T T T T

NLM,,,, .,,ML,,' e i

EEY i L i I i L i
] 01 02 03 04 05 06 07 08 09 1

Normalized Frequency (<& rad/sample)
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Introduction

Waves and frequency representation

@ Narrow band signal description
s(t) = a(t)cos(wot + ¢(t)) = R{a(t)e/wer+o()}

where w, = 271, is called the center frequency

@ a(t) and ¢(t) are often assumed as slowly varying (compared to the wave
period)

< a(t)

o(t)
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Introduction

The Fourier transform

@ For a deterministic sequence x7(t), the Fourier transform is defined as

FIXr(t)] = Xr(f) = Xr(w) = /_oo Xr(£)e— gt

@ The Fourier transform is simply called the spectrum
@ w = 27f is understood as angular frequency (if t is time)

@ The inverse Fourier transform

X7(f) = Xr(w) = /_ T Kr(t)e 2 df

144 /335



Introduction

The Fourier transform of a deterministic signal

@ The frequency coverage is related to the sampling interval as fior = 1/dt

@ The frequency disctretization is related to the time series length as
(5f - l/ttot — 1/N(5t

Time series
1 .
05
dt = 0.001; 2
n = 1000; 05
t = [0:n-1] * dt; f = 33; 4 A ; i
st = cos( 2#pikfrt ); 0 0.05 Tln?:[s] 0.15 02
Sw = abs(fftshift(fft(st))); a0 Spectrum
faxe = [-n/2:n/2-1]1/n / dt; a0 :
figure, plot(t,st) N : :
figure, plot(faxe,Sw) :2300 : : |
g om .
< :
100 : 1
D N
o0 50 0 50 100

Frequency [Hz]

145 /335



Introduction

The Fourier transform of a deterministic complex signal

@ The Fourier transform of a real sequence results in a real symmetric
spectrum

@ The Fourier transform of a complex sequence results in a complex
unsymmetric spectrum

Complex time series

1
05
dt = 0.001; E
n = 1000; 05
t = [0:n-1] * dt; £ = 33; I :
st = exp( j*2*pi*f*t ); 0 005 Tm’?e1[s] 0.15 02
Sw = abs(fftshift(fft(st))); 1000 Spectrum
faxe = [-n/2:n/2-1]1/n / dt; o0 :
figure, plot(t,st) .
figure, plot(faxe,Sw) 2 800
g 400
<
200
0
-100 50 0 50 100

Frequency [Hz]
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The power spectrum

@ A random process is an ensemble of discrete-time signals

@ Assume that the random process is Wide Sense Stationary

@ The autocorrelation of a WSS random process is a deterministic function
of delay (only)

@ The Fourier transform of the autocorrelation function is the power
spectrum or the power spectral density (Einstein-Wiener-Khintchine)

Px(w) = /OO Rx(r)e ’“"dr

—o0

~or

Rx(7) £ /00 Px(w)eijdw

—o0
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Introduction

Spectral estimation

@ PSD estimation ~ XCORR estimation

@ The basic method: the periodogram!

@ Performace measures: Bias, variance, spectral resolution

@ Many methods that improve performance:
>> pburg PSD using Burg method
>> pcov PSD using covariance method
>> peig Pseudospectrum using eigenvector method
>> periodogram PSD using periodogram
>> pmcov PSD using modified covariance method
>> pmtm PSD using multitaper method (MTM)
>> pmusic Pseudospectrum using MUSIC algorithm
>> pwelch PSD using Welch’s method
>> pyulear PSD using Yule-Walker AR method

Periodogram Welch Multitaper

Power [dB]
Power [dB]
Power [dB]

0 nm 1\L\U.M“.JMILIJ“IMI.MI I\Ll\ |
80 90 100 10 120
Frequency [kHz] Frequency [kHz] Frequency [kHz]

1] 90 100 110 1200 80 a0 100 110 120
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ction

Overview of spectrum estimation techniques

Spectrum
estimation

v

Deterministic
signals: Stocastic
Fourier signals
analysis
- Limitation: .
Limitation: Bias
Bias ] Windowing Windowing +I——1 1 1o mness
randomness
Smoothing: Non-
loss of S:::eilr::e parametric P;::‘::;Ic
resolution 9 methods
A7 Y Y 2 ¥ ¥
Fourier ’c:::::g‘ Maximum ARMA ;::::::cs Long memory
analysis (Capon) entropy (MUSIC) models
y 2 ¥
S Periodogram Multitaper
ferretatiogy avera gﬁn metho':ls
windowing ging
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The periodogram

@ The periodogram is simply the discrete Fourier transform of the biased
estimator of the autocorrelation sequence

N—-1
Px(w)= > Rx(k)e "
k=—N+1

@ We introduce a window function and rewrite the autocorrelation

with the window function

() 1 0<n<N
W, =
& 0 otherwise

@ The autocorrelation sequence becomes then

oo

Re(k) = = S su(n+ k)xis(n) = %XN(k) £ 33 (—k)

n=—00
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The periodogram — alternative form

o Taking the Fourier transform and applying the convolution theorem
(“convolution becomes multiplication in the other domain™), the
periodogram becomes

P(w) = 1 Xn(w) * Xi(w) = © Xn(@)F,
where -
Xn(w) = Z XN(n)efj‘”” = Zx(n)efj“’"

is the discrete Fourier transform of the random sequence

@ Note the difference between the two different spectral estimates: One has
2N — 1 output frequencies, the other has N output frequencies
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Spectral estimation: which ACF estimator to use?

Estimating the power spectral density (PSD) is equivalent to estimating the
autocorrelation function (ACF).

—Which estimator do we choose?

@ The asymptotically unbiased (but still biased) estimator of the
autocorrelation is:

[y

=W xn(n + k)xp(n)

@ Why not choose the unbiased estimator (superscript u)

N—1—|k|

1
ST xu(n+ kD)x(n), |kl < N
n=0
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Spectral estimation: which ACF estimator to use?
For many stationary random processes of practical interest, the mean square
error (MSE) is

MSE(R%(k)) := E{(R% — Rx)*} < E{(R% — Rx)*} := MSE(R%(k))

@ MSE is a quality measure — Low MSE is good
@ We recall that the MSE is related to the variance and bias as
MSE(6) = V(0) + (E(9))
N —

variance bias2

@ This means that reducing the bias increases the variance for a given mean
square error — bias-variance dilemma



Spectral estimation: which ACF estimator to use?

@ Variance: Consider maximum lag k = N — 1, then
S 1
RY(N—1) = XN =1)x"(0)
while
Rx(N — 1) = x(N — 1)x*(0)
for which we see that the variance of IA?;(N — 1) is N? times larger than

the variance of R (N — 1)

@ Is all about variance of the estimator?

@ The performance of a spectral estimator can be characterised by several
different measures:

o Bias and spectral leakage
e Frequency resolution
e Variance
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Bias and spectral leakage

@ The periodogram is the Fourier transform of the estimated autocorrelation
sequence

N—1 )
> Rx(k)e "

k=—N+1

where
N—1—|k|

RE(K) = > An+ K< ()

@ Even this unbiased estimator is biased!

N—1—|1|
1

E(REK} = 3 D0 B+ K ()} = &

-
B (R0}

@ The bias reduces with N
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Bias and spectral leakage

@ We write this as s
E{Rx(k)} = ws(k)Rx(k)

where wg(k) is called a Bartlett window (triangular shape)

Nk k< N
— N =
we(n) {o k| > N

@ Using the convolution theorem, this becomes
A 1
E{Px(w)} = 5-We(w) * Px(w)

where Wg is the Fourier transform of wg, which is a sinc squared

We(w) = (7\;25,,1\5//?))2
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Bias and spectral leakage

@ The expected value of the periodogram is the true power spectrum
convolved with a sinc squared

@ The periodogram is a biased spectral estimator

@ It is however, asymptotically unbiased since
lim E{Px(w)} = Px(w)
N— o0

@ This does not mean that everything's fine!

“... for processes with spectra typical of those encountered in engineering,
the sample size must be extraordinarily large for the periodogram to be

reasonable unbiased.
Thomson

(1982)

157 /335



Introduction Periodogram Nonparametric Parametric

Bias example: single sinusoid without noise (deterministic)
@ The very slowly fall-off of the sinc-pattern causes the bias
o This is also referred to as spectral leakage

@ Example: Autoregressive Moving Average (ARMA) process Spectral
leakage is especially evident when data records are short

Periadogram Power Spectral Density Estimate
T T n T T

Power [dB]

| i I kil (T T TN i 1 il i
0 0.05 o1 0.15 02 025 03 035 04 0.45 05
Normalised frequency
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Bias example: random signal

@ Remember PDS: An ARMA process may be generated by filtering white
noise with a linear shift-invariant filter that has a rational system function

@ Algorithm: construct b and a coefficients
@ Theoretical spectrum is then calculated by using MATLAB freqz
o ARMA model:

NZ = 1024;

b = poly( [-0.8, 0.97xexp(j*pi/4), 0.97xexp(-j*pi/4),
0.97*exp(j*pi/6), 0.97*exp(-j*pi/6) 1 );

a = poly( [ 0.8, 0.95%exp(j*3*pi/4), 0.95*%exp(-j*3*pi/4),
0.95%exp(j*2.5%pi/4), 0.95*exp(-j*2.5%pi/4) 1 );

b = bxsum(a)/sum(b) ;

[h,faxem] = freqz(b,a,NZ);

faxem = faxem / (2%pi);

P_model = abs(h).2;

n=1024; % Data size

M=100; % Leading size (transient)

w=randn(M+n,1); % WGN sequence

x=filter(b,a,w); % Apply filter on WGN sequence
x=x(M+1:M+n); J remove transient
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Bias example: random signal

@ Now we filter a WGN throughout the filter

n=1024; % Data size

M=100; % Leading size (transient)
w=randn(M+n,1); % WGN sequence

x=filter(b,a,w); % Apply filter on WGN sequence
x=x(M+1:M+n); % remove transient

600

DD ““““““““““““““ b S
200}
200 I e b SR s PPN SOE.S EFA 0

DD e

500 i | i ] i
o 50 100 150 200 250
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Bias example: random signal
@ We want to investigate estimator bias which implies that we must suppress
estimator variance

We average 40 realizations to reduce the variance

Power spectral density estimate
60 T T T T

Power [dB]

i i i j i
o 005 01 015 02 025 03 035 0.4 045
Normalised frequency
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Window size and resolution
@ The periodogram is based on the autocorrelation sequence

]

Re(k) = = S su(n+ k)xis(n) = %XN(k) £ x5 (—k)

n=—oo

where xy(n) = wgr(n)x(n) and wg = 0 outside the data interval
@ This is in effect applying a rectangular window on the data

@ In Fourier domain (using the convolution theorem)
Xn(w) = X(w)Wr(w)
@ The Fourier transform of a rectangular window is a sinc

_sin(Nw/2)
Wa(w) = N sin(w/2)
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Periodogram

Window size and resolution: single sinusoid without noise (deterministic)

@ The frequency resolution is the smallest distance two different signals are
displaced (in frequency domain) and still resolved

@ This is related to the main-lobe width (simple to approximate)

2T fs
Awr X G Afa
YEN N

where f; is the sampling frequency and N is the data window size

Sine Sinc squared

o = 0.88502 = 2N

o
@
on

o
o

Ad=1.205 x 20N

15 ]

02 : - : : H 4

. o\ TAY

4 3 2 0 1 2 3 4 -4 4
Angular frequency x N2x Angu\ar fvequem:y x N.on

Armplitude
Power [dB]
s

o
=
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Variance

The variance of the periodogram spectral estimator is (after rather
complicated calculations)

The variance does not approach zero as the data length N increases

The periodogram is not a consistent estimator (i.e. converges in some
sense to the true value)

Why does the variance not decrease with increasing N7

Increasing N means increasing the number of individual frequencies
(instead of increasing the accuracy of each frequency)
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Periodogram variance WGN with N = 100 and N = 1000, and 100
realizations

Individual periodograms, N = 100

Periodograms averaged, N = 100

Power [dB]

