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The organization of the course:

1 Fundamentals of kernel methods

2 Supervised and unsupervised kernel-based classification

3 Kernel methods for regression and time series analysis

4 Nonlinear feature extraction with kernels <<<
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Motivation

Feature selection/extraction is essential before classification or regression

High number of correlated features leads to:
- Collinearity
- Overfitting
- Hughes phenomenon

Linear methods offer Interpretability ∼ knowledge discovery.

Linear algorithms are commonly used: PCA, PLS, CCA, ...

Linear algorithms fail when data distributions are curved (nonlinear feature
relations)

Outline

PCA is widely used

PCA is not optimal in supervised problems: PLS is very good here

PLS is suboptimal in the mean-square-error sense

Orthonormalized PLS (OPLS) is optimal in MSE sense (Roweis† , 1999)

Unfortunately, real problems are commonly non-linear → Kernels methods
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Notation preliminaries

Notation

Data {xi , yi}li=1, xi ∈ RN , yi ∈ RM .
Input Data Matrix X = [x1, . . . , xl ]

>

Label Matrix Y = [y1, . . . , yl ]
>

Number of projections np

Projected Inputs X′ = XU
Projected Outputs Y′ = YV
Projection matrices U (N × np), and V (M × np)
Covariance Cxy = E{(x− µx )(y − µy )} ∼ 1

l
X>Y

Frobenius norm of a matrix ‖A‖2
F =

P
ij a2

ij
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Linear feature extraction

Toy example

Imagine a classification problem in which labels matter (a lot!).

“Blind” feature extraction is not a good choice.

Let’s see what happens with different methods ...
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Linear feature extraction

Principal Component Analysis (PCA)

“Find projections maximizing the variance of the data:”

PCA: maximize: Tr{(XU)>(XU)} = Tr{U>CxxU}
subject to: U>U = I

>> [U D] = eig(C); [Prove it!]

>> opts.disp = 0; Nf=3; [U D] = eigs(C,Nf,’LM’,opts);
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Linear feature extraction

Partial Least Squares (PLS)

“Find directions of maximum covariance between the projected input and
output data:”

PLS: maximize: Tr{(XU)>(YV)} = Tr{U>Cxy V}
subject to: U>U = V>V = I

>> [U Sx Dx] = svds(X’*Y,Nf);[Prove it!]
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Linear feature extraction

Canonical correlation analysis (CCA), Hotelling (1936)

Unlike PCA or PLS, CCA looks for directions of max I/O correlation:

CCA: u, v = arg max
u,v

(u>Cxy v)2

u>Cxxu v>Cyy v

This is invariant to a scaling of the projection vectors u and v, so ...

CCA(2): u, v = arg max
u,v

u>Cxy v

subject to: u>Cxxu = v>Cyy v = 1

CCA in terms of the complete projection matrices U and V:

CCA(3): U,V = arg max
U,V

Tr{U>Cxy V}

subject to: U>CxxU = V>Cyy V = I

Introducing Lagrange multipliers ...„
0 Cxy

C>xy 0

«
( uv ) = λ

“
Cxx 0
0 Cyy

”
( uv )

>> A = [0 Cxy;Cxy’ 0]; B = [Cxx 0;0 Cyy]; [UV D] = eig(A,B);
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Linear feature extraction

Orthonormalized Partial Least Squares (OPLS)

“OPLS chooses the projection U to make X′ the best approximation to X
in a reduced dimensionality space:”

OPLS: find: U = arg min{‖Y − X′W‖2
F}

where: W = (X′>X′)−1X′Y
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Linear feature extraction

Orthonormalized Partial Least Squares (OPLS)

“... which can be rewritten as [Worsley98]:”

OPLS: maximize: Tr{U>Cxy C>xy U}
subject to: U>CxxU = I

>> [U,D] = eig((X’*Y)*(Y’*X),X’*X);[Prove it!]

>> [U,D] = eig(inv(X’*X)*(X’*Y)*(Y’*X));[Prove it!]
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Remarks

Remarks on linear feature extraction for supervised problems

Feature extraction is important for understanding and processing
(classification and regression)

Labels must play an important role in feature extraction

Traditional PCA fails since labels are obviated
Traditional PLS does a good, yet suboptimal, job

Orthonormalized PLS excels in linear feature extraction

Optimality:
PCA is optimal for reconstruction error
CCA is optimal for maximizing correlation with output
PLS is optimal for maximizing covariance with output
OPLS is optimal for minimizing MSE
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Linear vs. Non-linear feature extraction

Linear feature extraction. Advantages

Simplicity.

