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@ Introduction to hyperspectral image processing
o Introduction to hyperspectral image processing
o The standard processing chain
o Current challenges

@ Feature extraction from hyperspectral images
o Physically-based feature extraction
o Spatial feature extraction
e Advances in spatial-spectral feature extraction

© Supervised hyperspectral image classification

o Introduction to supervised image classification

o Prior knowledge and invariances

o Contextual information

e Multisource image fusion: SAR, LiDAR and ancillary data

@ Hyperspectral unmixing and abundance estimation
o Definitions: scheme and the mixing model
o Endmember determination, extraction and abundance estimation
o Advances: sparse, contextual and nonlinear models

© Retrieval of biophysical parameters

o Definitions, schemes and approaches
o Physical, statistical and hybrid approaches

O Bibliography and source code
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Part 1: Introduction to hyperspectral image processing
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Lillesand08 “Monitor and model the processes on the Earth surface and
their interaction with the atmosphere”
Liang04 “Obtain quantitative measurements and estimations of
geo-bio-physical variables”
Manolakis02 “Identify materials on the land cover analyzing the acquired
spectral signal by satellite/airborne sensors”
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@ Materials in a scene reflect, absorb, and emit electromagnetic radiation in
a different way depending of their molecular composition and shape.

@ Remote sensing exploits this physical fact and deals with the acquisition of
information about a scene at a short, medium or long distance.

@ Image spectroscopy allows to identify materials in the scene with
unprecedented accuracy
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Representation Summary

Intro Processing chain Challenges
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o Hyperspectral signals allow finer material characterization
@ Absorption, depth, re-emissions and modulated particular spectral features

@ Accurate identification of chemical components and bio-chemical processes
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o Different materials produce different electromagnetic radiation spectra

@ The spectrum shows absorptions and emissions at different wavelengths
> e.g. reflectance for soil, dry vegetation, and green vegetation

@ The high spectral resolution preserves important aspects of the spectrum
(e.g., shape of narrow absorption bands), and makes differentiation of
different materials on the ground possible

@ The spectral information contained in a hyperspectral image pixel can
therefore indicate the various materials present in a scene
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Left: Performance comparison of the main air- and space-borne multi- and
hyperspectral systems in terms of spectral and spatial resolution.
Right: Evolution of the spatial-spectral resolution through the years.
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Barnsley04,Cutter04 PROBA/CHRIS
Ungar03 EO1/Hyperion

Kaufmann08,Stuffler07 EnMAP (Environmental Mapping and Analysis Program,
GFZ/DLR, Germany)

Stoll03,Moreno06 FLEX (ESA proposal)
Green08 HyspIRIl (NASA GSFC proposal)
Trishchenko07 MEOS
ZASat ZASat (South African proposal, University of Stellenbosch)
HIS HIS (Chinese Space Agency)

HERO HERO - Hyperspectral Environment and Resource Observer,
Canadian Space Agency
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Some fields of application...

Geology Forestry
@ Mineral @ Infected trees
detection @ Status |
o Cover monitoring

homogeneity @ Forest clearing

. . . Atmosphere
Precision agriculture
@ Air quality,
@ Crop stress pollutants
location .
@ Crop productivity @ Global/local
change

Summary

Representation

Sea/ice/coastal
o Oil spills
monitoring
o Water quality

Land management

@ Crop monitor-
ing/phenology

@ Land use/cover
change

Public safety

o Logistics &
operations

Defense
@ Target detection
@ Mine detection

@ Fire risk, floods

Regulation & Policy
making
o Urban growth

@ Settlements,
population
movements




Intro Processing chain Challenges Representation

A standard image processing chain:

TRANSMISSION

CODING
FUSION FEATURE DENOISING | §
EXTRACTION g

CLASSIFICATION §

‘ UNMIXING ‘ ‘ REGRESSION

@ Many steps and by-products from signal/image acquisition to the product

@ Transmission — Preprocessing — Processing

@ A wide diversity of problems and dedicated tools
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@ Select best features (channels, spatial) that
describe the problem (classification, retrieval)

@ Extract (lin/nonlin) combinations of spectral

channels that best describe the problem
Feature selection, extraction and fusion

‘ 7 Y © Combine panchromatic and optical bands to
3 improve products

@ Automatically find groups of pixels in the

Spectral unmixing image (for screening, detection)

© Estimate geo-bio-physical parameters and
variables (temperature, LA, etc) from spectra

@ Estimate the spectral components (pure
Coding Restoration Parsing/retrieval pixels, endmembers) in a ‘mixed’ pixel

@ Compress images for storage and transmission,
while keeping most of the information

O Remove noise and distortions due to
acquisition (sun glint) or transmission (vertical
stripes)

@ Assign semantic classes to objects (pixels,
patches, regions) in the scene
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Characteristics of remote sensing data:

@ High spectral resolution — moderate spatial resolutions (mixed pixels,
subpixel targets)

@ High dimensional data: multi-temporal, multi-angular and multi-source
fusion

@ Non-linear and non-Gaussian feature relations
@ Few supervised (labeled) information is available (high cost)

@ Tons of data to process in (near) real-time




Representation

Representation of images: the feature space

Reflectance (960-um band)
Reflectance (960-um band)

Reflectance (620-um band) Reflectance (620-um band)

@ Pixels (or eventually patches) become points in a geometric feature space
@ Axes have physical meaning, e.g. reflectances
@ Relations between features reveal non-linear and non-Gaussian structures

Credits: Image from Manolakis02.
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Spectral variability poses problems for discrimination:
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@ In overlapping spectral regions, discrimination is almost impossible with
just a single band

Credits: Image from Manolakis02.
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Combination of bands solves the problem:
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@ Simultaneous exploitation of the spectral bands at 0.7um and 1.25um
makes discrimination possible
@ More bands lead to linear separability theoretically
Credits: Image from Manolakis02.
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Hyperspectral imaging is an interdisciplinary, ever-growing field of Science:
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@ Hyperspectral images provide a unique source of information for many
real-life applications:
o Identify materials in the land cover
o Update land cover and land use maps
o Detect targets of interest (in both civilian and military applications)
o Estimate the abundance and mixture of materials per pixel
o Estimate biophysical parameters

@ High dimensionality of data pose many processing problems

o Curse of dimensionality: Few labeled samples in high dimensional spaces

e Many high-dim unlabeled pixels: huge computational cost and redundancy
issues

o Ancillary information typically included: how? when? useful?

Credits: Image from Schaepman09 — ‘Earth system science related imaging spectroscopy—An assessment’.
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We will live at the intersection:
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Processing

Signal

Computer |
Processing
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Machine
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Part 2: Feature extraction from hyperspectral images
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Extracting features from remote sensing images is essential to:

@ Compress information for storage/transmission

Reduce (spatial and spectral) redundancy

@ Make image processing algorithms more robust (to noise, flabels, dim.)
@ Visualize data characteristics

@ Understand the underlying physical relations

Extracted features can be either:
@ Spectral:

o Physically-based spectral features
o Statistical multivariate methods: linear and nonlinear

@ Spatial/contextual
e Standard image processing descriptors

o Advanced-computervision-deseriptors
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Motivation:
@ Measured spectral signal at the sensor depends on the illumination, the
atmosphere, and the surface
@ Physically-inspired features before applying a machine learning algorithm
o Adapt standard feature extraction methods, such as PCA, to include
knowledge about the physical problem
Two case studies:
@ Cloud screening with spectral feature extraction from MERIS and AATSR

@ Vegetation monitoring by vegetation indices
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Example 1: Cloud screening with spectral features from MERIS+AATSR

o

Reflectance / Transmittance
o
o

0.9 1
Wavelength (um)

o©

MERIS and AATSR channel locations (red boxes) superimposed to a reflectance spectra of healthy vegetation

(green thin solid line), bare soil (black dash-dotted line), and the atmospheric transmittance (blue solid line)
@ The spectral bands free from atmospheric absorptions contain information
about the surface reflectance
@ Other spectral bands are mainly affected by the atmosphere
@ Cloud features extracted from MERIS and AATSR products are needed to
discriminate clouds from surface

Credits: Figure from Gomez-Chova07.
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Sensor Cloud Feature Channels Involved Reference
MERIS Brightness & Whiteness (VIS) VIS bands [1-8] GomezChova07
MERIS Brightness & Whiteness (NIR) NIR bands [9 10 12 13 14] GomezChova07
MERIS Brightness & Whiteness VIS&NIR bands (without 11 & 15) GomezChova07
MERIS Oy absorption 754, 761, 778 nm GomezChova07
MERIS WV absorption 885, 900nm GomezChova07
MERIS Surface Pressure 761&754nm Lindstrot09
MERIS Surface Pressure 761/754nm ratio MERIS_handbook
MERIS Bright over Land (sand) 443 /754nm ratio MERIS_handbook
MERIS Bright over Land (ice) 709/865nm ratio MERIS_handbook
MERIS Cirrus over Ocean/Land 761/754nm ratio ; 865nm MERIShandbook
MERIS Bright Clouds 450nm Preusker08
MERIS Snow Test (reflectance) 865/890 NDI Preusker08
MERIS Cloud 412 reflectance 412/443nm ratio Kokhanovsky08
MERIS Cloud 412 reflectance 412/443nm difference Kokhanovsky08
MERIS Cloud mask 1 412/681nm ratio Guanter08
MERIS Cloud mask 2 412/708nm ratio Guanter08
MERIS Hue-Saturation-Value transf. 665, 560, 442nm Gonzalez07
AATSR Gross Cloud 12pm AATSR_handbook
AATSR Thin Cirrus 11/12pm difference AATSR_handbook
AATSR 11/12pum Nadir/Forward 11pm nad/fwd ; 11/12um AATSR_handbook
AATSR Visible Channel Cloud Test 870,670,550nm NDI Prata02

AATSR Snow Test 1.6pm 550nm NDI Prata02

AATSR Reflectance Gross Cloud 670nm Birks07

AATSR Reflectance Ratio 870/670nm ratio Birks07

AATSR Albedo 3.7um Birks07

AATSR Thermal Difference 11/12pm difference Birks07

AATSR Thermal Gross Cloud 11lpm Birks07

AATSR 11pm Nadir/Forward 11pm nad/fwd Muller08

AATSR 865 Nadir/Forward 865 nad /fwd Muller08

Credits: Table from Gomez-Chova07.
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Example 2: Vegetation monitoring with spectral indices

@ The estimation of land/vegetation parameters from remote sensing images
helps to determine their status and processes therein

e Standard parameters: Leaf chlorophyll content (Chl), leaf area index
(LAI), and fractional vegetation cover (FVC)

@ Simple relations to predict bio-physical parameters from Vls:

S0, el

y a+ bVvI© (1)
y =aln(b—-VI)+c¢

y

where VI is a combination (typically ratios) of reflectance values in n
specific channels

@ VIs can be either computed using digital numbers, TOA
radiance/reflectance, or surface radiance/reflectance




Physical features

The Normalized Difference Vegetation Index (NDVI) is a widely used index:

NIR - R
NOVI= WR TR
CIR CIR (stretched

) NDVI R-NIR scatter NDVI> 0.6

Figure : Landsat image acquired over a residential area containing different land
classes (asphalt, forest, buildings, grass, water, etc.). Left to right: standard
color-infrared (CIR) composite, stretched CIR and NDVI image, thresholded NDVI
image, and the scatter plot of all image pixels in Red versus NIR space.
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Method Formulation P

