
Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Lecture 03: Kernel regression and time series analysis

Gustavo Camps-Valls

Image Processing Laboratory (IPL) – Universitat de Valncia. Spain.
gustavo.camps@uv.es, http://www.uv.es/gcamps

1 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

The organization of the course:

1 Fundamentals of kernel methods

2 Supervised and unsupervised kernel-based classification

3 Kernel methods for regression and time series analysis <<<

4 Nonlinear feature extraction with kernels

2 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Definitions

Definitions

Regression, curve fitting, function approximation

Regression models involve the following variables:

o The unknown parameters (weights) denoted as w
o The independent (input, features) variables, x
o The dependent (output, target) variable(s), y

A regression model f relates y with x:

ŷ = f (x,w) + e

3 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Definitions

Regression, curve fitting, function approximation

Approximate m-dimensional continuous functions
Polynomial Curve Fitting

To estimate a real function:

Rn −→ Rm

x −→ y = f (x,w)

How to choose the weights?√
Perform cross-validation to select parameters√
Choose a quality (performance, objective) criterion to optimize

? Minimize a cost function and regularize it

4 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Definitions

Regression, curve fitting, function approximation

Approximate m-dimensional continuous functions
Polynomial Curve Fitting

To estimate a real function:

Rn −→ Rm

x −→ y = f (x,w)

How to choose the weights?√
Perform cross-validation to select parameters√
Choose a quality (performance, objective) criterion to optimize

? Minimize a cost function and regularize it

5 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Risk, loss, cost, objective, energy

6 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Risk, loss, cost, objective, energy

Loss `(y, f (x,w))

Squared loss (y − f (x,w))2

Absolute loss |y − f (x,w)|
ε-insensitive loss (|y − f (x,w)| − ε)+

Huber loss

(
1
2
e2 |e| ≤ δ
δ(|e| − δ

2
) otherwise

Log-cosh loss `(y, f (x,w)) = log(cosh(y − f (x,w)))

Losses for regression (Shawe-Taylor and Cristianini, 2004)

• Response: y ∈ R, prediction ŷ = f(x),

– quadratic (square) loss ℓ(y, f(x)) = 1
2(y − f(x))2

– Not many reasons to go beyond square loss!

• Other convex losses “with added benefits”

– ε-insensitive loss ℓ(y, f(x)) = (|y − f(x)| − ε)+
– Hüber loss (mixed quadratic/linear): robustness to outliers

−3 −2 −1 0 1 2 3
0

1

2

3

4

y−f(x)

square
ε−insensitive
Huber

16

7 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Risk, loss, cost, objective, energy

Loss `(y, f (x,w)) Noise model, p(e)

Squared loss 0.5(y − f (x,w))2 1√
2π

exp(−e2/2)

Absolute loss, Laplacian |y − f (x,w)| 1
2

exp(−|e|)
ε-insensitive loss (|y − f (x,w)| − ε)+

1√
2(1+ε)

exp(−|e|ε)

Huber loss

(
1
2
e2 |e| ≤ δ
δ(|e| − δ

2
) otherwise

(
exp(−e2/2) |e| ≤ δ
exp(δ/2− |e|) otherwise

Maximum likelihood (ML): ‘find the most likely function -model- that
generated the data’

max
w
{p(x, y |w)} = max

w

Y
i

p(xi , yi |w)

ff
= max

w

Y
i

p(yi |xi ,w)p(xi)

ff

= max
w

Y
i

p(yi |xi ,w)

ff
≈ max

w


− log(p(x, y |w))

ff

8 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Regularizer

Regularization is used to prevent overfitting and simplify the solution:

Implicitly or explicitly penalize models based on the number of effective
parameters or directions
Bayesian methods use a prior probability that (usually) gives lower
probability to more complex models

9 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Regularizer

Regularization is used to prevent overfitting and simplify the solution:
Implicitly or explicitly penalize models based on the number of effective
parameters or directions

Bayesian methods use a prior probability that (usually) gives lower
probability to more complex models

10 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Regularizer

Regularization is used to prevent overfitting and simplify the solution:
Implicitly or explicitly penalize models based on the number of effective
parameters or directions
Bayesian methods use a prior probability that (usually) gives lower
probability to more complex models

11 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Regularizer

Model Loss Regularizer
(entropy measure)

AIC/BIC (y − f (x,w))2 ‖w‖0

Ridge regression, KRR, GP (y − f (x,w))2 ‖w‖2

SVR |y − f (x,w)|ε ‖w‖2

Lasso (y − f (x,w))2 ‖w‖1

Basis pursuit denoising (y − f (x,w))2 ‖w‖1

Reg Least Absolute Deviations |y − f (x,w)| ‖w‖1

 DISCUSSION 	�

suggest that joint estimation of the �js and q might be an e�ective strategy�
but do not report any results�

q=4 q=2 q=1 q=0.5 q=0.1

Figure �� Contours of constant value of
P

j
j�jj

q for given values of q�

Figure � depicts the situation in 	 dimensions� Subset selection corresponds
to q� �� The value q � � has advantage of being closer to subset selection than
ridge regression �q � 	�� and is also the smallest value of q giving a convex region�
Furthermore� the linear boundaries for q � � are convenient for optimization�

The encouraging results reported here suggest that absolute value constraints
might prove to be useful in a wide variety of statistical estimation problems�
Further study is needed to investigate these possibilities�

Software

Public domain S&Splus language functions for the lasso are available at the
statlib archive at Carnegie
Mellon University� There are functions for linear
models� generalized linear models� and the proportional hazards model� To
obtain them� ftp to lib�stat�cmu�edu and retrieve the �le S�lasso� or send
electronic mail to statlib�lib�stat�cmu�edu with the message send lasso

from S�

Acknowledgements

I would like to thank Leo Breiman for sharing his garotte paper with me be

fore publication� Michael Carter for assistance with the algorithm of section ��
and David Andrews for producing Figure � in Mathematica� I would also like to
acknowledge enjoyable and fruitful discussions with David Andrews� Shaobeng
Chen� Jerome Friedman� David Gay� Trevor Hastie� Geo� Hinton� Iain John

stone� Stephanie Land� Michael Leblanc� Brenda MacGibbon� Stephen Stigler
and Margaret Wright� Comments by editors and a referee led to substantial
improvements in the manuscript� This work was supported by a grant from the
Natural Sciences and Engineering Research Council of Canada�

‖w‖q =
X

j

|wi |q

12 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Regularized linear regression

Regularized least squares linear regression

Add a ridge penalty to the loss function:

min
W

n
‖Y − XW‖2 + λ‖W‖2

o
The weights (one per feature) are obtained easily

Ŵ = (X>X + λI)−1X>Y

Homework

1 Demonstrate the normal equations for the regularized case (above)
2 Do a Matlab function that, given X and Y automatically:

returns the v -fold results
the optimal λ parameter

13 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Kernel Regularized linear regression

Exercise: Kernelize the regularized least squares solution:

Model: Y = XW

Functional:

W∗ = min
W


‖Y − XW‖2 + ‖W‖2

ff
After deriving and setting to zero, W = (X>X)−1X>Y = X†Y

Hint

Model: Y = ΦW

Functional:

W∗H = min
WH


‖Y −ΦW‖2 + ‖W‖2

ff

Hint2

Derive, use the representer theorem and apply simple matrix manipulation

14 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Kernel Regularized linear regression

Exercise: Kernelize the regularized least squares solution:

Model: Y = XW

Functional:

W∗ = min
W


‖Y − XW‖2 + ‖W‖2

ff
After deriving and setting to zero, W = (X>X)−1X>Y = X†Y

Hint

Model: Y = ΦW

Functional:

W∗H = min
WH


‖Y −ΦW‖2 + ‖W‖2

ff

Hint2

Derive, use the representer theorem and apply simple matrix manipulation

15 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Kernel Regularized linear regression

Exercise: Kernelize the regularized least squares solution:

Model: Y = XW

Functional:

W∗ = min
W


‖Y − XW‖2 + ‖W‖2

ff
After deriving and setting to zero, W = (X>X)−1X>Y = X†Y

Hint

Model: Y = ΦW

Functional:

W∗H = min
WH


‖Y −ΦW‖2 + ‖W‖2

ff

Hint2

Derive, use the representer theorem and apply simple matrix manipulation

16 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Kernel Regularized linear regression

Regularized least squares linear classification

Inputs: X ∈ Rn×d

Outputs: Y ∈ Rn×1, Y = [y1, y2, . . . , yn]>

Model: Y = Xw
Functional:

w∗ = min
w


‖Y − Xw‖2 + λ‖w‖2

ff
After deriving and setting to zero, w = (X>X + λId)−1X>Y

Regularized kernel least squares classification

Model: Y = ΦwH
Functional:

w∗H = min
wH


‖Y −ΦwH‖2 + λ‖wH‖2

ff
Dual weights: α = (K + λIn)−1Y

Primal weigths: wH = Φ>α

Decision function Y = ΦwH = Kα

17 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Kernel Regularized linear regression

Regularized least squares linear classification

Inputs: X ∈ Rn×d

Outputs: Y ∈ Rn×1, Y = [y1, y2, . . . , yn]>

Model: Y = Xw
Functional:

w∗ = min
w


‖Y − Xw‖2 + λ‖w‖2

ff
After deriving and setting to zero, w = (X>X + λId)−1X>Y

Regularized kernel least squares classification

Model: Y = ΦwH
Functional:

w∗H = min
wH


‖Y −ΦwH‖2 + λ‖wH‖2

ff
Dual weights: α = (K + λIn)−1Y

Primal weigths: wH = Φ>α

Decision function Y = ΦwH = Kα
18 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Kernel Regularized linear regression

Exercise: Kernel ridge regression

Solve the ‘normal equations’ in feature spaces

Assume squared cost function

Regularize the weights

Solution

α = (λI + K)−1y

ŷ = Kα

Matlab

>> sigma=3; gamma=1e-5

>> K = kernelmatrix(’rbf’,X,X,sigma);

>> alpha = inv(gamma*eye(length(Y)) + K)*Y;

>> Ypred = alpha*K;

>> assessment(Y,Ypred,’regress’)

19 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

KRR problems and solutionsNonlinear Regression

Like Least-Squared Regression, (Kernel) Ridge Regression is sensitive
to outliers:

0 1 2 3 4 5 6
0

1

2

3

0 1 2 3 4 5 6
0

1

2

3

because the quadratic loss function penalized large residue.

20 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

KRR problems and solutions

Problems!

One weight per example → Risk of overfitting

High computational cost for n > 2000, different (σ, λ) to try!

Solutions

Do proper cross validation and control λ. Plot λ- RMSEtest !!!