Easy to understand.

Leads to convex optimization problems.

Linear feature extraction. Drawbacks

Unsuitable for non-linear problems

More dimensions than points?
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Linear vs. Non-linear feature extraction

Original data PCA
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Linear vs. Non-linear feature extraction

Original data OPLS
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Kernel methods for non-linear feature extraction

Kernel methods

Input features space Kernel feature space

Φ

1 Map the data to an ∞-dimensional feature spaces, H.
2 Solve a linear problem there.

Kernel trick

No need to know ∞ coordinates for each mapped sample φ(xi )

Kernel trick: “if an algorithm can be expressed in the form of dot
products, its non-linear (kernel) version only needs the dot products
among mapped samples, the so-called kernel function:”

K(xi , xj) = 〈φ(xi ),φ(xj)〉

Using this trick, we can implement K-PCA, K-PLS, K-OPLS, etc.
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Kerneling PCA ...

Principal Component Analysis (PCA)

“Find projections maximizing the variance of the data:”

PCA: maximize: Tr{(XU)>(XU)} = Tr{U>CxxU}
subject to: U>U = I

Including Lagrange multipliers λ, this problem is equivalent to
CxxU = λU

>> [U lambda] = eig(C);
>> [U lambda] = eigs(C,p);
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Kerneling PCA ...

Kernel Principal Component Analysis (KPCA)

“Find projections maximizing the variance of the mapped data:”

KPCA: maximize: Tr{(ΦU)>(ΦU)} = Tr{U>Φ̃
>

Φ̃U}
subject to: U>U = I

The term Φ̃
>

Φ̃ is dH × dH !!!

Kernel Principal Component Analysis

Apply the representer’s theorem: U = Φ̃
>

A where A = [α1, . . . ,αn]>

“Find projections maximizing the variance of the mapped data:”

KPCA (2): maximize: Tr{A>KxKxA}
subject to: A>KxA = I

Including Lagrange multipliers λ, this problem is equivalent to

KxKxα = λKxα→ Kxα = λα
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Problem 1: the intrinsic dimensionality

Choosing the kernel and its parameter(s)

Choosing the number of eigenvectors

ON RELEVANT DIMENSIONS IN KERNEL FEATURE SPACES
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(a) The training data set.
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(b) Contributions of kernel PCA components.

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

number of kernel PCA components

pr
ed

ic
tio

n 
er

ro
rs

 (
%

)

 

 

training error
test error

(c) Training and test errors using only leading kernel PCA
components.
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(d) The solution on the test data set.

Figure 1: A more complex example (resample 1 of the “banana” data set, see Section A). This time,
the information is not contained in a single component. Nevertheless, the test error of a
hyperplane learned using only the first d components has a clear minimum at d = 34 at
optimal error rate (cf. Table 3), showing that the relevant information is contained in the
leading 34 directions.

more thoroughly why and when this effect occurs, and to estimate the dimensionality of a concrete
data set given a kernel.

Our claim—that the relevant information about a learning problem is contained in the space
spanned by the leading kernel PCA components—is similar to the idea that the information about
the learning problem is contained in the kernel PCA components with the largest contributions.
However, our results show that the magnitude of the contribution of a kernel PCA component to
the label information is only partially indicative of the relevance of that component. Instead, we
show that the leading kernel PCA components (sorted by corresponding principal value) contain

1877

34 / 63



Intro LFE KPCA KSNR KPLS Conclusions

Problem 2: Finding preimages

“Given a point in H, find the corresponding point in X”

For many points in the feature space there is no exact pre-image in the
input space

Inverting the mapping φ is an ill-posed problem

Some relaxed solutions exist.
1518 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 6, NOVEMBER 2004

Fig. 1.Pre-image problem in kernel PCA.

where is the kernel matrix with entries

(1)

is the centering matrix, is the identity matrix,
is an vector, with

is the matrix containing the eigenvec-
tors and contains the corresponding
eigenvalues. Denote the mean of the -mapped patterns by

and define the “centered” map as

The th orthonormal eigenvector of the covariance matrix in the
feature space can then be shown to be [8]

where . Denote the projection
of the -image of a pattern onto the th component by .
Then

(2)

where

and . Denote

(3)

then (2) can be written more compactly as .
Finally, the projection of onto the subspace
spanned by the first eigenvectors3 is

(4)

where is symmetric.