Gl Re72/Rss0 0.52 (0.09)
GVI (Res2-Rss3)/(Res2+Rss3) 0.66 (0.07)
Macc (R780-R710)/(R780+Res0) 0.20 (0.29)
MCARI [(R700-Re70)-0-2(R700-Rss50)]/ (R700/ Re7o) | 0.35 (0.14)
MCARI2 | 1.2[2.5(Rg00-Re70)-1.3(Rag0-Rsso)] 0.71 (0.12)
mNDVI (Rsoo-Reso)/(Reoo+Reso-2Raas) 0.77 (0.12)
mNDVl7os | (R7s0-Rros5)/(R750+Rr05-2Ra45) 0.80 (0.07)
mSR705 | (Rrso-Raas)/(Rros+Rass) 0.72 (0.07)
MTCI (Rrs4-Rr09)/(R709+Res1) 0.19 (0.26)
mTVI 1.2[1.2(Rsp0-Rs50)-2-5( Re70-Rs50)]) 0.73 (0.07)
NDVI (Rs00-Re70)/(Rsoo+Re70) 0.77 (0.08)
NDVI2 (R7s0-Ryos)/(R7s0+Rros) 0.81 (0.06)
NPCI (Reg0-Ra30)/(Reso+Ra30) 0.72 (0.08)
NPQI (Ra15-Ra3s)/(Ra15+Razs) 0.61 (0.15)
0SAVI 1.16(Rs00-Re70),/ (Reoo+ Rs70--0.16) 0.79 (0.09)
PRI (Rs31-Rs70)/(Rs31+Rs70) 0.77 (0.07)
PRI2 (Rs70-Rs39)/(Rs70+Rs39) 0.76 (0.07)
PSRI (Reg0-Rs00)/ Rrs0 0.79 (0.08)
RDVI (Rsoo — Re70)/+/(Rsoo + Re7o) 0.76 (0.08)
SIPI (Rs00-Ra45)/(Rsoo-Reso) 0.78 (0.08)
SPVI 0.4[3.7(Ra00-Re70)-1.2(Rs30-Re70)] 0.70 (0.08)
SR Reoo/Rego 0.63 (0.12)
SR1 Rzs0/Rroo 0.74 (0.07)
SR2 Ris2/Rego 0.68 (0.09)
SR3 Rzs0/Rsso 0.75 (0.07)
SR4 Re72/Rss0 0.76 (0.10)
SRPI Ra30/Reso 0.76 (0.09)
TCARI 3[R700-Re70)-0-2( R700-Rss50) (R700/ Re70)] | 0.53 (0.13)
TvI 0.5[120R750-Rs50)-200( Rs70-Rs50)] 0.70 (0.10)
VOG Rrao/(Rr20 0.76 (0.06)
VOG2 (R734-R747)/(R715+R726) 0.72 (0.09)
NAOC Area in [643, 795] 0.79 (0.09)
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Standard spatial

Erosion: "“Replace pixel with the minimum surrounding pixel over SE.”
>> se = strel(’disk’,3); 0 = imerode(I,se);
Erosion, disk 3x3

@ Darker features than the surroundings are enlarged

@ Brighter features than the surroundings shrink

of Valencia | ValenciggSpain
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Standard spatial

Dilation: “Replace pixel with the maximum surrounding pixel over SE.”

>> se = strel(’disk’,3); 0 = imdilate(I,se);
Dilation, disk 3x3

@ Brighter features than the surroundings are enlarged

@ Darker features than the surroundings shrink

of Valencia | Vale




Standard spatial

Opening: “Erosion followed by dilation”
>> se = strel(’disk’,3); 0 = imopen(I,se);
Opening, disk 3x3

@ Brighter features than the surroundings and smaller than the SE disappear

@ Other features (dark, or bright and large) remain unchanged

i ity of Valencia | ValencigaSpain
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Standard spatial

Closing: “Dilation followed by erosion.”
>> se = strel(’disk’,3); C = imclose(I,se);
Closing, disk 3x3

@ Darker features than the surroundings and smaller than the SE disappear

@ Other features (bright, or dark and large) remain unchanged
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Top hat: “Open and then subtract the result from the original image”
>> se = strel(’diamond’,5); T = imtophat(I,se);
Top hat, diamond 3x3

@ Emphasizes distinct (sharp peaks) structures, extracts small elements and
details from given images

@ Useful to correct for uneven illumination (improve contrast)
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Standard spatial

Bottom hat: “Closing and then subtracts the result from the original image”
>> se = strel(’diamond’,5); B = imbothat(I,se);
Bottom hat, disk 3x3

@ Emphasizes distinct (sharp valleys) structures

@ Useful to correct for uneven illumination (improve contrast)
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Morphological profile: “Openings and closings with increasing SE”
>> se = strel(’diamond’,5); repeat opening-closing operations;

. Com2 cloms.

o Pixels turn into a sequential analysis of fine-to-coarse relations

@ Useful as a feature vector for processing (e.g. classification)
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Edges: "“Detecting discontinuities in images”
>> EDGES1 = edge(I,’canny’); EDGES2 = edge(I,’prewitt’);
Canny edges

@ Useful feature to detect boundaries in urban monitoring

@ Useful feature for object delineation
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Mean filter: “Average intensity values around every pixel”
>> H = ones(3); S = imfilter(I,H);

Mean filter, 5x5 window

@ Useful for noise removal and smoothing

@ Simple yet efficient to account for spatial pixel relations




Standard spatial

Median filter: “Replace a pixel with the median value of the neighborhood”
>> 8 = medfilt2(I);

Median filter, 3x3 window

@ Useful for impulsive noise removal and invariance encoding

@ Simple yet efficient to account for spatial pixel relations

ty of Valencia | Valenciag




Standard spatial

Standard deviation: “Replace a pixel with the local standard deviation value
of the neighborhood”
>> S = stdfilt(I);

Local standard deviation, 3x3 window

@ Useful to detect borders and edges

@ Captures the spatial variability of the intensity image




Standard spatial

Range filter: “Replace a pixel with the range value (max — min) standard
deviation value of the neighborhood”
>> R = rangefilt(I,ones(5));

Local range filter, 5x5 window

@ Useful for edge detection

@ Useful for range filtering
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Local entropy: “Replace a pixel with the entropy value of the neighborhood”
>> H = entropyfilt(I/max(I(:)));

Local entropy, 9x9 window

@ Useful for edge detection

@ Useful for saliency and detection of anomalies

ty. of Valencia | ValencigaSpair
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Max pooling filtering: “Replace a pixel with the maximum value of the
neighborhood”

>> maxpool = ordfilt2(I,9,true(3));

Max pooling, 3x3 window

@ Efficient to encode invariance to rotation

@ Useful in object detection

of Valencia | ValencigaSpain
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Haar wavelet decomposition: “performs a multilevel 2-D nondecimated
wavelet decomposition with n scales and 3 orientations”
>>n =4; w="dbl’; > WT = ndwt2(I,n,w);

o o R T -

@ Multiscale analysis of spatial and frequency pixel relations

@ Stacking features is robust to noise and powerful for discrimination
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Markov random fields: “Models a pixel with a Markov chain of the
surrounding pixels, and computes a statistic on the model weights”
>> fun = @(x) entropy(lsfit(x));

>> M = nlfilter(I,[3 3],@fun);
Entropy of the Markov random field
e W S —

o A simple linear predictive model is useful to capture textures

o Computationally demanding and several free parameters
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Dimensionality reduction is essential before classification or regression
High number of correlated features leads to collinearity, overfitting, and
Hughes phenomenon

Most of the spectral feature extractors are based on multivariate analysis:
“project data onto a subspace that maximize explained variance, minimize
correlation, minimize error, etc.”

Linear methods are simple and intuitive, yet often not appropriate
(nonlinearity, non-Gaussianity)

Nonlinear methods give improved expressive power
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Principal component analysis (PCA)

e “Find projections maximizing the variance of the data:”

PCA: maximize:  Tr{(XU)"(XU)} = Tr{U" C..U}
subject to: UTU =1

@ The Matlab PCA code:

>> C = cov(X);

>> [U L] = eigs(C,d);

>> Xtest_projected = Xtest*U;

>> Xtest_projected = Xtest*U(:,1:np);

@ Pros & cons:
v/ Simplicity
v/ Easy to understand
\/ Leads to convex optimization problems
X Unsuitable for non-linear problems
X More dimensions than points?

ty of Valencia | ValencigaSpain
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Orthonormalized PLS (OPLS)

@ “OPLS chooses the projection U that minimizes the MSE error using a
linear regression:”

OPLS: find: U= arg min{||Y — (XU)W||3}
where: W = (XU)TY = ((XU)"XU)"'XUY

@ “... which can be rewritten as” [Worsley98]

OPLS: maximize:  Tr{UTXTYYTXU}
subject to:  (XU)"(XU) = I

o The Matlab OPLS code

>> [U,D] = eig((X’*Y)*(Y?%X),X’*X);
>> [U,D] = eig(inv(X’*X)*(X’*Y)*(Y’*X));
>> [U,D] = eigs((X’*Y)*(Y’*X),X’*X,d);

>> Xtest_projected = XtestxU;
>> Xtest_projected = Xtest*U(:,1:np);
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Original data OPLS

ValencigaSpa
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Advanced spectral

@ Map the points in X’ to a higher dimensional space H:
X—=o
@ Express model parameters in H as a linear combination of mapped data
w=0o"a
© Replace the dot (scalar) products by a kernel function:
K=o
@ Out-of-sample predictions:

P(Xtest) = QW = ¢test¢Ta = K(Xtestyx)a
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Valid kernels must be symmetric and positive definite similarity measures

@ Linear:
K(xix;) = x,ij
@ Polynomial:
K(xi,x) = (xx; +1)¢
@ Gaussian Function (RBF):
K(xi,x;) = exp(-||xi — xj[|*/(20?))
o Hyperbolic Tangent:
K(xi,x;) = tanh(a(x; x;) + b)
@ Build new kernels...
K(xi,x;) = Ki(xi,x;) + Ka(xi, %))
K(xi, x;) = Ki(xi,x;) - Ka(xi, %))
K(Xiaxj):nKl(xi7Xj)7 77>0

ity of Valengia | Valenc IpSpai
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Intro

Kernel Principal component analysis (KPCA)

“Find projections maximizing the variance of the mapped data”
KPCA: maximize:  Tr{(®U)" (®U)} = Tr{U & dU}
subject to: UTU =1

Representer's theorem: U=®TA, A = [a1,...,a,]"

KPCA (2): maximize: Tr{ATKKA}

subject to: ATKA =1

Including Lagrange multipliers A: KA = AA
Project new data: P(X.) = .U = &. 0T A = K(X,,X)A
The Matlab KPCA code

>> K = kernelmatrix(’rbf’,X,X,sigma);
>> K = kernelcentering(K);

>> [A L] = eigs(X,n);

>> Ktest = kernelmatrix(’rbf’,Xtest,X,sigma);
>> Xtest_projected = Ktest*A;

>> Xtest_projected

Ktest*A(:,1:np);
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Kernel Orthonormalized Partial Least Squares (KOPLS)
@ “Choose the projection that minimizes the MSE:" [Worsley98]

KOPLS: maximize:  Tr{(®U)"YY ®U}
subject to:  (®U) T dU = |

@ Representer's theorem: U=®TA A=[cu,...,a,]":
@ Including Lagrange multipliers A, this problem is equivalent to
KOPLS: maximize:  Tr{ATK,K,K,A}
subject to: ATK.K.A = |
o This is a generalized eigenproblem: K K, KA = AK K, A
o Project new data: P(X,) = ®,.U = b, d"A = K(X,,X)A
o The Matlab KOPLS code

>> Kx = kernelmatrix(’rbf’,X,X,sigma);
>> Kx = kernelcentering(K);

>> Ky = Y*Y’;

>> Ky = kernelcentering(Ky) ;

>> [A, L] = eigs(Kx*Ky*Kx,Kx*Kx,n) ;
>> Xtest_projected = K(Xtest,X)*A;
>> Xtest_projected = K(Xtest,X)*A(:,1:np);

ty of Valencia | Va'lenti.;fs ai
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Intro Physical features Standard spatial Advanced spectral

o Data:

o AVIRIS image taken over NW Indiana’s Indian Pine test site in June 1992
o 145 x 145 image size, 220 features (bands), 16 land cover classes

e 80% for training and 20% for testing

o Classifier: linear classifier on top of different number of features

@ Results:

90,

80 , :
2 ~
§70 7
é
g —rpca ||
< 60 — PLS-SB
= — PLS2
9] — CCA
2 50 —opLs ]
© — KPCA

— KPLS2

40 — 1KOPLS

100 1 02

10
Number of Projections

e Supervised feature extraction often better than unsupervised

o Higher accuracies lead to smoother maps

o kOPLS excels in performance, needs few components

o kOPLS reduce false alarm rates in large homogeneous vegetation areas

Inivetsity of Valentia | Valencig




Intro Physical features Standard spatial Advanced spectral Summary

@ Extracting features from remote sensing images is essential to:
o Compress information for storage/transmission
o Reduce (spatial and spectral) redundancy
o Visualize data characteristics

@ Spectral features rely either on physical prior knowledge or statistical
techniques that optimize a sensible criterion

@ Spatial features rely on image processing operations builing on the
classical smoothness assumption in the image space

@ Linearity and Gaussianity are strong assumptions in general

@ Nonlinear methods using kernels can be convenient due to high robustness

to low-sized datasets and high input space dimensionality
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Part 3: Supervised hyperspectral image classification
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Hyperspectral image classification is a challenging problem!

o Philosophical problems: infinite diversity of the Earth covers

o What is a class? How many classes in the scene?
o What is a forest? How many forest classes are there?

