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The organization of the course:

@ Fundamentals of kernel methods
@ Supervised and unsupervised kernel-based classification <<<
© Kernel methods for regression and time series analysis

@ Nonlinear feature extraction with kernels



Supervised

What's Classification?

“Classification refers to an algorithmic procedure for assigning a given piece of
input data into one of a given number of categories.”
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What's Classification?

“Classification refers to an algorithmic procedure for assigning a given piece of
input data into one of a given number of categories.”

<

The classical approaches

The problem can be tackled with different levels of information:
@ Supervised classification <<<<
@ Unsupervised classification (clustering)
@ SemiSupervised classification

4 /90



Supervised LS-SVM SVM Unsupervised KND OC-SVM KKM Conclusions

What's Classification?

“Classification refers to an algorithmic procedure for assigning a given piece of
input data into one of a given number of categories.”

The classical approaches

The problem can be tackled with different levels of information:
@ Supervised classification <<<<
@ Unsupervised classification (clustering)
@ SemiSupervised classification

A\

| A\

Supervised Classification, formally?

Given pairs of input-output data {x;,y;}, i =1,...,n, learn a function that
assigns a predicted label to new incoming samples x., y. = f(x.).

[The function should be smooth (close samples should receive similar labels)
and not too complex (parsimonious, regularized).]

A\
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Supervised

Supervised Classification

Many available classifiers:
@ Parallelepiped

@ Minimum distance
@ Linear/Quadratic Discriminant Analysis

@ Fuzzy models

© Artificial Neural networks
@ Bayesian networks

Qo ..

FORGET IT! GOING LINEAR IS COOL!

(if done in a proper feature space)

7/90



Find a hyperplane that separates between two sample sets.
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Supervised

Find a hyperplane that separates between two sample sets.
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Supervised

Find a linear function that interpolates data points.
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Supervised

Find a linear function that interpolates data points.
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Supervised

Find a linear projections that preserve structure in the data.




Supervised

Find a linear projections that preserve structure in the data.
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Supervised

Three different elementary tasks:
@ classification,
@ regression,
@ dimensionality reduction.

In each case, linear techniques are very successful.

Why?
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Supervised

Linear techniques

@ often work well,

» most natural functions are smooth,
» smooth function can locally be approximated by linear functions.

@ are fast and easy to solve

» elementary maths, even closed form solutions
» typically involve only matrix operation

@ are intuitive

» solution can be visualized geometrically,
> solution corresponds to common sense.



Supervised

With several classes, two common strategies:

@ one-vs-all, one-vs-the-rest: ¢ classifiers

@ one-vs-one, c(c — 1)/2 classifiers

@
-

/

W) p
./\U
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LS-SVM

Regularized least squares linear classification

o Inputs: X € R™?

o Outputs: Y € R™ Y = [y1,y2,...,ya] "
Model: Y = sign(Xw)

Functional:

w” = min {||Y — Xw|® + /\HWHZ}

o After deriving and setting to zero, w = (X" X + Aly)7!XTY
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Regularized least squares linear classification

o Inputs: X € R™?

Outputs: Y € R™Y Y = [y1,y,...,¥n
Model: Y = sign(Xw)

Functional:

]T

w” = min {||Y — Xw|® + /\HWH2}
w
o After deriving and setting to zero, w = (X" X + Aly)7!XTY
Regularized kernel least squares classification

o Model: Y = sign(®w)
@ Functional:

wy, = min {HY — ¢W7-(||2 + /\HWHH2}
Wi

e Dual weights: o = (K + Al,)tY
o Primal weigths: wy; = ® '«
@ Decision function Y = sign(®wy() = sign(Kat)
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Like Least-Squared Regression, (Kernel) Ridge Regression is sensitive
to outliers:

because the quadratic loss function penalized large residue.
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Problems!