B. Iterative Scheme for Finding the Pre-Image

As is in the feature space, we have to find its
pre-image in order to recover the denoised pattern (Fig. 1).
As mentioned in Section I, the exact pre-image may not even
exist, and so we can only recover an where .
Mika et al. addressed this problem by minimizing the squared
distance between and [1]

(5)

where includes terms independent of . This, however, is a
nonlinear optimization problem. As mentioned in Section I, it
will be plagued by the problem of local minimum and is sensi-
tive to the initial guess of .

For particular choices of kernels, such as Gaussian kernels of
the form , this nonlinear optimiza-
tion can be solved by a fixed-point iteration method. On setting
the derivative of (5) to zero, the following iteration formula is
obtained:

(6)

3For simplicity, P '(x) will often be denoted as P'(x) in the sequel.
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Problem 2: Finding preimages

Mika99: ‘minimize the feature space distance ‖φ(x̂)− Pϕ(x)‖’
Iterative procedure, very computationally demanding
local minimum
inestable solutions

Kwok04: ‘constrain input distances by computing neighbor dist. in H’

KWOK AND TSANG: THE PRE-IMAGE PROBLEM IN KERNEL METHODS 1519

Fig. 2. Basic idea of the proposed method.

Here4, and .
However, as mentioned in [1], this iteration scheme is numer-
ically unstable and one has to try a number of initial guesses
for .

Notice from (6), that the pre-image obtained is in the span of
’s. Besides, because of the exponential ,

the contributions of ’s typically drop rapidly with increasing
distance from the pre-image. These observations will be useful
in Sections III-B and C.

III. FINDING THE PRE-IMAGE BASED ON

DISTANCE CONSTRAINTS

For any two points and in the input space, we can ob-
tain their Euclidean distance . Analogously, we can
also obtain the feature-space distance between
their -mapped images. Moreover, for many commonly used
kernels, there is a simple relationship5 between and

[11]. between and
[11]. The idea of the proposed method is then as follows (Fig. 2).
Let the pattern to be denoised be . As mentioned in Section I,
the corresponding will be projected to in the fea-
ture space. For each training pattern , this will be
at a distance from each in the feature
space. Using the distance relationship mentioned above, we can
obtain the corresponding input-space distance between the de-
sired pre-image and each of the ’s. Now, in MDS6 [12], one
attempts to find a representation of the objects that preserves
the dissimilarities between each pair of them. Here, we will
use this MDS idea to embed back to the input space.
When the exact pre-image exists, it would have exactly satis-
fied these input-space distance constraints.7 In cases where the
exact pre-image does not exist, we will require the approximate
pre-image to satisfy these constraints approximately (to be more
precise, in the least-square sense).

Notice that instead of finding the pre-image of in
kernel PCA, this procedure can also be used to find the pre-
image of any feature vector in the feature space. For example,

4The apparent difference with the equations in [1] is because we explicitly
perform centering of the '-mapped patterns here.

5An analogous relationship between the dot product in the feature space and
the dot product in the input space is first pointed out in [14].

6Interested readers may also refer to [12] for a connection between PCA and
MDS, and to [11] for a connection between kernel PCA and kernel MDS.

7One can visualize these x ’s as range sensors (or global positioning system
satellites) that help to pinpoint the location of an object (i.e., the pre-image).

we can use this to find the pre-images of the cluster centroids ob-
tained from some kernel clustering algorithm, as will be demon-
strated in Section IV.

The following sections describe these steps in more detail.
Computation of the feature-space distances is
described in Section III-A. Section III-B uses the distance rela-
tionship to obtain the corresponding distances in the input space.
Section III-C uses these distances to constrain the final embed-
ding of the pre-image.

A. Distances in the Feature Space

For any two patterns and , the squared feature-space dis-
tance between the projection and is given by:

(7)

Now, from (3) and (4), we have

and

(8)
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precise, in the least-square sense).

Notice that instead of finding the pre-image of in
kernel PCA, this procedure can also be used to find the pre-
image of any feature vector in the feature space. For example,

4The apparent difference with the equations in [1] is because we explicitly
perform centering of the '-mapped patterns here.

5An analogous relationship between the dot product in the feature space and
the dot product in the input space is first pointed out in [14].