@ Methodological problems:

o High dimensionality of pixels and scarcity of labels

o Hughes phenomenon, overfitting and generalization capabilities
@ Practical and operational problems:

o High cost for gathering labeled data (economic, time, resources)
Acquisition process and distortions in the images imply strong nonlinearities
Atmospheric and illumination effects may ruin the validation data

Heavy image preprocessing: geometric and atmospheric corrections

°
]
]
o Need expert knowledge in pre- and postprocessing
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Statistical classifiers have been readily applied to the problem:

Parametric Non-parametric

Assume a particular No assumption about

density distribution the data distribution

LDA, GMM k-NN, NNETS, TREES, SVM
Supervised Semisupervised One-class

Unsupervised

Need labeled Use both Interest in,
input-output No need labels labeled and detecting just
pairs k-means, EM-GMM, unlabeled data one class

LDA, k-NN, TREES, SOM Laplacian SVM, SAM, OSP, RX,
SVM TSVM, graphs 0C-SVM

@ Not too much success in parametric classifiers, as some assumptions break
@ Currently, nonparametric classifiers and committees of experts excel!
@ k-NN: good compromise between accuracy and computational cost

@ Support vector machines (SVM) typically outperform the rest

ty of Valencia | ValencigaSpain
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Classifiers:
@ Linear discriminant analysis (linear, quadratic, Mahalanobis)
@ k-Nearest neighbors (KNN)
@ Decision trees (TREES)
o Neural networks (NNETS)
@ Support Vector Machines (SVM)
Analysis:
@ Accuracy of classifiers (OA, Kappa, Confusion matrix)
@ Robustness to dimensionality (apply before PCA?)
@ Robustness to number of labeled samples

@ Computational cost

e

Summary

ty of Valencia | ValencigaSpain



Linear discriminant analysis (LDA): “Fits a Gaussian to each class data”

@ Linear discriminant analysis (‘linear’): Fit a multivariate Gaussian to each
group/class through a joint covariance matrix
>> yp=classify(Xtest,Xtrain,Ytrain,’linear’);
@ Linear discriminant analysis (‘quadratic’): Fit a multivariate Gaussian to
each group/class through a class-dependent covariance matrix
>> yp=classify(Xtest,Xtrain,Ytrain, ’quadratic’);
@ Linear discriminant analysis (‘mahalanobis’): Fit a multivariate Gaussian
to each group/class through a class-dependent Mahalanobis distance
>> yp=classify(Xtest,Xtrain,Ytrain, ’mahalanobis’);

Linear Discriminant Analysis

,Quadratic Discriminant Analysis

ees versicolor ess versicolor
ees virginica ees virginica
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k nearest neightbor (k-NN): “is a non-parametric memory-based classifier
that assigns the test label from the closest training point(s)”

o We can play around with the notion of distance (e.g. Euclidean, SAM,
etc.)

@ k-NN is a rather slow method with many samples and high k

@ k =1 use to work in real applications!
>> yp = knnclassify(Xtest,Xtrain,Ytrain, ’euclidean’);

,
1 '
' il
:

| !
N 1
y 1
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Decision trees (TREES): “are non-parametric classifiers that adjust
threshold values per feature in a hierarchical structure”
o TREES typically optimize the information transmitted from father to sons
TREES are fast to learn/adjust and apply
TREES allow to study the problem through trees visualization
TREES are however limited to simple linear boundaries
TREES provide a moderate success rate
>> tree = treefit(Xtrain,Ytrain, ’method’,’classification’);
>> ypred = treeval(tree,Xtest);
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Neural networks (NNETS): “adjust a fully-connected nonlinear
hierarchical structure made of simple neurons (pointwise nonlinearity) by
minimizing the MSE in the output layer”

@ Binary problems: binary coding of the output (y € {0,1}).

@ Multiclassification: as many output neurons as classes
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Support Vector Machines (SVM): “non-parametric kernel method that fits
an optimal linear hyperplane separating the classes in a higher dimensional
representation (feature) space”

@ SVMs optimize two parameters: C to adjust the level of regularization
(prevent overfitting) and the o parameter of the RBF kernel (mapping
space dimensionality)

@ SVMs are fast to train and apply in moderate size problems
@ SVMs are slow with many labeled examples

@ SVMs generally outperform the rest in hyperspectral image classification
>> ypred = svm_classify(Xtest,X,Y);
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@ The solution of the SVM:

51 = () = sign(w” 9(x) + ) = sign( 3" Ko, x) + b)

i=1
@ The solution is sparse: only few examples x; with «; 7 0 are important

@ Support vectors: those that define the margin and are misclassified
examples

y=+1
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Valid kernels must be symmetric and positive definite similarity measures

@ Linear:
K(xix;) = x,ij
@ Polynomial:
K(xi,x) = (xx; +1)¢
@ Gaussian Function (RBF):
K(xi,x;) = exp(-||xi — xj[|*/(20?))
o Hyperbolic Tangent:
K(xi,x;) = tanh(a(x; x;) + b)
@ Build new kernels...
K(xi,x;) = Ki(xi,x;) + Ka(xi, %))
K(xi, x;) = Ki(xi,x;) - Ka(xi, %))
K(Xiaxj):nKl(xi7Xj)7 77>0

ity of Valengia | Valenc IpSpai
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Example 1: Pixel-wise hyperspectral image classification
@ Standard image: 9 crop classes, Indiana (USA), 1999.
@ AVIRIS sensor: 220 bands, 145 x 145 pixels.
@ Only spectral information is considered at this point.
Accuracy and robustness

Py .
107 1 10" 10
Rate of raiing sampies (4]

E3 3 10
SNR (48] #Outying bands.

@ Non-linear SVM (RBF kernel) yields the best results when compared to
LDA and RBF neural nets.

@ SVMs show an important gain when working with low number of samples
and high dimension, high levels of input noise, and moderate
computational cost
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Visual inspection

RGB Ground truth
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Example 2: Spatial-spectral multispectral image classification
@ Multispectral image: 9 crop classes, Ziirich, 2002.
@ Quickbird sensor: 4 bands + 22 spatial features (top/bottom hat).
@ Both spatial and spectral information is considered.

Accuracy and robustness without contextual information:

Training OA [%] Kappa
pixels LDA | Trees [ k-NN [ SVM | MLP | LDA | Trees | k-NN [ SVM | MLP
115 w| 6043 |68.62 | 68.43 | 74.99 | 7294 | 0.53 | 0.61 | 0.61 | 0.69 | 0.67
o |(5.13) | (3.85) | (1.63) | (2.25) | (1.55) | (0.06) | (0.05) | (0.02) | (0.03) | (0.02)
255 wl| 6019 | 71.25 | 73.65 | 77.31 | 76.32 | 0.53 | 0.64 | 0.67 | 0.72 | 0.71
o | (3.25) | (1.79) | (3.79) | (1.23) | (1.20) | (0.03) | (0.02) | (0.05) | (0.02) | (0.02)
1155 | /| 6282|7678 | 80.92 | 79.49 | 79.41 | 0.56 | 0.71 | 0.76 | 0.74 | 0.74
o | (2.08) | (0.90) | (0.47) | (0.73) | (0.38) | (0.02) | (0.01) | (0.01) | (0.01) | (0.01)
o568 | M 62.68 | 78.59 | 81.38 | 80.42 | 79.42 | 0.56 | 0.74 | 0.77 | 0.76 | 0.74
o | (1.94) | (0.32) | (0.24) | (0.34) | (1.09) | (0.02) | (0.01) | (0.01) | (0.01) | (0.01)

@ Nonparametric methods (SVMs, MLP) excel
@ Lazy learner k-NN shows good performance with enough samples

@ Poor performance of linear parametric classifiers as the LDA

'of Valenia | Valenc
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Example 2: Spatial-spectral multispectral image classification
@ Multispectral image: 9 crop classes, Ziirich, 2002.
@ Quickbird sensor: 4 bands + 22 spatial features (top/bottom hat).
@ Both spatial and spectral information is considered.

Accuracy and robustness with contextual information:

Training OA [%] Kappa
pixels LDA | Trees [ k-NN [ SVM | MLP | LDA | Trees | k-NN [ SVM | MLP
115 w7293 |71.00 | 75.69 | 83.37 | 77.37 | 0.67 | 0.65 | 0.70 | 0.80 | 0.72
o |(2.85)|(2.97) | (1.28) | (2.40) | (2.48) | (0.03) | (0.03) | (0.02) | (0.03) | (0.03)
o55 | H 77.23 | 73.47 | 80.53 | 85.91 | 80.61 | 0.72 | 0.68 | 0.76 | 0.83 | 0.76
o | (1.41) | (1.64) | (1.34) | (1.94) | (0.99) | (0.02) | (0.02) | (0.02) | (0.02) | (0.01)
1155 | M 78.35 | 80.45 | 87.32 |1 88.03 | 84.29 | 0.74 | 0.76 | 0.84 | 0.85 | 0.81
o | (0.69) | (0.73) | (0.63) | (1.68) | (1.77) | (0.01) | (0.01) | (0.01) | (0.02) | (0.02)
o568 | M 78.61 | 81.59 | 87.26 | 87.17 | 85.10 | 0.74 | 0.77 | 0.84 | 0.84 | 0.82
o | (0.57) | (0.89) | (0.61) | (0.85) | (1.05) | (0.01) | (0.01) | (0.01) | (0.01) | (0.01)

o Contextual information is beneficial for all models, +5% and 10%

@ Contextual information improves SVM and NN much more

@ Without spatial features, k-NN is the best option!
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Ground survey LDA (78.35, 0.74) Class. tree (80.45, 0.76)

3 . ~-§§»2*;
MLP (84.29, 0.

e

)

81

5

@ SVM and k-NN return detect all major structures of the image
@ McNemar's test confirmed visual estimation of the quality

@ SVM map is significantly better than the others, followed by the k<-NN and
NN maps
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Hyperspectral image classification needs strong regularization:

@ SVM imposes regularization naturally by maximum margin

@ Advanced classification focuses on other forms of regularization:

Reduce dimensionality via feature selection and extraction

Include information contained in unlabeled samples

Include synthetically generated data encodes invariance properties
Impose spatial homogeneity of images: include spatial information
Include multisource data: SAR, LiDAR

Include ancillary information from expert’s knowledge (Vls, ecosystems
maps, climate regions, etc)
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@ The example assumes invariance to horizontal transformations
o Given the training data, the point @ is hard to classify
@ Modify the SVM to incorporate prior knowledge

ty. of Valencia | ValencigaSpain
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Step 1 Train a SVM and find the SVs
°

ty. of Valencia | ValencigaSpain




Invariances

Step 1 Train a SVM and find the SVs
Step 2 VSVs: perturbate SVs to which the solution should be invariant
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® o
Q8D -
- - -

P
® 9

Step 1 Train a SVM and find the SVs
Step 2 VSVs: perturbate SVs to which the solution should be invariant
Step 3 Train a SVM with both SVs and VSVs

of Valencia | ValencigaSpain
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Example 1: encoding invariance to rotations:

SVs SVs rotated

SVM (

@ Quickbird image + 18
spatial features

@ Size: 329 x 347 pixels
@ 9 classes

o VSVM encodes
invariance to rotation!

