Lecture 03: Kernel regression and time series analysis

Gustavo Camps-Valls

Image Processing Laboratory (IPL) — Universitat de Valncia. Spain.
gustavo.camps@uuv.es, http://www.uv.es/gcamps

VNIVERSITAT
DFVALENCIA

The organization of the course:

@ Fundamentals of kernel methods
@ Supervised and unsupervised kernel-based classification
© Kernel methods for regression and time series analysis <<<

@ Nonlinear feature extraction with kernels

Definitions

Definitions

o Regression, curve fitting, function approximation
@ Regression models involve the following variables:

o The unknown parameters (weights) denoted as w
o The independent (input, features) variables, x
o The dependent (output, target) variable(s), y

@ A regression model f relates y with x:

y="f(x,w)+e

Intro
(o]

Definitions

Regression, curve fitting, function approximation

@ Approximate m-dimensional continuous functions

@ To estimate a real function:
Rn
X

JEEEEN Rm

— Y= f(X, W)

4/70

Intro
(o]

Definitions

Regression, curve fitting, function approximation

@ Approximate m-dimensional continuous functions

@ To estimate a real function:
Rn N Rm
x — y=f(x,w)

o How to choose the weights?
\/ Perform cross-validation to select parameters
v/ Choose a quality (performance, objective) criterion to optimize
? Minimize a cost function and regularize it

Intro

@00

Risk, loss, cost, objective, energy

=

"We've considered euery potenhial nisi except
The 1isks of auoiding all rises,"

Intro

oeo

Risk, loss, cost, objective, energy

[Loss Ly, f(x,w))
Squared loss (y — f(x,w))’
Absolute loss ly — f(x,w)]
e-insensitive loss (ly = f(x,w)| — &)+

Huber loss

{;e2 le| <46

5(le| — 2) otherwise

Log-cosh loss Ly, f(x,w)) = log(cosh(y — f(x,w)))

4 —square
—e-insensitive
—Huber

3

2

1

0,

Intro

ooe

Risk, loss, cost, objective, energy

[Loss [£y, f(x,w)) [Noise model, p(e) ‘
Squared loss 0.5(y — f(x,w))? —— exp(—e?/2)
Absolute loss, Laplacian ly — f(x,w)| 2 exp(—le])

. .. _ _ 1 _
e-insensitive loss (ly = f(x,w)| —)+ o) exp(—|e|:)
1a2 < a2 <
Huber loss 2€ s lef < 5. exp(—e”/2) e[< 5.
o(le] = 5) otherwise exp(6/2 — |e|]) otherwise

Maximum likelihood (ML): ‘find the most likely function -model- that
generated the data’

max{p(x, y|w)} = max { H p(xi, yf\w)} = max { [T ptilxi, w)p(x;)}

i

= max { Hp(y,-|x,—, w)} 2 mﬁx{ - Iog(p(x,yIW))}

Intro

[Je]

Regularizer

@ Regularization is used to prevent overfitting and simplify the solution:

Intro

[Je]

Regularizer

@ Regularization is used to prevent overfitting and simplify the solution:

o Implicitly or explicitly penalize models based on the number of effective
parameters or directions

Intro

[Je]

Regularizer

@ Regularization is used to prevent overfitting and simplify the solution:
o Implicitly or explicitly penalize models based on the number of effective
parameters or directions
o Bayesian methods use a prior probability that (usually) gives lower
probability to more complex models

Intro

oe

Regularizer

Model Loss Regularizer
(entropy measure)
AIC/BIC b W)’ Iwlh
Ridge regression, KRR, GP (y — f(x,w))? [lw]|2
SVR ly — f(x,w)le w2
Lasso (y — f(x,w))’ (w2
Basis pursuit denoising (y — f(x,w))? [lwl]1
Reg Least Absolute Deviations | |y — f(x, w)| [lw|1

o D P+ T

Iwllg = Iwil?