Power [dB]
o

-5
0 0.5 -0.5 0 05
Normalised frequency Normalised frequency
Individual periodograms, N = 1000 Periodograms averaged, N = 1000
T 5 T
o @
3 - =
g g 0
z z
H 5
o o
5 i
0 0.5 05 0 05

Normalised frequency Normalised frequency
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Classical spectral estimation
@ The periodogram spectral estimator suffers from bias and variance

@ Classical spectral estimation is all about improving Fourier based spectral
estimation techniques
@ Three different approaches to improve performance:

@ Bias reduction by ‘tapering’: The modified periodogram
@ Variance reduction by ‘smoothing’ (averaging):

o Welch-Bartlett method
o Blackman-Tukey method

© Bias-Variance reduction by ‘smoothing+averaging’: the multitappering
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Method 1: The modified (windowed) periodogram

@ The main contributor to bias is the sinc-pattern caused by the rectangular
(on the data) / triangular (on the ACF) window

@ We can reduce the bias by applying another window function:

oo

Z x(n)w(n)e "

n=—o00

(modifie 1 1 2
P W) = g @ = g

where
1 N—1 )
U= NU ;0 [w(n)]

is a factor to ensure that I5x(w) is asymptotically unbiased
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Method 1: The modified (windowed) periodogram
@ Following the previous calculations, we find that the bias becomes

E{Px(w)} = 5 Px(e) ()P

® The choice of window provides a trade-off between bias and spectral
resolution

@ The choice of window does not affect the estimator variance

@ The modified periodogram is (also) not a consistent estimate of the power
spectrum

@ The window is characterised by the main-lobe 3dB-width, peak sidelobe
level and integrated sidelobe level

o Windowing is also called “tapering”
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Method 1: Examples of windows (tapers)
@ There are a lot of windows with different characteristics
e Hamming: easy to implement - decent performance
o Kaiser: optimised to minimise energy outside mainlobe. Parameter choice

to trade resolution vs sidelobe suppression. Medium difficulty in
implementation

o Chebyshev: optimised to control peak sidelobe level. Parameter choice gives
directly (flat) sidelobe level. Difficult to implement

@ See also wvtool for visualization of different windows
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Method 1: Examples of windows (tapers)

Modified periodogram

o T T T T
20 B
@
=
5 40 .
3
o
60|- -
80 L
-8 -6 -4 2 0 2 4 B g
Angular frequency x N2z
Modified periodogram
1 T T T T T T T
Rectangular: Ao = 0.885
08 Hamming: Aw =1305 [
Kaiser 4.5: Ao = 1255
06 H
g ~———Chebyshev -60: Aa, =1.445
= T
& o4t B
02 —
o ; i ; e,
-2 0 05 1 15 2

Angular frequency x N2z
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Method 1: Examples of windows (tapers) Resolution test: Two closely
spaced sinusoids at f = [0.145,0.150] in WGN

Power spectral density estimate

25 ‘ 1 . : 1 : ,
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Method 1: Examples of windows (tapers) Bias test: Worst case ARMA
process (40 realizations averaged)

Power spectral density estimate

60 T T T T T T T T
Rectangular

50 B
Hamming
Kaiser 6.5

40+ Chebyshev 100 —
Model

30

20

Paower [dB]
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L i 1 1 I
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Nonparametric

Method 1: Examples of windows (tapers) We still have problems with the
variance (single realization)

Power spectral density estimate

60 T T T T T T T
Rectangular

50 Harmming
Kaiser6.5
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Method 2: Reducing variance with periodogram averaging
@ A simple straight forward approach to reduce variance is as follows:
@ Divide the sequence into segments
@ Estimate the PSD of each segment
© Average (incoherently) the estimates to reduce variance
@ The technique obviously reduces the spectral resolution since each PSD
estimate uses fewer samples
@ The reduction in variance is obviously related to the number of estimates
averaged

@ We are going to review two classical methods:

o Bartlett's method: non-overlapping periodograms
o Welch's method: overlapping modified periodograms



Introduction Periodogram Nonparametric Parametric Conclusions

Method 2: Welch’s method to reduce variance via averaging

@ Divide the total sequence of N samples into segments of size L, offset
each segment by D points into a total of K segments such that

N=L+D(K-1)

@ See MATLAB's command >> buffer, tapdelay

: : —
—>D<— A

@ The estimator is defined as

(welch 1 -
P = Z
i=0

where

L1
Zx n+ iD)w(n)e /"
=0

1 Nl
= NU Z |w(n) ?
n=0

where w(n) is a window of choice and IAD)({""‘)(w) is the i-th modified
periodogram
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Method 2: Welch’s method, properties

The bias and resolution of the estimator is given by the modified
periodogram that is applied on each segment

The variance becomes dependent on the overlap, window type and number
of segments

For 50% overlap and a Bartlett window

9L
16N

The variance decreases with increasing N

V{PY™M (W)} & —— Pk(w)

The estimator is consistent

The estimator is asymptotically unbiased, since the modified periodogram
estimator is asymptotically unbiased
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Nonparametric

Method 2: Welch’s method Single realization of ARMA process

Power spectral density estimate

60 T T T T T T T T
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Method 2: Blackman-Tukey method of periodogram smoothing

@ We realise that the variance in the autocorrelation estimate increases with
increasing absolute lag

@ We apply a window on the ACF to suppress the elements that contribute
to the variance

M
IB)((BIackmanf Tukey)(w) _ Z I"?X(k)w(k)e—jwk’ M < N-—1

k=—M

@ Again, the convolution theorem states that the PSD becomes

S lackman— Tuke 1 s
pirrcmn= TN () = o B (w) * W(w)
2w
where W is the Fourier transform of w

@ Similar to the modified periodogram but different results
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Method 2: Blackman-Tukey method of periodogram smoothing

@ The bias of the Blackman-Tukey spectral estimator is
> lackman— Tuke 1 >
E{P ) W)} = o E{PY (@)} * W(w)

@ After some maths, we find the variance (see Hayes) to be

M

s lackman— Tuke: 1
V{BEEm O W)} & Pr(w)y Do wk), N> M > 1x W(w)
k=—M

@ This estimator is consistent. The variance reduces with increasing N
@ There is a trade-off (again) between bias and variance:

e M should be large to minimise bias
o Large M, however, increases the variance
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Introduction

Periodogram

Review of spectral estimation methods

Nonparametric

Parametric

Bias reduction, windows

Variance reduction, averaging

Windows: Rectangular, Hamming,

Kaiser, Chebyshev,

Welch's, Blackman-Tukey, etc.

Bias can be reduced by applying ta-
pering (or windowing)

Variance can be reduced by averaging
multiple modified periodograms

At the cost of loss in spectral resolu-
tion

At the cost of loss in spectral resolu-
tion

Does not affect variance

Does not affect bias

Bias due to sidelobes is referred to as
spectral leakage

More or less equivalent to spectral
smoothing

Let’s combine the best of both worlds!

Conclusions
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Method 3: Multitaper spectral estimation

@ Inspired by the success of tapering and averaging, one could construct a
new spectral estimator as follows:

@ Construct several different tapers of size N (full size)

@ Ensure that the tapers are properly designed orthogonal functions
© Produce modified periodograms using each taper (with low bias)
@ Average (with or without weighting) to reduce variance

First suggested by Thomson in 1982

This estimator is consistent. The variance reduces with increasing N

°
°
@ Windows based on Discrete Prolate Spheroidal Sequences (DPSS)
@ MATLAB function >> pmtm for multitaper spectral estimator

°

MATLAB function >> dpss to produce the tapers
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Method 3: Multitaper spectral estimation
@ Assume a sequence of data x(n) of size N, and a set of K different tapers

@ The multitaper spectral estimator is

1 N—-1 2

(mk —jwn

PII(w) = 5| 2 [x(mwi(n)e ™
n=0

K—-1
'b)((multitaper)(w) _ % Z I’j)((l’n,k)(w)
k=0

@ Each taper wi(n) must have low sidelobe level to prevent bias

e The individual modified periodograms P{™*)(w) must be pairwise
uncorrelated with common variance



Nonparametric

Method 3: Discrete Prolate Spheroidal Sequences (DPSS)
@ Discrete Prolate Spheroidal Sequences (DPSS) are optimal tapers
@ DPSS are, however, complicated to construct (from scratch)
@ Simple in MATLAB: >> [e,v] = dpss(1000,2);

0.06 T T T T T T T

004

002F

004

i I i 1 i i 1 i 1
1] 100 200 300 400 500 600 700 800 900 1000
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Method 3: Poor-mans multitapers

@ A simpler set of orthonormal tapers can be constructed from sinusoidal

tapers
1= i ()
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Method 3: Performance of multitaper spectral estimation: ARMA random
process with large dynamic range

Power spectral density estimate

40 T T T T T T T T I
n : Multitaper 2
W Multitaper 4 1
Multitaper 7
Model

Power [dB]

| 1 1 1 1
0.05 01 015 02 025 03 035 04 0.45 05
Normalised frequency

0 i I i i
o
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Method 3: Performance of multitaper spectral estimation: Single sinusoid
in White Gaussian Noise
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Parametric density estimation methods:

@ Previous nonparametric methods based on windowing/tapering of the
signal assume that the signal is null outside the window

Let's fit a parametric model for the signal so we get rid of such assumption

@ This should improve the resolution if the model is correct (too rigid, too
flexible, overfitted, order/lag size)
@ Several processes can model a discrete-time signal (aka time-series):

o AutoRegressive (AR)

e Moving Average (MA)

e AutoRegressive and Moving Average (ARMA)
e Sum of harmonics (complex sinuosoids)

e Multiple Signal Classification (MUSIC)

@ We need an accurate estimate of model parameters

All of them are based on autocorrelation and partial correlation

187 /335



Introduction Periodogram Nonparametric Parametric Conclusions

Four approaches:
@ AutoRegressive, AR(p):

P
X(n) = ZakY(n — k)
k=1
@ Moving Average, MA(q):
q
Y(n)=>_ bX(n—k)
k=0

o AutoRegressive and Moving Average, ARMA(p, q):

p q
Y(n)=> aY(n—k)+ > bX(n—k)
k=1 k=0
@ Sum of harmonics (complex sinuosoids) in noise:

M
Y(n) = A"+ X(n)
k=1
where Y, is the observed output of the system, X, is the unobserved input of
the system (zero mean white Gaussian noise process with unknown variance),

and ax, bk, Ak are coefficients to be estimated
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Spectrum Estimation with AR Models:
@ AutoRegressive, AR(p):

P
X, = aY(n—k)
k=1

@ PSD of the process is given by:

2
g
Par(f) = 1457, ae 227h ]2

@ We need to estimate ax and the noise variance o

How?
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The autocorrelation, or the Yule-Walker method

@ Pre-multiply by x*(n — k) and take expectations. After some maths,
Yule-Walker solution:

Ra = —F,
where R is a p x p matrix
() A1) . H(ept )
R— r(:l) r(:O) r(_p:+2) F— (1), 7(1),....7(p))"
Hp—1) Hp—2) ... #0)
@ Parameters 4 = —R'r

@ Noise variance: 6% = #(0) + > %_, ax?(k)
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Several alternative methods with AR models:
@ Yule-Walker method >> pyulear
@ Covariance method >> pcov

@ Burg method >> pburg
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Spectrum Estimation with AR Models

% Define AR filter coefficients

a = [1 -2.2137 2.9403 -2.1697 0.9606];

[H,w] = freqz(1,a,256); % AR filter freq response

% Scale to make one-sided PSD

Hp = plot(w/pi,20*1logl0(2*abs(H)/(2%pi)),’r’); hold on;

x = filter(l,a,randn(256,1)); % AR system output

Pcov = pcov(x,4,511); Pyulear = pyulear(x,4,511); [Pburg,Ww] =
pburg(x,4,511);

plot(W/pi,20%*1og10(Pcov),’b’); plot(W/pi,20%*loglO(Pyulear),’k’);
plot (W/pi,20%1logl0(Pburg),’m’)

xlabel(’Normalized frequency (X7 rad/sample)’)

ylabel (’One-sided PSD (dB/rad/sample)’)

legend(’Model’,’Covariance’,’Yule’, ’Burg’); grid

600

= Model

— Covariance
Yule

|7 Burg

400

200

One-sided PSD (dB/rad/sample)

-200 *
0 0.2 0.4 0.6 0.8 1

Normalized frequency (X T rad/sample)
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Spectrum Estimation with AR Models: choosing p
@ Akaike Information Criterion (AIC):

AIC(k) = Nlogé; + 2k, K : order
@ Bayesian Information Criterion (BIC)
@ Minimum Description Length (MDL) principle:
MDL(k) = Nlog s + klog N, K : order

When to use AR-based spectrum estimation?