6Interested readers may also refer to [12] for a connection between PCA and
MDS, and to [11] for a connection between kernel PCA and kernel MDS.

7One can visualize these x ’s as range sensors (or global positioning system
satellites) that help to pinpoint the location of an object (i.e., the pre-image).

we can use this to find the pre-images of the cluster centroids ob-
tained from some kernel clustering algorithm, as will be demon-
strated in Section IV.

The following sections describe these steps in more detail.
Computation of the feature-space distances is
described in Section III-A. Section III-B uses the distance rela-
tionship to obtain the corresponding distances in the input space.
Section III-C uses these distances to constrain the final embed-
ding of the pre-image.

A. Distances in the Feature Space

For any two patterns and , the squared feature-space dis-
tance between the projection and is given by:

(7)

Now, from (3) and (4), we have

and

(8)
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Problem 2: Finding preimages

Results (Gaussian kernel)
• noisy image; (300 training images) Mika et al. ; proposed method;

(60 training images) Mika et al. ; proposed method

number of σ2 SNR
training images noisy images our method Mika et al.

300 0.25 2.32 6.36 5.90
0.3 1.72 6.24 5.60
0.4 0.91 5.89 5.17
0.5 0.32 5.58 4.86

60 0.25 2.32 4.64 4.50
0.3 1.72 4.56 4.39
0.4 0.90 4.41 4.19
0.5 0.35 4.29 4.06

The Pre-Image Problem in Kernel Methods ICML-2003 14
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Experiment 1: Image denoising

PCA (seefor instance[3]). Training is doneby conjugategradientdescent.In all algo-
rithms, parametervalueswereselectedsuchthat the bestpossiblede-noisingresultwas
obtained.Thefigureshows thaton theclosedsquareproblem,kernelPCA does(subjec-
tively) best,followedby principalcurvesandthenonlinearautoencoder;linearPCA fails
completely. However, notethatall algorithmsexceptfor kernelPCA actuallyprovide an
explicit one-dimensionalparameterizationof thedata,whereaskernelPCA only provides
uswith a meansof mappingpointsto their de-noisedversions(in this case,we usedfour
kernelPCA features,andhenceobtaina four-dimensionalparameterization).

kernelPCA nonlinearautoencoder PrincipalCurves linearPCA

Figure1: De-noisingin
�
-d (seetext). Depictedare the dataset (small points)and its

de-noisedversion(big points, joining up to solid lines). For linear PCA, we usedone
componentfor reconstruction,asusingtwo components,reconstructionis perfectandthus
doesnot de-noise. Note that all algorithmsexcept for our approachhave problemsin
capturingthecircularstructurein thebottomexample.

USPSexample: To testour approachon real-world data,we alsoappliedthe algorithm
to the USPSdatabaseof

�^´%µ
-dimensionalhandwrittendigits. For eachof the ten digits,

we randomlychose ¶ T�T examplesfrom the training set and
´ T

examplesfrom the test
set. We used(10) and Gaussiankernelswith

M�� T � ´ T
, equalingtwice the averageof

the data’s variancein eachdimensions.In figure 4, we give two possibledepictionsof

Figure2: Visualizationof Eigenvectors(see
text). Depictedarethe

� ¯ �������F�·�%¸ -th Eigen-
vector(from left to right). First row: linear
PCA,secondandthird row: differentvisual-
izationsfor kernelPCA.

the Eigenvectorsfound by kernelPCA, comparedto thosefound by linear PCA for the
USPSset. The secondrow shows the approximatepre-imagesof the Eigenvectors

V �
,�]��� ¯ �������F�·�%¸ , found by our algorithm. In the third row eachimageis computedas

follows: Pixel ¹ is theprojectionof the 0 -imageof the ¹ -th canonicalbasisvectorin input
spaceontothecorrespondingEigenvectorin featuresspace(upperleft 0 ��º ` &�? V � , lower
right 0 ��º K;»'¼ &+? V � ). In thelinearcase,bothmethodswouldsimplyyield theEigenvectors
of linearPCAdepictedin thefirst row; in thissense,they maybeconsideredasgeneralized
Eigenvectorsin input space.We seethatthefirst Eigenvectorsarealmostidentical(except
for signs).But we alsosee,thatEigenvectorsin linearPCA startto concentrateon high-
frequency structuresalreadyat smallerEigenvaluesize. To understandthis, notethat in
linearPCAweonly haveamaximumnumberof