Standard code: alpha = inv(gamma + K) * Y;

Cholesky decomposition is faster (∼4-fold) but not sparse again:
R = chol(K+gamma*eye(n));

alpha = R\(R’\Y);
Nyström method uses the Sherman-Morrison-Woodbury formula:

(A + VV>)−1 = D−1 −D−1V(I + V>D−1V)−1V>D−1

There are tricks to make the KRR sparse

21 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

KRR problems and solutions

Problems!

One weight per example → Risk of overfitting

High computational cost for n > 2000, different (σ, λ) to try!

Solutions

Do proper cross validation and control λ. Plot λ- RMSEtest !!!

Standard code: alpha = inv(gamma + K) * Y;

Cholesky decomposition is faster (∼4-fold) but not sparse again:
R = chol(K+gamma*eye(n));

alpha = R\(R’\Y);
Nyström method uses the Sherman-Morrison-Woodbury formula:

(A + VV>)−1 = D−1 −D−1V(I + V>D−1V)−1V>D−1

There are tricks to make the KRR sparse

22 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

KRR problems and solutions

Problems!

One weight per example → Risk of overfitting

High computational cost for n > 2000, different (σ, λ) to try!

Solutions

Do proper cross validation and control λ. Plot λ- RMSEtest !!!

Standard code: alpha = inv(gamma + K) * Y;

Cholesky decomposition is faster (∼4-fold) but not sparse again:
R = chol(K+gamma*eye(n));

alpha = R\(R’\Y);
Nyström method uses the Sherman-Morrison-Woodbury formula:

(A + VV>)−1 = D−1 −D−1V(I + V>D−1V)−1V>D−1

There are tricks to make the KRR sparse

23 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Reduced-rank (Sparse) KRR

A sparsification procedure [Cawley04]

Find a reduced basis in H
Method for training a reduced rank method

Step 1: Form a basis in feature space

Define a subset of the vectors, φS(xi) ≡ {φ(xi)}i∈S

Compute the reconstruction error for every sample

δi =
‖φ(xi)− φS(xi)‖2

‖φ(xi)‖2
= 1−

K>Si K
−1
SS KSi

Kii

The basis is built by minimizing the reconstruction error δi , i.e. maximize:

L(S) =
1

n

nX
i=1

K>Si K
−1
SS KSi

Kii

Greedy algorithm: start with S = [0], maximize L(S), stop when KSS

singular

24 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Reduced-rank (Sparse) KRR

A sparsification procedure [Cawley04]

Find a reduced basis in H
Method for training a reduced rank method

Step 2: Training procedure

Model: Y = ΦwS

The selected basis induces a reduced rank representer’s theorem:

wS =
X
i∈S

βiφ(xi) = Φ>S β

The KRR functional to minimize slightly changes

w∗S = min
wS


‖Y −ΦwS‖2 + λ‖wS‖2

ff
So the dual weights:

β = (K + λIn)−1Y

β = (K>:SKS : + λISS)−1K>:SY

Primal weights: wS = Φ>S β

Decision function Y = ΦwS = K:,Sβ
25 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

SVR

SVR also works in a supervised way

We have input-output data pairs {(xi , yi), i = 1, ..., n}, where xi ∈ Rd and
yi ∈ R.

First, map the data and then do a linear regression in the feature space:

φ : Rd → RH , d ≤ H

The linear model in H:

ŷi = f (xi ,w) = φT (xi)w + b

where w is the weight vector and b is the bias term

We assume and additive noise model:

yi = ŷi + ei

where ei are the committed errors by the model

What’s new versus KRR?

26 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

SVR

SVR also works in a supervised way

We have input-output data pairs {(xi , yi), i = 1, ..., n}, where xi ∈ Rd and
yi ∈ R.

First, map the data and then do a linear regression in the feature space:

φ : Rd → RH , d ≤ H

The linear model in H:

ŷi = f (xi ,w) = φT (xi)w + b

where w is the weight vector and b is the bias term

We assume and additive noise model:

yi = ŷi + ei

where ei are the committed errors by the model

What’s new versus KRR?

27 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

SVR

The SVR formulation

The ε-insensitive SVR is the SVM implementation for regression and
function approximation

�

�

�
�

�

�
��

�

�
�

�

�

�

����

�

���

��
�

�

The (regularized) primal functional to be minimized is:

min
w,ξ,b
{1

2
‖w‖2 + C

X
i

(ξi + ξ∗i)}

with respect to w, ξi , ξ
∗
i and b, subject to:

yi − φT (xi)w − b ≤ ε+ ξi ∀i = 1, . . . , n

φT (xi)w + b − yi ≤ ε+ ξ∗i ∀i = 1, . . . , n

ξi , ξ
∗
i ≥ 0 ∀i = 1, . . . , n

28 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

SVR

Introduce restrictions in the primal through Lagrange multipliers:

LP = 1
2
‖w‖2 + C

P
i (ξi + ξ∗i)−

P
i αi (ε− yi + φT (xi)w + b)

−
P

i α
∗
i (ε+ yi − φT (xi)w − b)−

P
i (µiξi + µ∗i ξ

∗
i)

Derive and set to zero:

∂Lp

∂w
= w −

nX
i=1

(αi − α∗i)φ(xi) = 0

∂Lp

∂b
=

nX
i=1

(α∗i − αi) = 0

∂Lp

∂ξi
= C − αi − µi ,= 0, i = 1, ..., L

∂Lp

∂ξ∗i
= C − α∗i − µ∗i = 0, i = 1, ..., L

Lagrange multipliers must be positive: αi , α
∗
i , µi , µ

∗
i ≥ 0

29 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

SVR

The dual (Wolfe’s) problem becomes:

Ld =
nX

i=1

yi (αi − α∗i)− ε
nX

i=1

(αi + α∗i)

−1

2

nX
i,j

(αi − α∗i)(αi + α∗i)K(xi , xj)

s.t.
C ≥ α(∗)

i ≥ 0,

Predictions:

ŷi = f (xi ,w) = φT (xi)w + b =
X

i

(αi − α∗i)K(xi , x) + b

30 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

SVR

The dual (Wolfe’s) problem becomes:

Ld =
nX

i=1

yi (αi − α∗i)− ε
nX

i=1

(αi + α∗i)

−1

2

nX
i,j

(αi − α∗i)(αi + α∗i)K(xi , xj)

s.t.
C ≥ α(∗)

i ≥ 0,

Predictions:

ŷi = f (xi ,w) = φT (xi)w + b =
X

i

(αi − α∗i)K(xi , x) + b

31 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

SVR in Matlab

The SVR problem is a QP problem with linear constraints

The dual problem in matrix form:

(α−α∗)T y − ε1T (α + α∗)− 1

2
(α−α∗)T K(α−α∗)

s.t.
C ≥ α(∗)

i ≥ 0,

where α(∗) =
h
α

(∗)
1 , · · · , α(∗)

n

iT
and y = [y1, · · · , yn]T .

Use this:
>> help quadprog

QUADPROG Quadratic programming.

X=QUADPROG(H,f,A,b) attempts to solve the quadratic programming problem:

min 0.5*x’*H*x + f’*x subject to: A*x <= b

x

Identify terms: x := (α−α∗)T and H := K and passing it to MATLAB:
alphas = quadprog(H,-Y’+e*f,[],[],f1,0,zeros(size(Y’)),C*f,[],OPTIONS);

The bias term b is obtained from averaging some SVs.

This is cool: sparsity in α−α∗ means interpretability!

32 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

H-SVR

A Robust SVR formulation

Change the ε-insensitive SVR cost function to accomodate three kinds of
noise sources (insensitively, quadratic, linear):

L(ei) =

8<:0, | ei |≤ ε
1

2δ
(| ei | −ε)2, ε ≤| ei |≤ eC

C(| ei | −ε)− 1
2
δC 2, | ei |≥ eC

�����

��� ��

��

��

���

���

”Robust Support Vector Regression for Biophysical Parameter Estimation
from Remotely Sensed Images” Gustavo Camps-Valls, L. Bruzzone, Jose
L. Rojo-lvarez, Farid Melgani IEEE Geoscience and Remote Sensing
Letters, July 2006. Volume: 3, Issue: 3, pp. 339- 343

33 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

H-SVR

>> R=[R -R;-R R];
>> Y=Y(:);
>> f1=[ones(size(Y’)) -ones(size(Y’))];
>> Y=[Y;-Y];
>> H=(R+delta*eye(size(R,1)));
>> unos=ones(size(Y’));
>> OPTIONS = optimset(’LargeScale’,’on’,’diffmaxchange’,1e-8,...
’Diagnostics’,’off’,’Display’,’off’);
>>
alpha=quadprog(H,-Y’+e*unos,[],[],f1,0,zeros(size(Y’)),C*unos,[],OPTIONS);

34 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

H-SVR

Data collection and experimental setup

In this work, we use two different datasets:
1 MERIS dataset.

SIMULATED DATA = NO UNCERTAINTY
1000 samples for cross-validating, 4000 for testing.

2 SeaBAM dataset.
REAL DATA = UNCERTAINTY
460 samples for cross-validating, 460 for testing.

35 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

H-SVR

Numerical Results

Table: Mean error (ME), root mean-squared error (RMSE), mean absolute error
(ABSE), and correlation coefficient (r) of models in the test set.

ME RMSE ABSE r
MERIS database
ε-SVR -2.36e-4 0.015 0.061 0.998
Squared loss SVR -9.96e-4 0.031 0.018 0.998
ε-Huber-SVR -3.26e-6 0.011 0.004 0.999
SeaBAM database
ε-SVR -0.070 0.139 0.105 0.971
Squared loss SVR -0.034 0.140 0.107 0.971
ε-Huber-SVR -0.020 0.137 0.104 0.972

ε-Huber-SVR is more accurate (RMSE, ABSE) and unbiased (ME) than
the rest of the models
For the MERIS data, appreciable numerical and statistical differences.

For the SeaBAM dataset, the proposed method showed an improved
numerical performance but no statistical differences.

36 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

H-SVR

Robustness to reduced datasets

10
1

10
2

0.15

0.2

0.25

0.3

R
M

S
E

Number of training samples

ε−SVR
Squared Loss SVR
RCF−SVR

Figure: Evolution of the RMSE in the test SeaBAM set as a function of the number of
training samples.

37 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

PD-SVR

1 Efficiency of oligonucleotides in RNA sequences

2 Drug concentration prediction

3 Image coding

38 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

“Predictions are hard, particularly those concerning the future...”

Andreas S. Weigend, 1990.