J

Intro KRR SVM-ARMA KARMA Conclusions
° o « o o

Regularized linear regression

ularized least squares linear regr

@ Add a ridge penalty to the loss function:
min {IY = XW|P” + AW’}
@ The weights (one per feature) are obtained easily

W=(X"X+A)"'X"Y

4

Homework

@ Demonstrate the normal equations for the regularized case (above)
@ Do a Matlab function that, given X and Y automatically:

o returns the v-fold results
o the optimal A parameter

13/70

Kernel Regularized linear regression

Exercise: Kernelize the regularized least squares solution:
o Model: Y = XW

o Functional:

W = i 1Y - X+ W

o After deriving and setting to zero, W = (X" X)7*XTY = XY

Kernel Regularized linear regression

Exercise: Kernelize the regularized least squares solution:

o Model: Y = XW

o Functional:

W = i 1Y - X+ W
o After deriving and setting to zero, W = (X" X)7*XTY = XY

e Model: Y = ®W

o Functional:

W3, = m|n {||Y oW + |W|| }

15/70

Kernel Regularized linear regression

Exercise: Kernelize the regularized least squares solution:

o Model: Y = XW
o Functional:
W* = mm {||Y XW|| + (W] }

o After deriving and setting to zero, W = (X" X)7*XTY = XY

Hint
o Model: Y = dW

o Functional:

| A\

W3, = m|n {||Y oW + |W|| }

Derive, use the representer theorem and apply simple matrix manipulation

16 /70

Kernel Regularized linear regression

Regularized least squares linear classification

Inputs: X € R"™<¢

o

e Outputs: Y € R Y = [y1,ys,. .. ,yn]T
@ Model: Y = Xw

@ Functional:

w* = min {||Y — Xwl]* +)\HWHZ}

o After deriving and setting to zero, w = (XX + Alg)'XTY

17 /70

Intro SVM-ARMA KARMA Conclusions

Kernel Regularized linear regression

Regularized least squares linear classification

o Inputs: X € R"™*?

o Outputs: Y € R™ Y = [y1,y2,...,ya] "
@ Model: Y = Xw
@ Functional:

w”* = min {||Y — Xwl]* +)\HWHZ}

o After deriving and setting to zero, w = (XX + Alg)'XTY

Regularized kernel least squares classification
o Model: Y = dwy
o Functional:

wic = in {1V @wn* + Alwn

o Dual weights: o = (K + Al,)~tY

o Primal weigths: wy = &«

@ Decision function Y = ®dwy = Ko

Kernel Regularized linear regression

Exercise: Kernel ridge regression

@ Solve the ‘normal equations’ in feature spaces

@ Assume squared cost function

@ Regularize the weights

| N

Solution
o a=(A+K) 1y
o y=Ka

A

>> sigma=3; gamma=le-5

>> K = kernelmatrix(’rbf’,X,X,sigma);

>> alpha = inv(gamma*eye(length(Y)) + K)*Y;
>> Ypred = alphaxK;

>> assessment(Y,Ypred, ’regress’)

19/70

@0

KRR problems and solutions

Like Least-Squared Regression, (Kernel) Ridge Regression is sensitive
to outliers:

because the quadratic loss function penalized large residue.

(o])

KRR problems and solutions

Problems!

@ One weight per example — Risk of overfitting
o High computational cost for n > 2000, different (o, \) to try!

N
~

Intro SVM-ARMA KARMA Conclusions

KRR problems and solutions

@ One weight per example — Risk of overfitting

@ High computational cost for n > 2000, different (o, A) to try!

@ Do proper cross validation and control A. Plot A- RMSE e !!!

o Standard code: alpha = inv(gamma + K) * Y;

@ Cholesky decomposition is faster (~4-fold) but not sparse again:
R = chol(K+gammaxeye(n)) ;
alpha = R\(R’\Y);

@ Nystrom method uses the Sherman-Morrison-Woodbury formula:

A+vwH'=D'-D'Vi+Vv'D'V)'viD!

