
Intro Vector spaces Kernels Properties Kernelization Conclusions

Lecture 01: Fundamentals of Kernel methods

Gustavo Camps-Valls

Image Processing Laboratory (IPL) – Universitat de València. Spain.
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The organization of the course:

1 Fundamentals of kernel methods <<<

2 Supervised and unsupervised kernel-based classification

3 Kernel methods for regression and time series analysis

4 Nonlinear feature extraction with kernels
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Many methods in machine learning classification:
Linear discriminant analysis (LDA)
Decision trees
Neural networks

Many methods in machine learning regression:
Regularized linear regression
Decision trees
Splines
Neural networks

Many methods in machine learning feature extraction:
Principal component analysis (PCA)
Independent component analysis (ICA)
Partial least squares (PLS)

Many methods in machine learning clustering problems:
k-means, fuzzy k-means
Hierarchical clustering
Gaussian mixture models

Many methods in machine learning density estimation:
Mixture of Gaussians
Parzen windows
RBIG
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Observations
√

All methods based on estimating distances/similarities between samples

× A toolbox of powerful yet unrelated methods
Different complexities
Different and unintuitive free parameters to tune
Not at all clear how regularization is included
Not clear how overfitting is avoided

Kernel methods

A formalization of all machine learning problems

They provide a way to develop new methods quite easily

They exploit the notion of similarity between samples
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What we need for learning ...

Learning from data means ...

Suppose we are given empirical data

(x1, y1), . . . , (xn, yn) ∈ X × Y

where xi are the inputs taken from the set X and yi ∈ Y are the targets.

Learning means to use these data to make statements about unseen
elements x ∈ X .

Example: binary classification X = {−1, +1}

We want to construct a function f : X → Y which assigns to each element of
X a class label.

The function should not be arbitrary but one which generalizes well, i.e.
making few errors on unseen data from the same problem.

We will need to exploit structure of the training examples and to impose a
similarity between data points that describes well the test set
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What we need for learning ...

Q1: What is a set X?

A set is a collection of distinct objects

A set is an object in its own right

“By a ‘set’ we mean any collection M into a
whole of definite, distinct objects m (which are called
the ‘elements’ of M) of our perception or of our
thought. ”

— Georg Cantor, 1880

The elements or members of a set can be anything: numbers, people,
letters of the alphabet, other sets, ...

Sets are conventionally denoted with capital mathcal letters

Sets X = X ′ iff they have precisely the same elements
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What we need for learning ...

Q2: How to measure similarities between elements (vectors) a and b?

Definition: The dot (or scalar, or inner) product between vectors
a, b ∈ Rd :

a · b = 〈a, b〉 =
dX

f =1

a(f )b(f )

Geometrical interpretation:

b

a

θ

||a||cos(θ)
〈a, b〉 = a · b = a>b = ‖a‖‖b‖ cos(θ)

Intuitions:
The dot product measures how much of a vector a is contained in b
... and how much the two vectors point in the same direction
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What we need for learning ...

Properties of dot products (print and forget!)

1 The size of the angle (similarity): θ = arccos

„
a · b
‖a‖‖b‖

«
2 Convert vectors to unit vectors (unit distance):

ã = a/‖a‖ → θ = arccos(ãb̃)

3 The dot product is commutative: a · b = b · a
4 The dot product is distributive: a · (b + c) = a · b + a · c
5 The dot product is bilinear: a · (rb + c) = ra · b + a · c
6 The dot product satisfies: (c1a) · (c2b) = (c1c2)(a · b)

7 Dot product on stacked vectors: 〈[a, b], [c, d]〉 = ac + bd

8 Two non-zero vectors a and b are perpendicular (orthogonal) iff
a · b = 〈a, b〉 = 0

9 If a · b = a · c and a 6= 0 → a · (b− c) = 0 → a ⊥ (b− c) but b 6= c.

10 Derivative of a dot product:
d

dt
(a · b) =

da

dt
· b + a · db

dt
is a vector

11 Frobenius inner product: A : B =
P

ij Aij Bij = trace(A>B)
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What we need for learning ...

Hilbert spaces: a generalization of dot product spaces

A Hilbert space is an abstract vector space that has
the structure of an inner product that allows
computing lengths and angles

A Hilbert space is a space endorsed with a dot
product defined on possibly infinite-dimensional
points — Hilbert, 1909

Example: R3 Euclidean space with dot product is a Hilbert space

The dot product is:

Symmetric: x · y = y · x
Linear: (ax1 + bx2) · y = ax1 · y + bx2 · y
Positive definite: x · x ≥ 0 (equality only for x = 0)

Other characteristics:

Norm: ‖x‖ =
√

x · x =
p
〈x, y〉

Distance between points: d(x, y) = ‖x− y‖ =
p
〈x− y, x− y〉

Cauchy-Schwarz ineq.: d(x, z) ≤ d(x, y) + d(y, z)→ |〈x, y〉| ≤ ‖x‖‖y‖
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Check this out!