39 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Motivation

Independent and identically distributed (i.i.d.) signals (or random
variables)

Time series, speech and images are not iid signals

How to:
Define SVM methods for TSA?
Kernelize linear structures with the kernel trick?
How to define static and dynamic (online) kernel methods?

Concepts

Autoregressive and moving average (ARMA) processes

FIR and IIR filters
Adaptive filters

Auto-correlation, memory depth and temporal resolution

Outline

SVM-ARMA

Kernel ARMA

40 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Motivation

Independent and identically distributed (i.i.d.) signals (or random
variables)

Time series, speech and images are not iid signals

How to:
Define SVM methods for TSA?
Kernelize linear structures with the kernel trick?
How to define static and dynamic (online) kernel methods?

Concepts

Autoregressive and moving average (ARMA) processes

FIR and IIR filters
Adaptive filters

Auto-correlation, memory depth and temporal resolution

Outline

SVM-ARMA

Kernel ARMA

41 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Motivation

Independent and identically distributed (i.i.d.) signals (or random
variables)

Time series, speech and images are not iid signals

How to:
Define SVM methods for TSA?
Kernelize linear structures with the kernel trick?
How to define static and dynamic (online) kernel methods?

Concepts

Autoregressive and moving average (ARMA) processes

FIR and IIR filters
Adaptive filters

Auto-correlation, memory depth and temporal resolution

Outline

SVM-ARMA

Kernel ARMA
42 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Independent and identically distributed (i.i.d.) random variables

i.i.d random variables: if each random variable has the same probability
distribution as the others and all are mutually independent.

aka, Exchangeable random variables: sequence such that future samples
behave like earlier samples, i.e.: any order is equally likely

Why? This assumption typically simplifies many formulations

Examples of iid signals:
roulette wheel
dice rolls
coin flips

Examples of non-iid signals:
exchange rates
speech
image/video sequences

43 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Independent and identically distributed (i.i.d.) random variables

i.i.d random variables: if each random variable has the same probability
distribution as the others and all are mutually independent.

aka, Exchangeable random variables: sequence such that future samples
behave like earlier samples, i.e.: any order is equally likely

Why? This assumption typically simplifies many formulations

Examples of iid signals:
roulette wheel
dice rolls
coin flips

Examples of non-iid signals:
exchange rates
speech
image/video sequences

44 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Independent and identically distributed (i.i.d.) random variables

i.i.d random variables: if each random variable has the same probability
distribution as the others and all are mutually independent.

aka, Exchangeable random variables: sequence such that future samples
behave like earlier samples, i.e.: any order is equally likely

Why? This assumption typically simplifies many formulations

Examples of iid signals:
roulette wheel
dice rolls
coin flips

Examples of non-iid signals:
exchange rates
speech
image/video sequences

45 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Independent and identically distributed (i.i.d.) random variables

i.i.d random variables: if each random variable has the same probability
distribution as the others and all are mutually independent.

aka, Exchangeable random variables: sequence such that future samples
behave like earlier samples, i.e.: any order is equally likely

Why? This assumption typically simplifies many formulations

Examples of iid signals:
roulette wheel
dice rolls
coin flips

Examples of non-iid signals:
exchange rates
speech
image/video sequences

46 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

(Auto)correlation function

Auto-correlation function (‘correlogram’): Given a stationary process
{xt}, the ACF is

ρx(h) = corr(xt+h, xt) =
X

k

x(k)x(k + h)

>> x=sin(1:100)+randn(1,100); stem(xcorr(x))

Signal processing:
Identify pulsar events,
tempo, beats, pitch

Image processing:
extent and period of
pixel relations in space

47 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Auto-regressive and Moving-average (ARMA) process

ARMA modeling. Given the input-output time series {xn} and {yn}

yn =
PX

i=1

aiyn−i| {z }
AR

+
QX

j=1

bjxn−j+1| {z }
MA

+en, n = 1, . . . ,N

The error terms en are generally assumed to be iid sampled from a normal
distribution with zero mean, N (0, σ2

n)

After choosing P and Q, just obtain ai and bj by least squares regression:

min
a,b
{‖y − Ya− Xb‖2} = min

w
{‖y − Zw‖2}

where y ∈ Rn×1, Y ∈ Rn×P , a ∈ RP×1, X ∈ Rn×Q and b ∈ RQ×1.

Overfitting naively controlled by choosing low P and Q values

M-estimates: regularization and time-varying cost functions ...

Matlab’s sysid toolbox: ar.m, arx.m, armax.m, pem.m, etc.

48 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Auto-regressive and Moving-average (ARMA) process

ARMA modeling. Given the input-output time series {xn} and {yn}

yn =
PX

i=1

aiyn−i| {z }
AR

+
QX

j=1

bjxn−j+1| {z }
MA

+en, n = 1, . . . ,N

The error terms en are generally assumed to be iid sampled from a normal
distribution with zero mean, N (0, σ2

n)

After choosing P and Q, just obtain ai and bj by least squares regression:

min
a,b
{‖y − Ya− Xb‖2} = min

w
{‖y − Zw‖2}

where y ∈ Rn×1, Y ∈ Rn×P , a ∈ RP×1, X ∈ Rn×Q and b ∈ RQ×1.

Overfitting naively controlled by choosing low P and Q values

M-estimates: regularization and time-varying cost functions ...

Matlab’s sysid toolbox: ar.m, arx.m, armax.m, pem.m, etc.