��´�µ
Eigenvectors,contraryto kernelPCA

which givesus thenumberof trainingexamples(here ¶ T^T�T ) possibleEigenvectors.This
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Experiment 1: Image denoising

Gaussiannoise ‘speckle’noise
orig.

noisy

. �	�¾
��µ
µ�¾
��´�µ

. �	�¾
��µ
µ�¾
��´�µ

Figure4: De-Noisingof USPSdata(seetext). Theleft half shows: top: thefirst occurrence
of eachdigit in thetestset,secondrow: theupperdigit with additiveGaussiannoise( ° �T �9´

), following five rows: the reconstructionfor linear PCA using . �����'¾�����µq�;µ%¾��·��´�µ
components,and, last five rows: the resultsof our approachusing the samenumberof
components.In the right half we show the samebut for ‘speckle’ noisewith probability½ � T � ¾ .
(ii) whetherthereis amoreefficientway to solveeither(6) or (8), and(iii) thecomparison
(andconnection)to alternativenonlinearde-noisingmethods(cf. [5]).

References

[1] B. Boser, I. Guyon,andV.N. Vapnik. A training algorithmfor optimalmargin clas-
sifiers. In D. Haussler, editor, Proc. COLT, pages144–152,Pittsburgh, 1992.ACM
Press.

[2] C.J.C.Burges.Simplifiedsupportvectordecisionrules.In L. Saitta,editor, Prooceed-
ings,13thICML, pages71–77,SanMateo,CA, 1996.

[3] K.I. DiamantarasandS.Y. Kung. Principal ComponentNeural Networks. Wiley, New
York, 1996.

[4] T. HastieandW. Stuetzle.Principalcurves.JASA, 84:502–516,1989.

[5] S. Mallat andZ. Zhang. MatchingPursuitswith time-frequency dictionaries. IEEE
TransactionsonSignalProcessing, 41(12):3397–3415, December1993.

[6] S.Saitoh.Theoryof ReproducingKernelsandits Applications. LongmanScientific&
Technical,Harlow, England,1988.
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Experiment 2: Image superresolution

Example – Image Superresolution

Collect high-res face
images
Use KPCA with
RBF-kernel to learn
non-linear subspaces
For new low-res
image:

I scale to target
high resolution

I project to closest
point in face
subspace

reconstruction in r dimensions

[Kim, Jung, Kim, "Face recognition using kernel principal component analysis", Signal Processing Letters, 2002.]
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Signal and noise

Signal vs noise

Signal: magnitude generated by an inaccesible system, sk

Noise: magnitude generated by the medium corrupting the signal, nk

Observation: signal corrupted by noise, xk = sk + nk , k = 1, . . . , n

Separating signal from noise

Eigenvalue perspective: the noise is in the low eigenvalues

Feature extractors
PCA: retain the eigenvectors with higher eigenvalues
ICA: find the non-orthogonal projection of the signal with maximal
independent axes
PLS: find projections maximally aligned with the labels

Many feature extractors have been kernelized ...

... but all of them disregard the noise characteristics!
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Signal-to-noise ratio transformation

Notation

Observation: xi ∈ RN , i = 1, . . . , n

Additive noise model: xi = si + ni

Matrix notation: X = S + N, X ∈ Rn×N .

The SNR transformation

Define a linear transform Ψ such that maximizes the SNR:

SNR = max
Ψ 6=0

‖SΨ‖2

‖NΨ‖2
≈ max

Ψ6=0

‖XΨ‖2

‖NΨ‖2
,

Assumed that signal and noise are mutually orthogonal:

S>N = 0,N>S = 0

This is equivalent to solving the generalized eigenproblem:

X>XΨ = µN>NΨ

We only need to estimate the signal covariance, Cxx = X>X, and the noise
covariance, Cnn ≈ N>N.
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Signal-to-noise ratio transformation

The noise covariance estimation

Assume stationary processes in wide sense:

Differentiation: ni ≈ xi − xi−1

Smoothing filtering: ni ≈ xi − 1
M

PM
k=1 akxi−k

Wiener estimates
Wavelet domain estimates
....

The MatLab SNR code

>> X = standardize(X);

>> N = diff(X);

>> [V D] = eig(X’*X,N’*N);
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Standard kernelization

KSNR through kernel trick

Replace X ∈ Rn×N with Φ ∈ Rn×NH

Replace N ∈ Rn×N with ΦN ∈ Rn×NG

Φ>ΦΨ = µΦ>N ΦNΨ,

Not solvable in its present form given the inaccessibility and high
dimensionality of the involved matrices, NH × NH and NG × NG .