@ The AR-based spectrum estimation methods show very good performance
if the processes are narrowband and have sharp peaks in their spectra

@ Also, many good results have been reported when they are applied to
short data records
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Spectrum Estimation with MA Models:
e Moving Average, MA(q):

Y(n)=>_ bX(n—k)

@ PSD of the process is given by:

q 2
Pua(f) = 0|1+ be 2™
k=1

@ One can show that r(k) =0, V|k| > g, so:

q

Pua(f) = > r(k)e />

k=—q

@ We need to estimate rx, which is nonlinear
@ Durbin proposed an approximate procedure that is based on a high order
AR approximation of the MA process:
o Data are modeled by an AR model of order L, where L > g
o Coefficients are estimated using the AR equation
e Sequence {31,...,3,} is fitted with an AR(q) model, whose parameters are
also estimated using the autocorrelation method
o Estimated coefficients {by, ..., by} are then used in Pya(f)
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g F

Spectrum Estimation with ARMA Models:
@ AutoRegressive and Moving Average, ARMA(p, q), M = p + g:

Y(n)=> aY(n—k)+ > bX(n—k)

@ PSD of the process is given by:
2|1+ 377 e 2P
[T X5, ave A
o The ML estimates of the ARMA coefficients are difficult to obtain
@ We usually resort to methods that yield suboptimal estimates

Parma(f) = o

#(q) Mg—1) ... Pg—p+1) a1 €q+1 Pa+1)
#g+1) M) .. Mg—p+2)| |2 . crz | | Ha+2)
M—1) H(M—-2) ... #M-p) 2 & (M)

or

Rate= —t,

where ¢; is a term that models the errors in the Yule-Walker equations
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Spectrum Estimation with ARMA Models:
o The Yule-Walker expression now is:
Ra+e=—*,
where €; is a term that models the errors in the Yule-Walker equations
@ The least-squares estimates of a:
a = (R'R) 'R

@ Once the AR coefficients are estimated, we can filter the observed data
and obtain a sequence that is approximately modeled by an MA(q) model

@ From the data y(n) we can estimate the MA PSD and obtain the PSD
estimate of the data x(n):

_ Pua(f)
|1 + Zi:l ake—jzwfk‘z

Parma(f)

196 /335



Introduction Periodogram Nonparametric Parametric Conclusions

Pisarenko Harmonic Decomposition (PHD) method:

@ Sum of harmonics (complex sinuosoids) in noise:

M
Y(n) = A"+ X(n),
k=1
where f is the frequency of the k-th complex sinusoid, Ak is the complex

amplitude: A, = |Ax|e&/*, and X(n) is a sample of a zero mean white
noise

The PSD of the process is a sum of the continuous spectrum of the noise
and a set of impulses with area |A,|? at the frequencies f:

m

P(f) =D |A5(f — fi) + Pe(f)

k=1

Pisarenko found that the frequencies of the sinusoids can be obtained from
the eigenvector corresponding to the smallest eigenvalue of the
autocorrelation matrix: >> [V Lambda] = eigs(R,’ascend’);
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Parametric

Pisarenko Harmonic Decomposition (PHD) method:
@ Estimate the (m+ 1) x (m + 1) autocorrelation matrix

m M
R= Z()\,- + )il + Z avvl,

i=1 i=m+1
provided it is known that the number of complex sinusoids is m, where
{Ai}iZ; are the nonzero eigenvalues of R with associated eigenvectors v;
Evaluate the minimum eigenvalue An4+1 and the eigenvectors of R .
Set the white-noise power to 62 = Ap41, estimate the frequencies of the
complex sinusoids from the peak locations of Ppup(f) in
B 1

(XA (f)mir]?

@ Compute the powers of the complex sinusoids P; = |A;|? solving a problem
with m linear equations
© Substitute the estimated parameters in

©0

:‘SPHD(f)

P(F) =3 [APa(f — ) + Pu(f)
k=1
Pisarenko’s method is not used frequently in practice because its
performance is much poorer than the performance of some other signal

and noise subspace based methods developed later
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Muiltiple Signal Classification (MUSIC):
@ A procedure very similar to Pisarenko’s proposed by Schmidt (late 1970s)

@ Suppose again that the process {Y(n)} is described by m complex
sinusoids in white noise

@ Eigendecompose the correlation matrix: we actually assume that the m
largest eigenvalues span the signal subspace, and the remaining
eigenvectors, the noise subspace

@ Estimate the noise variance from the M — m smallest eigenvalues:
1 M
N2 )
= —m Z Aj
i=m+1

and the frequencies from the peak locations of the pseudospectrum

1
P f) =
uusicf) = S X ()P

@ The powers of the complex sinusoids and the parameters are estimated as
in Pisarenko’s
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Improving MUSIC: the Eigenvector method (EV)

@ MUSIC has better performance than Pisarenko’s method because of the
introduced averaging via the extra noise eigenvectors

@ The averaging reduces the statistical fluctuations present in Pisarenko's
pseudospectrum, which arise due to the errors in estimating the
autocorrelation matrix

@ These fluctuations can further be reduced by applying the Eigenvector
method, which is amodification of MUSIC and whose pseudospectrum is
given by:

1
Pev(f) =
S i |3 XHvi(F)[2
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MUSIC example 1: This example analyzes a signal vector x, assuming that
two real sinusoidal components are present in the signal subspace. In this case,
the dimension of the signal subspace is 4 because each real sinusoid is the sum
of two complex exponentials

>> randn(’state’,0);

>> n = 0:199;

>> x = cos(0.257*pi*n) + sin(0.2#pi*n) + 0.0l*randn(size(n));
>> pmusic(x,4) % Set p to 4 because two real inputs

Pseudospectrum Estimate via MUSIC
150 ; .

Power (dB)

-50 i : : :
0 02 04 0.6 0.8 1
Normalized Frequency (%% rad/sample)
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MUSIC example 2: This example analyzes the same signal vector x with an
eigenvalue cutoff of 10% above the minimum. Setting p(1) = Inf forces the
signal/noise subspace decision to be based on the threshold parameter p(2).
Specify the eigenvectors of length 7 using the nwin argument, and set the
sampling frequency fs to 8 kHz:

>> randn(’state’,0);

>> n = 0:199;

>> x = cos(0.257*pi*n) + sin(0.2%pi*n) + 0.0l*randn(size(n));
>> pmusic(x, [Inf,1.1],[]1,8000,7); % Window length = 7

Pseudospectrum Estimate via MUSIC
150 . T .

100

50

Power (dB)

Frequency (kHz)



Conclusions

AR-based PSD estimation: Advantages and shortcomings:

Characteristics

Advantages

Disadvantages

Conditions for
Nonsingularity

Burg

Does not apply
window to data

Minimizes the
forward and
backward prediction
errors in the least
squares sense, with
the AR coeflicients
consirained to
satisy the L-D
recursion

High resolution for
short data records

Always produces a
stable model

Peak locations
highly dependent on
initial phase

May suffer spectral
line-splitting for
sinusoids in noise.
or when order is
very large:

Frequency bias for
estimates of
sinusoids in noise

Covariance

Does not apply
window to data

Minimizes the forward
prediction error in the
least squares sense

Better resoltion than
YW for short data
records (more
accurate estimates)

Able to extract
frequencies from data
consisting of p or
more pure sinusoids

May produce
unstable models

Frequency bias for
estimates of
sinusoids in noise

Order must be less
than or equal to half
the input frame size

Modified Covariance

Does not apply
window to data

Minimizes the
forward and
backward prediction
errors in the least
squares sense

High resolution for
short data records

Able to extract
frequencies from
data consisting of p
or more pure
sinusoids

Does not suffer
speciral line-spiiting

May produce
unstable models

Peak locations
slightly dependent
on initial phase

Minor frequency
bias for estimates of
sinusoids in noise

Order must be less
than or equal to 273
the input frame size

Yule-Walker

Applies window to
data

Minimizes the forward
prediction error in the
least squares sense
(also called
autocorrelation
method)

Performs as well as
other methods for
large data records

Always produces a
stable model

Performs relatively
poorly for short data
records

Frequency bias for
estimates of
sinusoids in noise

Because of the
biased estimate, the
autocorrelation matrix
s guaranteed to be
positive-gefinite,
hence nonsingular
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Conclusions

Spectral estimation in MATLAB:

Method Description Functions
Periodogram Power spectral density estimate periodogram
Welch Averaged periodograms of overlapped, pwelch, cpsd, tfestimate, mscohere

windowed signal sections

Multitaper Speciral estimate from combination of pmtm
multiple orthogonal windows (or "tapers")

Yule-Walker AR Autoregressive (AR) spectral estimate of  pyulear
a time-series from its estimated
autocorrelation function

Burg Autoregressive (AR) spectral estimation of pburg
a time-series by minimization of linear
prediction errors

Covariance Autoregressive (AR) spectral estimation of pcov
a time-series by minimization of the
forward prediction errors

Modified Covariance Autoregressive (AR) spectral estimation of pmcov
a time-series by minimization of the
forward and backward prediction errors

MUSIC Multiple signal classification pmusic

Eigenvector Pseudospectrum estimate peig
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Reviewed:

Spectral estimation, Fourier transform,
power spectrum, parametric vs
non-parametric spectral estimation, ACF
windowing, periodogram averaging,
multitaper methods, ARMA modeling,
etc.

T BNK You SHou ee MoRE
EXPLIUT HEZE N STEP Two,W
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Part 4: Signal decomposition and transforms
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Introduction

Spectral analysis of non-stationary signals

@ What happens when the signals are non-stationary?

@ The autocorrelation function is no longer a function of lag only
@ Non-trivial problem
°

Simple intuitive approach:

o Break the timeseries into segments that are locally WSS
o Estimate the spectrum for each segment

This is then a time-frequency representation
Different approaches to time-frequency analysis:
Gabor filtering/transform

Short Time Fourier Transform

Second order time-frequency analysis (Cohen class)
Wavelet analysis

Spectrogram
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Gabor transform is a ‘local Fourier Transform’:
X(t)

@ The Gabor transform, named after Dennis
Gabor, is a special case of the short-time
Fourier transform. Lo |

o It is used to determine the sinusoidal | & B -7mommmmmme
frequency and phase content of local sections
of a signal as it changes over time.

@ The function to be transformed is first multiplied by a Gaussian function
(window) and then transformed with a Fourier transform to derive the
time-frequency analysis

@ The window function means that the signal near the time being analyzed
will have higher weight

o The Gabor transform of a signal x(t) is defined by this formula:

Gu(t, f) = / e_"(T_t)ze_jzﬂTx(T) dr

—o0

Frequency

Time

@ The Gabor transform is invertible:

x(t):/ / Gu(T, F)&*™ df dr
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Gabor transform implementation:
@ The Gaussian function has infinite range and it is impractical for
implementation
@ However, a level of significance can be chosen (for instance 0.00001) for
the distribution of the Gaussian function.

e~™ >0.00001; |a| <1.9143
e~™ <0.00001; |a| > 1.9143

o Outside these limits of integration |a|] > 1.9143, the Gaussian function is
small enough to be ignored
@ Thus the Gabor transform can be satisfactorily approximated as

1.9143+¢ N
Gx(t, f) :/ e—Tr(T—t) e—JQWfTX(T) dr

—1.9143+4t

@ This simplification makes the Gabor transform practical and realizable
@ The window function width can also be varied to optimize the
time-frequency resolution tradeoff replacing:
—n(r—t)? = —wa(r —t)?