49 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Auto-regressive and Moving-average (ARMA) process

ARMA modeling. Given the input-output time series {xn} and {yn}

yn =
PX

i=1

aiyn−i| {z }
AR

+
QX

j=1

bjxn−j+1| {z }
MA

+en, n = 1, . . . ,N

The error terms en are generally assumed to be iid sampled from a normal
distribution with zero mean, N (0, σ2

n)

After choosing P and Q, just obtain ai and bj by least squares regression:

min
a,b
{‖y − Ya− Xb‖2} = min

w
{‖y − Zw‖2}

where y ∈ Rn×1, Y ∈ Rn×P , a ∈ RP×1, X ∈ Rn×Q and b ∈ RQ×1.

Overfitting naively controlled by choosing low P and Q values

M-estimates: regularization and time-varying cost functions ...

Matlab’s sysid toolbox: ar.m, arx.m, armax.m, pem.m, etc.

50 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Auto-regressive and Moving-average (ARMA) process

ARMA modeling. Given the input-output time series {xn} and {yn}

yn =
PX

i=1

aiyn−i| {z }
AR

+
QX

j=1

bjxn−j+1| {z }
MA

+en, n = 1, . . . ,N

The error terms en are generally assumed to be iid sampled from a normal
distribution with zero mean, N (0, σ2

n)

After choosing P and Q, just obtain ai and bj by least squares regression:

min
a,b
{‖y − Ya− Xb‖2} = min

w
{‖y − Zw‖2}

where y ∈ Rn×1, Y ∈ Rn×P , a ∈ RP×1, X ∈ Rn×Q and b ∈ RQ×1.

Overfitting naively controlled by choosing low P and Q values

M-estimates: regularization and time-varying cost functions ...

Matlab’s sysid toolbox: ar.m, arx.m, armax.m, pem.m, etc.

51 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Auto-regressive and Moving-average (ARMA) process

ARMA modeling. Given the input-output time series {xn} and {yn}

yn =
PX

i=1

aiyn−i| {z }
AR

+
QX

j=1

bjxn−j+1| {z }
MA

+en, n = 1, . . . ,N

The error terms en are generally assumed to be iid sampled from a normal
distribution with zero mean, N (0, σ2

n)

After choosing P and Q, just obtain ai and bj by least squares regression:

min
a,b
{‖y − Ya− Xb‖2} = min

w
{‖y − Zw‖2}

where y ∈ Rn×1, Y ∈ Rn×P , a ∈ RP×1, X ∈ Rn×Q and b ∈ RQ×1.

Overfitting naively controlled by choosing low P and Q values

M-estimates: regularization and time-varying cost functions ...

Matlab’s sysid toolbox: ar.m, arx.m, armax.m, pem.m, etc.

52 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Auto-regressive and Moving-average (ARMA) process

ARMA modeling. Given the input-output time series {xn} and {yn}

yn =
PX

i=1

aiyn−i| {z }
AR

+
QX

j=1

bjxn−j+1| {z }
MA

+en, n = 1, . . . ,N

The error terms en are generally assumed to be iid sampled from a normal
distribution with zero mean, N (0, σ2

n)

After choosing P and Q, just obtain ai and bj by least squares regression:

min
a,b
{‖y − Ya− Xb‖2} = min

w
{‖y − Zw‖2}

where y ∈ Rn×1, Y ∈ Rn×P , a ∈ RP×1, X ∈ Rn×Q and b ∈ RQ×1.

Overfitting naively controlled by choosing low P and Q values

M-estimates: regularization and time-varying cost functions ...

Matlab’s sysid toolbox: ar.m, arx.m, armax.m, pem.m, etc.

53 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

(Linear) SVM-ARMA formulation: the Vapnik’s cost

Standard SVM for regression uses Vapnik’s ε-insensitive loss

Lε(en) =

(
|en| − ε, if |en| ≥ ε,
0, if |en| < ε

... and regularize model weights with the `2 norm:

LP(ai , bj , en) =
1

2

PX

i=1

a2
i +

QX
j=1

b2
j

!
+ C

NX
n=ko

Lε(en)

Primal problem:

LP (ai , bj , ξn, ξ
∗
n) =

1

2

PX

i=1

a2
i +

QX
j=1

b2
j

!
+ C

NX
n=ko

(ξn + ξ∗n)

subject to

yn −
PX

i=1

aiyn−i −
QX

j=1

bjxn−j+1 ≤ ε+ ξn

− yn +
PX

i=1

aiyn−i +
QX

j=1

bjxn−j+1 ≤ ε+ ξ∗n

ξ(∗)
n ≥ 0

54 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

(Linear) SVM-ARMA formulation: the Vapnik’s cost

Do:
∂LPD

∂ai
= 0;

∂LPD

∂bj
= 0;

∂LPD

∂ξ
(∗)
n

= 0

This gives:

0 ≤ α(∗)
n ≤ C (1)

ai =
NX

n=ko

(αn − α∗n) yn−i (2)

bj =
NX

n=ko

(αn − α∗n) xn−j+1 (3)

... and also the input and output autocorrelation matrices emerge:

RP
y (m, k) =

PX
i=1

ym−iyk−i

RQ
x (m, k) =

QX
j=1

xm−j+1xk−j+1

55 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

(Linear) SVM-ARMA formulation: the Vapnik’s cost

The dual problem becomes

LD = −1

2
(α−α∗)

T
h
Rx

Q + Ry
P
i

(α−α∗) +

+ (α−α∗)
T

y − ε1T (α + α∗)

The QP problem, zTHz + bTz, becomes

z =
ˆ

αT , α∗T
˜T

H = −1

2

»
Rx

Q + Ry
P , −Rx

Q − Ry
P

−Rx
Q − Ry

P , Rx
Q + Ry

P

–
b =

ˆ
yT − ε, −yT − ε

˜T

Clearly H is not invertible!