Intro SVM-ARMA KARMA Conclusions

KRR problems and solutions

@ One weight per example — Risk of overfitting

@ High computational cost for n > 2000, different (o, A) to try!

@ Do proper cross validation and control A. Plot A- RMSE e !!!

o Standard code: alpha = inv(gamma + K) * Y;
@ Cholesky decomposition is faster (~4-fold) but not sparse again:
R = chol(K+gammaxeye(n)) ;
alpha = R\(R’\Y);
@ Nystrom method uses the Sherman-Morrison-Woodbury formula:
A+vwH'=D'-D'Vi+Vv'D'V)'viD!

@ There are tricks to make the KRR sparse

23 /70

Intro SVM-ARMA KARMA Conclusions

Reduced-rank (Sparse) KRR

A sparsification procedure [Cawley04]

o Find a reduced basis in H
@ Method for training a reduced rank method

Step 1: Form a basis in feature space

@ Define a subset of the vectors, ¢s(xi) = {&(xi)}ies
o Compute the reconstruction error for every sample
5= lo0x) —ds()IP _ | KEKSIKs
ll¢(xi)II? Kii
@ The basis is built by minimizing the reconstruction error §;, i.e. maximize:

1 = KSKKs:
oS} = > e
=l

o Greedy algorithm: start with S = [0], maximize £(S), stop when Kss
singular

KARMA Conclusions

oe o)

Reduced-rank (Sparse) KRR

A sparsification procedure [Cawley04]

o Find a reduced basis in H
@ Method for training a reduced rank method

Step 2: Training procedure
o Model: Y = ®dws
@ The selected basis induces a reduced rank representer’s theorem:

ws = > Big(xi) = ®s 3

i€eS

o The KRR functional to minimize slightly changes
wi = min { Y — @+ s
@ So the dual weights:
B=(K+A,)Y
B = (K5Ks: + Ass) 'K5Y

o Primal weights: ws = ®I 3

@ Decision function Y = dws = K. 53

SVR also works in a supervised way

We have input-output data pairs {(x;, i), i = 1,..., n}, where x; € R? and
vi € R.

First, map the data and then do a linear regression in the feature space:
¢ R SRY d<H
The linear model in H:
i =f(xi,w) = ¢T(x,-)w +b

where w is the weight vector and b is the bias term

We assume and additive noise model:
yi=yi+e

where e; are the committed errors by the model

SVR also works in a supervised way

We have input-output data pairs {(x;, i), i = 1,..., n}, where x; € R? and
vi € R.

First, map the data and then do a linear regression in the feature space:
¢ R SRY d<H
The linear model in H:
i =f(xi,w) = ¢T(x,-)w +b

where w is the weight vector and b is the bias term

We assume and additive noise model:
yi=yi+e

where e; are the committed errors by the model
What’s new versus KRR?

Intro SVM-ARMA KARMA Conclusions

The SVR formulation

@ The e-insensitive SVR is the SVM implementation for regression and
function approximation

@ The (regularized) primal functional to be minimized is:
.1 o
min{Slw|® + €D (& + &)}
with respect to w, &, & and b, subject to:

yi— ¢ (xi)w—b< e+ Vi=1,...,n
ST (x)WH+b—y <e+& Vi=1
&, >0 Vi=1

@ Introduce restrictions in the primal through Lagrange multipliers:
Lp= Slwl®+ CEi(& + &) — 3, aile —yi+ ¢ (xi)w + b)

=Y iai(e+yi— @ (xi)w — b) — > (il + piE;)

@ Derive and set to zero:

92 —w = > (e~ o))lx) =0

ow Py
?927 =C—oi—pi,=0,i=1,...,L
gé: =C—af —p/=0,i=1,.,L

o Lagrange multipliers must be positive: a;, o, pi, u; >0

@ The dual (Wolfe's) problem becomes:

La=> yilai—ai)—ed (ai+a])
i=1 i=1

n

1 * *
) (@i — of)i + ;i)K(xi, x;)

iJ
s.t.
c>a>0

’