@ Selection of « is critical to achieve good frequency resolution in short
time-windows (and viceversa) — Heisenberg principle
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Properties of the Gabor transform:

| Signal | Gabor transform | Remarks
x(t) Gu(t,f)=["_e —(r =)’ e T x(rydr | -
a-x(t)+b-y(t) | a-G(t,f)+b-Gy(t,f) Linearity
x(t — to) Gi(t — to, F)e ™0 Shifting
x(t)e/Zot Ge(t, f — o) Modulation

Example of the Gabor transform: Adding the frequency axis we can detect
different time-dependent components in the signal

Magnitude
&

cos(2wt) for t <0,
x(t) =
cos(4rt) fort > 0.

Frequency




Time-frequency

Example of time-frequency representation
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Time-frequency

Short time Fourier transform (STFT)

@ Divide the total sequence of N data samples into segments of size L, and
offset each segment by D points into a total number of K segments such

that N =L+ D(K —1)
@ The Short Time Fourier Transform is

L-1
SFTF(i,w :Zx n+ iD)w(n)e 7"
n=0

where w(n) is a window of choice

@ Note the similarity with Welch's method of
periodogram averaging FT{}
@ Also known as sliding window Fourier transform and

spectrogram

Frequency
—
—

=
—
—

Time
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Short time Fourier transform (STFT)

The STFT can be generalised to use any Fourier based spectral estimator
@ Example: Spectrogram based on the modified periodogram:

L—1 2

i S x(n+ D)w(m)e |, t=(i+D/2)st

P

where dt is the sampling frequency
@ See spectrogram and specgramdemo in MATLAB

@ Note: STFTs should really be viewed as a stack of individual spectral
estimates. In order to construct a proper density lsx(t,w) as a function of
time and frequency, energy conservation has to be taken into account.
This is not the case for STFT-based representations.
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Time and frequency resolution in STFT

@ The uncertainty principle states that the time duration At and frequency
bandwidth Aw are related by

1
AtAw > =
=5

@ A fundamental property of the Fourier transform pair s(t) and S(w)
@ First derived by Heisenberg in 1927 in quantum mechanics

@ Example: rectangular time window and sinc frequency window

Rectangular window function Sinc
1
09
! 08
08 07
© » 06
3 ]
= 08 Z 05 40 =1:205 % 20N
£ N £
< < 04
4
0 03
. 02 H Werner Heisenberg
01 g . theoretical physicist
0 ) Nobel prize 1932
0 50 100 150 200 250 300 4 3 2 A 0 1 2 3 4 From wikipedia
Sample number Angular frequency x N/2x
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Time and frequency resolution in STFT

The time-frequency resolution relation leads to the following:

@ Higher frequency resolution requires larger time duration and thereby lower

time resolution

@ Higher time resolution requires shorter time duration and thereby lower

frequency resolution

A
5
| @ Aw Aw ~ 1/AL
El At~1/Aw
At

time
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Time-frequency

Time-frequency analysis generalizes Gabor analysis
@ The Gabor transform of a signal x(t):

Gx(t, f) :/ e—7r(‘r—t)2e—j27rf‘rx(7_) dr

— o0

@ Time-frequency analysis:

o0 .
Gu(t, f) = / w(t —7)e ™ x(r) dr
—oo

@ Windows (the same as in Fourier-based spectral analysis):

@ Rectangular: w(t) =1

@ Hann (Hanning): w(t) = 0.5 (1 — cos( =7 2t 7))

© Hamming: w(t) = a — B cos(£7%

@ Blackman: w(t) = ap — a1 cos(N 1) + az cos(%)

© Blackman-Harris: w(t) = ag — a1 cos(2%5) + ap cos( =5 ) — a3 cos( 272
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Example: STFT of FM signal

o Consider a simple deterministic mono-component signal
s(t) = a(t)e*!, $(t) = wot + 2L cos(wit)
w1

@ The instantaneous frequency is defined as

wir(t) = LZ(:)

@ For our signal, the IF becomes
w”:(t) = Wo — a1 sin(wlt)

Instantaneous frequency

Angular frequency
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Example: STFT of FM signal

The effect of choosing segment size L

Normalised angular frequency

Normalised angular frequency

N

~

Spectrogram, N=4096, L=512, ZP

Spectrogram, N=4096, =128, ZPF:

04

Time [s]

Time [s]

06

Normalised angular frequency

Normalised angular frequency

Spectrogram,

~

04
Time [s]

Spectrogram, N=4096, | =64, ZPF=1, D=16

Time [s]
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Example: STFT of FM signal

Spectrogram, N=40%, L=512, ZPF=1, D=128

Spectrogram, N= 4095 L 15 PF=1, D=64

angular frequency

Comments on choosing segment size:

@ The first spectrogram has a long time
window L =512

@ During the window length, the
frequency changes

d angular frequency

@ This causes smearing which appears as
poorer resolution in the frequency
domain

@ The last spectrogram has a short time
window L = 64

@ Here, we observe “true” lowering of
the spectral resolution due to window
length

Tima [s]
Spectiagram, N=40%6, L=

-
This example shows the importance of window length in the time-frequency
representation
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A dirty trick: Zeropadding
A simple trick to get smoother spectral representation is zeropadding:

@ Zeropadding is adding zeros in the sequence to be FT'ed

@ Done in MATLAB for you: £fft(x, N) will zeropad the sequence x to a
total of N elements before FT is applied
>> N = 16; ii = 3;
>> NN = N * 2(ii-1);
% Number of samples (including zeropadding)
>> xax = [-NN/2:NN/2-1]/NN; % Proper x-axis for plotting
>> X = 1/Nxabs(fftshift(fft( ones(N,1), NN ))); % Rectangular window

ZPF=1 IPF=2 ZPF=4 7PF=8 IPF=16
1 1 I I 1

08 08 i 08 . 08} e . 08

06 06 ©1 08 : s 06 : 06

0afio 04 i 04f : 04 04

02 e . 02f- i 02} gy 02 il 02
o i : 0 / ] 0 i 0

02 1) 02 -0.2 o 02 02 a 02 02 o 02 -02 0 02

N
N}
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Gabor Time MRA  Applications

A dirty trick: Zeropadding
Example: STFT of FM signal

Spectrogram, N=4096, L=64, ZPF=1, D=16 Spectrogram, N=409

Normalised angular frequency
Normalised angular frequency

4 06 04 06
Time [s] Time [s]

Spectrogram, N=4096, L=64, ZPF=4, D=16 Spectrogram, N=4096, , IPF=8, D=16

N
[

Normalised angular frequency
Normalised angular frequency

Time [s] Time [s]
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Time-frequency

Time-frequency representation of sonar data
Short Time Fourier Transform of single ping of sonar rawdata Modified
periodogram with Kaiser 4.5 window and zeropadding

Spectrogram, N=10240, L=160, ZPF=4, D=40

-20

-30

Frequency [kHz]
=1
8

-50

-60

Time [ms]
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Time-frequency representation of sonar data
Short Time Fourier Transform of navigation data

Spectrogram, N=32768, L=1024, ZPF=8, D=128

Frequency [Hz]

Time [s]
Spectragram, N=32768, L=1024, ZPF=8, D=128

' '* }k ll.ﬂ sahid b
50 100 150 200 250 300 350

Time [s]
Spectrogram, N=32768, L=1024, ZPF=8, D=128
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o o
S

02

Frequency [Hz]

o

0
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Time-frequency representation of sonar data
STFT of sonar data before and after beamforming

Spectrogram, N=4096, L=128, ZPF=8, D=16 Spectrogram, N=4096, L=128, ZPF=8, D=16

Frequency (kHz]

3 55
Time [ms]




Introduction Gabor Time-frequency CWT DWT MRA Applications Conclusions

Second order time-frequency representations

The uncertainty principle limits directly the ability to resolve transient
frequencies in the STFT

How do we approach this?

We capture the time variantion (non-stationarity) into a time-varying
autocorrelation function

Rx(t,7) = x(t + 7/2)x(t — 7/2)

and directly transform into time-frequency domain

The Wigner-Ville distribution does this
W(t,w) = /x(t +r/2)x(t — 7/2)e T dr

Introduced by Wigner in 1932 in quantum mechanics, and introduced to
signal analysis by Ville in 1948
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Second order Time-frequency representations
@ This approach has a number of desirable properties

o It obtains “full” resolution for LFM type signals
o It is energy preserving (and as such a proper distribution)
o It does however, produce cross terms (ghosts)

o A generalised form (referred to as Cohen’s class) is
C(t,7) = W(t,w)o(t,w)

where the kernel function ®(t,w) can be chosen

@ The generalised form can describe any time-frequency representation
(including the STFT)

@ By choosing the kernel function, the cross terms can be supressed at the
cost of loss in resolution

@ MATLAB Toolbox, and Octave Toolbox: http://tftb.nongnu.org/
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Example: Time-frequency representations
Example: STFT of LFM signal

|STFT|2, Lh=128, Nf=512, log. scale, imagesc, Thld=0.1%
0.5

0.4

Frequency [Hz]
o
Lo}

Q
ra

0.1

100 200 300 400 500 600 700 800 900 1000
Time [s]
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Example: Time-frequency representations
Example: Wigner-Ville distribution of LFM signal

WY, log. scale, imagesc, Threshold=0.1%

Frequency [Hz]

100 200 300 400 500 600 700 8O0 S00 1000
Time [s]




Time-frequency

Example: Time-frequency representations
Example: STFT of FM signal

Spectrogram, N=1024, |.=32, ZPF=4, D=8

= N
n N] n

-

Mormalised angular frequency

045

0 01 02 03 04 05 06 07 08 039 1
Time [s]
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Conclusions

Example: Time-frequency representations
Example: Wigner-Ville distribution of FM signal

WV, log. scale, imagesc, Threshold=1%

03

Frequency [Hz]
[} o
[= T O =
- o N m

[=]
o
a1

o

100 200 300 400 500 GO0 700 8OO 900 1000
Time [s]
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Example: Time-frequency representations
Example: Choi-Williams distribution of FM signal

CW, Lg=51, Lh=128 sigma=1, Nf=1024, log. scale, imagesc, Threshold=1%

Frequency [Hz]

100 200 300 400 500 GO0 700 8OO 900 1000
Time [s]
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- B-spline wavelets (1991)

- Wavelets in medicine and biology
(CRC 1996)

- Fractional wavelets (EPFL 2000)

Wavelets

Stéphane Mallat  Ingrid Daubechies

Alfred H
red Haar 1987-88 .
o— // 2 Applications
1910 1982 1904
s Compressed
2006 sensing
‘\/
Martin Vetterli

David Donoho
Emmanuel Candes
@ 1946, Denis Gabor: STFT with Gaussian windows
@ 1982, Jean Morlet: geophysics application, propose to replace the
modulation by the dilation of a fixed function
@ 1984, Alex Grossmann: link between Morlet’s wavelet and coherent states
in quantum physics + link with frame theory
@ 1985, Yves Meyer (Gauss Prize 2010): link with harmonic analysis and
establishment of mathematical foundations for a wavelet theory +
discovery of the first orthonormal wavelet basis (1986)
followers . . . : S. Mallat, |. Daubechies, R. Coiffman, A. Cohen, . . .
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Wavelets applications:

@ All started in seismic signals analysis (events occur at different time and
frequency regions ... and scales!)

@ Soon become a standard technique for many change detection problems
@ Wavelets appropriate fot detecting changes, discontinuities, trends, etc

@ They capture/describe the signal statistics with few
components/coefficients: ideal for signal /image coding/compression and
denoising/restoration

Wavelets main properties:
@ Wavelets are invertible transforms

@ Wavelets have two main parameters: scale and shift translation; more
flexible than Fourier to study local behaviors of the signal!