Regularization solves it: H′ = H + γI

56 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

(Linear) SVM-ARMA formulation: the Vapnik’s cost

The dual problem becomes

LD = −1

2
(α−α∗)

T
h
Rx

Q + Ry
P
i

(α−α∗) +

+ (α−α∗)
T

y − ε1T (α + α∗)

The QP problem, zTHz + bTz, becomes

z =
ˆ

αT , α∗T
˜T

H = −1

2

»
Rx

Q + Ry
P , −Rx

Q − Ry
P

−Rx
Q − Ry

P , Rx
Q + Ry

P

–
b =

ˆ
yT − ε, −yT − ε

˜T
Clearly H is not invertible!

Regularization solves it: H′ = H + γI

57 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

(Linear) SVM-ARMA formulation: the Vapnik’s cost

The dual problem becomes

LD = −1

2
(α−α∗)

T
h
Rx

Q + Ry
P
i

(α−α∗) +

+ (α−α∗)
T

y − ε1T (α + α∗)

The QP problem, zTHz + bTz, becomes

z =
ˆ

αT , α∗T
˜T

H = −1

2

»
Rx

Q + Ry
P , −Rx

Q − Ry
P

−Rx
Q − Ry

P , Rx
Q + Ry

P

–
b =

ˆ
yT − ε, −yT − ε

˜T
Clearly H is not invertible!

Regularization solves it: H′ = H + γI

58 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

(Linear) SVM-ARMA formulation: the Vapnik’s cost

So what we want to actually solve is:

LSVM
D = −1

2
(α−α∗)

T
h
Rx

Q + Ry
P
i

(α−α∗) +

+ (α−α∗)
T

y − ε1T (α + α∗)−

−γ
2

“
αT Iα + α∗T Iα∗

”
(s.t. 0 ≤ α(∗) ≤ C).

This corresponds to changing the loss function!

C

ε ec

L (e)P

e

γ

59 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

(Linear) SVM-ARMA formulation: the Vapnik’s cost

So what we want to actually solve is:

LSVM
D = −1

2
(α−α∗)

T
h
Rx

Q + Ry
P
i

(α−α∗) +

+ (α−α∗)
T

y − ε1T (α + α∗)−

−γ
2

“
αT Iα + α∗T Iα∗

”
(s.t. 0 ≤ α(∗) ≤ C).

This corresponds to changing the loss function!

C

ε ec

L (e)P

e

γ

60 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

(Linear) SVM-ARMA formulation: the Vapnik’s cost

Example:

yn = 0.03yn−1 − 0.01yn−2 + 3xn − 0.5xn−1 + 0.2xn−2

with

{xn} ∼ N(0, 1), {en} ∼ N(0, 0.1), {on} = {yn}+ {en}

and impulsive noise {jn}: 30% of samples with ±10 + U(0, 1)

−10 −5 0 5 10 15
0

5

10

15

20

25

e
k

−γ C γ C

0 2 4 6 8 10 12 14 16 18
−24

−22

−20

−18

−16

−14

−12

−10

−20log(σ
w

)

20
lo

g(
M

S
D

)

61 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Kernelization of ARMA 1.

The ARMA process can be vectorized, where S = max(P,Q) and pad
with zeroes the shortest series:

yn = [yn−1, yn−2, . . . , yn−S]>, xn = [xn, xn−1, . . . , xn−S+1]>

The standard way is to use the SVR for regression ...

1 Build/stack/encapsule the data: zn =
ˆ
yT
n , x

T
n

˜>
2 Map them to H with φ(zn) : R2S → RB .
3 Build a linear regression there: yn = dTφ(zn) + en

The primal problem (using the ε-Huber loss) is then:

LSVM
P

“
dj , ξ

(∗)
n

”
=

1

2

BX
j=1

d2
j +

1

2γ

X
n∈I1

“
ξ2
n + ξ∗2

n

”
+ C

X
n∈I2

(ξn + ξ∗n)−
X
n∈I2

γC 2

2

The solution is the classical one

ŷn =
PN

r=S(αr − α∗r)K(zr , zn)

62 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Kernelization of ARMA 1.

The ARMA process can be vectorized, where S = max(P,Q) and pad
with zeroes the shortest series:

yn = [yn−1, yn−2, . . . , yn−S]>, xn = [xn, xn−1, . . . , xn−S+1]>

The standard way is to use the SVR for regression ...

1 Build/stack/encapsule the data: zn =
ˆ
yT
n , x

T
n

˜>
2 Map them to H with φ(zn) : R2S → RB .
3 Build a linear regression there: yn = dTφ(zn) + en

The primal problem (using the ε-Huber loss) is then:

LSVM
P

“
dj , ξ

(∗)
n

”
=

1

2

BX
j=1

d2
j +

1

2γ

X
n∈I1

“
ξ2
n + ξ∗2

n

”
+ C

X
n∈I2

(ξn + ξ∗n)−
X
n∈I2

γC 2

2

The solution is the classical one

ŷn =
PN

r=S(αr − α∗r)K(zr , zn)

63 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Kernelization of ARMA 1.