Class5 Class4 Class3 Class2 Class1

RGB

o Both classifiers show high classification scores
@ VSVM improves classification score over +7%
@ VSVM is however more computationally demanding

| Vialen




Invariances

Example 2: encoding invariance to shadows and illumination changes:

@ Multispectral image acquired by DAIS7915 over Pavia (Italy) campsvaiisiyj
e 9-class urban classification problem
e Dominated by directional features and relatively high spatial resolution
o Presence of shadows in the streets and the bridge
e 50 training spatial-spectral samples only (4x4 patches)

@ Invariance coding: exponential-decay function in [0.5, 1.76]um (vamazakios]

RGB SVM (0.79+0.11) VSVM (0 84:£0. 09)



Contextual

How to integrate multi-source information?
@ Spatial features
o Textural features
o Time-varying features
@ Multi-sensor features

@ Multi-angular features

Optical, xW Radar, x Contextual, x¢ Spatial, x5

of Valencia | Valencig
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Taxonomy of spatial-spectral classification approaches:

Type of Approach

[ Model

[

Idea

Spatial filters ex-
traction

Co-occurrence

Extract texture based on statistics of pairs
of pixels in a neighborhood

EMP Multiscale  mathematical morphology
(based on size)
EMAP Multiscale mathematical morphology (va-

riety of attribute types)

Spatial-spectral
segmentation

Segmentation and classifi-
cation based on majority
voting

All pixels are assigned to the most frequent
class inside a segmented region

Segmentation and classifi-
cation based on markers

Most reliably classified pixels are selected
as “region markers” for segmentation

Semi-supervised hierarchi-
cal clustering tree

Returns both classification and confidence
maps. Active learning used to select infor-
mative samples.

Advanced spatial-
spectral
classification

Composite
kernels

and multiple

Balances between spatial and spectral in-
formation with dedicated kernels

Graph kernels

Takes into account higher order relations
in each pixel neighborhood

MRF

Markov Random Field Modeling (proba-
bilistic)

Summa

etsity of Valencia | Valencig
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Approach 1: Majority voting and markers

RGB SVM (78.2%) Markers (91.8%)

MaxVote (90.8%)

@ Significant improvement achieved over the pixel-based SVM classifier

@ Using markers provided the best accuracies: a +1% improvement over the
simple majority voting and more than +13% over the traditional
pixel-based SVM classifier

@ More uniform classification map when compared to the purely spectral
SVM classification map

i ity of Valencia | ValencigaSpain
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Approach 2: Advanced spatial-spectral HSI classification

@ Some properties of kernel methods (and SVM):

K(xi,x;) = Ki(xi,x;) + Ka(xi, ;)
K(xi,xj) = Ki(xi, x;) - Ka(xi,%;)
K(xi,xj) = nKi(xi,x;), n>0

Classification
Yi

Kixw, X‘W)l K(xr, x,f)l K(xS, x‘C)l

Stacking features in the kernel space implies direct sum of kernels
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Summary

[[ Overall accuracy [%] [ « statistic

Spectral classifiers
Euclidean [Tadjudin98] 48.23 ~—
bLOOC+DAFE+ECHO [Tadjudin98] 82.91 —
K., [CampsValls04] 88.55 0.87
Spatio-spectral classifiers [CampsValls06]
Mean
Ks 84.55 0.82
Kiswy 94.21 0.93
Ks + K., 92.61 0.91
wKs + (1 — p) K 95.97 0.94
Ks + Ko + Ksw + Kus 94.80 0.94
Mean and variance
Ks 88.00 0.86
Kiswy 94.21 0.93
Ks + Ko, 95.45 0.95
wKs + (1 — ) Ko, 96.53 0.96

@ Linear methods offer poor results

@ The proposed classifiers improve results in all cases (+[5-11]%)

@ Simplest kernel combinations yield very good results
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Ground truth Spatial (84 55/)

@ More homogeneous classification maps
@ State of the art results

@ Easy framework for multisource data fusion




Contextual

Approach 3: Combine advanced spatial features and composite SVM

RGB GT SVM EMAP EMAP+CSVM EMAP+GCSVM

@ ROSIS-03 Pavia University area data set (103 spectral channels and
spatial resolution 1.3m), 9 classes
@ Spatial components:
Benediktson1l Extended Morphological Profiles (EMP)
CampsValls06 Cross-kernels composite SVM (CSVM)
Li13 Generalized composite kernels (GCSVM)

ty. of Valencia | ValencigaSpair
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Multi-sensor fusion kernels
O Idea: Build dedicated kernels for the optical (x?), and the radar (x})
feature samples, and combine them in the kernel.
@ Three formulations:
o The stacked features approach:

Xt Koy = K(xiy X)) = ((xi), d(x)))
o The direct summation kernel:

K(xj,xj) = Ko(xf’,xj-’) + Kr(xF, xj)

i

x; = [x

e The cross-information kernel:

K(xj,xj) = Ko(x‘-’,xj‘?) + Kr(x} xJ’) + Kor(x?, xJ') + Kro(xF, x¢

i i iRy




SAR

Example: Detection of classes ‘urban’ vs. ‘non-urban’ [Camps-Valls08]
@ ‘Urban Expansion Monitoring (UrbEx) ESA-ESRIN DUP’ Project
@ 2 sensors (ERS2 SAR y Landsat TM)
@ 2 dates (1995 and 1999) over Rome

Features and pre-processing
O Images were co-registered with ISTAT data (at subpixel level, <15m res.)
@ SAR images were filtered for ‘speckle’.

@ Original features: 7 spectral bands, 2 backscattering intensities plus

coherence.

@ Additionally: (i) optical features are mean-filtered, and (ii) SAR images
are Gabor-filtered, at different scales ( = 1,...,4) and orientations ({0,
45, 90, 135})

ty of Valencia | ValenciagSpai
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Accuracy and flexibility

@ Different kernel-based methods integrating spectral, contextual, textural
and temporal information.

o Different levels of complexity and versatility.

@ Linear and non-linear (RBF) kernels.

Spatio Multi- Temporal
spectral sensor Sum Crossed Weighted
SVM Sum Standard 83.2 (0.45) 68.2 (0.61) 70.4 (0.64)
(LIN) Crossed | Standard || 81.4 (0.49) 69.2 (0.62) 71.4 (0.63)
Sum Sum 84.1 (0.51) 70.2 (0.63) 73.4 (0.72)
SVM Sum Standard 91.4 (0.67) 83.1(0.70) 89.5 (0.78)
(RBF) Crossed | Standard || 92.1 (0.69) 89.2 (0.71) 88.8 (0.77)
Sum Sum 93.2 (0.77) 94.3 (0.78) 93.3 (0.81)

o All the proposed temporal kernels improve the results of (1) considering
the spectral info alone, (2) or even the spatio-spectral information.

@ The weighted summation kernel is the best choice.

@ In all cases, non-linear RBF kernels yield better results.
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Visual inspection

Ground truth, 1999 Sum (0.77)
S, n

Ty

-~ ':_‘x% . g *
Crossed (0.78)

Summary
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What's LiDAR?
@ Light Detection And Ranging
@ Active Sensing System
@ Day or Night operation.
@ Ranging of the reflecting object based on time difference between emission
and reflection.
What’s NOT LiDAR?
@ NOT Light/Laser Assisted RADAR
—RADAR uses electro-magnetic (EM) energy in the radio frequency range; LIDAR does not.
@ NOT all-weather
— The target MUST be visible. Some haze is manageable, but fog is not
@ NOT able to ‘see through’ trees
— LIDAR sees around trees, not through them. Fully closed canopies (rain forests) cannot be penetrated
@ NOT a Substitute for Photography

— For MOST users, LIDAR intensity images are NOT viable replacements for conventional or digital imagery

Credits: Jiunn-Der (Geoffrey) Duh, Portland, USA

efsity of Valencia | Valencg 5pain




Intro Supervised Invariances Contextual SAR LiDAR Ancillary Summary

LiDAR Characteristics
@ Vertical accuracy for commercial applications at 15 cm on discrete points
@ Collects millions of elevation points per hour
@ Produces datasets with much greater density than traditional mapping

@ Some systems capable of capturing multiple returns per pulse and/or
intensity images

LiDAR Operational Theory
@ A pulse of light is emitted and the precise time is recorded
@ The reflection of that pulse is detected and the precise time is recorded

@ Using the constant speed of light, the delay can be converted into a “slant
range” distance.

o Knowing the position and orientation of the sensor, the XYZ coordinate of
the reflective surface can be calculated

Credits: Jiunn-Der (Geoffrey) Duh, Portland, USA
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Multiple-Returns vs. Single-Return Systems
@ Single-Return systems: returns come from the canopy top

@ Multiple-Return systems: first returns also from the canopy top, but
successive returns will come from lower surfaces, such as vegetation and

the ground
POSITION OF
LIDAR HEIGHT AND INSTRUMENT

COVER DETERMINATION .2 N TRUN

- X Controlled

Multiple Return
Intensity of Return .
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LiDAR return intensity
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LiDAR points colored to represent different attributes of the data
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Applications of LiDAR:

Water resources
@ Floodplain mapping
@ Storm water management
@ Shoreline erosion
Geology
@ Sinkhole identification
@ Geologic/geomorphic
mapping
Transportation
@ Road and culvert design
o Cut and fill estimation
@ Archaeological site id
Agriculture
@ Erosion control

o Soils mapping

@ Precision farming

Water quality
@ Watershed modeling
@ Wetland reconstruction
@ Land cover/use mapping
Forestry
o Forest characterization
@ Fire fuel mapping
Fish and wildlife management
@ Drainage and water control
@ Walk-in accessibility
o Habitat management
Emergency management
@ Debris removal

@ Hazard mitigation
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LiDAR and Hyperspectral image fusion is a successful and active field

Elakshe08

Swatantranall

Shimoni09
Zhangll

Lemp05

Sugumaran07

Koetz07

Naidooal2

Pedergnanal2

coastal mapping by HSI (road vs water) + LiDAR (buildings)

biomass estimation by HSI (VIs) + LiDAR (vegetation
structure)

detect vehicles under shadows by rule-based HSI+LiDAR fusion

detect objects under shadows by HSI (remove direct
illumination) + LiDAR (shadow-independent structures)
classification of urban areas using LiDAR for segmentation and
HSI for region labeling

identification of tree species in a urban environment (structure
matters)

classify fuel composition using SVM with composed
HSI4-LiDAR features

classify savanna tree species using RF over HSI+LiDAR feature
space

image classification using extended morphological attribute
profiles (EAPs) from HSI and LiDAR




LiDAR

GRSS DF-TC competition 2013:
@ HSI from CASI1500 sensor (144 bands, 380-1050 nm)
LiDAR-derived digital surface model (DSM), spatial res. 2.5 m

15 classes, challenging problem, diversity of classes

°
°
@ DSM represents elevation (in [m]) above sea level (Geoid 2012 A model)
°

Note a large cloud shadow only for validation, avoid training there!