@ The basis functions in wavelets are time-limited (in Fourier sin/cos are
extended +00)
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CWT

Wavelets generalize time-frequency analysis and Gabor analysis
@ The Gabor transform of a signal x(t):
R S
Gx(t,f):/ - o e
o Time-frequency analysis:
Gu(t, f) = / w(t —7)e ™ x(r) dr
@ Wavelet analysis:
Gu(t, F) = / w(t — 7)e 2™ x(r) dr
—o0

but now the window is

w(t—7) = \%/ﬁimw(t%) dt
N

mother

@ The wavelet transform is simply a kind of correlation function between the
mother wavelet ¥(t), scaled and shifted, and the input signal
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CWT

Continuous wavelet transforms:

@ Wavelet analysis:

Ge(t,f) = /:: w(t)e ™ x(r) dr,  w( \[/ (t ; T) dt

mother

@ The wavelet transform is simply a kind of correlation function between the
mother wavelet 1)(t), scaled and shifted, and the input signal

@ Standard mother wavelets: Meyer, Morlet, Mexican hat:

@ Intuition: The scale factor s will control the ‘shape’ of the mother wavelet:
s > 1 dilates the wavelet and s < 1 compresses the wavelet in time

@ This property is not shared by the Gabor or the Time-Frequency transforms
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CWT

What do we gain with all this?

T

At
R |
AV
At} I

Av

@ Fast changes: low frequency resolution, high time resolution

@ Slow changes: high frequency resolution, low time resolution
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Conclusions

DWT MRA Applications

What do we gain with all this?

Four distinct STFT time-

frequency atoms
W g, ,
N
Ot,4
Ll | | S | -------- | o,
0 i w,4

w1 O, L2 N
V2 1| I ; Ow,2
w3

ty ty ts ty

Set of one wavelet + children’s
multiresolutional time-frequency atoms

w

A
Ot.1
w1 EJMJ
| Ot
w3 = I 0,2
® il O3 "
3 = - @,3
o Ota
Wy Ow.4

\ 4
Lo

Ltz L3 ty

@ Fast changes: low frequency resolution, high time resolution

@ Slow changes: high frequency resolution, low time resolution
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Intuition on the scale parameter:

Impulse Response

Frequency Response

08

08

05

05

-40

40

08

o Low (time) scales is equivalent to study low frequency components, i.e.

the rough features of the signal

@ High (time) scales is equivalent to study high frequency components, i.e.
the details in the signal
@ There's a tradeoff between time scale and frequency resolution too!
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CWT

Time-frequency plane tiling:

T

At
S i
A
At} I
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Time-frequency plane tiling:

T

(1,|]A[/

AI//(I,U

CWT

| [

Av/ay
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DWT

The discrete wavelet transform:

@ When the signal is not continuous, just discretize the wavelets:
e Sampled signals (timestep = N —1).
o Discrete scales: (sj, ux) = {2,k -2/|j, k € Z}
o Example: N = 512 samples and take j = 3, we study relations for s = 8 at
positions n = 8,16,32,...,512

o MATLAB: wavedemo
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DWT

The wavelet transform is a band-pass filtering:

A~

wa() @Bal (ILCLQ
v v '

We cannot get the zero frequency
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DWT

The wavelet transform is a band-pass filtering:

Patbay Yay Vay
v ¥ '

The missing part is obtained with the scaling function
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DWT

The wavelet transform is a band-pass filtering:

CM&%() wal %2
oo v v

! v

@ WT are essentially a filter bank with different central frequencies and
widths that increase with f

@ WT can be casted as a spectral analyzer
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DWT

Scaleogram or scalogram: visual method of displaying a wavelet transform: x
representing time, y representing scale, and z representing wavelet coefficient
value

Signal
1 T T T T T T T

4

_1 1 1 1 1 1 1 1
a 200 400 GO0 a0 1000 1200 1400

Discrete Transform

200 400 600 BDD 1000 1200 1 ADD

Continuous Transform

200 400 600 G0o 1000 1200 1400
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The discrete wavelet transform is a multiresolution spectral analyzer:

@ji2

djs

dj1

Decomposition

Reconstruction

h(n] = h[—n]
gln] = g[-n]

@ DWT decompose the signal in ‘approximation’ (low f) and ‘detail’ (high
f) coefficients

@ Reconstruction of the signal from the coefficients is trivial; just reverse the
operations
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The DWT is a multiresolution spectral analyzer:

e
AL
J\& ) W'\m

S 3

cDy
dl - D High Frequency
A AL (D
A S Y Zl s ‘ — 2500 DWT coertictents
cAg Dy AN
1000 dara points cA Low Frequency

s = sin(20.*linspace(0,pi,1000)) + 0.5.*rand(1,1000);

[cA,cD] = dwt(s,’db2’);

ss = idwt(cA,cD,’db2’); % Full reconstruction

ss = idwt(cA,zeros(1,501),°db2’); % Inverse using the LF approximation)
ss = idwt(zeros(1,501),cD,’db2’); % Inverse using the HF approximation)

247 /335



Introduction Gabor Time-frequency CWT DWT MRA Applications Conclusions

Important wavelet features:

@ Simple, fast implementation: Mallat’s filterbank algorithm

@ Mathematical properties: Riesz basis, vanishing moments,...

@ Good modeling of the organization of the primary visual system
Many successful applications:

@ Data compression

@ Filtering, denoising

e Fusion

@ Detection and feature extraction

@ Inverse problems: wavelet regularization
Current topics in wavelet research and “compressed sensing”

@ Better wavelet dictionaries (frames): steerable wavelets, ...

@ Better (model-based) regularization schemes

@ Automatic parameter adjustment (e.g., scale-dependent threshold)

@ Addressing harder inverse problems
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Seismic signal processing

P Airtth, TIPAR Mkt 1, lad Gy Mivks

Quantitative Seismic
Interpretation

Quantitative Seismic
Interpretation

PRACTICAL
SEISMIC DATA
ANALYSIS

Hua-Wei Zhou
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Applications

Audio processing

SPRINGER BRIEFS N ELECTRICL MD
COMPUTER ENGINEERING - HNDLOG

Mohamed H:esgam:amuk

- 5 =
Application
of Wavelets

- In SPGECh Wavelet Analysis for Denoising of Speech and
& Processing Robust Speech Processing ECG Signal by Using

and Applications

Applications of Discrete Wavelet Transform
and Woset

Digital Signal Pracessing

"";1 Springer
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Applications

Communications

l/
WAVELET, SUBBAND \(
~ AND BLOCK ; .
TRANSFORMS IN ”n g
COMMUNICATIONS _ /

R | T

All B Akima
Michat 1. Mediry

Principles of

Cognitive Radio MIMO wireless
Exio Bigher, Aacrea J. Galssmith, mmmun]miﬂns

Larey J. Grosnsiein, Marmysn B. Masdiyam
ard H. Vincaed Foor ST e s Y

==/ | =
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Applications

Geosciences

Wavelets and Fractals

n ! WAVELET TRANSFORMS AND
Earth Syztem Sclences THEIR RECENT APPLICATIONS

IN BIOLOGY AND GEOSCIENCE

Fokard ey Rages Hasgraam [l |

dited by Dumitru Baleany

Wavelets

in the Geosciences

Editars
E. Chandrasekhar
V. P Dimari

V. M, Gadre

N
5
B
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Applications

Times series analysis

RFWILEY
Statistical Modeling
by Wavelets

Brani Vidalkowic

Foufier

transform

MULTISCALE ANALYSIS OF
COMPLEX TIME SERIES

methods
in finance

Chaos and
Theary, and Beyond




Applications

Neuroscience

Springer Sesiesin Sysenyeiks
Signal Processing for
Neuroscientists

AN INTRODUCTION TO THE ANALYSIS
OF PHYSIOLOGICAL SIGNALS

Wavelets in

Neuroscience

WIM van DRONGELEN
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Bioengineering

TIME FREQUENCY AND
WAVELETS IN BIOMEDICAL
SIGNAL PROCESSING

Metin Akay
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Applications

Bioengineering

Appli

WAVELETS MRl ‘Angelis 94; DeVore 95;
in Medicine : ’\Cd}ammnglams Zz:iu.umes; Wang 96:
and Biology e
Filtering Image enhancement Laine 94, 95,
« Digital radiograms Lu, 94; Qian 95;
*MRI Guang 97;
* Mammograms elo ..
 Lung X-rays, €T
Denoising Weaver 91,
MRl u 94; Coifman 95;
 Ulrasound (speckle) ‘Abdel-Malek 07: Laine 98;
*SPECT Novak 98, 99
Feature extraction Detection of micro-calcifieations  Qian 95; Yoshida 94;
 Mammograms Sirckdand 96; Dhawan 96;

Baoyu 96; Heine 97; Wang 98
Texture analysis and classificaiion  Barman 83; Laine 94; Unser

* Ultrasound 95; Wei 95; Yung 95; Busch
*CT, MRI 97; Mojsilovic 87
Wavelets in medical imaging: Snakes andacthe conlours Chuang o 99
* Ultrasound
Survey 1991-1999 Wavelet encoding + Magnetic resonance imaging  Weaver-Healy 92;

Panych 94, 96; Geman 96;
Shimizu 96; Jian 97

Image reconstruction  + Computer tomagraphy Olson 93, 94; Peyrin 94;
References * Limited angle data Walnut 93; Delaney 95;
= Unser and Aldroubi, Proc IEEE, 1996 * Optical tomography Sahiner 98; Zhu &7,
. ’ « PET, SPECT Kolaczyk 94; Raheja 99
+ Laine, Annual Rev Biomed Eng, 2000 ‘Statistical data analysis _ Functional imaging Rutimann 83, 04, 35;
«PET Unser 95; Feilner 99; Raz 99
- + MRl
* Special issue, IEEE Trans Med Im, 2003 Mult-scale Registration  Motion comsction Unser 93; Thévenaz 95, 98;
* MR, angiography Kybic 99
Mul-modality imaging
+CT, PET, MR
3D visualization «CT.MRI Gross 95, 97; Muraki 95;

Kamath 98; Horbelt 99
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Applications

Bioengineering: Murmour detection: healthy vs pathologic

tricuspid -

valve
A,

pulmonary valve valve

right
ventricle

Analyzed Signal (length = 30745)

i+

ot
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Modulus of Ca,b Coefficients
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left ventricle

Analyzed Signal (length = 56074)

—f—
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Applications

Bioengineering: Sleep phase detection from EEG recordings

Wake

Sleep
F3 MM
C3—ndpApdp A [
mrdpeAp A A A A A mmmwwmw
P3 waMMhJV\mwww\/\\vaI

Ot A e AN oA s MWWMVWJ\J
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MRA  Applications Conclusions

Gabor Time-freq

Bioengineering: Removing noise from fMRI images

MAGNETIC RESONANCE IN MEDICINE 21, 288-295 (1991)

COMMUNICATIONS

Filtering Noise from Images with Wavelet Transforms

J. B. WEAVER,* YANSUN XU,* D. M. HEALY, JR.,f AND L. D. CROMWELL*

* of Radiology. De h-Hitchcock Medical Center; and t Department of Mathematics,
Dartmouth College, Hanover, New Hampshire 03755

Received April 12, 1991

A new method of iltering MR images s presented that uses wavelet transforms instead
of Fourier transforms. The new filtering method does not reduce the sharpness of edges.
However, the new method does eliminate any small structures that are similar in size to
the noise eliminated. There are many possible extensions of the filter. « 1991 Academic

Press, Inc.

L regularization (Laplacian) £, wavelet regularization
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Applications

Image processing

igital : ' ns of
mage usi ignal Processing
Processing

(LY
LH

Spline and Spline
Wavelet Methods

Raf

with Applications
to Signal and Image
Processing

Beberar | Frvimts; Gy
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Image processing: coding/compression

S bpp 3bpp 2.25 bpp 1.75 bpp 2 bpp
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Applications

Image processing: denoising/restoration

HT (0.67)

Noisy Image (0.46)
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Applications

Image processing: image fusion
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Applications

Image processing: multi-resolution fusion
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Conclusi

Reviewed:

Non-stationary signals, Gabor filter and
the Heisenberg uncertainty principle,
Time-frequency analysis, Short Time
Fourier Transform (STFT), Spectrogram,
Uncertainty principle, Instantaneous
frequency, Second order time-frequency
relations, wavelets, multiresolution
analysis, applications to signal /image
processing.