@ The dual (Wolfe's) problem becomes:

La=> yilai—ai)—ed (ai+a])
i=1 i=1

n

1 * *
=5 2_(ai —ai)(ai + af)K(xi, x;)
i
s.t.
c>a>0

’

@ Predictions:

9i=f(xi,w) = ¢’ (x;))w+ b= Z(Oéi — a7)K(xi,x) + b

SVR in Matlab

o The SVR problem is a QP problem with linear constraints

@ The dual problem in matrix form:

(a—a)y—el’(a+a”) - %(a —a") K(a — a¥)

s.t.
c>a" >0,
.
where a(*) = [ag*), e ,af,*)} andy = [y1,-- ,ya] -
@ Use this:

>> help quadprog

QUADPROG Quadratic programming.

X=QUADPROG(H,f,A,b) attempts to solve the quadratic programming problem:
min 0.5%x’*H*x + f’*x subject to: A*x <=b

X

o Identify terms: x := (o — a*)" and H := K and passing it to MATLAB:

alphas = quadprog(H,-Y’+e*f,[1,[]1,f1,0,zeros(size(Y’)),C*f, [1,0PTIONS);
@ The bias term b is obtained from averaging some SVs.

e This is cool: sparsity in & — a* means interpretability!

Intro SVM-ARMA KARMA Conclusions

A Robust SVR formulation

o Change the e-insensitive SVR cost function to accomodate three kinds of
noise sources (insensitively, quadratic, linear):

0, |ei|<e

L(er) = 55(] & | =€), e<|e|<ec
C(lei|—e)—36C% |e|>ec

Lp(e)

+€ ec e

@ "Robust Support Vector Regression for Biophysical Parameter Estimation
from Remotely Sensed Images” Gustavo Camps-Valls, L. Bruzzone, Jose
L. Rojo-lvarez, Farid Melgani IEEE Geoscience and Remote Sensing
Letters, July 2006. Volume: 3, Issue: 3, pp. 339- 343

>> R=[R -R;-R R];

>> Y=Y(:);

>> fi=[ones(size(Y’)) -ones(size(Y’))];

>> Y=[Y;-Y];

>> H=(R+deltaxeye(size(R,1)));

>> unos=ones(size(Y’));

>> OPTIONS = optimset(’LargeScale’,’on’,’diffmaxchange’,le-8,...
’Diagnostics’,’off’,’Display’,’off’);

>>

alpha=quadprog(H,-Y’+e*unos, [1,[],f1,0,zeros(size(Y’)),C*unos, [1,0PTIONS) ;

Data collection and experimental setup

In this work, we use two different datasets:

@ MERIS dataset.

o SIMULATED DATA = NO UNCERTAINTY

e 1000 samples for cross-validating, 4000 for testing.
@ SeaBAM dataset.

o REAL DATA = UNCERTAINTY
o 460 samples for cross-validating, 460 for testing.

35/70

Intro SVM-ARMA KARMA Conclusions

Numerical Results

Table: Mean error (ME), root mean-squared error (RMSE), mean absolute error
(ABSE), and correlation coefficient (r) of models in the test set.

-2.36e- .01 .061 .
quare -9.96e-4 0.031 0.018 0.998
e-Huber-SVR -3.26e-6 0.011 0.004 0.999
SeaBAM database
e-SVR -0.070 0.139 0.105 0.971
quared loss -0.034 .14 107 .97
-Huber-SVR -0.020 0.137 0.104 0.972

@ e-Huber-SVR is more accurate (RMSE, ABSE) and unbiased (ME) than
the rest of the models

o For the MERIS data, appreciable numerical and statistical differences.

@ For the SeaBAM dataset, the proposed method showed an improved
numerical performance but no statistical differences.