Left multiply both sides by Φ, and use representer’s theorem, Ψ = Φ>L:

K2L = µKNK>N L,

where
K = ΦΦ> has elements K(xi , xj )

K = ΦΦ>N has elements KN(xi , nj )

Easy and simple to program!

Potentially useful when signal and noise are nonlinearly related: occlusion,
strips, saturation, etc.

Two critical parameters to estimate!
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Standard kernelization

The MatLab KSNR code

>> X = standardize(X);

>> sigma1 = estimateSigma(X,X);

>> Ks = kernelmatrix(’rbf’,X,X,sigma1);

>> Ksc = centering(Ks);

>> N = diff(X);

>> sigma2 = estimateSigma(X,N);

>> Kn = kernelmatrix(’rbf’,X,N,sigma2);

>> Knc = centering(Kn);

>> [V D] = eig(Ksc*Ksc,Knc*Knc’);
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Results in unsupervised change detection

RGB data from the DLR 3K camera system

3 cameras (16 Megapix) mounted in a plane

Speed: 3 Hz.

Two images acquired 0.7 seconds apart cover a busy motorway

Changes dominated by car movement

Additional changes: aircraft movement and different viewing angles
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This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, AUGUST 2010 23

(a) Time point one.

(b) Time point two.

Fig. 1. DLR 3K camera images as RGB acquired 0.7 seconds apart; note the movements of the cars on the motorway.
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Fig. 2. DLR 3K camera simple difference image as RGB.
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(a) kPCA.
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(b) kMAF.

Fig. 3. Scatterplots and histograms of the first three kernel PCs (a) and kernel MAFs (b), DLR 3K data.
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Results in unsupervised change detection
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Fig. 2. DLR 3K camera simple difference image as RGB.
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Fig. 3. Scatterplots and histograms of the first three kernel PCs (a) and kernel MAFs (b), DLR 3K data.
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Results in unsupervised change detection
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(a) kPC1, kPC2, kPC3.

(b) kMAF1, kMAF2, kMAF3.

Fig. 4. Kernel principal components 1–3 (a) and kernel maximum autocorrelation factors 1–3 (b), of the three simple difference

images as RGB. All bands are stretched linearly between mean (which is zero) minus and plus three standard deviations.
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Fig. 4. Kernel principal components 1–3 (a) and kernel maximum autocorrelation factors 1–3 (b), of the three simple difference

images as RGB. All bands are stretched linearly between mean (which is zero) minus and plus three standard deviations.
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Objectives

Optimality: We focus on the OPLS.

Kernelization: We present the Kernel Orthonormalized PLS (KOPLS).

Scalability: We also make the method algorithmically feasible.

We analyze and characterize the method:
1 Theoretically:

Computational cost.
Memory.
Number of projections.

2 Experimentally:
Toy examples.
Remote Sensing image classification.
Biophysical parameter estimation.
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Kernel PLS

Notation

Data {φ(xi ), yi}li=1
Mapping φ(x) : RN →H
Mapped inputs matrix Φ = [φ(x1), . . . , φ(xl )]>

Output matrix Y = [y1, . . . , yl ]
>

Number of projections np

Projections of Mapped Inputs Φ′ = ΦU
Projections of Outputs Y′ = YV
Projection matrices U (dim(H)× np), and V (M × np)

Formulation

“The objective of KPLS is to find directions for maximum covariance:”

KPLS: maximize: Tr{U>Φ̃
>

ỸV}
subject to: U>U = V>V = I

where Φ̃ and Ỹ are centered versions of Φ and Y, respectively.

Only a matrix of inner products of the patterns in H is needed (Shawe-Taylor,

2004).
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Kernel Orthonormalized PLS

Formulation of the KOPLS

“The objective of KOPLS is:”

KOPLS: maximize: Tr{U>Φ̃
>

ỸỸ>Φ̃U}
subject to: U>Φ̃

>
Φ̃U = I

The features derived from KOPLS are optimal (in the MSE sense).

Kernel trick for the KOPLS

All projection vectors (the columns of U) can be expressed as a linear

combination of the training data, U = Φ̃
>

A.

