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The organization of the course:

1 Fundamentals of kernel methods

2 Supervised and unsupervised kernel-based classification <<<

3 Kernel methods for regression and time series analysis

4 Nonlinear feature extraction with kernels
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What’s Classification?

“Classification refers to an algorithmic procedure for assigning a given piece of
input data into one of a given number of categories.”

The classical approaches

The problem can be tackled with different levels of information:

Supervised classification <<<<

Unsupervised classification (clustering)

SemiSupervised classification

Supervised Classification, formally?

Given pairs of input-output data {xi , yi}, i = 1, . . . , n, learn a function that
assigns a predicted label to new incoming samples x∗, y∗ = f (x∗).
[The function should be smooth (close samples should receive similar labels)
and not too complex (parsimonious, regularized).]
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Intro SVM Kernel Fusion Experiments Conclusions Refs
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Supervised Classification

Many available classifiers:
1 Parallelepiped
2 Minimum distance
3 Linear/Quadratic Discriminant Analysis

4 Fuzzy models
5 Artificial Neural networks
6 Bayesian networks
7 ....

FORGET IT! GOING LINEAR IS COOL!
(if done in a proper feature space)
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Linear Classification
Find a hyperplane that separates between two sample sets.
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Linear Regression
Find a linear function that interpolates data points.
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Linear Dimensionality Reduction
Find a linear projections that preserve structure in the data.
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Linear Techniques

Three different elementary tasks:
classification,
regression,
dimensionality reduction.

In each case, linear techniques are very successful.

Why?
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Linear Techniques

Linear techniques

often work well,
I most natural functions are smooth,
I smooth function can locally be approximated by linear functions.

are fast and easy to solve
I elementary maths, even closed form solutions
I typically involve only matrix operation

are intuitive
I solution can be visualized geometrically,
I solution corresponds to common sense.
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With several classes, two common strategies:

one-vs-all, one-vs-the-rest: c classifiers

one-vs-one, c(c − 1)/2 classifiers

Losses for multi-label classification - Linear predictors

• Using binary classifiers (left: “one-vs-rest”, right: “one-vs-one”)
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Regularized least squares linear classification

Inputs: X ∈ Rn×d

Outputs: Y ∈ Rn×1, Y = [y1, y2, . . . , yn]>

Model: Y = sign(Xw)

Functional:

w∗ = min
w


‖Y − Xw‖2 + λ‖w‖2

ff
After deriving and setting to zero, w = (X>X + λId )−1X>Y

Regularized kernel least squares classification

Model: Y = sign(ΦwH)

Functional:

w∗H = min
wH


‖Y −ΦwH‖2 + λ‖wH‖2

ff
Dual weights: α = (K + λIn)−1Y

Primal weigths: wH = Φ>α

Decision function Y = sign(ΦwH) = sign(Kα)
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Nonlinear Regression

Like Least-Squared Regression, (Kernel) Ridge Regression is sensitive
to outliers:
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because the quadratic loss function penalized large residue.
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Problems!

One weight per example → Risk of overfitting

High computational cost for n > 2000, different (σ, λ) to try!

Solutions

Do proper cross validation and control λ. Plot λ- RMSEtest !!!

Standard code: alpha = inv(gamma + K) * Y;

Cholesky decomposition is faster (∼4-fold) but not sparse again:
R = chol(K+gamma*eye(n));

alpha = R\(R’\Y);
Nyström method uses the Sherman-Morrison-Woodbury formula:

(A + VV>)−1 = D−1 −D−1V(I + V>D−1V)−1V>D−1

There are tricks to make the KLSC sparse (not very naturally)
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SVM linear classification

Data: Given n examples xi ∈ RN and yi ∈ {−1,+1} (classes)

Objective: Build a linear classifier, ŷ = f (x) = sign(w>x + b).

 

y =+1i

y =-1i
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SVM linear classification

Several solutions exist!

Objective: Define the optimal one (w, b)

 

y =+1i

y =-1i
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SVM linear classification

Intuitively there’s an optimal one!

Objective: Define the optimal one (w, b)

 

w

y =+1i

y =-1i
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SVM linear classification

... and should separate samples from different classes maximally!