T BNK You SHou ee MoRE
EXPLIUT HEZE N STEP Two,W

265 /335



Part 5: Introduction to Information Theory
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Intro Channels Hamming Capacity Information Huffman Entropy KLD Mi

Information theory framework

Probability
Communication theory
theory

Limits of Limits theorems
communication | Large variations
theory
Statistics
Mathematics Fisher information
Inequalities . Hypothesis testing
Information

theory

Portfolio theory
Kolmogorov Kelly gambling
complexity
Thermodynamics
Computer Quantum information Economics
science theory

Physics

Conclusions
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Intro

Introduction

@ ‘“Information theory is a branch of
applied mathematics and electrical
engineering involving the quantification
of information.”

o Claude E. Shannon (1948) finds
fundamental limits on signal processing
operations, such as compressing data
and reliably storing and communicating
data

Tons of applications:
@ statistical inference and machine learning

@ signal/image processing: natural language processing, compression,
estimation, ...

communication: routing, transmission, networks, ...
bio-things: neurobiology, bioinformatics, neuroscience, bioengineering, ...
eco-things: ecology, remote sensing, enviromental monitoring, ...

physics: thermal, quantum computing, ...

security: plagiarism detection, cryptography, ...
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Intro

Resources on information theory

Search Voluma index Google Trénds

! L ! (R
2005 2008 2007 2008 2009 leota

No data available

® Thomas M. Cover & Joy A. Thomas, Elements of Information Theory,
Wiley & Sons, 1991

David J.C. MacKay, Information theory, inference and learning algorithms,
Cambridge University Press, 2004. Free at
http://www.inference.phy.cam.ac.uk/mackay

IEEE Transactions on Information Theory
http://videolectures.net/
http://en.wikipedia.org/wiki/Information_theory
http://www.inference.phy.cam.ac.uk/mackay/

http://www.youtube.com/watch?v=z2Whj nL-x8

269 /335



Intro

5 equations that changed Science

O 2nd Newton law: F = ma

_dB
dt

© Einstein’s mass-energy equivalence: E = mc

@ Maxwell-Faraday equation: AE =
2

@ Nyquist-Shannon theorem: Fgmpling > 2 X B
© Shannon-Hartley equation: C = Blog,(1 + SNR)

TWO OUT OF 5!
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Communication Channels
INFORMATION
S

OURCE TRANSMITTER RECEIVER DESTINATION
— ] e
SIGNAL RECEIVED
SIGNAL
MESSAGE MESSAGE
NOISE
SOURCE

Examples:
@ Voice — AIR — ear
spacecraft — VACUUM — Earth
modeml — WIRE — modem?2
file — HDD — file
transmitted signal — CHANNEL — received signal (=transm.+noise)

Main concern: ‘reliable communication over unreliable channel’



Solutions to the communication problem

@ Physical solution

o thicker films .
o higher magnetic field B
e more bandwidth

e more $ !

@ System solution

Source

| I

Encoder Decoder

t r
Noisy

channel

e The encoder adds redundancy
e The channel adds noise
e The decoder decodes s and n, hence it does inference

N
N
N
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Problem 1. The binary symmetric channel (BSC)

0#0 , Ply=0|z=0) = 1—f; P(y=0lz=1) = f;
@ K07 Py=tla=0) = 5; | Ply=1]r=1) = 1-7

@ Probability graph of the flip
@ f is the probability of a wrong flip
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Channels

Problem 1: The binary symmetric channel ...

REDUNDAN (-1

0—0

X

1——1

1-5

Q: A file of N = 10000 bits is stored on
this disc drive (with f = 0.1), then read.

Roughly how many bits are flipped?

[ Jsl ]
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The binomial distribution

@ “The binomial (Bernoulli) distribution
is the discrete probability distribution
of the number of successes/failures in

03 a sequence of n independent yes/no

0.25 experiments each with probability p”
0.2 4
0.15 @ We have n = 10000, f = p = 0.1 then
0.1 4
0.05 4

0]

. @ Mean: X = np = 1000

, @ Variance:
02 =np(l —p) =900 — o =30

e Solution: \ % + ox = 1000 + 30 \

o Sometimes: | X - 20, = 1000 £ 60 |
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Channels

Problem 2: The binary symmetric channel ...

RECUNDAN 1-£

_—

QZ I'o make a successful business selling 1 Gigabyte disc drives,
how small does the flip probability f need to be?
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The binomial distribution

@ Successful means no error for the living time of the device
@ We have n = 1 Gb = 10° - 8 bits, then ...

e Trivial solution: if we want the HDD live forever without error, then ...

X+ox=0x0
o Realistic solution:

1

f= ~ 1071
1Gbyte/day x 365days/year x Syears x 106customers

@ The standard in HDD and storage devices is f = 1/10'® errors !

@ Let's look for just f = 1/10" errors !
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Repetition code ‘R;’
@ A trick for building a successful encoder is repetition!

@ Example of the repetition code ‘R3":

Source sequence s  Transmitted sequence t

0 000
1 111

@ We transmit the source message s= 0 0 1 0 1 1 O over a binary
symmetric channel (BSC) with noise level f = 0.1 using Rs.
@ A possible noise vector n and received vector r =t + n:

s 0 0 1 0 1 1 0

P - e B -t T et
t 000 000 111 000 111 111 00O

n 000 001 000 000 101 000 O0OO
r 000 001 111 000 010 111 00O

o How to decode this received vector to obtain a good estimate of s?



Ideas for a decoder

@ Possibility 1: read the middle and discard the rest

Received r  Estimated §

111 1
110 1
101 0

0

000

@ Possibility 2: majority vote: ‘find the hypothesis about s that involves
least flips'

Received r  Estimated §

111 1
110 1
101 1

0

000

o Possibility 3: learn a neural network or SVM — overfitting!
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Possibility 4: use Bayes’ theorem with a reasonable prior
p(s=0)=p(s=1)=05
p(s =0|r=011) =
p(r =011|s = 0)p(s = 0)
p(r =011|s = 0)p(s = 0) + p(r = 011|s = 1)p(s = 1)
1—f)f-f-1
(1 )f 73 ——...=f=01

(1-fO)f-f-3+Ff-(1-F)-1-1) 3

where the likelihood is (bits not to be flipped)x (flip) x (flip)




Possibility 2 revisited: the majority vote encoder

s 0 0 1 0 1 1 0
-t B -t Bt T

t 000 000 111 000 111 111 000

n 000 001 000 000 101 000 O0OO

r 000 001 111 000 010 111 00O
~ M~ S =

s 0 0 1 0 0 1 0

corrected errors *
undetected errors *

@ Quite robust to noise: repetition is great!

@ Not all errors are corrected: depends on block sizes too...

281 /335



lllustration of the decoding with R; encoder ...
S ENCODER t CHANNEL r DECODER
f=10%

s

8

REDUNDAN

@ The error probability is dominated by the probability that two bits in a
block of three are flipped, which scales as >

@ In the case of the BSC with f = 0.1, the R3 code has a probability of error
after decoding of p ~ 0.03 per bit
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Majority vote decoder in R,

@ Probability of p(s # 8) in R, for f < 1:

pr, = 2+ f(1—f)+ (1 — F)f = 2f
o Probability of p(s # 8) in Rs for f < 1:

Pre = f2 +f(1—F)f + (1 — )+ (1 — £)ff ~3f°

3flips

2flips
o MATLAB:
>> £=0.1
>> p2 = f*xf + 2*%(1-f)*f = 0.1900
>> p3 = fxfxf + 3*xfxfx(1-f) = 0.0280

@ Why not going further and increase the repetition to R,?
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Repetition code Ry
@ Probability of p(s # 8) in Ry for f < 1 is dominated by the probability
that [N/2] bits are flipped:
po ~ 2V(F(1 — )2 = (a£(1 — F))"?

o Setting this equal to the required value of p, = 107'*, we find that:

log,(10~"%)

N2 afa—rf)) %

@ Better estimate without approx.: N = 61 to get p, = 107 °
@ So ... a trick would be to hide in a big box 60 hard disk drives! :)

284 /335



0.1 4

0.08 o

0.06

0.04 4

0.02 4

more useful codes

Rl

0.4

T T
0.6 0.8
Rate

Po

0.1 A
0.01 RN *ha RL
<}
i
)
ju)
i
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5
il
ju)
i}
g
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@ We have a nice encoder: repetition gives rise to zero error probability!
@ Problem: we use the channel n times or send three times more information

o Distortion = error

@ Rate = efficiency:

fbits to be sent

@ This is the rate-distortion problem

ftimes we use the channel
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Redundancy without repetition?
@ Parity checks: ‘add a bit for checking’ (mod;). Here the rate is R = 3/4

Source r (k =3) transmitted t (N = 4)

111 1111
110 1100

101 1010

@ Hamming (7,4)-codes:

o 'Add three parity checks’, i.e map R* — R7:
e The number of ‘1" must even in each circle!
o Linearity property: 1000 4+ 0111 = 1111, ie. s+ s, =t1 + b

Source r (k =3)  transmitted t (N = 4)

e an
W (&

0111 0111010
@ ) 1111 1111111

286 /335



Let’s encode/decode with (7,4)-Hamming code

@ s=1000101 — r=1100101— §=1000101
@ Steps:

o Take the diagram and ask about fulfilment
o All circles must be happy if no flip occurs

o This is called the ‘syndrome’

o The decoder locates the common bit between circles and unflips it!

(a) (b)

@ Property 1: for one bit flip, H(7,4) can detect the error and correct it
@ Property 2: for more than 2 errors, p(s; # §;) ~ 9f2
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More on Hamming code ...

@ The Hamming code is a linear code, it can be written compactly in matrix
notation:

t=sG

where G is the generator matrix of the code,

G =

O O O
o O = O
O = OO
= O O O
O R K~ K
= = PO
= = O

@ The encoding operation uses mod; arithmetic:

1+1=0

0+1=1
@ The rows are like the four basis vectors lying in a 7D binary space
@ The 16 codewords are obtained by linear combinations of these vectors

@ Linear algebra very useful to solve the so-called maximum-likelihood
decoder
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Reprinted with corrections froffihe Bell System Technical Journal,
\ol. 27, pp. 379-423, 623-656, July, October, 1948.

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM and PPM which exchange

bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A
basis for such a theory is contained in the important papers of Nycarist Hartle§ on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to th
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or ap-

proximately a message selected at another point. Frequently the messagesaaiegy that is they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actua
message is onselected from a seif possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this is unknown at the time of design.



Shannon’s noisy channel coding theorem
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Shannon’s noisy channel coding theorem
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For the binary symmetric channel (BSC) and f = 0.1:
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Shannon’s noisy channel coding theorem
Problem: Suppose we want to sell 1Gbyte hdd with a p, = 10~1°
@ Gustau: We showed that 60 noisy disk drives would meet the specification to
achieve 1 high-quality disk drive
—forget about the money, the size and trying to convince the client!

@ Shannon:
‘What performance are you trying to achieve? 107157 You don't need
sixty disk drives: you can get that performance with just two disk
drives (since 1/2 is less than 0.53). The capacity for f = 0.1 is 0.53,
so the number of disk drives needed at capacity is 1/0.53 = 1.88. And
if you want p, = 1078, or 10~2%, or 10~2* or anything, you can get
there with two disc drives too!’

@ Gustau:
‘Are you kidding me? your theorem is only useful for sequences of
block codes with ever increasing blocklengths, and to achieve that rate
you should use blocklengths bigger than 1 Gbyte!’

@ Shannon:

‘l agree: you cannot do it with such tiny disk drives but... if you had
two noisy terabyte drives, you could make a single high-quality
terabyte from them’

@ Gustau:

‘Ummm... you're right!’
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Information

How to compress a redundant file?