The maximization problem is reformulated as:

KOPLS: maximize: Tr{A>HxHy HxA}
subject to: A>HxHxA = I

Centered kernel matrices: Hx = Φ̃Φ̃
>

and Hy = ỸỸ>.

This is a generalized eigenproblem: HxHy Hxα = λHxHxα

Hx and Hy can be approximated without computing and storing the whole
matrices.
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An illustrative example (cont’d)

Original data PCA
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An illustrative example (cont’d)

Original data OPLS
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An illustrative example (cont’d)

Original data KPCA

55 / 63



Intro LFE KPCA KSNR KPLS Conclusions

An illustrative example (cont’d)

Original data KOPLS
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Remarks

Remarks on non-linear feature extraction

Linear methods such as PCA, PLS or OPLS are not suitable for non-linear
classification/regression tasks.

Non-linear versions of these algorithms are readily obtained by applying
the kernel trick.
KPLS and KOPLS consider labels for the derivation of the projection
vector, thus outperforming KPCA.

KOPLS inherits mean-square-error optimality from its linear counterpart.

Methods Characterization

KOPLS KPLS

Kernel size l × l l × l
Storage O(l2) O(l2)
Max. np min{rank(Φ), rank(Y)} rank(Φ)
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Experiment 1: Classification of LandSat images

Data collection

LandSat image, 82×100 pixels with a spatial resolution of 80m×80m

Six classes: red soil, cotton crop, grey soil, damp grey soil, soil with
vegetation stubble and very damp grey soil.

Contextual information: stack neighbouring pixels in 3×3 windows →
high-dimensional and redundant feature vectors!.

Training: 4435 samples.

Testing: 2000 samples.

Experimental setup

Methods: linear OPLS, KPLS and KOPLS.

RBF kernel: k(xi , xj) = exp
`
−‖xi − xj‖2/2σ2

´
10-fold cross-validation on the training set to estimate σ.

Classification procedure:
1 Extract np projections (np < rank(Y) for the KOPLS).
2 Project test data.
3 Linear discriminant with the pseudoinverse of the projected data.
4 Winner-takes-all.
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Experiment 1: Classification of LandSat images

Accuracy and feature expression
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The non-linear method provides a better representation of the
discriminative information.
KOPLS performance, with only 5 features, is 91%.

KPLS needs 100 features to achieve similar performance.

Conclusions:
1 Non-linear OPLS methods provide much better results.
2 KOPLS yields features which contain more discriminative information
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Experiment 2: Oceanic chlorophyll concentration

Data collection

“Modeling the non-linear relationship between chlorophyll concentration
and marine reflectance.”
SeaBAM dataset (O’Reilly, 1998).

919 in-situ pigment measurements around the United States and Europe.

Training: 460 samples

Testing: 460 samples

Experimental setup

Methods: linear PLS, KPLS and KOPLS.

RBF kernel: k(xi , xj) = exp
`
−‖xi − xj‖2/2σ2

´
Leave-one-out root mean square error (LOO-RMSE) to validate the model.

σ tuned in the range [10−2, 104]

np = rank(Y) = 1 for the KOPLS.
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Experiment 2: Oceanic chlorophyll concentration

Accuracy and feature expression

Model ME RMSE MAE r

OPLS -0.034 0.257 0.188 0.903
KPLS, np = 1 0.042 0.366 0.278 0.790
KPLS, np = 5 -0.013 0.189 0.140 0.947
KPLS, np = 10 -0.013 0.149 0.115 0.968
KPLS, np = 20 -0.009 0.138 0.106 0.972
KOPLS, np = 1 -0.015 0.154 0.111 0.967

Linear OPLS performs poorly as the linear assumption does not hold.

KPLS and the proposed KOPLS show a clear improvement in both
accuracy and bias compared to linear OPLS

KPLS and KOPLS show similar accuracy to SVR, and outperform in bias.

Results obtained with a lower computational and storage burden

The only one feature extracted with KOPLS provides a similar
performance to the 10 first features from KPLS.
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Conclusions

Conclusions

Given definition of the most useful kernel methods for nonlinear feature
extraction
KPCA is nice but difficult to handle (proper sigma for a task?)

Unlike KPLS, the proposed KOPLS is optimal in the sense of a minimum
quadratic error approximation of the label matrix.

Major problem: non-sparse computationally demanding methods

Other kernel methods are available:
Kernel CCA
...

Everything relies on the proper definition of the kernel (again)
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