HSI + L|DAR derlved DSM

Classes
Class name Training set | Test set Class color’
Healthy grass 98 1053 ]
Stressed grass 190 1064 =
Synthetic grass 192 505 =
Tree 188 1056 [
Soil 186 1056 [}
‘Water 182 143 m
Residential 196 1072 (]
Commercial 191 1053 (]
Road 193 1059 [
Highway 191 1036 m
Railway 181 1054 -
Parking lot 1 192 1041 ]
Parking lot 2 184 285 =
Tennis court 181 247 [}
Running track 187 473 [l
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Unsupervised+Supervised processing chain

Unsupervised object detection Supervised classification
|”V°f’“"e°"a' ’ LDAR data ’va.e'spec"a' | LiDAR data ‘
image image
' \
| Extraction ‘ Extraction ‘

|
I ! .

|Segmentation I |Segmentation ‘ Feature extraction
Combinatorial fusion

Object extraction and Classification based on
selection ensemble learning
I [
v []

‘ Object-based classification and correction ‘

@ Unsupervised Object Detection extracts objects (e.g. buildings, streets)
@ Supervised Classification module: FE+classification via ensemble learning

@ Object-based classification and correction combines results

Inivetsity of Valentia | Valencia




Intro Supervised Invariances Contextual SAR LiDAR Ancillary Summary

1: Unsupervised module: Combinatorial fusion rules improve the detection

@ Low vegetation, high elevation, large extension — Buildings

s ‘»;"“: »
o

N

S K Sl | IR 2 Sha
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2: Supervised module: feature diversity plus random forests!
[0 Feature extraction

@ ATGP unmixing to 50 endmembers — 50 abundance maps as features
@ MNF features

@ Vegetation index and water vapor absorption

o LiDAR-derived elevation map

o Topology features (such as gradients)

O Classification

@ Random forest classifier
>> ntrees = 200
>> forest = TreeBagger(ntrees,Xtrain,Ytrain);
>> Ypred = predict(forest,Xtest);

@ RF1 with shadow-covered areas

@ RF2 with shadow-free areas

ValencigaSpa




LiDAR

3: Object-Based Classification and Correction

@ Unsupervised branch provides Class || SVM [ 2« RF [ MMS Cor. [ Post Seg.
. . . Healthy grass 82.24 83.38 83.48 83.47
information on the object level Stressed grass || 82.99 | 97.74 97.56 97.56

Synthetic grass 99.60 99.60 99.80 100.00

i 1 Tree 89.87 98.30 97.63 97.63

° SuperVIsed branCh prOVIdeS the Soil 98.56 99.24 98.58 100.00
i ‘Water 83.92 95.10 87.41 88.11
required class label aer || B350 [ 9510 [ §74T 2N

H H . Commercial 43.11 94.11 95.06 97.44

° Comblnatlon' Road 66.38 83.10 85.65 89.90
o Object correction implements a ’;ﬁ:‘x’:yy zfzg ;ﬁz‘l :‘]‘Zg 3‘;’21
voting scheme for every object based Parking 1 7531 | 84.05 80.69 96.35

H H Parking 2 66.32 82.10 70.52 75.79

on class uncertainties . Tennis court || 98.38 | 9959 | 100.00 100.00

o Post-classification segmentation Running track || 97.67 | 97.46 98.10 100.00

H OA (%) 80.10 88.10 90.60 94.40

p_erforms a label rea_ssngnment on the S LAUNR AT kR kakd

pixel level by modeling the [ 0.784 | 0871 0.898 0.940

classification outcome as an MRF

. ‘
8=12 September2014 | of Valencia | Valencia




a hyperspectral data,

b MPs of hyperspectral data,
¢ MPs of LiDAR data,

d the stacked features

e features fused with graphs

f the proposed fused features
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Why not considering additional information?

Vegetation indices, e.g. NDVI
Clustering maps

Max vote of all trained classifiers

°
°

@ Abundance maps
@ Ecosystems maps
°

Climate regions

Nice idea, yet problematic: dimensionality increases again!
Solution: feature selection together with sparse classifiers!

ty. of Valencia | ValencigaSpain




Intro Supervised Invariances Contextual SAR LiDAR Ancillary Summary

Hyperspectral image classification is a challenging problem

@ High dimensional feature spaces scarcely populated!
o Statistical approaches:

e Supervised algorithms

p ) )

> SE supervised-aigorithms

o One-classandtarget-detection

Kernel methods are the current state-of-the-art classifiers

@ More info in the classifiers implies improved signal model
More samples (by sampling or synthesizing)

More meaningful features

More concurrent sensors (SAR, LiDAR, VHR, etc)
Additional ancillary information

Multitemporal information

ity of Valengia | Valen 3aSpain




Intro Models Determination Extraction Abundances Advances Summary

Part 4: Spectral unmixing and abundance estimation
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Unmixing hyperspectral pixels ...
o With a limited spatial resolution, spectral vectors are no longer pure but
mixtures of the spectral signatures of the materials present in the scene
@ A small fraction of the available pixels can be considered as pure, i.e.
composed by a single material

@ The field of spectral mixture analysis (or spectral unmixing) is devoted
both to identify the most probable set of pure pixels (called endmembers)
and to estimate their proportions (called abudances) in each pixel

@ When the endmembers have been identified, every single pixel in the
image can be synthesized as a linear (or nonlinear) combination of them

12 meters 4 meters
- - - Grass
] @
g g
£ - Tree g T
1o 1
g 1 - 1
H ----Soil T
1 a 1
1 1
1 1
T T
V v
Macroscopic mixture: Intimate mixture:

15% soil, 25% tree, 60% grass in a 3x3 meter-pixel Minerals intimately mixed in a 1-meter pixel
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The main applications of spectral unmixing:
1 Standard mapping applications.

Keshava02 Excellent introduction to crop and mineral mapping
Sohn97 Abundance estimation of vegetation in deserts
Adams95 Abundance maps for image classification to detect
landcover changes in the Amazonia
Roberts98 multiple endmember spectral mixture models to map
chaparral
Elmore00 quantify vegetation change in semiarid environments
Goodwin05 assessed plantation canopy condition from airborne
imagery using spectral mixture analysis via fractional
abundance estimation
Pachecol0 crop residue mapping in multispectral images
Zhang04 deconvolution of lichen and rock mixtures
Wu2004 to monitor urban composition using ETM+ images
Dopll extract features and then performing supervised urban
image classification
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The main applications of spectral unmixing:

2 Multitemporal studies.
Shoshany02 a multi-date adaptive unmixing was applied to analyze
ecosystem transitions along a climatic gradient
Lobell2004 inferred cropland distributions from temporal unmixing of
MODIS data
Gomez11l multitemporal unmixing of medium spatial resolution
images was conducted for landcover mapping

3 Multisource models.
Puyou94 multiple linear regression as a tool for unmixing coarse
spatial resolution images acquired by AVHRR
GarciaHaro96 alternative approach which appends the high spatial

resolution image to the hyperspectral data and computes a
mixture model based on the joint data set.

Zhukov99 spatial and spectral data fusion

Amorosll spatial unmixing technique to obtain a composite image
with the spectral and temporal characteristics of the
medium spatial resolution image and the spatial detail of
the high spatial resolution image




lllustration of the spectral linear mixing process

A given material is assumed to be constituted at a subpixel level by patches of
distinct materials m; contributing linearly through a set of weights (or
abundances) «; to the acquired reflectance r

Radiation N Satellite sensor

TNyt

Gy my+

source

o3 my+

| Valen




Abundances Advances

Intro Models Determination Extraction

Linear versus nonlinear mixing model:
@ Linear mixture model assumes that endmember substances are sitting

side-by-side within the FOV

@ Nonlinear mixture model:
o Endmember components are randomly distributed throughout the FOV
o Multiple scattering effects

Satellite sensor Radiation Satellite sensor
.

Radiation
source ”’ roures

Summary
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Intro Models Determination Extraction

Two nonlinear mixing scenarios:
@ The intimate mixture model (left): the different materials are close
o The multilayered mixture model (right): interactions with canopies and
atmosphere happen sequentially or simultaneously

Satellite sensor Radiation Satellite sensor

e <
'?‘&

@
../'. .
e
Sevsecsse
..... ..
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Let’s go on with a linear unmixing model:
@ Simple, tractable, mathematically convenient
o Effective in many real settings
@ Acceptable approximation of the light scattering mechanisms
o Computationally feasible

Radiation Satellite sensor

source .~ > TN Mt

Gy my+

O3 my+

| Valen
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The linear mixing model:

@ r be a B x 1 reflectance vector

@ B is the total number of bands

@ m; is the signature of the ith endmember, i =1,...,p

@ M = [mi,my,...,mp] is the mixing matrix and contains the signatures of
the endmembers present in the observed area,

o a= a1, ... ,oa,,]T is the fractional abundance vector

@ n=[ny,...,ng]" models additive noise in each spectral channel.

The linear unmixing problem:

r=Ma+n st. a>0, 1;04:1,\/

@ Given a set of reflectances ri, i = 1,..., N, estimate appropriate values for
both M and
@ Two physically reasonable constraints:

@ all abundances must be positive, a; > 0,
@ they have to sumone, Y7 a;=1
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The simplex representation: lllustration of the simplex set C for p = 3.
Points in red denote the available spectral vectors r that can be expressed as a
linear combination of the endmembers m;, i =1,...,3, (vertices circled in
green). The subspace formed defined by these endmembers is the convex hull C
of the columns of M

e r=Ma«a
m; @ endmembers: m;

Credits: Figure from Bioucas-Dias11.
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The minimum volume simplex approximation not always works:

m, m, m,

m,

m, m;  m,

o Left and middle: identifiable!
@ Right: not identifiable because of a highly mixed scenario!

@ Alternative: statistical models may better capture the data distribution

Credits: Figure from Bioucas-Dias11.
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Advances
The minimum volume simplex approximation may be affected by noise:

Noisy eigen-image no. 18
N

; A
uncertainty regions o o L TES ocz
due to noise 5 oos A oo
-0.05 -
R B O 0.03 denoised
m, = R ]
~~ PN 8 @ 002 3 .
-~ SN e B o [owes
ln_’ ” ~ ~ \ 7 s % g 001
1 93 o I A
Y <l oos € 01
N\ /
my ;
~0.05 0.1

[ 0.05
eigen-image 17

@ Endmembers m; and mj3 are too close, thus M is badly conditioned.
@ The effect of noise is evident, as represented in the uncertainty regions
@ A preliminary step is to check the SNR (and eventually apply MNF):

B[] _ trace(C,)
E[|[n|]?]  trace(C,)

>> snr=trace(cov(X))/trace(cov(N))

SNR =

Credits: Figure from Bioucas-Diasl1.
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Spectral unmixing steps:

a. Dimensionality reduction. Spectral unmixing intrinsically assumes that the
dimensionality of hyperspectral data is lower and can be expressed in terms
of the endmembers. Some methods require a previous dimensionality
reduction, either feature selection or extraction, e.g. PCA, MNF, ...

b. Endmember extraction. Search of a proper vector basis to describe all the
materials in the image:

o Find the most extreme spectra, which are the purest and those better
describing the vertices of the simplex
o Find the most statistically different pixels
c. Abundance estimation. Exploits linear or nonlinear regression techniques
for estimating the mixture of materials, called abundance, in each image
pixel, e.g. linear regression, neural networks and support vector regression

Unmixing Endmember signatures

” % 220y
Abundance maps

ore Nl

Endmember
extraction

!