@ One weight per example — Risk of overfitting
@ High computational cost for n > 2000, different (o, \) to try!
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@ One weight per example — Risk of overfitting

@ High computational cost for n > 2000, different (o, \) to try!

o Do proper cross validation and control A. Plot A- RMSE e !!!

o Standard code: alpha = inv(gamma + K) * Y;

@ Cholesky decomposition is faster (~4-fold) but not sparse again:
R = chol (K+gammaxeye(n)) ;
alpha = R\(R’\Y);

@ Nystrom method uses the Sherman-Morrison-Woodbury formula:

A+vwWH'=D'-D'Vi+V'D'V)'vID!

A
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@ One weight per example — Risk of overfitting
e High computational cost for n > 2000, different (o, \) to try!

v

o Do proper cross validation and control A. Plot A- RMSE e !!!

o Standard code: alpha = inv(gamma + K) * Y;

Cholesky decomposition is faster (~4-fold) but not sparse again:
R = chol (K+gammaxeye(n)) ;

alpha = R\(R’\Y);

@ Nystrom method uses the Sherman-Morrison-Woodbury formula:

A+vwWH'=D'-D'Vi+V'D'V)'vID!

There are tricks to make the KLSC sparse (not very naturally)

22
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SVM

90000000

SVM linear classification

o Data: Given n examples x; € RV and y; € {1, 41} (classes)
o Objective: Build a linear classifier, = f(x) = sign(w ' x + b).

yi=+1
[ ]
(<]
e ©
o
o (*]
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SVM

0®000000

SVM linear classification

@ Several solutions exist!

@ Objective: Define the optimal one (w, b)
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SVM linear classification

@ Several solutions exist!

@ Objective: Define the optimal one (w, b)
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SVM

000e0000

SVM linear classification

@ Intuitively there’s an optimal one!

@ Objective: Define the optimal one (w, b)
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SVM
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SVM linear classification

@ ... and should separate samples from different classes maximally!

@ Objective: Define the optimal one (w, b)
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SVM

00000e00

SVM linear classification

. . . . (1,
o Maximize margin separation = minimize ||w||: miny §Hw||

yi=+1




SVM

00000080

SVM linear classification

. 1
o Errors must be also penalized! min,, {§Hw||2 + CZ,&}

y=+1
\ éi xi
\
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SVM
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SVM linear classification

@ ... and examples are forced to belong to their class!
min }||w||2+ CZ&-
w |2 ,- '

subject to:

wixi+b>1-¢ yi=+4+1Yi=1,...n
wixi+b<1—¢& yi=-1Yi=1,..n
&>0

@ & is the error associated to misclassify example x;

o C is a tradeoff parameter controlling the overfitting
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SVM

9000000

A brief review of optimization techniques

Optimization

@ Optimization means solving problems by minimizing (or maximizing) a real
function by choosing the values of real or integer variables from an allowed
set.

@ Many methods and families of techiques:

@ Gradient descent (first-order optimization): takes steps proportional to the
negative of the gradient of the function at the current point

@ Linear programming: if you have a linear objective function with constraints

© Quadratic programming: if you have a squared objective function with
constraints

@ Semidefinite programming

© Convex cone optimization

Q ..
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SVM
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A brief review of optimization techniques

Linear programming

“Linear programming (LP) determines the solution of a linear objective
function, subject to linear equality and linear inequality constraints.”

maxc ' x s.t. Ax <b
X

where b, ¢, and A are known.

Quadratic programming

“Quadratic programming (QP) determines the solution of a quadratic function
subject to linear constraints.”

max %XT Kx +c'x s.t. Ax <b and Ex=d
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A brief review of optimization techniques

Linear programming

“Linear programming (LP) determines the solution of a linear objective
function, subject to linear equality and linear inequality constraints.”

maxc ' x s.t. Ax <b
X

where b, ¢, and A are known.

