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Motivation

Feature selection/extraction is essential before classi�cation or regression

High number of correlated features gives rise to:
- Collinearity
- Over�tting

Linear methods o�er interpretability ∼ knowledge discovery

Linear algorithms are commonly used: PCA, PLS, CCA, ...

Linear algorithms fail when data distributions are curved

Outline

PCA is widely used

PCA is not optimal for supervised problems

PLS is a good alternative to PCA, yet suboptimal in MSE sense

Orthonormalized PLS (OPLS) is optimal in MSE sense

Real problems typically show non-linear relations
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Notation preliminaries

Data {xi , yi}li=1, xi ∈ RN , yi ∈ RM .

Input Data Matrix X = [x1, . . . , xl ]
>

Label Matrix Y = [y1, . . . , yl ]
>

Number of projections np

Projected Inputs X′ = XU

Projected Outputs Y′ = YV

Projection matrices U (N × np), and V (M × np)

Covariance Cxy = E{(x− µx)(y − µy )} ∼ 1

l
X>Y

Frobenius norm of a matrix ‖A‖2F =
∑

ij a
2

ij
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Notation preliminaries

1 tr(AB) = tr(BA)

2 (AB)> = B>A>, (AB)−1 = B−1A−1

3

∂(a>b)

∂a
= b,

∂(b>a)

∂a
= b>

4 CV = VD −→ [V D] = eig(C);

5 C = UAV> −→ [U A V] = svd(C);

6 Orthogonal transform = rotation → U−1 = U>

7 Download matrixcookbook.pdf !
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Notation preliminaries

Imagine a classi�cation problem in which labels matter (a lot!)

�Blind� feature extraction is not a good choice.

Let's see what happens with di�erent methods ...
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Principal Component Analysis (PCA)

�Find projections that maximize the variance of the projected data�

PCA: maximize: Tr{‖XU‖2F} = Tr{(XU)>(XU)} = Tr{U>CxxU}
subject to: U>U = I

� Cxx = X'*X;

� [U D] = eigs(Cxx,np);

� Xproj = X*U;

PCA
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Partial Least Squares (PLS)

�Find directions of maximum input-output cross-covariance�

PLS: maximize: Tr{(XU)>(YV)} = Tr{U>CxyV}
subject to: U>U = V>V = I

� Cxy=X'*Y;

� [U D V] = svds(Cxy,np);

� Xproj = X*U;

PCA
PLS
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Orthonormalized Partial Least Squares (OPLS)

�Choose the projection matrix U that minimizes the MSE error ...�

OPLS: �nd: U = arg min{‖Y − X′W‖2F}
where: X′ = XU, W = (X′>X′)−1X′Y
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Orthonormalized Partial Least Squares (OPLS)

�... which can be rewritten as [Worsley98]:�

OPLS: maximize: Tr{U>CxyC
>
xyU}

subject to: U>CxxU = I

� Cxy=X'*Y;Cxx=X'*X;

� [U,D] = eigs((Cxy)*(Cxy'),Cxx,np);

� [U,D] = eigs(inv(Cxx)*(Cxy)*(Cxy'),np);

� Xproj = X*U;

PCA
PLS
OPLS
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Canonical Correlation Analysis (CCA)

Unlike PCA or PLS, CCA looks for directions of max I/O correlation:

CCA: u, v = arg max
u,v

(u>Cxyv)
2

u>Cxxu v>Cyyv

CCA(2): u, v = arg max
u,v

u
>
Cxyv

subject to: u
>
Cxxu = v

>
Cyyv = 1

CCA(3): U,V = arg max
U,V

Tr{U>CxyV}

subject to: U
>
CxxU = V

>
CyyV = I
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Canonical Correlation Analysis (CCA)

Unlike PCA or PLS, CCA looks for directions of max I/O correlation:

(
0 Cxy

C>xy 0

) u

v

 = λ

(
Cxx 0

0 Cyy

) u

v


� A = [0 Cxy; Cxy' 0]; B = [Cxx 0; 0 Cyy];

� [UV D] = eigs(A,B,np); u = UV(1:d/2,:);

� Xproj = X*u;

PCA
PLS
OPLS
CCA
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Minimum Noise Fraction (MNF)

�Maximize the signal-to-noise ratio of the projections:�

MNF: maximize: Tr

{
(XU)>(XU)

(NU)>(NU)

}
subject to: X = S+N, S>N = SN> = 0

� N=noise(X,10);

� [U,D] = eigs(X'*X,N'*N,np);

� Xproj = X*U;

PCA
PLS
OPLS
CCA
MNF
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Original data PCA
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Original data OPLS
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Kernel methods for non-linear feature extraction

1 Map the points in X to a higher dimensional space H:

X→ Φ

2 Express projection matrix U in H as a linear combination of mapped data

U = Φ>A

3 Replace the dot (scalar) products by a kernel function:

K = ΦΦ>

4 Express your new algorithm as a function of K and solve it for A
5 Compute projections

P(X∗) = Φ∗U = Φ∗ Φ>A = K(X∗,X)A
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Kernel Principal Component Analysis (KPCA)

�Find projections maximizing the variance of the projected data in H�
Apply the representer's theorem: U = Φ>A where A = [α1, . . . ,αn]

>

KPCA: maximize: Tr{A>KKA}
subject to: A>KA = I

Including Lagrange multipliers Λ, this problem is equivalent to

KKA = KΛA → KA = ΛA

� [A,L] = eigs(K,np);

� Xtestproj = K(Xtest,Xtrain)*A;
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Kernel Partial Least Squares (KPLS)