No assumption made on X (we just said it is a ‘set’)

No assumption about the similarity (any similarity function could serve)

Therefore, let’s do it general enough in Hilbert spaces.

Important definitions: Mapping function and kernel function

Map the data into a space where we have a notion of similarity, namely a
dot product space H (feature space), using the feature mapping

φ : X → H, x 7→ φ(x)

The similarity between the elements in H can now be measured using its
associated dot product 〈·, ·〉H.

The kernel function measures similarity in H:

K : X × X → R, (x, x′) 7→ K(x, x′)

which we require to satisfy for all x, x′ ∈ X

K(x, x′) = 〈φ(x),φ(x′)〉H
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Positive Definite Kernels

Wait, wait, wait, is this magic!?

How do you know there is such function K reproducing a similarity
measure in a given (in principle unknown) space?

We need to demonstrate there exists a kernel function satisfying that:

K(x, x′) = 〈φ(x),φ(x′)〉H

This equivalence would be really nice!
Intuitive! Just work with similarity functions K , forget about the mapping.
General! If we can replace dot products with a kernel function then we can
generalize lots of algorithms
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Positive Definite Kernels

A toy demo: Understanding the ‘kernel trick’ ...

An example of (non-linear) transformation to a higher dimensional space is
the following polynomial transformation:

x ∈ R and φ(x) = {x2,
√

2x , 1}> ∈ R3

The question is: can we obtain a dot product (a similarity measure) in
this space which can be expressed only in terms of input data x?

The answer is: Yes, the explicit dot-product can be re-written as:

〈φ(x1),φ(x2)〉 ≡ φ(x1)>φ(x2) = {x2
1 ,
√

2x1, 1}{x2
2 ,
√

2x2, 1}> =

= x2
1 x2

2 + 2x1x2 + 1 = (x1x2 + 1)2 = (〈x1, x2〉+ 1)2 ≡ K1,2

You can do the same for higher dimensions very easily!

The dot product is a kernel function

The higher dimensional space is a Reproducing Kernel in Hilbert Spaces.
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Positive Definite Kernels

Definition: Gram matrix

Given a kernel K : X × X → R and inputs x1, . . . , xn ∈ X . We call the n × n
matrix K with entries

Kij = K(xi , xj ) (1)

the Gram matrix or the kernel matrix of K with respect to x1, . . . , xn.

Definition: Positive definite matrix

A real symmetric n × n matrix K is called positive definite if ∀ci

nX
i,j=1

ci cj Kij ≥ 0→ c>Kc ≥ 0

Definition: Positive definite kernel (p.d.)

If for all n ∈ N and for all x1, . . . , xn ∈ X the Gram matrix Kij = K(xi , xj )
is positive definite we call the kernel a positive definite kernel (p.d.),
K � 0.

If the kernel K gives rise to a strictly positive definite Gram matrix we will
call it a strictly positive definite kernel, K � 0
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Positive Definite Kernels

Proposition

A function K : X × X → R is a positive definite kernel if and only if there
exists a Hilbert space H and a feature map φ : X → H such that for all
x, x′ ∈ X we have K(x, x′) = 〈φ(x),φ(x′)〉H.

“⇐” Assume the kernel can be written as K(x, x′) = 〈φ(x),φ(x′)〉H. Is K
positive definite?

nX
i,j=1

ci cj〈φ(xi ),φ(xj )〉H =

*
nX

i=1

ciφ(xi ),
nX

j=1

cjφ(xj )

+
H

=

‚‚‚‚‚
nX

i=1

ciφ(xi )

‚‚‚‚‚
2

H

≥ 0.

“⇒” Given a positive definite kernel, how to construct a Hilbert space and the
feature map φ? [see Schölkopf02] �
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Representer

Representer theorem [Kimeldorf71,Cox90]

Let Ω : [0,∞)→ R be a strictly monotonic increasing function; let
V :

`
X × R2

´n → R ∪ {∞} be an arbitrary loss function; and let H be a RKHS
with reproducing kernel K . Then:

f ∗ = min
f∈H


V ((x1, y1, f (x1)), . . . , (xn, yn, f (xn))) + Ω(‖f ‖2

H)

ff
admits a representation f ∗(z) =

Pn
i=1 αiK(z, xi), αi ∈ R,α ∈ Rn×1

How to use it?

1 ‘Kernel functions f are defined as a lin. comb. of similarities’

2 ‘A vector in a RKHS, w ∈ H can be expressed (spanned) as a linear
combination of n points in that space’:

w|{z}
dH×1

=
nX

i=1

αiφ(xi )→ w|{z}
dH×1

= Φ>|{z}
dH×n

α|{z}
n×1

3 The `2 regularizer: ‖w‖2 = w>w = (Φ>α)>(Φ>α) = α>Kα

4 If Ω(‖f ‖2
H) = ‖Kα‖2 = α>K>Kα = α>K̃α
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Representer

Remember

Kernels compute dot products in some space H
A positive definite kernel always produces a symmetric positive definite
Gram matrix for elements in X .