Quadratic programming

“Quadratic programming (QP) determines the solution of a quadratic function
subject to linear constraints.”

max %XT Kx +c'x s.t. Ax <b and Ex=d

Tons of efficient solvers

o Matlab’'s quadprog, linprog, simplex
@ Open source C++ tools: QSOpt, SMO, Pegasus, 1ibLBFGS




SVM

00®@0000

A brief review of optimization techniques

Joseph-Louis Lagrange (1713-1813),
Giuseppe Lodovico (Luigi) Lagrangia:
‘optimization of functions of several
variables subject to equality and inequality
constraints’

v

Method of Lagrange multipliers

max f(x, y) s.t. g(x,y)=c
Xy

ftxy)
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SVM
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A brief review of optimization techniques
Method of Lagrange multipliers
el o )k s.t. g(x,y)<c

Method of Lagrange multipliers: solution
Introduce a new variable (named ‘Lagrange multiplier’ &) and optimize the new

f(X,y) _a(g(xvy) _C)

| A\

function:
max{A(x, y, o)} s.t.

XY\

which is equivalent to solve the dual problem

)Tﬁ)A({f(x,y) —a(g(x,y) — o)} s.t. >

v
/"— »
N fooy) =d,

P 1
v

Jixy)

X
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A brief review of optimization techniques

Method of Lagrange multipliers

o Lagrange duality: The method is applicable to any number of variables
and constraints:

min{f(x)} s.t.fi(x) <0 and hi(x) =10
The dual problem reduces to minimize:

A(x, o, p) = fo(x) — Za:‘ff(X) - thf(X)

@ The procedure is very simple:
@ Derive this primal-dual problem and equal to zero, V A(x,y,a) =0
@ The obtained constraints are stationary points of the solution
@ Include the obtained constraints again
@ Done! You obtain an LP or QP problem, for which there are lots of efficient
solvers

v
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SVM
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A brief review of optimization techniques

o Remember the SVM primal problem:
min { wl® + €3 &
w |2 ,- '

subject to:

wixi+b>1-¢ yi=+4+1Yi=1,...n
wixi+b<1—¢ yi=-1Yi=1,..n
&>0

@ & is the error associated to misclassify example x;

o C is a tradeoff parameter controlling the overfitting
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SVM
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A brief review of optimization techniques

The latter is a quadratic programming problem with linear constraints:
o Use Lagrange multipliers (& > 0, u; > 0) for each constraint:

1 n
vrvnglpb{QIWI|2+ C;& Za:[y: w'x; + b) + & I]Zu&}

i=1

@ Then derive and equal to zero: % =0, g—é =0, % =0

o Combining the previous results, we obtain the equivalent dual problem:

max Za,ajy,ij x,+2a,

lljl
K’J

o After some operations, the decision function is:

9 = f(x;) = sign(w " x; + b) = sign(Za;yf xi' xj +b>
—1 N~
=Kj
e Both for training and prediction, we only need the dot product
(similarities) between vectors, Kj, not the examples
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SVM

[ Jelelele]

SVM nonlinear classification
o Step 1: Map examples to a higher dimensional space, ¢ : RY — H

xj — @(xi), i=1,...,n
@ Step 2: Replace dot products (-,-) in H by a kernel function k(-,-)

(@(xi), p(x))) = K(xi, %))

@ Step 3: Solve the same maximum margin problem

ZZa ajyiy; ()" H(x) +Za,

1111
KU

o Step 4: Prediction involves comparing test to train samples with K(-,):

i = () = sign(w ¢(xj)+b>=sfgn<izlja,»yf¢(xf) ¢(x,->+b)

=K;
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SVM
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SVM nonlinear classification

@ The solution is sparse: only few examples x; with a; # 0 are important
@ Support vectors: define the margin and are misclassified examples

y=+1
\ éi X;
\

40

90



SVM
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SVM nonlinear classification

@ The solution is sparse: only few examples x; with a; # 0 are important
@ Support vectors: define the margin and are misclassified examples

y=+1
\ éi X;
N

41
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SVM

[e]ele] lo]

SVM nonlinear classification

o Large C — overfitting
@ Small C — oversmooth

@ Choosing o for the RBF kernel is critical, as it indicates the degree of
shared information among training samples

9
‘ vl o .
W e wmy
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[e]ele]e] )

SVM nonlinear classification

Hands on. From Theory to Computer

@ We only need to solve this problem:

@ Compute the kernel matrix with all labeled samples, K.
@ Solve the problem:

moin {%QTYKYQ — lTa}
subject to:
0<a<C

o Matlab solves it with quadprog.m:

alpha = quadprog(K,Ones,[],[],Y,0,0,C);
Visit http://www.kernel-machines.org
Many SVM implementations: Pegasus, SvM'iet, MySVM, SVMTorch,
Machine learning tools: Weka, Spider, Shogun
A fast C++ implementation is 1ibSVM by Chih-Jen Li

A tuned (and even faster implementation):
http://www.uv.es/jordi
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Unsupervised

o Clustering is a key problem in nature

@ Learn to group examples in meaningful families/clusters/groups without
training labels

@ Clustering is difficult and ill-posed
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Unsupervised

o Clustering is a key problem in nature

@ Learn to group examples in meaningful families/clusters/groups without
training labels

o Clustering is difficult and ill-posed

v

@ What do we need for clustering? Just measure distances!

@ Kernel methods can do the job: kernelization modes

N
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Unsupervised
L o]

Introduction to one-class classification

One-class classification

o A.k.a. target detection, anomaly detection, outlier detection, etc.

@ Sometimes you're only interested in detecting one class and rejecting the
others

@ Sometimes you have labels for just one class
@ Somehow related to density estimation!

46
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Unsupervised
oe

Introduction to one-class classification

Main ideas

@ Boundary between the two classes has to be estimated from data of only
one class

@ Task: to define a boundary around the target class (to accept as much of
the target objects as possible, to minimize the chance of accepting outlier
objects).
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Introduction to one-class classification

@ Boundary between the two classes has to be estimated from data of only

one class
@ Task: to define a boundary around the target class (to accept as much of
the target objects as possible, to minimize the chance of accepting outlier

objects).

@ Speech: identification of intruders
o Computer vision: image retrieval, steganalysis, intrusion detection, etc.

@ Remote sensing:

o detect changes in two images,
o identify one class: urban, cloud, citrus trees
e compare new examples to a library of well-characterized objects

@ Bioinformatics: detect anomalous proteins in a sample
@ Econometrics: find anomalous exchange rates

@ Image processing: find salient, rare image features

@ Online, incremental learning




Unsupervised

Kernelizing clustering algorithms

Family 1: Kernelization of the metric

Methods based on kernelization of the metric look for centroids in input space
and the distances between patterns and centroids is computed by means of

kernels: s
llo(xi) — d(x)II” = K(xi,xi) + K(x;,%7) — 2K(xi, %;)
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Unsupervised

Kernelizing clustering algorithms

Family 1: Kernelization of the metric

Methods based on kernelization of the metric look for centroids in input space
and the distances between patterns and centroids is computed by means of
kernels:

p(xi) — pO)II* = K(xixi) + K(x;, %7) = 2K (xi, %))

v

Family 2: Description via support vectors

@ The description via support vectors makes use of One Class SVM to find a
minimum enclosing sphere in feature space able to enclose almost all data
in feature space excluding outliers.

@ The computed hypersphere corresponds to nonlinear surfaces in input
space enclosing groups of patterns.

N,
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Kernelizing clustering algorithms

Family 1: Kernelization of the metric

Methods based on kernelization of the metric look for centroids in input space
and the distances between patterns and centroids is computed by means of

kernels: )
llo(xi) — p(x)II” = K(xi,xi) + K(xj, %) — 2K (xi, X;)

Family 2: Description via support vectors

@ The description via support vectors makes use of One Class SVM to find a
minimum enclosing sphere in feature space able to enclose almost all data
in feature space excluding outliers.