Abundance
estimation
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Summary

The first step in the spectral unmixing analysis tries to estimate the
number of endmembers present in the scene

@ The number of endmembers is assumed to be lower than the number of
bands B

@ Statistical and geometrical interpretation: spectral vectors lie in a
low-dimensional linear subspace

@ Endmember determination reveals the intrinsic dimensionality of the data
and reduces the computational complexity of the unmixing algorithms
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How to estimate the intrinsic dimensionality of the subspace
@ Most of the methods involve solving eigenproblems
Jollife86 PCA looks for the explained variance of the projected data
(scores)
Lee90 MNF looks for the explained variance of the projected
data and discounts the noisy components
Bioucas-Dias05 HySime looks for the explained SNR by minimizing the
MSE error term
@ Information-theoretic approaches
Wang06 ICA and projection pursuit looks for a ‘right’ number of
statistically independent components
Ifarraguerri00 Minimum description length (MDL)
Harsanyi93 Neyman-Pearson detection method (called HFC)
Chang04 Virtual dimensionality (VD) finds the highest number for
which the correlation matrix have smaller eigenvalues than
the covariance matrix
Chang04 Noise-whitened HFC (NWHFC) removes the second-order
noise statistical correlation
© Nonlinear (higher-order) methods and manifold learning
Bachmann06 ISOMAP
Yangchi05 locally linear embedding (LLE)
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Standard benchmark hyperspectral image dataset:

@ AVIRIS Cuprite reflectance data set,
http://aviris. jpl.nasa.gov/html/aviris.freedata.html

@ AVIRIS spectrometer over the Cuprite Mining area in Nevada (USA) in
1997

@ Widely used to validate the performance of many spectral unmixing and
abundance estimation algorithms

o U.S. Geological Survey (USGS) in the form of various mineral spectral
libraries, http://speclab.cr.usgs.gov/spectral-1ib.html

@ Many reported materials: buddingtonite, calcite alunite, kaolinite, and
montmorillonite, chalcedony, dickite, halloysite, andradite, dumortierite,
and sphene.

@ Most mixed pixels in the scene consist of alunite, kaolinite, and muscovite



http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://speclab.cr.usgs.gov/spectral-lib.html
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PCA, MNF, and HySime

g

§ 97] 10" 107}
£ o z u

g a

2 9 10° 107

2 4 6 8 0 12 2 4 6 8 10 12 1 10 20 30 0
Eigenvalue i Eigenvalue i k

@ PCA: 8 components retain more than 99.95% of the explained variance
@ MNF yields a higher number of distinct pure pixels, p=13
o HySime estimates p=18 (minimum MSE)

HFC and NWHFC are estimated with the false-alarm probability set to
different values Pr = {1072,...,107°}, and give rise to p around 14

Pe
Method 1072 1073 10=* 107° 10°°
HFC 23 20 17 16 14

NWHFC 21 18 16 14 12




Two main families of methods: geometrical vs statistical

Method Briefdescription CPU cost
Geometrical IEA [Neville et al., 1999] Tteratively selects endmembers that minimize error in the unmixed image High
(pure-pixel)
P VCA[Nascimento and Bioucas-Dias, 2005a] Teeratively projects data onto a direction orthogonal to the subspace spanned by Tow
the previous endmembers
PPI [Boardman, 193] Projects spectra onto many random vectors, stores the most extreme distances to Medium
select endmembers
N-FINDR [Winter, 1999] Tinds the pixels defining the simplex with maximum volume trough inflation Medium
SGA [Chang et al,, 2006] Tteratively grows a slmpl:x by finding the vertices that yield maximum volume Medium
SMACC[Gruninger et al, 2004] Teeratively ers by growing a convex cone High
the data
Geometrical SISAL [Bioucas-Dias, 2000] Robust version of min-volume by allowing violation of the positivity constraint Tow
(min-volume)
CCA [Ifarraguerti and Chang, 1999 Teeratively selects the correlation matrix eigenspectrum, Tow
forces positive endmembers
MVES [Chan et al, 2009] Implements a cyclic minimization of a series of linear programming problems to Low
find the min-vol simplex
MVT-NMF[ Mo and Qi 2007] Minimizes a regularized problem: a term minimizing the approximation error of Tow
NMF and another constraining the volume of the simplex
ICE [Berman et al,, 2004] Similar to MVT-NMF but replaces the volume by sum of squared distances be- Medium
tween all simplex vertices
SPICE (also sparse)[ Zare and Gader, 2007] Extension of ICE with sparsity-promoting priors Medium
ORASIS [Bowles ct al,, 1997] Itratve procedure with sevral modules involving endmember selection, unmix- High
I libraries and spatial
Statistical TCA [Bayliss ct al,, 1997] Standard formulation to retrieve the miing matrix M. Assumes independence of Tow
(info. theory) the sources
DECA[Nascimento and Bioucas-Dias, 2007] Torces a mixture of Dirichlet densities as prior for the abundance fractions Tow
Statistical SVDD (also geometrical Hypersphere in kernel space, rejection ratio set to zero Tow
(machine learning) | [Broadwater et al., 2009]
ETHA [Grana et al, 2009] Taftice auto-assodative memorics + Mage segmentation High
Statistical BP/OMP [Pati et al, 2003] Greedy algorithm based on orthogonal basis pursuit Tow
(sparse models)
BPDN [Chen et al,, 2001] Basis pursuit algorithm with a relaxation to solve the BF7OMP problem Tow
ISMA [Rogge et al., 2006] Tteratively finds an optimal endmembers set by examining the change in RMSE Low

after ing the original scene using the estimated fractional abundance

8=12 Septembe 2014 |
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Let’s see the main differences

@ Several representative methods: 1) pure-pixel geometrical approaches
(IEA, VCA, PPI and NFINDR); 2) SISAL for geometrical minimum volume
approaches; 3) ICA for the information-theoretic-based methods; and 4)
SVDD target detection and EIHA for the machine learning based
approaches

@ Scores between estimated m and closest m endmember in the USGS db:
1

RMSE = \/N Zi:l(mf ] m,-)2

~T
SAM = acos(ﬂ)
([ [ [[m]]

siD(n,m) = 5, plog (2 ) + = piog (2), p=m/ 5 m

@ We will seek for p = 14 endmembers using all methods
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All methods achieve RMSE<O0.2, except for PPl and ICA
Similar trends are observed for SAM and SID

VCA outperformed the rest of the methods in accuracy (in all measures)
VCA showed very good computational efficiency, closely followed by
SVDD, SISAL and IEA

@ ICA does not work all (does not meet problem assumptions)

@ Very good performance of SVDD
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Estimated signatures are in general close to the laboratory spectra

Summary
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Linear standard models for estimation
@ The unconstrained least-squares problem is simply solved by
a=Mr=M"M)"'M"r
@ The sum-to-one constraint means that the LS problem is constrained by
>« =1, which can be solved via Lagrange multipliers
@ The non-negativity constraint is not as easy to address in closed-form

Linear advanced models for estimation
Harsanyi94 Nonnegative constrained least squares and fully constrained
least squares
Keener06 Minimum variance unbiased estimator (MVUE): under the
assumption of additive noise, n, with covariance, C,, the
minimum variance estimate of the abundances reduces to

a=M"C,'M)"'MTC e
Li04 use wavelet features to improve the linear estimation

Debba06 used derivative spectra in simulated annealing procedures

Chang06 uses a weighted abundance-constrained linear spectral mixture
analysis
Bioucasl0 reviews the field, including sparse LASSO regression
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Nonlinear models for estimation

@ An easy way to compensante the (strong) assumption of linear mixture
models

@ Several regression approaches available

Atkinson97 proposes multilayer perceptrons
Schowengerdt97 introduces nearest neighbor classifiers
Brown00 includes support vector machines for unmixing
Broadwater09 extends the NNCLS method to kernel space

@ A simple algorithm for doing nonlinear regression with kernels consists of
iterating the equations:

a= (KMM)™" [K(M,r) -]
A= K(M,r)— K(M,M)a,

where A is the Lagrange multiplier vector used to impose the
non-negativity constraints of the estimated abundances. Nevertheless, the
method does not incorporate the sum-to-one constraint. We refer to this
method as the Kernel NonNegativity Least Squares (KNNLS).




Abundances

Least Squares Abundance Estimation

UGS #138 UsGs 4387 UGS #126 UGS #247 UsGs 4321 UsGs #24

USGS #245. UsGS #1248 USGS #500 UsGs #3268 USGS #70 USGS #39 USGS #299

@ The obtained maps nicely resemble the available geological maps.

@ Linear and nonlinear methods yield similar results

@ The use of the KNNLS achieves more detailed description of the spatial
coverage (see e.g. minerals 386 and #245) or less noisy maps (see e.g.
minerals 126, #139, and £299)

@ KNNLS has two problems: 1) tuning of the o parameter for the kernels,
and 2) the sum-to-one constraint is met in a trivial way.




Kernel Least Squares Abundance Estimation

UsGS #138 UsGs 4387 UGS #126 UGS #247 uUsGs 4327 UsGs #24

UsGS #245 UGS #1248 USGS #500 UsGs #3268 USGS #70 USGS #39 USGS #299

@ The obtained maps nicely resemble the available geological maps.

@ Linear and nonlinear methods yield similar results

@ The use of the KNNLS achieves more detailed description of the spatial
coverage (see e.g. minerals 386 and #245) or less noisy maps (see e.g.
minerals 126, #139, and £299)

@ KNNLS has two problems: 1) tuning of the o parameter for the kernels,
and 2) the sum-to-one constraint is met in a trivial way.
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Recent years have witnessed advances in three main directions

Sparse models Spectral vectors can be expressed as linear combinations of a
very few pure spectral signatures obtained from a (potentially
very large) spectral library

Contextual information Inclusion of spatial information helps regularize the
solution as close-by pixels in the image should
correspond/identify similar elements

Nonlinear models more complex models of the mixture process are assumed:
nonlinear mixing holds when the light suffers multiple
scattering or interfering paths, which implies that the acquired
energy by the sensor results from the interaction with many
different materials at different levels or layers
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Sparse models:

Intuition/Motivation Spectral vectors can be expressed as linear combinations
of a very few pure spectral signatures obtained from a
(potentially very large) spectral library

Candes06,Donoho06,Blumensath09 Sparse reconstruction/compressive sensing:
A sparse signal is exactly recoverable from an underdetermined
linear system of equations in a computationally efficient
manner via convex,/non-convex programming

The linear sparse mixing model:

o A standard linear mixing model

r=Ma+n
@ Only some components of a are active, many shrink to zero!
@ The sparse unmixing problem: given r and M, find the sparsest solution:
min|lalle  s.t.  r=Ma
[e3

@ Nice idea: interpretable and compact solutions!

@ Problem: this is an NP-hard problem!
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Summary

Convex relaxation optimization strategies
Chen01 Basis Pursuit (BP)

moin||a|\1 s.t.  r=Ma«a
Chen01 BPDN - BP denoising
moinHaHl s.t.  |r=Me|2<§
Tibshirani96 (LASSO)
min ¢ — Ma? + Ao,

Approximation strategies
Jio8 Bayesian CS
Needell09 Matching Pursuit
Blumensath09 lterative Hard Thresholding (IHT)
Garg09 Gradient Descent Sparsification (GDS)
Foucart10 Hard Thresholding Pursuit (HTP)
Villal2 Message Passing (MP)
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Results on the USGS Cuprite dataset

Alunite [ Ehélééd&ﬁ!

g

200 400 600 800 1000 1200 1400 1600 1800 2000
o Bad news: Hyperspectral libraries have poor theoretical bounds of
recovery, i.e. low restricted isometric property (RIP)
@ Good news: Hyperspectral mixtures are highly sparse, very often p <5

@ Surprising fact: Convex programs (BP, BPDN, LASSO, ...) yield much
better empirical performance than non-convex state-of-the-art competitors

Credits: Figure from Bioucas-Dias12.
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Spatial information: Inclusion of spatial information helps regularize the
solution as closeby pixels in the image should correspond/identify similar
elements

Main approaches:

Zortea09 Spatial preprocessing (SPP)
estimates for each pixel a
spatially-derived factor to
weight relevance Hyperspectral

image

Plaza02 Automatic morphological

endmember extraction

endmember
setQ

(AMEE) algorithm for nif.i‘\‘;?g{i'ﬁ;, I e
spatial-spectral endmember T
extraction miw

Rogge07 spatial spectral endmember " e
extraction (SSEE) uses a xhacton J'
spatial averaging of nem =

spectrally similar
endmember candidates
found via singular value
decomposition (SVD)

Credits: Figure from Plazal3.
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Advances

All methods improve performance with spatial information, and there is an
optimal window