Intro SVM-ARMA KARMA Conclusions

Robustness to reduced datasets

T
03k o g-SVR i
+=:= Squared Loss SVR
\ — RCF-SVR
“
\
N
N
N
0.25f b .
B .
. .
w .
%) .
= N,
x S
0.2r gl
b sy
~.
o,
0.5 7
i
10" 10°

Number of training samples

Figure: Evolution of the RMSE in the test SeaBAM set as a function of the number of
training samples.

37/70

@ Efficiency of oligonucleotides in RNA sequences

@ Drug concentration prediction

© Image coding

“Predictions are hard, particularly those concerning the future...”

Andreas S. Weigend, 1990.

39/70

@ Independent and identically distributed (i.i.d.) signals (or random
variables)

@ Time series, speech and images are not iid signals
@ How to:

o Define SVM methods for TSA?
o Kernelize linear structures with the kernel trick?
o How to define static and dynamic (online) kernel methods?

Intro SVM-ARMA KARMA Conclusions

@ Independent and identically distributed (i.i.d.) signals (or random
variables)

@ Time series, speech and images are not iid signals
@ How to:

o Define SVM methods for TSA?
o Kernelize linear structures with the kernel trick?
o How to define static and dynamic (online) kernel methods?

v

Autoregressive and moving average (ARMA) processes

FIR and IIR filters
Adaptive filters
Auto-correlation, memory depth and temporal resolution

Intro SVM-ARMA KARMA Conclusions

@ Independent and identically distributed (i.i.d.) signals (or random
variables)

@ Time series, speech and images are not iid signals
@ How to:

o Define SVM methods for TSA?
o Kernelize linear structures with the kernel trick?
o How to define static and dynamic (online) kernel methods?

Autoregressive and moving average (ARMA) processes

FIR and IIR filters
Adaptive filters
Auto-correlation, memory depth and temporal resolution

o SVM-ARMA
o Kernel ARMA

A

Independent and identically distributed (i.i.d.) random variables

@ i.i.d random variables: if each random variable has the same probability
distribution as the others and all are mutually independent.

o aka, Exchangeable random variables: sequence such that future samples
behave like earlier samples, i.e.: any order is equally likely

43 /7C

Independent and identically distributed (i.i.d.) random variables

@ i.i.d random variables: if each random variable has the same probability
distribution as the others and all are mutually independent.

o aka, Exchangeable random variables: sequence such that future samples
behave like earlier samples, i.e.: any order is equally likely

o Why? This assumption typically simplifies many formulations

44 /70

Independent and identically distributed (i.i.d.) random variables

i.i.d random variables: if each random variable has the same probability
distribution as the others and all are mutually independent.

o aka, Exchangeable random variables: sequence such that future samples
behave like earlier samples, i.e.: any order is equally likely

Why? This assumption typically simplifies many formulations
Examples of iid signals:

o roulette wheel
o dice rolls
e coin flips

45 /70

Independent and identically distributed (i.i.d.) random variables

i.i.d random variables: if each random variable has the same probability
distribution as the others and all are mutually independent.

o aka, Exchangeable random variables: sequence such that future samples
behave like earlier samples, i.e.: any order is equally likely

Why? This assumption typically simplifies many formulations
Examples of iid signals:

o roulette wheel
o dice rolls
e coin flips

Examples of non-iid signals:

o exchange rates
e speech
e image/video sequences

46 /70

(Auto)correlation function

@ Auto-correlation function (‘correlogram’): Given a stationary process
{x:}, the ACF is

px(h) = corr(Xesn, xt) = Zx(k)x(k + h)

>> x=sin(1:100)+randn(1,100); stem(xcorr(x))

@ Signal processing:
Identify pulsar events,
tempo, beats, pitch

@ Image processing:
| extent and period of
I ||| l!I. |||| Il i pixel relations in space

‘HII I ‘III' |IH LI U

08

ACF
04

0.0

47

SVM-ARMA
L]

Auto-regressive and Moving-average (ARMA) process

o ARMA modeling. Given the input-output time series {x,} and {y.}

P Q
Yn = Z aiYn—i+ Z bjxp—j+1+en,n=1,..., N
i=1 j=1

N— N——
AR MA

SVM-ARMA
L]