@ The computed hypersphere corresponds to nonlinear surfaces in input
space enclosing groups of patterns.

o’

Family 3: Clustering in feature space

o Clustering in feature space is made by mapping each pattern using ¢ and
then computing centroids cy in feature space.

o It is possible to compute |[¢(x;) — p,||*> by means of the kernel trick
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Kernel novelty detector (KND)

@ Put a ball around the center of mass ¢, € H of enough radius to contain

all the data:
[¢(x«) — Gull = max {[|¢(xi) — dpll}

T 1<i<n
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Kernel novelty detector (KND)

@ Put a ball around the center of mass ¢, € H of enough radius to contain

all the data:
[¢(x«) — Gull = max {[|¢(xi) — dpll}

T 1<i<n

@ This condition can be tested with kernels because we can compute
distances:

dr(xi, %)) = [|(xi) — d(x7) |l = VK (xi, %) + K(xj, %)) — 2K(xi, ;)
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Kernel novelty detector (KND)

@ Put a ball around the center of mass ¢, € H of enough radius to contain

all the data:
[¢(x«) — Gull = max {[|¢(xi) — dpll}

T 1<i<n

@ This condition can be tested with kernels because we can compute
distances:

dr(xi, %)) = [|(xi) — d(x7) |l = VK (xi, %) + K(xj, %)) — 2K(xi, ;)

e ... and also remember that the mean of the data is ¢, = 2 37 | &(x;),
then

. 2 1
K(xi,x;) = K(xi, %) — . Z K(xi,x;) + P Z K(xi, x;j)
i inj
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Kernel novelty detector (KND)

@ Put a ball around the center of mass ¢, € H of enough radius to contain

all the data:
[¢(x«) — Gull = max {[|¢(xi) — dpll}

1<i<n

@ This condition can be tested with kernels because we can compute
distances:

dr(xi, %)) = [|(xi) — d(x7) |l = VK (xi, %) + K(xj, %)) — 2K(xi, ;)

e ... and also remember that the mean of the data is ¢, = 2 37 | &(x;),
then

. 2 1
K(xi,x;) = K(xi, %) — . Z K(xi,x;) + P Z K(xi, x;j)
i inj

@ Prove that the KND reduces to test this condltlon

K (X, X4) = ZK Xi, X;) ZK X, Xj)

>

o L) + 5 3 K x) — 2 3 K x) | »
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Enhanced Kernel novelty detectors (KND)

@ Put a ball around the center of mass ¢, € H of enough radius to contain

all the data:
9x.) = gl > max {ll9(x) — o}
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Enhanced Kernel novelty detectors (KND)

@ Put a ball around the center of mass ¢, € H of enough radius to contain
all the data:
1¢(x+) = ¢ull = max {{lé(xi) — ¢ull}

@ Give more weight to the recent samples? Include a forgetting factor...

l60c) = 6ull 2 max {ll6(x) — "}

57 /90



Supervised LS-SVM SVM Unsupervised KND OC-SVM KKM Conclusions

Enhanced Kernel novelty detectors (KND)

@ Put a ball around the center of mass ¢, € H of enough radius to contain
all the data:
1¢(x+) = ¢ull = max {{lé(xi) — ¢ull}

@ Give more weight to the recent samples? Include a forgetting factor...

l60c) = 6ull 2 max {ll6(x) — "}

@ Incorporate the variance of the ball somehow?
1 n
bo ==Y (%) — ¢u)’

n <
i=1
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Enhanced Kernel novelty detectors (KND)

@ Put a ball around the center of mass ¢, € H of enough radius to contain
all the data:
1¢(x+) = ¢ull = max {{lé(xi) — ¢ull}

@ Give more weight to the recent samples? Include a forgetting factor...

l60c) = 6ull 2 max {ll6(x) — "}

@ Incorporate the variance of the ball somehow?
1 n
bo ==Y (%) — ¢u)’

n <
i=1

@ Update the rule? For any incoming x;, modify ¢, and ¢
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Formulation

One-class SVM

@ Also known as ‘support vector domain description’ (SVDD) (raxss schéikopfos]
Now we only have a dataset {x;}/_; belonging to a given class of interest

@ Goal: “find a minimum volume hypersphere in a high dimensional feature
space H, with radius R > 0 and center a € H, which contains most of
these data objects”

This implies:

o Minimize the radius
o Force all samples be inside the ball
o Allow some errors, o.w. outliers are never rejected

Hypersphere in feature Hilbert space H
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Formulation

One-class SVM, formulation

@ Minimize the radius: min{R?}
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Formulation
One-class SVM, formulation
@ Minimize the radius: min{R?}