Algorithm ws=5 w
T G

(160 962 OSP | 4791 | 1862 1836 2656 2656 3538

9.04°
e Rety : fl": N-FINDR 0.652 0.570 0.548 0.645 0.725 0.545
SPP+N-FINDR 12.81° 8.33°
SPP+OSP 4.95° 4.16° VCA 0.744 0.608 0.385 0.451 0.768 0.785
SPP+VCA 12.42° 4.04°

ws =0|ws =3 ws =5 ws =9|ws =0

3 ws=5 ws=9|ws=0|ws=3 ws=5 ws=9

Alunite GDS84 767 1194 9.45 1045 1045

Alunite GDS82 800 6.52 726 726 687 1090 721 800 647 647
Alunite AL706 19.49 1640 19.49 14.73 1551 1640 18.59
Buddingtonite GDS§S | 10.17 1017 1017 1017 721 833 1017 1017 [ 1017 1017 1017 1017
Calcite WS272 1003 1003 1003 1003 | 948 1003 9.99 - 9.48 1044 1044 -

Kaolinite KGa-1 1022 1022 1022 1022 | 1022 1022 1022 1022 | 1970 1703 2283 1778
Muscovite GDS107 1106 1040 12.55 9.80 1118 12386 1282 1602 | 1008 1238 1338 1238
Muscovite GDS108 1007 1007 1022 9.90 979 9.79 941 991 12.78 929 13.04 980
Muscovite GDSI11 21.58 2158 1432 2158 | 1806 [ 2158 1671 1471 15.53 1344 1344 1539
Jarosite GDS99 19.22 18.37 2031 1622 | 1895 1622 2031 1479 | 1622 1953 1622 1548
Montmorillonite SWy-1 [ 10.68 828 695 695 1139 1260 9.53 728 1197 1743 1141 1848
Pyrophyllite PYSIA - - - 1379 - - - 218 | 2142 - 2142 2424
Chalcedony CU91-6A 777 805 777 9.94 1140 805 9.94 140 | 1239 1724 1119 353
Andradite GDS12 18.60 18.04 13.93 1804 | 1326 13.06 722 1183 731 1055 773 731
Dumortierite HS19038 | 11.95 10.19 127 896 1128 933 1127 138 | 1128 1125 1125 1128
Sphene HS189.38 - 5.20 844 844 905 734 859 12.05 813 520 507 679
Average 1261 1136 1142 1s2 | 1197 1141 1129 1266 | 1235 1291 1272 12.69

Credits: Figure from Plazal3.
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Nonlinear unmixing approaches consider either:
o A fully physically-based model requires inferring the spectral signatures
and material densities based on the radiative transfer theory
o Alternative machine learning (statistical) approaches (plus prior physical
constraints)
Main approaches:
Borel-Gerst94 A multilayer model that gives rise to an infinite sequence of
powers of products of reflectances
A second-order (bilinear approximation) is typically enough
Hapke81 Microscopic mixing model at the albedo level and not at the
reflectance level
Broadwater09 proposed alternatives with (physically-inspired) kernel methods
Halimill Generalized bilinear models to handle scattering effects, e.g.,
occurring in the multilayered scene
Guilfoyle01,Liu04,Altmannll,Licciardill Neural networks to nonlinearly reduce
dimensionality and find a sparse basis
Altmann12 Supervised nonlinear spectral unmixing using a post-nonlinear
mixing model
Heylen11,Heylen12 follows a similar approach to NFINDR: maximize the
simplex volume computed with geodesic measures on the data
manifold
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Moderate spatial resolution in hyperspectral images pose the mixing
problem

Pixels are no longer pure, but a mixture of endmembers

Linear and nonlinear mixture models can be adopted, yet the LMM
dominates
Many algorithmical approaches to find the purest/extreme pixels in the
image

o Geometrical (pure pixel or min-volume)

e Statistical (information theory or machine )
Three main steps to solve the problem

o Determine/estimate how many endmembers are there
o Find them
o Use them for prediction

Very active research topic, many novel approaches out there:

o Sparse regression models

Structured and collaborative regression
Spatial-spectral information

Prior knowledge and physics in the statistical models
Parallelization of algorithms for fast unmixing
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Part 5: Retrieval of biophysical parameters
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The problem:

@ Biophysical parameter retrieval is an essential step in modeling the
processes occurring on Earth and the interactions with the atmosphere

@ The analysis can be done at local or global scales by looking at
bio-geo-chemical cycles, atmospheric situations, ocean/river/ice states,
and vegetation dynamics [Lillesand08, Liang08, Rodgers00]

@ Land/vegetation parameters are difficult to estimate [Liang04, Liang08]
@ Main parameters: temperature, crop yield, biomass, leaf area coverage,
chlorophyll content [Liang04, Liang08]
The objective: Transform measurements into biophysical parameter estimates
The data:
o Input data: satellite/airborne spectra, in situ (field) radiometers, or
simulated spectra by RTMs

@ Output results: estimation of a bio/geo-physical parameter
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Satellite
H’ sensor

T &i,
Forward

modeling Inverse

modeling

- Biophysical
| /|4 parameters
\

@ Forward modeling: simulation of a database of reflectance spectra and
parmaters pairs

o Inverse modeling: numerical/statistical inversion of the models from
remote sensing data to estimate the parameters
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or
knowledge

@ Forward modeling: simulation of a database of pairs of reflectance
spectra and parameters

o Inverse modeling: numerical/statistical inversion of the models from
remote sensing data to estimate the parameters

ivetsity. of Valencia | Valencia
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Forward

Additional
variables
problem

Radiative

transfer \
Variables Observation Remote sensing
of interest configuration data

A 8 '
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Inverse algorithm
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P A

Prior
knowledge

@ The forward (or direct) problem involves radiative transfer models (RTMs)

@ Solving the inversion problem implies the design of algorithms that,
starting from the radiation acquired by the sensor, can give accurate
estimates of the variables of interest, thus ‘inverting’ the RTM
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The discrete forward model can be expressed as:
y=f(X,0)+n

@ y is a set of measurements (e.g. expected radiance)

o X is a matrix of state vectors that describe the system (e.g. the
parameters such as temperature or moisture)

@ 6 contains a set of controllable measurement conditions (e.g.
combinations of wavelength, viewing direction, time, Sun position, and
polarization)

@ n is an additive noise vector

o f(-) is a function which relates X with y

o f is typically considered to be nonlinear, smooth and continuous
The discrete inverse model is defined as:

X =gly,w)

where g(+) is a nonlinear function, parametrized by weights w that
approximates the measurement conditions, X, using a set of observations as
inputs, y
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Taxonomy of model inversion methods, three main families:
@ The statistical inversion models: parametric and non-parametric.

e Parametric models rely on physical knowledge of the problem and build
explicit parametrized expressions that relate a few spectral channels with
the bio-geo-physical parameter(s) of interest.

o Non-parametric models are adjusted to predict a variable of interest using a
training dataset of input-output data pairs.

@ Physical inversion models: try to reverse RTMs.

o After generating input-output (parameter-radiance) datasets, the problem
reduces to, given new spectra, searching for similar spectra in the dataset
and assigning the most plausible (‘closest’) parameter.

© Hybrid inversion models try to combine the previous approaches.
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Two main approaches:

@ Parametric regression: assume an explicit model for retrieval

Discrete band approaches (VIs) | Quasi-continuous spectral bands
2-band: SR, NDVI, PRI, OSAVI Red-edge position (REP)
3-band: TVI, MCARI, SIPI Integral/Derivative indices

> 4 — band: TCARI/OSAVI Continuum removal

@ Non-parametric regression: do not assume explicit feature relations

Linear nonparametric models

Stepwise multiple linear regression (SMLR)

Partial least squares regression (PLSR)

Ridge regression (RR)

Least Absolute Shrinkage and Selection Operator (LASSO)

Nonlinear nonparametric models

Decision trees, bagging and random forests
Neural networks

Kernel methods: SVR, RVM, KRR, GPR
Bayesian networks
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Literature review of parametric approaches, VI:

Jordan69,Liang04,Liang08 simple ratios

Rouse74
Gamon92
Rondeaux96
Broge01
Daughtry00
Haboudane02
Penuelas95
Haboudane02

Normalized difference vegetation index (NDVI)
Photochemical reflectance index (PRI)

Optimized soil adjusted vegetation index (OSAVI)
Triangular vegetation index (TVI)

Modified CabAbsorption in Reflectance Index (MCARI)
Transformed CARI (TCARI)

Structure Insensitive Pigment Index (SIPI)
Combination of indices, TCARI/OSAVI

Thenkabail00,LeMaire04,LeMaire08,Mariottol3 Quality assessment
Literature review of parametric approaches, quasi-continuous bands:
Baret92,Broge01,Clevers02 High-order curve fitting of the first derivative in the

Miller90
Guyot88
Dawson98
Baranoski05

red-edge

Inverted Gaussian models

Linear interpolation and extrapolation
Lagrangian interpolation

Rational function

Broge01,0ppelt04,Mutanga05,Malenovsky06,Delegido10 Integral-based indices
Sims02,Penuelas94,Elvidge95,Zarco-Tejada02,LeMaire04 Derivative-based indices

Clark84

Continuum removal for absorption features comparison
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Parametric approaches:

Weaknesses Strengths

@ Makes only poorly use of the available @ Simple and comprehensive regression
information within the spectral models; little knowledge of user
observation; at most a spectral subset required
is used. Therefore, they tend to be
more noise-sensitive as compared to
full-spectrum methods @ Computationally inexpensive

@ Fast in processing

@ Parametric regression puts boundary
conditions at level of chosen bands,
formulations and regression function.

@ Statistical function accounts for one
variable at the time.

@ A limited portability to different
measurement conditions or sensor
characteristics

@ No uncertainty estimates are provided.
Hence the quality of the output maps
remain unknown.

efsity of Valencia | Valencg
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2: Non-parametric regularized least squares linear regression
Inputs: X € R"™*?

Outputs: Y € R"™%%

Model: Y = XW

Functional:

W = min 1Y~ XW* -+ AW}

@ After deriving and setting to zero, W = (XT X + Aly) 7' XY

e Matlab:
>> [n d] = size(Xtrain);

>> W = inv(Xtrain’*Xtrain)*Xtrain*Ytrain;
>> W = pinv(Xtrain)*Ytrain;
>> W = inv(Xtrain’*Xtrain+lambda*eye(d))*Xtrain*Ytrain;

>> Ypred = Xtestx*W;
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2: Non-parametric regularized least squares kernel regression

@ Model: Y = dW4
@ Functional:
Wi = gin {I¥ — oWl AW}
@ Dual weights: A = (K + Al,)7'Y
@ Primal weights: wy, = ®TA
@ Decision function Y, = ®, Wy = K, .A
o Matlab:

>> [n d] = size(Xtrain); sigma=1; lambda=1;

>> K = kernelmatrix(’rbf’, Xtrain’,Xtrain’,sigma);

>> A = inv(Ktrain + lambda*eye(n))*Ytrain;

>> Ktest = kernelmatrix(’rbf’, Xtest’,Xtrain’,sigma);
>> Ypred = Ktestx*A;
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Literature review of linear nonparametric approaches
Yoder95,Fourty97,Bartholomeus12 Stepwise multiple linear regression (LR)
Liang08 Principal component regression (PCR)
Hansen02,Cho07,Darvishzadeh08,Ye08,Im09 Partial least squares regression (PLSR)
Addink07 ridge regression (RR)

Lazaridis11l Least Absolute Shrinkage and Selection Operator (LASSO)
Literature review of nonlinear nonparametric approaches
Im09,Im12,leMairell,Viedmal2,Hansen02 decision trees

CampsValls14 bagging and random forests

Jin97,Paruelo97,Francl97,Kimes99,Kavzoglu03,Huang04,Jensen12,CampsValls13
artificial neural networks

Arenasl2,Arenasl3,lzquierdol4 kernel feature extraction (KPLS, KOPLS)
CampsValls06,CampsValls10 relevance vector machines (RVM)

Yang01,CampsVallsO6 support vector regression (SVR)
Pengll,Wangll,CampsValls12 kernel ridge regression (KRR)

Verrelst11l,CampsValls12,Verrelst12,Lazarol3 Gaussian processes (GP) on Sentinel-2
data (KRR, GP)
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Non-parametric approaches:
Weaknesses Strengths
@ Training can be computational @ Can make use of all bands (full spectral

expensive.