Objective: Define the optimal one (w, b)

 

w

y =+1i

y =-1i
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SVM linear classification

Maximize margin separation = minimize ‖w‖: minw


1

2
‖w‖2

ff

 

w

y =+1i

y =-1i

||w||
2
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SVM linear classification

Errors must be also penalized! minw


1

2
‖w‖2 + C

P
i ξi

ff
xii

xj

 j

ξ

ξ

w

y =+1i

y =-1i
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SVM linear classification

... and examples are forced to belong to their class!

min
w


1

2
‖w‖2 + C

X
i

ξi

ff
subject to:

w>xi + b ≥ 1− ξi yi = +1, ∀i = 1, ..., n
w>xi + b ≤ 1− ξi yi = −1, ∀i = 1, ..., n

ξi ≥ 0

ξi is the error associated to misclassify example xi

C is a tradeoff parameter controlling the overfitting
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A brief review of optimization techniques

Optimization

Optimization means solving problems by minimizing (or maximizing) a real
function by choosing the values of real or integer variables from an allowed
set.

Many methods and families of techiques:
1 Gradient descent (first-order optimization): takes steps proportional to the

negative of the gradient of the function at the current point
2 Linear programming: if you have a linear objective function with constraints
3 Quadratic programming: if you have a squared objective function with

constraints
4 Semidefinite programming
5 Convex cone optimization
6 ....
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A brief review of optimization techniques

Linear programming

“Linear programming (LP) determines the solution of a linear objective
function, subject to linear equality and linear inequality constraints.”

max
x

c>x s.t. Ax ≤ b

where b, c, and A are known.

Quadratic programming

“Quadratic programming (QP) determines the solution of a quadratic function
subject to linear constraints.”

max
x

1

2
x>Kx + c>x s.t. Ax ≤ b and Ex = d

Tons of efficient solvers

Matlab’s quadprog, linprog, simplex

Open source C++ tools: QSOpt, SMO, Pegasus, libLBFGS
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A brief review of optimization techniques

Lagrange

Joseph-Louis Lagrange (1713-1813),
Giuseppe Lodovico (Luigi) Lagrangia:
‘optimization of functions of several
variables subject to equality and inequality
constraints’

Method of Lagrange multipliers

max
x,y

f (x , y) s.t. g(x , y) = c
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A brief review of optimization techniques

Method of Lagrange multipliers

max
x,y
{f (x , y)} s.t. g(x , y) ≤ c

Method of Lagrange multipliers: solution

Introduce a new variable (named ‘Lagrange multiplier’ α) and optimize the new
function:

max
x,y,λ
{Λ(x , y , α)} s.t. f (x , y)− α(g(x , y)− c)

which is equivalent to solve the dual problem

max
x,y,λ
{f (x , y)− α(g(x , y)− c)} s.t. α ≥ 0
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A brief review of optimization techniques

Method of Lagrange multipliers

Lagrange duality: The method is applicable to any number of variables
and constraints:

min{fo(x)} s.t.fi (x) ≤ 0 and hj (x) = 0

The dual problem reduces to minimize:

Λ(x , α, µ) = fo(x)−
X

i

αi fi (x)−
X

j

µj hi (x)

The procedure is very simple:
1 Derive this primal-dual problem and equal to zero, ∇λΛ(x , y , α) = 0
2 The obtained constraints are stationary points of the solution
3 Include the obtained constraints again
4 Done! You obtain an LP or QP problem, for which there are lots of efficient

solvers

36 / 90



Supervised LS-SVM SVM Unsupervised KND OC-SVM KKM Conclusions

A brief review of optimization techniques

Remember the SVM primal problem:

min
w


1

2
‖w‖2 + C

X
i

ξi

ff
subject to:

w>xi + b ≥ 1− ξi yi = +1, ∀i = 1, ..., n
w>xi + b ≤ 1− ξi yi = −1, ∀i = 1, ..., n

ξi ≥ 0

ξi is the error associated to misclassify example xi

C is a tradeoff parameter controlling the overfitting
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A brief review of optimization techniques

The latter is a quadratic programming problem with linear constraints:

Use Lagrange multipliers (ξi ≥ 0, µi ≥ 0) for each constraint:

min
w,ξ,b

(
1

2
‖w‖2 + C

nX
i=1

ξi −
nX

i=1

αi [yi (w>xi + b) + ξi − 1]−
nX

i=1

µiξi

)

Then derive and equal to zero: ∂L
∂w = 0, ∂L

∂ξ
= 0, ∂L

∂b
= 0

Combining the previous results, we obtain the equivalent dual problem:

max
α

8><>:−1

2

nX
i=1

nX
j=1

αiαj yi yj x>i xj|{z}
=Kij

+
nX

i=1

αi

9>=>;
After some operations, the decision function is:

ŷj = f (xj ) = sign(w>xj + b) = sign

„ nX
i=1

αi yi x>i xj|{z}
=Kij

+b

«

Both for training and prediction, we only need the dot product
(similarities) between vectors, Kij , not the examples
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SVM nonlinear classification

Step 1: Map examples to a higher dimensional space, φ : RN → H

xi → φ(xi ), i = 1, . . . , n

Step 2: Replace dot products 〈·, ·〉 in H by a kernel function k(·, ·)

〈φ(xi ),φ(xj )〉 = K(xi , xj )

Step 3: Solve the same maximum margin problem

max
α

8><>:−1

2

nX
i=1

nX
j=1

αiαj yi yj φ(xi )
>φ(xj )| {z }

=Kij

+
nX

i=1

αi

9>=>;
Step 4: Prediction involves comparing test to train samples with K(·, ·):

ŷj = f (xj ) = sign(w>φ(xj ) + b) = sign

„ nX
i=1

αi yi φ(xi )
>φ(xj )| {z }

=Kij

+b

«
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SVM nonlinear classification

The solution is sparse: only few examples xi with αi 6= 0 are important

Support vectors: define the margin and are misclassified examples

xii

xj

 j

ξ

ξ

w

y =+1i

y =-1i
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xj

j

ξ

ξ

w

y =+1i
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SVM nonlinear classification

Large C → overfitting

Small C → oversmooth

Choosing σ for the RBF kernel is critical, as it indicates the degree of
shared information among training samples
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SVM nonlinear classification

Hands on. From Theory to Computer

We only need to solve this problem:
1 Compute the kernel matrix with all labeled samples, K.
2 Solve the problem:

min
α


1

2
α>YKYα− 1>α

ff
subject to:

0 ≤ α ≤ C

Matlab solves it with quadprog.m:
alpha = quadprog(K,Ones,[],[],Y,0,0,C);

Visit http://www.kernel-machines.org

Many SVM implementations: Pegasus, SVMlight , MySVM, SVMTorch,

Machine learning tools: Weka, Spider, Shogun

A fast C++ implementation is libSVM by Chih-Jen Li

A tuned (and even faster implementation):
http://www.uv.es/jordi
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Motivation

Clustering is a key problem in nature

Learn to group examples in meaningful families/clusters/groups without
training labels

Clustering is difficult and ill-posed

Outline

What do we need for clustering? Just measure distances!

Kernel methods can do the job: kernelization modes
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Introduction to one-class classification

One-class classification

A.k.a. target detection, anomaly detection, outlier detection, etc.

Sometimes you’re only interested in detecting one class and rejecting the
others
Sometimes you have labels for just one class

Somehow related to density estimation!
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Introduction to one-class classification

Main ideas

1 Boundary between the two classes has to be estimated from data of only
one class

2 Task: to define a boundary around the target class (to accept as much of
the target objects as possible, to minimize the chance of accepting outlier
objects).

Examples

Speech: identification of intruders

Computer vision: image retrieval, steganalysis, intrusion detection, etc.

Remote sensing:
detect changes in two images,
identify one class: urban, cloud, citrus trees
compare new examples to a library of well-characterized objects

Bioinformatics: detect anomalous proteins in a sample

Econometrics: find anomalous exchange rates

Image processing: find salient, rare image features

Online, incremental learning
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Kernelizing clustering algorithms

Family 1: Kernelization of the metric

Methods based on kernelization of the metric look for centroids in input space
and the distances between patterns and centroids is computed by means of
kernels:

‖φ(xi )− φ(xj )‖2 = K(xi , xi ) + K(xj , xj )− 2K(xi , xj )

Family 2: Description via support vectors

The description via support vectors makes use of One Class SVM to find a
minimum enclosing sphere in feature space able to enclose almost all data
in feature space excluding outliers.

The computed hypersphere corresponds to nonlinear surfaces in input
space enclosing groups of patterns.

Family 3: Clustering in feature space

Clustering in feature space is made by mapping each pattern using φ and
then computing centroids ck in feature space.

It is possible to compute ‖φ(xi )− µk‖2 by means of the kernel trick
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minimum enclosing sphere in feature space able to enclose almost all data
in feature space excluding outliers.

The computed hypersphere corresponds to nonlinear surfaces in input
space enclosing groups of patterns.

Family 3: Clustering in feature space

Clustering in feature space is made by mapping each pattern using φ and
then computing centroids ck in feature space.