Auto-regressive and Moving-average (ARMA) process

o ARMA modeling. Given the input-output time series {x,} and {y.}

P Q
Yn = Z aiYn—i+ Z bjxp—j+1+en,n=1,..., N
i=1 j=1

N— N——
AR MA

@ The error terms e, are generally assumed to be iid sampled from a normal
distribution with zero mean, N(0, o2)

49 /70

SVM-ARMA
L]

Auto-regressive and Moving-average (ARMA) process

o ARMA modeling. Given the input-output time series {x,} and {y.}

P Q
Yo = Z aiYn—i+ Z bjxp—j+1+en,n=1,..., N
i=1 j=1

Nt N————
AR MA

@ The error terms e, are generally assumed to be iid sampled from a normal
distribution with zero mean, N(0, o2)

@ After choosing P and Q, just obtain a; and b; by least squares regression:
mind{[ly — Ya — Xb[[*} = min{]ly - Zw|*}
a, w

wherey € R™ Y e R™P a e RP*!, X e R"™*? and b € RO*.
y

SVM-ARMA
L]

Auto-regressive and Moving-average (ARMA) process

o ARMA modeling. Given the input-output time series {x,} and {y.}

P Q
Yo = Z aiYn—i+ Z bjxp—j+1+en,n=1,..., N
i=1 j=1

Nt N————
AR MA

@ The error terms e, are generally assumed to be iid sampled from a normal
distribution with zero mean, N(0, o2)

After choosing P and Q, just obtain a; and b; by least squares regression:
mind{[ly — Ya — Xb[[*} = min{]ly - Zw|*}
a, w

where y € R™! ¥ e R™P a e R”*! X € R"™*? and b € R9*1,

Overfitting naively controlled by choosing low P and Q values

51/70

SVM-ARMA
L]

Auto-regressive and Moving-average (ARMA) process

o ARMA modeling. Given the input-output time series {x,} and {y.}

P Q
Yo = Z aiYn—i+ Z bjxp—j+1+en,n=1,..., N
i=1 j=1

Nt N————
AR MA

@ The error terms e, are generally assumed to be iid sampled from a normal
distribution with zero mean, N(0, o2)

After choosing P and Q, just obtain a; and b; by least squares regression:
mind{[ly — Ya — Xb[[*} = min{]ly - Zw|*}
a, w

where y € R™! ¥ e R™P a e R”*! X € R"™*? and b € R9*1,

Overfitting naively controlled by choosing low P and Q values

o M-estimates: regularization and time-varying cost functions ...

SVM-ARMA
L]

Auto-regressive and Moving-average (ARMA) process

o ARMA modeling. Given the input-output time series {x,} and {y.}

P Q
Yo = Z aiYn—i+ Z bjxp—j+1+en,n=1,..., N
i=1 j=1

Nt N————
AR MA

@ The error terms e, are generally assumed to be iid sampled from a normal
distribution with zero mean, N(0, o2)

@ After choosing P and Q, just obtain a; and b; by least squares regression:
mind{[ly — Ya — Xb[[*} = min{]ly - Zw|*}
a, w

where y € R™! ¥ e R™P a e R”*! X € R"™*? and b € R9*1,
e Overfitting naively controlled by choosing low P and Q values
o M-estimates: regularization and time-varying cost functions ...

o Matlab’s sysid toolbox: ar.m, arx.m, armax.m, pem.m, etc.