000000000000000001001001000000000000000000100001000101000000
000101000000000000000000000100000000010000000000000100000110
000010000000000000001000000000001000010000010000000000000000
000010000001000000000001000000000000000000000000010000000000
000000010001000000100000010010000000000001000000001000000000
000100100001010100000011000010000000000001000000000000000000
000000000000000000000000010100000010000000000000100010100001
100000000010000000000000000000000000000000000000000000000000
010000000000000100000000000000000100001000000000110110000000
101000101000000000000000000000000000100010100000100001000000

e.g., N = 1000 tosses of a bent coin with p; = 0.1

Key questions:

@ Compressibility of a dataset!?

@ How to measure the information content?

@ How much compression could be expected?

@ Why fixed rates for transmission/storage? Speech, images, time series, ...
Entropy codes ...

@ are simple to implement

@ put more effort in low probability events ...

o are used jointly with scalar quantizers (to conserve the average bit rate)

@ based on INFORMATION
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Information

What's information?

@ Information is the reduction of uncertainty
@ Some (informal) axioms:

@ if something is certain its uncertainty = 0
@ uncertainty should be maximum if all choices are equally probable
© uncertainty (information) should add for independent sources
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Information

How to measure information content?

@ Let X be a random variable whose outcome x takes values in {a1,...,ar}
with probabilities {p1,...,pL}

@ Shannon's information content for the outcome x = a;:

H(x = a;) = log, (ﬁ) ) oe: (%)

is a sensible measure of information content

@ The entropy

H(X Z pi log, ( i> Z Pi |0g2 Pl

is a sensible measure of expected (average) information content

@ Entropy is measured in:
e bits (binary digits) if base 2 log is used
e nats (natural digits): natural (base e) log.

@ Good things to do, but not the only one!
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Information

Measuring information content ...
@ How many bits needed to compress your data?

@ Shannon's information content:

1
H(x = a;) = log, | ————
=2 =1om: (555
@ Example: Observe a sequence *...00000100" with p; = 0.1 (or po = 0.9):
H(x = 1) = log, ( - | = 3.3bits
—YT%{o1) T
H(x =0) =lo 1y 0.15bits
— 7% 0g) T

@ Intuition:

e The ‘1’ has less information, you don't get too much surprised with a 0!
e You don't learn too much with a 0!
e The ‘1’ is more improbable, more surprising, more informative!
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Information

Axiom 1-2: Information and uncertainty

@ Consider a binary random variable that can take two values with
probabilities p and 1 — p.
1

14 h(p) = log, - P h(p) Ha(p)
*1 0.001 10.0 0.011
0.01 6.6 0.081
0.1 3.3 047
0.2 2.3 0.72

0.5 1.0 1.0

e MATLAB:
>> p=hist(x,b);
>> h=log2(1./p);
>> H=p.*log2(1./p) + (1-p).*log2(1./(1-p));
>> figure(1),plot(p,h)
>> figure(2),plot(p,H)

@ Improbable events are more informative, but less frequent on average
@ The entropy satisfies the two first axioms

e observation of a certain event carries no information
e maximum information is carried by uniformly probable events
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Information

Axiom 3: Information under independence
@ What about more than one variable?

@ Example: we learn two variables {x,y} that are independent, then

P(x,y) = P(x)P(y)

@ Shannon's information content is:

H(x,y) = log, (ﬁ) AW (%) + log, (%) — H(x) + H(y)

@ Additive property: If variables are independent, the information content is
the sum of their informations!
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Huffman algorithm

@ Huffman (1952), “A Method

for the Construction of
Minimum-Redundancy Codes”

A Y [T L e(a)
Huffman coding is an entropy T o000
y ) Soonn 6s o ooiooo
encoding algorithm used for oI N2 g0
lossless data compression Y o R
g 0.0133 132 Ei 001001
Huffman enconding gives the Dom i1 4 oo
% . i 0.0006 10.7 ll_Y 1101000000
optimal compression for any s sl i
distribution T Gmee 41 4 oot
. i > ool 57 o oo
Huffman coding uses a specific o Ooos 103 9 tioioooot
. T 0.0308 43 5 11011
method for choosing the B R o
representation for each symbol v Owm 72 8 stotoann
w 00119 6.4 7 1101001
The most common characters Yoo 5o o oo
z  0.0007 104 10 1101000001
- 01928 24 2 01

use shorter strings of bits

It is optimal if the
representation rates are
preserved




Example 1: Huffman algorithm
Let Ax={a, b, ¢ d e
and Px ={0.25,0.25,0.2,0.15,0.15 }.

X step 1 step 2 step 3 step 4
0 0

a 0.25 0.25 0.25 0.55 1.0

0
b 0.25 0.25 0.45 045 1
& 0.2 0.2 1

Y 1

d 0.15 0.3 0.3
e 015 1

The codewords are obtained by reverse concatenation, C = {00,10,11,010,011}.

aj  pj H(pi) i c(ai)
a 0.25 2.0 2 00

b 0.25 2.0 2 10

c 0.2 2.3 2 11

d 0.15 2.7 3 010
e 0.15 2.7 3 011
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Example 2: Huffman algorithm in MATLAB
>> help huffmandict
>> symbols = [1:5]
>> prob = [.3 .3 .2 .1 .1]
>> dict = huffmandict(symbols,p); % Create the dictionary.
>> hcode = huffmanenco(sig,dict); % Encode the data.
>> dhsig = huffmandeco(hcode,dict); % Decode the code.
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Symbol codes, recap.
@ Simple way to compress things
@ Everything in the alphabet will be given a simple word
@ Essentially, Huffman gives short codes to most probable things
@ Huffman makes optimal symbol codes! (not trivial to show)

Notes

@ The receiver has to know how to decode: either having a table or to know
the encoding rule (e.g. a header bit)

@ How to decode? go from top of the tree to the leaves
@ Vast literature on error correcting codes (flips corrections)

@ There are some cases where compression and encoding are merged (e.g.
Mackay-Nils code)
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Problems with Huffman codes
@ Huffman coding is optimal for a symbol-by-symbol coding (i.e. a stream of
unrelated symbols)

@ Symbol coding fails for extreme distributions!
@ What if the PDF changes?

e not identically distributed, (e.g. ‘a’ is far much more common than ‘z’)
e not independent (e.g., ‘cat’ is more common than ‘cta’)
e over time, context-dependent, adaptive (learning), ...

@ Arithmetic coding and Lempel-Ziv-Welch (LZW) coding often have better
compression capability

Solutions for Huffman codes
@ Grouping symbols can help in changing environments
@ Block-wise Huffman coding solves changes in repetition rates

@ Huffman coding is widely used because of its simplicity, high speed and
patent-free

@ Huffman coding is often used as a ‘back-end’ to PKZIP, JPEG and MP3
compression



Run-length encoding (RLE)
@ Simple way to encode things

@ Runs (repetitive sequences) of data are stored as a single data value and
count, rather than as the original run:
WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWW
WWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW

is encoded as

12W1B12W3B24W1B14W

The run-length code represents the original 67 characters in only 18!

It is also useful for binary streams

It is well suited to palette-based iconic images

Common formats for RLE: Truevision TGA, PackBits, PCX and ILBM.

JPEG uses it with the coefficients remaining after transform and
quantization

RLE is used in faxes!

@ RLE also applied to low-quality audio signals, just after a predictive filter
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“Entropy is a measure of how organized or disorganized a system is: Gain of
entropy eventually is nothing more nor less than loss of information”
Entropy in thermodynamics

@ entropy is measured in [J/K] Joules/Kelvin

@ machines are basically energy conversion devices

@ Greek /evTpomicy/ means ‘conversion’, ‘change’

@ systems tend to progress to higher entropy, change, conversion
Entropy in statistical mechanics

@ entropy is a measure of the number of ways to arrange a system

@ measure of 'disorder’ (the higher the entropy, the higher the disorder)

@ amount of order, disorder, and/or chaos in a system
Entropy in other fields of science

o Ecological entropy is a measure of biodiversity

@ Social entropy is a measure of the natural decay within a social system

@ Neurological entropy is the likelihood of patient’'s consciousness
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Remember: How to measure information content?

@ Let X be a random variable whose outcome x takes values in {a1,...,ar}
with probabilities {p1,...,pL}

@ Shannon's information content for the outcome x = a;:

H(x = a;) = log, (ﬁ) ) oe: (%)

is a sensible measure of information content

@ The entropy

H(X Z pi log, ( i> Z Pi |0g2 Pl

is a sensible measure of expected (average) information content

@ Entropy is measured in:
e bits (binary digits) if base 2 log is used
e nats (natural digits): natural (base e) log.

@ Good things to do, but not the only one!

307 /335



Shannon’s information, intuitively
@ Shannon’s information or entropy of a vector a with PDF P(a)
1
H(a) = /P(a) log, (%)da =- / P(a)log,(P(a))da
o Intuition: ‘entropy is related to the PDF volume’

@ Intuition 2: ‘more volume, more uncertainty, more surprise’

A|
4 iucerkio, ~ fwcert, — (ucert,

h(ay>> h(x) ~ h(~)<<

@ Interesting properties:
@ Entropy of a unidimensional Gaussian: H(a) = %In(27re02)
@ Entropy of a Gaussian depends on the volume |X|:

1
H =
(@) log(2)
© The N distrib has the highest H among all distrib. with ¥

In((2me)9/2|Z|1/?)

® entropies.m, hgu.m
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Change in entropy under transformations
e Given F:a € R’ — b e RY then

H(a) — H(b) = H(a) + Ellog, |[VF(a)|]
@ For the demo, first remember:

e The differential in volume in the transformed domain depends on the
Jacobian of the transform, db = |VF(a)|da
o Remember PDFs under transforms: P(b) = P(a)|VF(a)|~!

H(b) = — / P(b) log,(P(b))db =
~ [ P@IVF@)| " logu(P@)IVF @) ) VF(@)|da =

- / P(a) log,(P(a))da — / P(a) log,(IV F(a)| *)da =
H@  +  Efog|VF@)]

o Orthogonal transforms (rotations) conserve entropy!

® htransforms.m
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Entropy (negatively biased) estimation in MATLAB
function H = entropy(p)

p = p/sum(p); % Empirical estimate of the distribution
idx = p~=0;
H = -sum(p(idx).*log2(p(idx)));
Entropy estimation with MM correction in MATLAB
% MLE estimator with Miller-Maddow correction

function H = entropy mm(p)

c = 0.5 *x (sum(p>0)-1)/sum(p); % Miller-Maddow correction
p = p/sum(p); % Empirical estimate of the distribution
idx = p~=0;

H = -sum(p(idx).*log2(p(idx))) + c;

@ hbias.m
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Entropy estimation: toy example
If X = a (with p, =1/2), X = b (with p, =1/4), X = ¢ (with p, = 1/8), and
X = d (with p, =1/8). The entropy of X is

1 1 1 1 1 1 1 1 7.
H(X) = —E |0g2 <§> — Z |0g2 (Z) — g |0g2 (g) - g |0g2 (g) = Z bits

Note: An efficient question would be ‘is X = a?’ because it splits the
probability in 0.5-0.5, a second best would be ‘is X = b?' and so on...

The resulting expected number of binary questions required to know X is 1.75.
It can be demonstrated that the expected number of questions lies between

H(X) < L < H(X) +1
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Entropy estimation in MATLAB: clean vs noisy signals.
>> help entropy
>> s = sin(0:0.01:10);
>> n = 0.75%randn(size(s));
> r =s + n;
>> plot(0:0.1:10,s,’k?,0:0.1:10,n,’g?,0:0.1:10,r,°r’)
>> corrcoef(s,n) = -0.0396
>> entropy(s) = 1.53, entropy(n) = 1.71, entropy(r) = 2.05
>> entropy(s)+entropy(n) = 3.2457
>> jointentropy(s,n) = 3.2411
>> jointentropy(s,r) = 3.2678
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Entropy estimation in MATLAB: feature extraction.
>> help entropy
>> help entropyfilt
>> I = imread(’circuit.tif’);
>> E = entropy(I)
>> J = entropyfilt(I);
>> figure, imagesc(I),colormap gray;axis off square
>> flgure, imagesc(J),colormap gray; axis off square
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Entropy estimation for time series processing
@ http://www.tech.plym.ac.uk/spmc/links/sp/sp-entropy.html
@ http://www.nbb.cornell.edu/neurobio/land/PROJECTS/Complexity/index.html
@ http://www.mpipks-dresden.mpg.de/~tisean/
@ http://www.mathworks.com/matlabcentral/fileexchange/3102
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Joint entropy H(X, Y) The joint entropy H(X, Y) of a pair of discrete
random variables (X, Y') with a joint distribution p(x, y) is:

_ Z Z p(x,y)logy(p(x,y))

If X and Y are independent: p(x,y) = p(x)p(y) and the Shannon
information content is:

) = ot (3 ) =100 (g ) + s () = e+ 10

Conditional entropy The conditional entropy is the average uncertainty
remaining about x if we have observed y:

H(X]Y) = ZZP x,y)logy(p(xly)) = H(X, Y) — H(Y)

Relation between _jOII‘It and conditional entropies The entropy of a pair of
random variables is the entropy of one plus the conditional entropy of the other.