@ Force all samples be inside the ball: ||¢(x;) — a|* < R?
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Formulation

@ Minimize the radius: min{R?}
@ Force all samples be inside the ball: ||¢(x;) — a|* < R?
o Allow some errors: ||p(x;) —a||®> < R? + &
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000

Formulation
One-class SVM, formulation
@ Minimize the radius: min{R?}
Force all samples be inside the ball: ||¢(x;) — a||*> < R?
Allow some errors: ||p(x;) —al|> < R + &

This translates into:
. 2 Z )
IET {R e i=1 51}

s.t.

lp(xi) —all* < R* + & Vi=1,....n (1)
& >0 Vi=1,...,n (2)
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Formulation

One-class SVM, formulation

@ Minimize the radius: min{R?}

@ Force all samples be inside the ball: ||¢(x;) — a|* < R?
o Allow some errors: ||p(x;) —a||®> < R? + &
@ This translates into:

. 2 .
" {R +C Zl a}
s.t.

lp(xi) —all* < R* + & Vi=1,....n (1)
& >0 Vi=1,...,n (2)

o Free parameters: the big problem! no xval procedures possible!
o Kernel parameters: low sigma means no rejection, high sigma means all
accepted
e C: controls the trade-off between the volume of the hypersphere and the
permitted errors
e v =1/nC: rejection fraction parameter (what rate of [%] samples are
outside the ball)
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Formulation

One-class SVM primal problem
. 2 2 2
7 .t. 7)) = < 7 i >
?21{/? +C§1£} s.t lo(xi) —al|l* < R*+¢ & >0

One-class SVM, solution

@ Include restrictions into the primal:

{R2+c25, Za,{R +& - llo(x) —au} Zuf,}
@ Derive and equal to zero:

%:O_}Z:aizl

G 0—a= 7Ziai¢()<i)

Oa - ZI (e

6LZO*>CZO¢,'+;L,'—>OSC¥,'§C

0¢;
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[eJele] ]

Formulation

One-class SVM dual problem

@ Include this constraints to derive the dual problem:

Lo =) aid(x)p(x) = 3D aiap(x)px) st. 0<ai<C

i

@ This is a QP problem whose solution yields a set of Lagrange multipliers «;

67 /90



Supervised LS-SVM SVM Unsupervised KND OC-SVM KKM Conclusions
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Formulation

One-class SVM dual problem

@ Include this constraints to derive the dual problem:

Lo =) aid(x)p(x) = 3D aiap(x)px) st. 0<ai<C

i

@ This is a QP problem whose solution yields a set of Lagrange multipliers «;
@ Interpretation of the constraints:
o if |d(x;) — a||® < R? + ¢; is fulfiled then a; =0
if [|p(x;) — a|2 = R? + & then a; > 0
if || p(x;) — a|> < R> — a; = 0, u; = O (target samples, not SVs)
if |p(x;) — al|> = R> — 0 < o < C, u; = 0 (unbounded SVs)
if ||p(x;) — a||> > R?> — «; = C, u; > 0 (bounded SVs, outliers)
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Formulation

One-class SVM dual problem

@ Include this constraints to derive the dual problem:

Lo =) aid(x)p(x) = 3D aiap(x)px) st. 0<ai<C

i

@ This is a QP problem whose solution yields a set of Lagrange multipliers «;
@ Interpretation of the constraints:

o if |d(x;) — a||® < R? + ¢; is fulfiled then a; =0

o if [|@d(x;) —al|®> = R%2 + & then a; > 0

o if |p(x;) — a||> < R?> — a; = 0, u; = 0 (target samples, not SVs)

o if |p(x;) —al> = R?> - 0 < a; < C,u; = 0 (unbounded SVs)

o if |¢(x;) —a||> > R? — a; = C, u; > 0 (bounded SVs, outliers)
o If C is properly tuned, most of the «; are zero — Sparsity

69 /90



Supervised LS-SVM SVM Unsupervised KND OC-SVM KKM Conclusions

[eJele] ]

Formulation

One-class SVM dual problem

@ Include this constraints to derive the dual problem:

Lo =) aid(x)p(x) = 3D aiap(x)px) st. 0<ai<C

i

@ This is a QP problem whose solution yields a set of Lagrange multipliers «;
@ Interpretation of the constraints:

o if |d(x;) — a||® < R? + ¢; is fulfiled then a; =0

o if [|@d(x;) —al|®> = R%2 + & then a; > 0

o if |p(x;) — a||> < R?> — a; = 0, u; = 0 (target samples, not SVs)

o if |p(x;) —al> = R?> - 0 < a; < C,u; = 0 (unbounded SVs)

o if |¢(x;) —a||> > R? — a; = C, u; > 0 (bounded SVs, outliers)
o If C is properly tuned, most of the «; are zero — Sparsity

One-class SVM prediction function

To test a new sample x., we compute the distance to the center of the sphere

d(x.,a)” = [B(x.)—al® = K(xe, x)—2 > aiK(xi, %)+ Y | iy K(xi, %)) > R?

i=1 ij=1
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Effect of the free parameters

sigma=1 sigma=5 sigma=15

C=25.0

C=0.1
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Effect of the free parameters

How to tune the parameters without outliers?

@ Put a reasonable o (median better than the mean of the distance between

samples)

If you have an estimation of the rate of expected outliers, tune v =1/nC

Typically: v € [0.1,0.4] (force sparsity)

Heuristic: maximize the rate SVs/errors

Heuristic 2: update parameters for a new incoming sample
Analyze the receiver operating curve (ROC): f(u, v|6)

e u = proportion of false positives = P(f(x) = 1|y = —1)

e v = proportion of true positives = P(f(x) = 1|y = 1)

e <

true positives

falsepositives 1 u
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Effect of the free parameters

Hands on. From Theory to Computer

@ We only need to solve this problem:

@ Compute the kernel matrix with all samples, K.
@ Solve the problem:

moin {%QTKQ — lTa}
subject to:
0<a<C
o Matlab solves it with quadprog.m:
alpha = quadprog(X,Ones, [], [],0nes,0,0,C);
Visit http://www.kernel-machines.org
Many SVM implementations: Pegasus, SvM'iet, MySVM, SVMTorch,
Machine learning tools: Weka, Spider, Shogun
A fast C++ implementation is 1ibSVM by Chih-Jen Li

A tuned (and even faster implementation):
http://www.uv.es/jordi

o Tax DDTools: very useful for one-class and PDE!
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k-means algorithm

Given a set of observations {xi, X2, ..., X, }, partition the n observations into k
sets (k < n), S ={51,5,...,S«} so as to minimize the within-cluster sum of
squares:
K
argmjn{ 355 lhg - l*}
i=1 x;€S;

where p; is the mean of points in S;
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The Lloyd's (iterative) algorithm

@ Initialization, t = 0: Set an initial set of k-means u(lt), e uit)
@ Assignment: Assign each observation to the cluster with closest mean:
SO = {x; « % — p| < lIx; — 2|, for all ix =1,..., k}

© Update: Assign the centroids to the new means:

(t+1) 1 ‘
M = S-(t)| Z X

@ Go to step (2) until convergence, i.e. any p; changes

© Return the feature space codebook (the centroids to use in test)

°
e g\

DeD
®ano
O

o0

(=]
[=] B
. : &
0 g =]

e
®oo

k initial ‘means’ (e.g.
k = 3) are ran-
domly selected from
the data set

k clusters are created
by associating every
observation with the
nearest mean

The centroid of each
of the k clusters be-
comes the new means

Steps 2 and 3 are
repeated until con-
vergence has been
reached
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Algorithm

This algorithm minimizes the quantization error in feature space:
@ Project data: X — @
@ Initialize the codebook: M® = [y, o, ..., ], € H
© Compute for each centroid p, the set S;
@ Update the codevectors:

1
NEHI): s Z é(x))

| i | Xjesi(t)

@ Go to step (3) until any p; changes
@ Return the feature space codebook indices
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Algorithm