�Find projections for maximum input-output cross-covariance�

Apply the representer's theorem: U = Φ>A where A = [α1, . . . ,αn]
>

KPLS: maximize: Tr{U>Φ>YV}
subject to: U>U = V>V = I

Including Lagrange multipliers Λ, this problem is equivalent to(
0 KxY

YKx 0

)(
α
v

)
= λ

(
α
v

)
� [α V D] = svds(K ∗ Y , np);
� Xtestproj = K(Xtest,Xtrain) * α;
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Kernel Orthonormalized Partial Least Squares (KOPLS)

�Find optimal projections in MSE terms�

Apply the representer's theorem: U = Φ>A where A = [α1, . . . ,αn]
>

KOPLS: maximize: Tr{U>Φ>YY>ΦU}
subject to: U>Φ>ΦU = I

Including Lagrange multipliers Λ, this problem is equivalent to

KOPLS: maximize: Tr{A>KxKyKxA}
subject to: A>KxKxA = I

� M = Kx*Y*Y'*Kx; N = Kx*Kx;

� [A D] = eigs(M,N,np);

� Xtestproj = K(Xtest,Xtrain) * A;
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Kernel Canonical Correlation Analysis (KCCA)

�Find projections that maximize input-output correlation�

Apply the representer's theorem: U = Φ>A where A = [α1, . . . ,αn]
>

Including Lagrange multipliers Λ, this problem is equivalent to(
0 KxY

YKx 0

)(
a

v

)
= λ

(
KxKx 0

0 Cy

)(
a

v

)
� M = [0 Kx*Y;Y*Kx 0]; N = [Kx*Kx 0;0 Cyy];

� [AV D] = eigs(M,N,np);

� a = AV(1:n/2,:);

� Xtestproj = K(Xtest,Xtrain) * a;
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Kernel Minimum Noise Fraction (KMNF)

�Find projections that maximize SNR in H�
Apply the representer's theorem: U = Φ>A where A = [α1, . . . ,αn]

>

Including Lagrange multipliers Λ, this problem is equivalent to

KMNF: maximize: Tr

{
A>K2A

A>KxnKxnA

}
subject to: A>KxnKxnA = I

� Kxx=kernel('rbf',X,X,sigma);

� Kxx=kernelcentering(Kxx);

� N=noise(X,10);

� Kxn=kernel('rbf',X,N,sigma);

� Kxn=kernelcentering(Kxn);

� [A D] = eigs(Kxx*Kxx',Kxn*Kxn',np);

� Xtestproj = K(Xtest,Xtrain) * A;
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Kernel Entropy Components Analysis (KECA)

�Find projections with maximum entropy in H�
Apply the representer's theorem: U = Φ>A where A = [α1, . . . ,αn]

>

Including Lagrange multipliers Λ, this problem is equivalent to

KECA: K = ADA> s.t. maximum Rényi entropy of ΦU

� K = kernel('rbf',X,X,sigma);

� [A,D] = eigs(K);

� lambda = diag(D);

� d=size(A,1);

� for t=1:size(A,2)

m(t)=lambda(t)*(A(:,t)'*ones(d,1))2;
end

� [val,ind] = sort(m,'descend');

� A = A(:,ind);

� Xtestproj = K(Xtest,Xtrain) * A;
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An illustrative example (cont'd)

Original data PCA
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An illustrative example (cont'd)

Original data OPLS
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An illustrative example (cont'd)

Original data KPCA
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An illustrative example (cont'd)

Original data KOPLS
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Figura: Projections by di�erent methods in a three-class problem. For the �rst
projection of each method, we show its variance (var), the mean-square-error when the
projected data XU are used to approximate Y (mse), and the largest covariance (cov)
and correlation (corr) that can be achieved with any linear projection of the target
data.
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Conclusions

De�ned the most useful linear and kernel methods for feature extraction

KPCA is useful in unsupervised learning or as pre-processor

An excellent alternative to supervised methods is KPLS

KOPLS is optimal in the MSE sense

KCCA optimizes correlation but strong regularization needed

Major problem: non-sparse computationally demanding methods
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Notes on kernel methods ...

Centering data in kernel feature spaces is typically assumed

K← HKH

where Hij = δij − 1

l
, δij = 1 if i = j , and zero otherwise.

� H = eye(l)-1/l*ones(l,l);

� K = H*K*H;

Estimate the sigma value for the RBF kernel
� sigma = mean(pdist(X));

� sigma = median(pdist(X));

Plot the empirical mapping
� K = kernel('rbf',X,X,sigma);

� [V D] = eig(K); % K=PHI*PHI'=V*D*V';

� PHI = V*D1/2;

� plot(PHI(:,1),PHI(:,2),'ko');

� plot3(PHI(:,1),PHI(:,2),PHI(:,3),'ko');
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� cd methods

� ls

cca.m kcca.m keca.m kmnf.m kopls.m

kpca.m kpls.m mnf.m opls.m pca.m pls.m

� help kcca

� np = 10;

� U = pca(X,np); % a linear unsupervised method

� U = pls(X,Y,np); % a linear supervised method

� A = kpca(X,np); % a kernel unsupervised method

� A = kopls(X,Y,np); % a kernel supervised method

� U,A: struct!



Intro Linear projections Kernel projections Summary Conclusions SIMFEAT

� Xprojtest = Xtest*U.basis;

� Xprojtest = kernel('rbf',Xtest,X,sigma) * A.basis;

� cd ..

� Ypred = predict(Y,Xtest,U,np);

� Ypred = predict(Y,Xtest,A,np);

� cd tools

� ls

� binarize.m gen_eig.m kernel.m

� plotFeatures.m plotKernelFeatures.m figures.m

estimateSigma.m generate_toydata.m noise.m

kernelcentering.m predict.m

� simfeat