@ They can create over-complex models
that do not generalize well from the
training data (overfitting).

@ Therefore, several regressors cannot be
trained with high number of samples.

@ Expert knowledge required, e.g. for
tuning. However, toolboxes exist that
automate some steps.

@ Most of them act as a black box.

@ Some regressors behave rather unstable
when applied to data that deviate from
statistically different from those used
for training.

information).

Build advanced, adaptive (nonlinear)
models.

Enables accurate and robust
performances.

Some methods cope well with
redundancy and noisy data.

@ Once trained, fast processing images.

@ Some of them (e.g. NN, decision trees)

can be trained with high numbers of
samples (e.g. > 10°).

Some methods provide insight in model
development (e.g. GPR: relevant
bands; decision trees: model structure).

Some methods provide uncertainty
intervals (e.g. GPR, KRR).
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How to measure goodness of a model?
Given two variables y; and y;, i=1,..., N

@ Error (residuals): ej = y; — i
@ Bias: mean error (ME):
1 -

ME = & SEvi— )

@ Accuracy:
1 . 1 A
RMSE =/ S —$)? MAE = N Sy lyi — il

Goodness-of-fit: Pearson’s correlation coefficient
o Matlab:

>> ME = mean(Labels-PrelLabels);

>> RMSE = sqrt(mean((Labels-PreLabels).?));

>> MAE = mean(abs(Labels-PreLabels));

>> r = corrcoef(Labels,Prelabels); R = r(1,2);
>> RESULTS = assessment(y,yhat, ’regress’)
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o Data: SPARC data set (2003, 2004; Barrax, Spain)
o Field data: Chl measured with CCM-200
o 30 additional bare soil samples
e CHRIS mode 1 (62 bands; 34m) nadir spectra
o Kernel ridge regression (and GPs) excel in predicting Chla-LAl-fCover
over many parametric indices
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o Data: SPARC data set (2003, 2004; Barrax, Spain)
o Field data: Chl measured with CCM-200
o 30 additional bare soil samples
e CHRIS mode 1 (62 bands; 34m) nadir spectra
@ Gaussian Processes also provide confidence intervals for the
predictions (e.g. to identify poorly-sampled areas)
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Motivation:

@ Statistical approaches may lack transferability, generality, and robustness
to new geographical areas

@ Physical models can fill in the gap for estimating bio-geo-chemical
structural state variables from spectra

Physically-based inversion:

@ Rely on well-established physical laws encoded in radiation transfer models
(RTMs), and a set of remote sensing measurements

@ Physically-sound approach to retrieve biophysical variables over terrestrial
surfaces because it is generally applicable [Dorigo07]

@ The advantage of physical models is that they can be coupled from lower
to higher levels (e.g. canopy level models build upon leaf models), thereby
providing a physically-based linkage between optical EO data and
biochemical or structural state variables
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RTMs in forward mode create a database (LUT) covering a wide range of
situations and configurations:

@ Sensitivity studies of canopy parameters relative to diverse observation
specifications

@ Improved understanding of the Earth Observation (EO) signal as well as to
an optimized instrument design of future EO systems

RTMs in inversion mode enables retrieving particular characteristics from
EO data:

@ The unique and explicit solution for a model inversion depends on the
number of free model parameters relative to the number of available
independent observations

@ A prerequisite for a successful inversion is therefore the choice of a
validated and appropriate RTM, which correctly represents the radiative
transfer within the observed target

@ When a unique solution is not achieved then more a priori information is
required to overcome the ill-posed problem
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Inversion of radiative transfer models

@ Inverting an RTMs means: given a spectra, find the closest spectra in the
database and return the corresponding parameter

@ Given a set of n data pairs generated by an RTM, {y, X},
min{[ly — £(X; 0)|°}

Two main approaches:

Jacquemoud95,Kuusk98,Zarco-Tejada01 Numerical optimization minimizes a
function that calculates the RMSE between the measured and
estimated quantities by successive input parameter iteration

Liang07 Look-up tables (LUT) precompute the model reflectance for a
large range of combinations of parameter values, so the
problem reduces to searching a LUT for the modeled
reflectance that most resembles the measured one
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Role of regularization:

Dorigo2009,Verrelst12c,Laurent2013 At a local scale, use of prior knowledge to
constrain model parameters per land cover class
At a global scale, the MODIS LAl inversion algorithm
constrains the structural and optical parameter space per biome

Richter2009,Combal2002,Koetz2005,Richter2011,Darvishzadeh2011 The use of
multiple best solutions in the inversion (instead of the single
best solution)

Richter2009,Koetz2005,Richter2011 The addition of Gaussian noise to account
for uncertainties attached to measurements and models.

Meroni2004,Fang05,Schlerf2005,Darvishzadeh2011 Improved performance
when only few well-chosen wavelengths are chosen for model
inversion

Atzberger2004,Atzberger2012 Spatial information
Koetz2005,Lauvernet2008 Temporal constraints
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At a global scale, the MODIS LAl inversion algorithm constrains the
structural and optical parameter space per biome:

Biome 1 Biome 2 Biome 3 Biome 4 Biome 5 Biome 6
NDVI LAl FPAR LAl FPAR LAl FPAR LAl FPAR LAl FPAR LAl FPAR

0025 0 ] 0 0 0 0 0 0 0 0 0 ]

0078 0 ] 0 ] 0 0 0 0 0 0 0 0

0.125 03199 0.1552 0.2663 0.1389 0.2452 (.132 02246 0.1179 0.1516 0.07028 0.1579 0.08407
0175 0431 02028 0.3456 0.1741 0.3432 0.1774 03035 0.1554 0.1973 0.08922 0.2239 0.1159
0.225 0.5437 0.2457 0.4357 0.2103 0.4451 0.2192 04452 0218 0.2686 0.1187 0324 0.1618
0.275 0.6574 0.2855 0.5213 (.2453 05463 0.2606 0.574 0271 03732 0.1619 04393 0.2121
0325 07827 0.3283 0.6057 0.2795 0.6621 0.3001 0.7378 03305 0.5034 02141 05620 0.2624
0.375 0931 03758 0.6951 03166 0.7813 1.3574 0878 0393 0.6475 02714 0.664 03028
0.425 1084 0.419 08028 0.3609 08868 L3977 1.015 0.4425 0.7641 032 0.7218 0.333

0475 1.229 0.4578 09313 04133 09978 0.4357 1.148 0.4830 0.9166 0.3842 0.8812 0.393

0,525 143 05045 1102 04735 1124 04754 1338 05315 1091 04402 1,086 0.4599
0575 1825 0571 131 0535 1268 05163 1.575 (15846 1,305 04922 1381 0.5407
0,625 2692 06718 1.598 06039 1474 0566 1956 0.6437 1683 0568 1,899 0.6458
0.675 4299 08022 1932 0666 1,739 06157 2535 0.6991 2636 0702 2575 0.7398
0,725 5362 08601 2466 07388 2.738 0.7197 4483 (.8336 3557 0.7852 3.298 08107
0.775 5903 08785 3426 0822 5349 08852 5605 08913 4761 08431 4042 08566
0825 6006 09 4638 (8722 6.062 09081 5777 08972 552 08697 5303 (8964
0875 6606 09 6328 09074 6543 09196 6.494 09169 6.091 (.8853 6.501 09195
0,925 6606 09 6328 09074 6543 09196 6494 09169 6.091 0.8853 6.501 09195
0.975 6606 0.9 6328 09074 6.543 09196 6.494 09169 6.091 08853 6.501 09195

Source: Myneni et al, (1999),

of Valencia | Valenc
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Physical approaches:
Weaknesses Strengths

@ Computational-expensive because
per-pixel based and therefore slow
(however solutions based on a priori
info have been developed)

@ Quality depends on quality RT models,
prior knowledge and regularization.

@ Quite complicated approach:
parametrization and optimization
required.

@ The imposed upper/lower boundaries in
the LUT had as a logical consequence
that estimated parameters could not go
beyond the imposed bounds. This
contradicts somewhat the physical
approach as the prior information has
an overwhelming influence

@ LUT-based inversion methods are often
strongly affected by noise and
measurement uncertainty

@ Reputation of physically-based
(however note influence of
regularization factors)

@ Generally and globally applicable (e.g.
MODIS)

@ Additional information about
uncertainty of the retrievals (e.g.
residuals).
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Hybrid inversion method:

@ The approach: combination of extensive simulations using a canopy RTM
model (physical) and a non-parametric statistical inversion model
(statistical)

@ Advantanges:

o Exploit the advantages of physically-based models and the flexibility and
computational efficiency of nonparametric nonlinear regression methods.

e Many possible combinations of RTMs and regression models

o Very efficient approach

@ Shortcomings:

o How many parameters?
o How many radiance-parameters do we need in the database?
e How to include regularization with noise-fre data?
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A hybrid approach for LAI estimation [Liang03]
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Automated Radiative Transfer Models Operator (ARTMO)
http://ipl.uv.es/artmo/

ARTNGD

ARTMO [v. 3.03]

Flo Modes Forward Tods Hep >

Project Description

Projct Name: [
Commert|
Fosema |
LT Goss by mp | LT i by User
File Models Forward Tools J Retrieval Help
Load Project Leaf 1 | Leaf Sensor. Spectral Indices User's manual
New Project Canopy 4 || canopy Graphics MLRA Installation guide
DB adminstration— — | |~ = | Spectral resample | | LUT-based Inversion | | Disclaimer
Settings B [ S—
Model inputs ¥
3 PROSPECT4
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Intro Statistical

ARTMO can automatize the whole process ...

Physical Hybrid
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ARTMO can automatize the whole process ...

Parametric regression:

Non-Parametric regression:
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Intro Statistical Physical Hybrid Summary

@ Biophysical parameter estimation is perharps the most important (and
challenging) problem in remote sensing

@ Hyperspectral sensors provide an unprecedented piece of information for
accurate estimation

@ Traditional methods were focused on simplistic approaches using only few
spectral bands

o New regression-based approaches alleviate the problems by exploiting the
wealth of spectral information
@ The common approaches consider:

e Empirical models (e.g. Vegetation indices) are easy, fast but too general

o Physical radiative transfer models are flexible but slow and require plant
specific information (e.g. geometry, background) which is not always
available

o Non-parametric regression may offer a robust alternative that can be easily
implemented in operative processing chains

@ Problem: Scalability to many data, high dimensionality!

@ Solution: Hybrid approaches + nonparametric sparse learning regression
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Some relevant books:
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Advanced
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The ISP Valencia Matlab Suite

http://isp.uv.es/soft.htm

HyperLabelMe coming soon

@ 50 /abeled multi/hyper images

@ An automatic system to
evaluate classification accuracy

y

SimpleR

o 10 state-of-the-art .
nonparametric regression

algorithms

@ Trees, boosting, bagging, neural

nets, kernel methods, Gaussian
processes, etc.

SimFEAT
@ 10 state-of-the-art feature
extraction methods

@ Linear and kernel methods:
(k)PCA, (k)MNF, (k)CCA,
(k)PLS, (k)OPLS, (k)KECA

SimpleClass

@ 10 state-of-the-art supervised
classifiers

@ Trees, bagging, random forest,
neural nets, SVMs, kernel
machines, GPC, etc.

Simple to use, open source, re-useable, free!

ity ‘of Valencia | Valen



Automated Radiative
Models Operator (ARTMO)

http://ipl.uv.es/artmo/

ARTNGD

ARTMO [v. 03]
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