Matlab checks for p.d.: all(eig(K)>0)? det(K)>0?

Matlab checks for s.p.d.: all(eig(K)>=0)? det(K)>=0?

A Gram matrix contains similarities (dot products in a given space)
between samples

We will sometimes refer to a positive definite kernel simply as a kernel

A vector in H lies in the span of a subset of mapped points
{φ(xi )|i = 1, . . . , n}

Exercice: demonstrate the Cauchy-Schwarz inequality in H

Demonstrate that if K is p.d. then K(x1, x2)2 ≤ K(x1, x1)K(x2, x2)
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Operations in H

1 Translation: A translation in feature space can be written as the modified
feature map φ̃(x) = φ(x) + Γ with Γ ∈ H. Then:

〈φ(x) + Γ,φ(x′) + Γ〉 = 〈φ(x),φ(x′)〉+ 〈φ(x), Γ〉+ 〈Γ,φ(x′)〉+ 〈Γ, Γ〉

Restrict Γ to lie in the span of φ(x1), . . . ,φ(xn) ∈ H: Γ =
P

i αiφ(xi )

〈φ̃(x), φ̃(x′)〉 = K(x, x′)+
nX

i=1

αi K(x, xi )+
nX

i=1

αi K(x′, xi )+
nX

i,j=1

αiαj K(xi , xj ).
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Standard kernels and construction of kernels

OK, OK, but... what’s the kernel K?

Valid kernels must be symmetric and positive definite similarity measures

Common kernels

Linear: K(xi ,xj ) = x>i xj → φ(x) = x

Polynomial: K(xi ,xj ) = (x>i xj + 1)d → φ(x) = monomials

Gaussian Function (RBF): K(xi ,xj ) = exp(-‖xi − xj‖2/(2σ2)) → φ(x) =?

Properties of Mercer’s kernels

Let K1, K2 and K3 be valid Mercer’s kernels over X × X , with xi ∈ X ⊆ RN ,
with A being a symmetric positive semi-definite N × N matrix, and η > 0.
Then the following functions are valid kernels:

1 K(xi , xj ) = K1(xi , xj ) + K2(xi , xj )

2 K(xi , xj ) = K1(xi , xj ) · K2(xi , xj )

3 K(xi , xj ) = ηK1(xi , xj )
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Standard kernels and construction of kernels

Choosing σ for the RBF kernel is critical, as it indicates the degree of shared
information among training samples

−2.0 −1.0 0.0 1.0 2.0

−1.0

−0.5

0.0

0.5

1.0

x

y

0 10 20 30 40 50

0

10

20

30

40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50

0

10

20

30

40
−2.4

−1.6

−0.8

0.0

0.8

1.6

2.4

0 10 20 30 40 50

0

10

20

30

40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

two moons label “kernel” linear Gauss: γ = 0.001

0 10 20 30 40 50

0

10

20

30

40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50

0

10

20

30

40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50

0

10

20

30

40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50

0

10

20

30

40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

γ = 0.01 γ = 0.1 γ = 1 γ = 10

0 10 20 30 40 50

0

10

20

30

40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50

0

10

20

30

40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50

0

10

20

30

40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50

0

10

20

30

40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

γ = 100 γ = 1000 γ = 0.6 γ = 1.6
rule of thumb 5-fold CV

36 / 41



Intro Vector spaces Kernels Properties Kernelization Conclusions

The good, the bad, and the ideal kernel matrix

Bad kernel: mostly diagonal, all points orthogonal to each other, no
clusters, no structure.

Good kernel: the kernel matrix should have clusters and structure.

Ideal kernel: Kideal = yy>

Kernel alignment: minθ{‖K(X|θ)− yy>‖F}

Some ideas for designing your own kernel function

1 Put your favourite distance d in K = exp(−d). Done!

2 Take your favourite well-known nonlinear transform Ψ(x) and write:

K(x, z) = Ψ(x)>Ψ(x) = ... = f (x>z)

3 Take millions of data, cluster them, and infer a metric

4 Combine all the previous kernels as you like: ‘×’, ‘�’, ‘+’, ...
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Some facts...

1950: the theory of kernel functions is developed [Aronszajn50]

1960: linear functions used for classification
1970: proposed the representer theorem

1980: neural networks use it unconsciously

1990: Vapnik uses the theory to formalize nonlinear regularized machines

1995: Support vector machines excel in many applications

2000: Every single linear method is ‘kernelized’

2010: How to adapt the kernel to your data characteristics

Kernelization

Take your favorite linear algorithm expressed in dot products and do:

1 Replace X by Φ

2 Exploit the reproducing property: W = Φ>α

3 Apply the kernel trick and replace: K = ΦΦ>

4 Your problem is a function of K and your weights are now α

5 Use your favorite similarity measure to build K (‘kernelmatrix.m’)
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Conclusions

Given definition of kernel function, kernel mapping, and RKHS

Analyzed kernel properties

Studied how to build new kernels
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