53 /70

SVM-ARMA

@0000

(Linear) SVM-ARMA formulation: the Vapnik’s cost

o Standard SVM for regression uses Vapnik's e-insensitive loss

e

0, if |en] < e
o ... and regularize model weights with the ¢, norm:

P Q N
1
Lo(ar by er) = & (Z 243 bf) 1S L(en)
i=1 j=1

n=ko

@ Primal problem:

Lp (ai, by, &0, &) = % <Za, +Zb2> +CZ (&n+ &)

n=ko
subject to

P Q

— Z aiYn—i — Z bixa—jr1 < e+é&,
i—1 =1
P Q

—yn+ Z aiyn—i + Z bixn—jy1 < e+E&,
i=1 j=1

N) B 54 /70

SVM-ARMA

0@000

(Linear) SVM-ARMA formulation: the Vapnik’s cost

e Do:

@ This gives:
0<al<cC (1)

=" (an—a;)yo s (2)

N

b = Z (an — o) Xo—jn1 3)

n=ko

@ ... and also the input and output autocorrelation matrices emerge:
P

Z}/mffykfi

i=1

Q
R)E?(ITI7 k) = me—j+1xk—j+1
j=1

R} (m, k)

55 /7C

SVM-ARMA

00e00

(Linear) SVM-ARMA formulation: the Vapnik’s cost

@ The dual problem becomes

Lp = f% (a—a*)’ [RXQ + RyP] (¢ —a™)+
+(a—a))y—el” (a+a”)
o The QP problem, z"Hz + b"z, becomes
7 = [aT, a7]T
1 [R.°+R,”, —-R?-R, }

H = -3 R?-R,”, ROC+R/

b = [y —¢ —yT—s]T

56 /70

SVM-ARMA

00e00

(Linear) SVM-ARMA formulation: the Vapnik’s cost

@ The dual problem becomes
1 * *
LD:fE(afa)" [RXQJrRyP] (a —a™)+
+(a—a))y—el” (a+a”)

o The QP problem, z"Hz + b"z, becomes

7 = [al, o]T

H - L[Re+R" -RO-RS
- 2| R-R", RO+R/

b = [y —¢ —yT—s]T

@ Clearly H is not invertible!

57 /7C

SVM-ARMA

00e00

(Linear) SVM-ARMA formulation: the Vapnik’s cost

@ The dual problem becomes
Lp = f% (a—a*)’ [RXQ + RyP] (¢ —a™)+
+(a—a))y—el” (a+a”)
o The QP problem, z"Hz + bz, becomes
7 = [aT, a7]T
H - 71[R+ R/, -R?-R,” }
2| -R°—R/", RO+R/
b = [y —e -y —¢]T
@ Clearly H is not invertible!

e Regularization solves it: H' = H + 1l

SVM-ARMA

[elefe] lo]

(Linear) SVM-ARMA formulation: the Vapnik’s cost

@ So what we want to actually solve is:
1 * *
LM = —E(a—a)" [RXQ+RyP] (a—a™)+
+(a-a") y—el" (a+a”)—
f% <aTla + a”loﬁ)

(st. 0 <™ < Q).

59 /70

SVM-ARMA

[elefe] lo]

(Linear) SVM-ARMA formulation: the Vapnik’s cost

@ So what we want to actually solve is:
1 * *
LM = —E(a—a)" [RXQ+RyP] (a—a™)+
+(a-a") y—el" (a+a”)—
f% <aTla + a”loﬁ)

(st. 0 <™ < Q).

@ This corresponds to changing the loss function!

e

SVM-ARMA

0000e

(Linear) SVM-ARMA formulation: the Vapnik’s cost

Example:
¥n = 0.03y,—1 — 0.01y,—2 + 3x, — 0.5x,-1 + 0.2x,_2

with

{xa} ~ N(0,1), {en} ~ N(0,0.1), {on} = {yn} + {en}
and impulsive noise {j,}: 30% of samples with £10 + U(0, 1)

20l0g(MSD)

61/70

Kernelization of ARMA 1.

Kernelization of ARMA 1.

@ The ARMA process can be vectorized, where S = max(P, Q) and pad
with zeroes the shortest series:

T T
Yn = [}/nfly}/nfb cee 7_)/n75]) Xp = [Xm Xn—1y- .- 7Xn75+1]

63 /70

Kernelization of ARMA 1.