H(X,Y) = H(X)+ H(Y|X)
Corollaries:

@ If X and Y are independent H(X|Y) = H(X)
o H(Y|X) # H(X|Y) but H(X) — H(X|Y) = H(Y) — H(Y|X)
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KLD
ON INFORMATION AND SUFFICIENCY
By S. KuLLBaCk anp R. A. LEIBLER
The George Washington University and'Washingtén, D.C.

1. Introduction. This note generalizes to the abstract case Shannon’s definition
of information [15], [16]. Wiener’s information (p. 75 of [18]) is essentlally the
same as Shannon’s although their motivation was different (cf. footnote 1, p. 95
of [16]) and Shannon apparently has investigated the concept more completely.
R. A. Fisher’s definition of information (intrinsic accuracy) is well known (p. 709
of [6]). However, his concept is quite different from that of Shannon and Wiener,
and hence ours, although the two are not unrelated as is shown in paragraph 2.

R. A. Fisher, in his original introduction of the criterion of sufficiency, re-
quired “that the statistic chosen should summarize the whole of the relevant
information supplied by the sample,” (p. 316 of [5]). Halmos and Savage in a
recent paper, one of the main results of which is a generalization of the well
known Fisher-Neyman theorem on sufficient statistics to the abstract case,
conclude, “We think that confusion has from time to time been thrown on the
subject by ..., and (c¢) the assumption that a sufficient statistic contains all
the information in only the technical sense of ‘information’ as measured by
variance,” (p. 241 of [8]). It is shown in this note that the information in a
sample as defined herein, that is, in the Shannon-Wiener sense cannot be in-
creased: by any statistical operations and is invariant (not decreased) if and
only if sufficient statistics are employed. For a similar property of Fisher’s
information see p. 717 of [6], Doob [19].

We are also concerned with the statistical problem of discrimination ([3], [17]),
by considering a measure of the “distance” or “divergence’” between statistical
populations ([1], {2], (13]) in terms of our measure of information. For the sta-
tlstlclan two populations differ more or less according as to how difficult it is to

Tiondoermrmer 4l mon et b Lovrd brmed 14 T v i )t vt i vttt
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KLD

Kullback-Leibler divergence (KLD)

@ The KLD measures differences (a kind of ‘distance’) between PDFs
@ Definition: Given two PDFs P(a) and Q(a), the KLD between them is

Dri(P(a)]Q(a)) :/p(a)|og (ggg)da

KLD properties
@ Dk >0
o DKL =0 iff P(a) = Q(a)
Watch out!
@ Dy is not a distance!
@ A distance d(:||-) must fulfil three conditions:
e Positiveness: d(x|ly) >0 d(x|ly) =0iff x=y )

o Triangle inequality: d(x||z) > d(x||y) + d(y||z) :)
o Symmetry: d(xlly) = d(yllx) (
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Kullback-Leibler divergence (KLD), ctd’

@ The KLD measures diferences (a kind of ‘distance’) between PDFs
@ Definition: Given two PDFs P(a) and Q(a), the KLD between them is

Du(P@)Q() = [ P(a)log ( gw Ja

Property 1: Pythagoras in KLD
Given P, @, there exists R such that:

Dri(P(a)[|Q(a)) = Dri(P(a)l[R(a)) + Dii(R(a)(|Q(a))

Property 2: KLD is invariant under invertible affine transforms
Given F: b= Ga+n, and VF =G

Dy (P(b)[|Q(b)) = / P(b)log (%)db -

| PaITSI ok (i) Ta = ) IV6Gida = Du(Pa)] Q(a)



KLD

Example: Check assymetry of KLD Let X = {0,1} and consider two
distributions p and g on X. Let p(0) =1—r, p(1)=r, g(0) =1 —s,
g(1) =s. Then

1—r r
Drc(pllq) = (1 —r)log —_ + rlog _
and
Dru(gllp) = (1 — s)log = + slog >
we(allp) = 81—, 8

If s = r, then Dki(pl|q) = Dki(qllp) = 0.

If r=1/2 and s = 1/4, then Dy (p|lg) = 0.21 bits and Dk, (q||p) = 0.18 bits.
In general Dx.(pllq) # Dkc(qllp) !

Example: Check Pythagoras and KLD under rotations XKLDiv.m, JSDiv.m,
kldproperties.m
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KLD

Cross-entropy The cross entropy for two distributions p and q over the same
probability space:

H(p,q) = H(p) + Dxi(plla) — Dke(plla) = H(p,a) — H(p)

Intuition: divergence is the difference of volume between PDFs
Demo:

H(p,q) Zplogz(q Zplog2(*

| (o 106a(o) + p1ogs( 2] = H(p) + Do)

Consequence: For discrete p and q this means:

H(p.q) = — Zplogz(q) # H(a,p) = — quogz(p)
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Statistical independence

@ Definition: Components in vector a are statistically independent if the
joint PDF can be ‘factorized’:

HPa 31) = Pay(a1)Pay () -+ Ps,(as)

@ Intuition 1: look at the conditional PDF: “Statistical independence means
P(aj|ajzi) = P(a;i) since observing (knowing) a; does not convey any
information on a;”:

Pl = PL2e2) Pla)pta)

@ Intuition 2: look at the KLD and assume you can factorize
Pa(@) = [1Z., Ps,(a), then

= (factorization) = = P(ai)

Dk (P(a)|| H P (ai)) = /P(a) log (%)da = /P(a) log(1) =0
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Mutual information or ‘dependence’
The mutual information of two discrete random variables x and y can be
defined as:

p(x, y)
ZZp(x,y % <p1(><)pz(y))

where p(x, y) is the joint probability distribution function of x and y, and p1(x)
and p>(y) are the marginal probability distribution functions of x and y
respectively.
Intuitions

@ Mutual information measures the information that x and y share

@ | measures how much knowing one of these variables reduces our
uncertainty about the other.

o If x and y are independent, then knowing x does not give any information
about y and vice versa, so | =0

o If x =y, all information conveyed by x is shared by y: knowing x
determines the value of y and vice versa, so [ is the uncertainty contained
in x or y alone, i.e. the entropy of x or y
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Mutual information or ‘dependence’ The mutual information of two discrete
random variables x and y can be defined as:

ZZP(X’Y Iog< p(x,y) )

p(x)p2(y)

where p(x, y) is the joint probab|l|ty distribution function of x and y, and p1(x)
and p>(y) are the marginal probability distribution functions of x and y
respectively.

| measures independence

I(x;y) = 0 iff x and y are independent random variables.

Demo: if x and y are independent, then p(x,y) = p(x)p(y), and therefore:

log (M> = log(1) =0

pP1(x)p2(y)
| properties /(x;y) > 0 and symmetric /(x;y) = /(y;x)
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The big picture

H(X|Y) I(X;Y) || HY|X)

(from David MacKay's book)

H(X,Y) is the joint entropy of X,Y
H(X|Y) is the conditional entropy of X given Y’

I(X;Y) is the mutual information between X and Y
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The big picture Il: basic relations

H(X,Y)
P ST T
a— e Y \\
’ \
4 \
’ A
] 1(X;Y) 1
1
y HXIY) HYIX)

\ 7
\ 7
he 4
b - - —‘\ o
H(X) S<oo-F7 HM

I(X; Y) = H(X) — H(X|Y)

I(X; Y) = H(Y) — H(Y|X)

H(X,Y) = H(X) + H(Y) = I(X;Y)
I(X; X) = H(X) — H(X|X) = H(X)
I(Y: X) = I(X;Y)

I(X;Y) >0, and I(X;Y)=0iff X LY

@090@0
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Multi-information
The mutual information property

H(X,Y) = H(X)+ H(Y) = I(X;Y)

leads to

I(X; Y) = H(X) + H(Y) — H(X,Y)

and can be generalized to multi-dimensional spaces:

Z H(ai) — H(a)
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Intuition on mutual information

H» Ih+v\"c&‘vlb\'. T = Z L\K 2 N E Jileren cion ewtar o\ velovnea
<

Jel ?rodvu\'a <k mvraiuM&r
gt Fonte a8 velowvwen <l (o caul"w-)-c\

T~ T>

T=0

Coanto Wayec 65 o relacion eutee las vaiables Wagor €5 (o

deCorencice entee (a5 volumenes (ew:(-rurl"asﬁ

s Rz e
T<< T< T~ T>
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Property 1: Information cannot hurt!
The mutual information is positive by definition:

I(X;Y)=H(Y) = H(YIX)>0 —  H(Y)> H(Y|X)

Property 2: | with Gaussian random variables If you assume x and y are
Gaussian random variables [Cardoso03]:

1 IC| ) ( Co Cy )
I(x,y)=—=log| ——~— ], where C=
toy)=-3 g(|cxx|\cyy| c, C,

See it this way: given (X, Y) ~ N(0, C) correlated Gaussian variables with C
_ 21 p
€S ( pot )
H(X) = H(Y) = 0.5log(2mec?)
H(X,Y) = 0.5log((2me)?|C|) = 0.5 log((2me)’c* (1 — p*))

I(X;Y) = H(X)+ H(Y) = H(X,Y) = —0.5log(1 — p°)
® gaussianmutual.m
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o Given distribution Pr, test Ho : Pr = Pr,Pr,
o Continuous valued, multivariate: X :=R9 and V := RY

Dependent PXY

X o

Independent PXY:PX PY

5

X o




o Given distribution Pr, test Ho : Pr = Pr,Pr,
o Finite sample observed (X1, Y1),...,(Xn, Ya)

Sample from PXY

X o
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o Given distribution Pr, test Ho : Pr = Pr,Pr,

o Partition space X into m, bins, space ) into m), bins

Discretized empirical P><Y Discretized empirical PPy
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o Given distribution Pr, test Ho : Pr = Pr,Pr,

. . , . .
o Refine partition m,, my, for increasing n

Discretized empirical ny Discretized empirical PX PY




Histogram-based mutual estimation and the curse of dimensionality
@ In high dimensional problems, the space is typically empty ... :(
o The curse of dimensionality [Fukunaga78]
@ We need much more samples, n, to fill in the space as d increases

@ Assuming n = b? for b bins, s = b* - d:

d s Memory [Bytes]
1 11 968

2 14641 117.128

3 1771561 14.172.488

4 214358881 1.714.871.048
5 25.937.000.000 HELP MEMORY
6 3.138.400.000.000 HELP MEMORY
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Source code for estimating mutual information

@ MATLAB does not have a function to do it! :(
@ Several toolboxes available:

http://www.mathworks.com/matlabcentral /fileexchange/14888-mutual-
information-computation

http://www.cs.rug.nl/~rudy/matlab/
http://www.bioss.ac.uk/~dirk/software/MutInf/
http://www.physik3.gwdg.de/tstool /
http://www.klab.caltech.edu/~kraskov/MILCA/
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Reviewed:

Information theory, main quantities,
entropy, divergence, mutual information,
channels, communication errors,
capacity, applications in signal and image
processing, etc.

T BNK You SHou ee MoRE
EXPLIUT HEZE N STEP Two,W
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