The ARMA process can be vectorized, where S = max(P,Q) and pad
with zeroes the shortest series:

yn = [yn−1, yn−2, . . . , yn−S]>, xn = [xn, xn−1, . . . , xn−S+1]>

The standard way is to use the SVR for regression ...

1 Build/stack/encapsule the data: zn =
ˆ
yT
n , x

T
n

˜>
2 Map them to H with φ(zn) : R2S → RB .
3 Build a linear regression there: yn = dTφ(zn) + en

The primal problem (using the ε-Huber loss) is then:

LSVM
P

“
dj , ξ

(∗)
n

”
=

1

2

BX
j=1

d2
j +

1

2γ

X
n∈I1

“
ξ2
n + ξ∗2

n

”
+ C

X
n∈I2

(ξn + ξ∗n)−
X
n∈I2

γC 2

2

The solution is the classical one

ŷn =
PN

r=S(αr − α∗r)K(zr , zn)

64 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Kernelization of ARMA 1.

The ARMA process can be vectorized, where S = max(P,Q) and pad
with zeroes the shortest series:

yn = [yn−1, yn−2, . . . , yn−S]>, xn = [xn, xn−1, . . . , xn−S+1]>

The standard way is to use the SVR for regression ...

1 Build/stack/encapsule the data: zn =
ˆ
yT
n , x

T
n

˜>
2 Map them to H with φ(zn) : R2S → RB .
3 Build a linear regression there: yn = dTφ(zn) + en

The primal problem (using the ε-Huber loss) is then:

LSVM
P

“
dj , ξ

(∗)
n

”
=

1

2

BX
j=1

d2
j +

1

2γ

X
n∈I1

“
ξ2
n + ξ∗2

n

”
+ C

X
n∈I2

(ξn + ξ∗n)−
X
n∈I2

γC 2

2

The solution is the classical one

ŷn =
PN

r=S(αr − α∗r)K(zr , zn)

65 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Kernelization of ARMA 1.

The ARMA process can be vectorized, where S = max(P,Q) and pad
with zeroes the shortest series:

yn = [yn−1, yn−2, . . . , yn−S]>, xn = [xn, xn−1, . . . , xn−S+1]>

The standard way is to use the SVR for regression ...

1 Build/stack/encapsule the data: zn =
ˆ
yT
n , x

T
n

˜>
2 Map them to H with φ(zn) : R2S → RB .
3 Build a linear regression there: yn = dTφ(zn) + en

The primal problem (using the ε-Huber loss) is then:

LSVM
P

“
dj , ξ

(∗)
n

”
=

1

2

BX
j=1

d2
j +

1

2γ

X
n∈I1

“
ξ2
n + ξ∗2

n

”
+ C

X
n∈I2

(ξn + ξ∗n)−
X
n∈I2

γC 2

2

The solution is the classical one

ŷn =
PN

r=S(αr − α∗r)K(zr , zn)

66 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Kernelization of ARMA 2.

Define ARMA in H:

yn = aTφ(yn) + bTφ(xn) + en

with a = [a1, . . . , aH]> and b = [b1, . . . , bH]>

The primal problem minimizes:

LSVM
P

“
ai , bi , ξ

(∗)
n

”
=

1

2

HX
i=1

(a2
i + b2

i) +
1

2γ

X
n∈I1

“
ξ2
n + ξ∗2

n

”
+

+ C
X
n∈I2

(ξn + ξ∗n)−
X
n∈I2

γC 2

2

The prediction model is now:

ŷn =
PN

r=S(αr − α∗r) [K(yr , yn) + K(xr , xn)]

67 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Example

Example: neon laser time series (dataset A in the Santa Fe competition):

1-step ahead time series prediction problem:

yn = f ([yn−1, yn−2, ..., yn−k],w)

A complex transition from periodic to chaotic

Noise-free, stationary, low dimensionality

0 20 40 60 80 100 120
0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Number of training samples

M
ea

n−
S

qu
ar

e
E

rr
or

 (
M

S
E

)

SVR
SVM−ARMA

2K
SVM−ARMA

4K

340 350 360 370 380 390

−0.2

0

0.2

0.4

0.6

0.8

Time sample

Actual
SVR
2K
4K

68 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Conclusions

Given definition of the most useful kernel regression methods

Other regression methods are available

Analyzed how to derive the equations

Multioutput SVR is not solved yet

Kernel Bayesian approaches: RVM and GP

Adaptive kernel learning is becoming very popular

Everything relies on the proper definition of K

69 / 70

Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Refs

References

J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press, 2004.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer, NY, 1995.

Vladimir Vapnik. Statistical Learning Theory. Wiley, NY, 1998.

Ralf Herbrich. Learning Kernel Classifiers. MIT Press, Cambridge, MA, 2002.

J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least Squares Support Vector
Machines, World Scientific Pub. Co., Singapore, 2002 http://www.esat.kuleuven.be/sista/lssvmlab/

G. Camps-Valls, J. L. Rojo and M. Martinez, Kernel Methods in Bioengineering, Signal and Image
Processing, Idea Inc., 2007.

Conferences: NIPS, ICML, ECML, COLT, ICANN, ESANN, MLSP

Webs: videolectures.net, http://www.kernel-machines.org

70 / 70

videolectures.net
http://www.kernel-machines.org