@ The ARMA process can be vectorized, where S = max(P, Q) and pad
with zeroes the shortest series:
T T
Yn = [}/nfly}/nfb e 7_)/n75] s Xp = [Xm Xp—1y--- 7Xn75+1]
@ The standard way is to use the SVR for regression ...
@ Build/stack/encapsule the data: z, = [yI,XZ]T

@ Map them to H with ¢(z,) : RS — R5,
© Build a linear regression there: y, = quS(z,,) + en

64 /70

Kernelization of ARMA 1.

@ The ARMA process can be vectorized, where S = max(P, Q) and pad
with zeroes the shortest series:
T T
n= [}/n717}/n727 oo 7_)/n75] s Xp = [Xm Xn—1y+-- 7Xn75+1]
@ The standard way is to use the SVR for regression ...
@ Build/stack/encapsule the data: z, = [yI,XZ]T
@ Map them to H with ¢(z,) : RS — R5,
© Build a linear regression there: y, = quS(z,,) + en

@ The primal problem (using the e-Huber loss) is then:

#(36) -3 54+ £ T (@)

neh

2
e (@re) - Y15

neh neh

65 /70

Kernelization of ARMA 1.

@ The ARMA process can be vectorized, where S = max(P, Q) and pad
with zeroes the shortest series:
T T
n= [}/n717}/n727 oo 7_)/n75] s Xp = [Xm Xn—1y+-- 7Xn75+1]
@ The standard way is to use the SVR for regression ...
@ Build/stack/encapsule the data: z, = [yI,XZ]T

@ Map them to H with ¢(z,) : RS — R5,
© Build a linear regression there: y, = quS(z,,) + en

@ The primal problem (using the e-Huber loss) is then:

#(36) -3 54+ £ T (@)

neh

2
e (@re) - Y15

neh neh

@ The solution is the classical one

9 = ls(ar — ay)K(zr,20)

66 /70

Kernelization of ARMA 2.

@ Define ARMA in H:
Yo =a'¢(yn) + b’ ¢(xn) + en

with a = [al,...,aH]T and b = [bl,...,b/./]—r

@ The primal problem minimizes:

(B (a0, b1, 67) = 3 i(a? F oY (6467) 4

nehl
2
Y @re) - Y1

n€ly n€lh

@ The prediction model is now:

9o = Lslar — af) [K(yr,¥n) + K(xr, xa)]

67 /70

Example

Example: neon laser time series (dataset A in the Santa Fe competition):
@ 1-step ahead time series prediction problem:
Yo = f([Yo—1, Yn—2, -+, Yo—k], W)

@ A complex transition from periodic to chaotic

o Noise-free, stationary, low dimensionality

Mean-Square Error (MSE)

40 60 80 100 120 340 350 360 370 380 390
Number of training samples Time sample

68

~

Conclusions

Conclusions

@ Given definition of the most useful kernel regression methods
Other regression methods are available

Analyzed how to derive the equations
Multioutput SVR is not solved yet

Kernel Bayesian approaches: RVM and GP
Adaptive kernel learning is becoming very popular
Everything relies on the proper definition of K

69 /70

Intro SVM-ARMA KARMA Conclusions

References

Q J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press, 2004.

>
>
>
>
>
!

|

K]

B. Schélkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.
Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer, NY, 1995.
Vladimir Vapnik. Statistical Learning Theory. Wiley, NY, 1998.

Ralf Herbrich. Learning Kernel Classifiers. MIT Press, Cambridge, MA, 2002.

J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least Squares Support Vector
Machines, World Scientific Pub. Co., Singapore, 2002 http://www.esat.kuleuven.be/sista/lssvmlab/

G. Camps-Valls, J. L. Rojo and M. Martinez, Kernel Methods in Bioengineering, Signal and Image
Processing, |dea Inc., 2007.

Conferences: NIPS, ICML, ECML, COLT, ICANN, ESANN, MLSP

Webs: videolectures.net, http://www.kernel-machines.org

videolectures.net
http://www.kernel-machines.org