This algorithm minimizes the quantization error in feature space:
@ Project data: X — @
@ Initialize the codebook: M® = [y, o, ..., ], € H
© Compute for each centroid p, the set S;
@ Update the codevectors:

1
NEHI): s Z é(x))

| i | Xjesi(t)

@ Go to step (3) until any p; changes
@ Return the feature space codebook indices

v

1
@ Apply the Representer’s theorem to codevectors: p; = @ Zx;esk aig(x;)

@ One can compute distances in H: ||¢(x;) — /,LJ-||2

N




Samples are mapped into a higher dimensional feature space:

input data mapping in a
complex and o(-) higher dimensional
nonlinear feature space

l
nonlinear linear learning
solution in «—— algorithm
input space (k-means)

@ The explicit computation of the mapping ¢(-) is costly and
often not bearable

@ The dot products (¢(-), () can be replaced by k(,-)

@ The value returned by the kernel function correspond to the
dot product in the (high dimensional) feature space
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The kernel version

@ True clusters are often not recognizable in the input space

@ Perform k-means in the feature space spanned by the kernel.

d*(p(xi), mi) = [lp(xi) — my® (1)
where m = ﬁ Z p(x;) (2)
JETK

In other words:

d2(cp(x,-)7 my) = k(x;, x;) + ﬁ Z k(x;j,xr)

Jilem,

2
- W Z k(X,’,Xj)

JETK
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...but some problems arise

1. As k-means, the convergence of the kernel version is greatly
influenced by the initial assignments (initial centers or initial
labeling)

2. The kernel function need some parameters to be tuned. How
to do it keeping the algorithm unsupervised?

k(xisxj) = (xi, ;) k(xi,x}) = exp(—|x; — x;]|/25?)

linear k-means o need to be tuned
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1. The initialization

Find some ‘training’ pixels
oA

Thus, ideally:

No change region

Overlapping
zone

Change region

@ Exploit the magnitude of the
difference image in order to
find some change / no
change pixels

@ The distribution of the
magnitude of such image

can be used! G




2. Tuning the kernel parameters

Find the correct hyperparameters:

@ Map samples into compact

clusters (sphericity) . 1 >
arg mam ; m Z da(‘P(Xl')a mk)

€Ty
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2. Tuning the kernel parameters

Find the correct hyperparameters:
@ Map samples into compact
clusters (sphericity)
@ Enforce cluster separation
(far centers)

arg max Z d2(my, mp)
k#p
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2. Tuning the kernel parameters

Find the correct hyperparameters:

@ Map samples into compact
clusters (sphericity)

@ Enforce cluster separation
(far centers)

@ Combination of two criteria

arg min
o

Sk e Sien, 2 (xi). M)

Zk;ﬁp dz(my, mp)
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The Zurich VHR

@ QuickBird 0.5 m pixel size

1 Compute the magnitude
0= ||Xt2 — Xty H

2 Select pixels from both
distributions, considering
high noise and false change
in the threshold zone

3 Find the correct parameter
(here, the o of a Gaussian
RBF kernel)

ZH t, (2006)
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Results: linear vs. nonlinear

>4

.

v -
MERE \ 4
\ RGN
N e
(b) k-means (c) kernel k-means

For k-means and kernel k-means these maps are a sum of 15 binary
maps randomly initialized on the thresholded distributions.
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S o o o
[P VY

True positive rate

ROCs

>~ CVA
—- k-means
~&- kernel k-means

0.1 02 03 04 05 06 07 08 09 1
False positive rate

o False alarms reduced by
~ 2% for the k-means (wrt
CVA) ~ 41% for the kernel
k-means (wrt CVA)

@ Hit rate is high for all the
approaches

AUC Cohen's Kappa
CVA= 0912 | k= 0.7
k-means = 0923 | Kk = 0.62
kernel k-means = 0974 | Kk = 0.74
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Conclusions
L ]

Conclusions

@ Given definition of the most useful kernel supervised and unsupervised
classifiers

Other classifiers are available: KFDA, kernel SOM, kernel fuzzy means,
etc.

Analyzed how to derive the equations

Everything relies on the proper definition of K
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