It is possible to compute ‖φ(xi )− µk‖2 by means of the kernel trick
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Kernel novelty detector (KND)

Put a ball around the center of mass φµ ∈ H of enough radius to contain
all the data:

‖φ(x∗)− φµ‖ ≥ max
1≤i≤n

{‖φ(xi )− φµ‖}

This condition can be tested with kernels because we can compute
distances:

dH(xi , xj ) = ‖φ(xi )− φ(xj )‖H =
p

K(xi , xi ) + K(xj , xj )− 2K(xi , xj )

... and also remember that the mean of the data is φµ = 1
n

Pn
i=1 φ(xi ),

then

K̃(xi , xj ) = K(xi , xj )−
2

n

X
i

K(xi , xj ) +
1

n2

X
i,j

K(xi , xj )

Prove that the KND reduces to test this condition:

K(x∗, x∗) +
1

n2

X
i,j

K(xi , xj )−
2

n

X
i

K(x∗, xj )

≥

max
1≤i≤n


K(xi , xi ) +

1

n2

X
i,j

K(xi , xj )−
2

n

X
i

K(xi , xj )

ff
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Enhanced Kernel novelty detectors (KND)

Put a ball around the center of mass φµ ∈ H of enough radius to contain
all the data:

‖φ(x∗)− φµ‖ ≥ max
1≤i≤n

{‖φ(xi )− φµ‖}

Give more weight to the recent samples? Include a forgetting factor...

‖φ(x∗)− φµ‖ ≥ max
1≤i≤n

{‖φ(xi )− λ−nφµ‖}

Incorporate the variance of the ball somehow?

φσ =
1

n

nX
i=1

(φ(xi )− φµ)2

Update the rule? For any incoming xi , modify φµ and φσ
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Formulation

One-class SVM

Also known as ‘support vector domain description’ (SVDD) [Tax99,Schölkopf99]

Now we only have a dataset {xi}n
i=1 belonging to a given class of interest

Goal: “find a minimum volume hypersphere in a high dimensional feature
space H, with radius R > 0 and center a ∈ H, which contains most of
these data objects”

This implies:
Minimize the radius
Force all samples be inside the ball
Allow some errors, o.w. outliers are never rejected

xi

ξ i

R

a

H

O

Hypersphere in feature Hilbert space

60 / 90



Supervised LS-SVM SVM Unsupervised KND OC-SVM KKM Conclusions

Formulation

One-class SVM, formulation

Minimize the radius: min{R2}

Force all samples be inside the ball: ‖φ(xi )− a‖2 ≤ R2

Allow some errors: ‖φ(xi )− a‖2 ≤ R2 + ξi

This translates into:

min
R,a

(
R2 + C

nX
i=1

ξi

)
s.t.

‖φ(xi )− a‖2 ≤ R2 + ξi ∀i = 1, . . . , n (1)

ξi ≥ 0 ∀i = 1, . . . , n (2)

Free parameters: the big problem! no xval procedures possible!
Kernel parameters: low sigma means no rejection, high sigma means all
accepted
C : controls the trade-off between the volume of the hypersphere and the
permitted errors
ν = 1/nC : rejection fraction parameter (what rate of [%] samples are
outside the ball)
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Formulation

One-class SVM primal problem

min
R,a

(
R2 + C

nX
i=1

ξi

)
s.t. ‖φ(xi )− a‖2 ≤ R2 + ξi ξi ≥ 0

One-class SVM, solution

Include restrictions into the primal:

min
R,a,ξi

(
R2 + C

nX
i=1

ξi −
X

i

αi

»
R2 + ξi − ‖φ(xi )− a‖2

–
−
X

i

µiξi

)

Derive and equal to zero:

∂L

∂R
= 0→

X
i

αi = 1

∂L

∂a
= 0→ a =

P
i αiφ(xi )P

i αi

∂L

∂ξi
= 0→ C = αi + µi → 0 ≤ αi ≤ C
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Formulation

One-class SVM dual problem

Include this constraints to derive the dual problem:

LD =
X

i

αiφ(xi )φ(xi )−
X

i

X
j

αiαjφ(xi )φ(xj ) s.t. 0 ≤ αi ≤ C

This is a QP problem whose solution yields a set of Lagrange multipliers αi

Interpretation of the constraints:
if ‖φ(xi )− a‖2 ≤ R2 + ξi is fulfiled then αi = 0
if ‖φ(xi )− a‖2 = R2 + ξi then αi > 0
if ‖φ(xi )− a‖2 < R2 → αi = 0, µi = 0 (target samples, not SVs)
if ‖φ(xi )− a‖2 = R2 → 0 < αi < C , µi = 0 (unbounded SVs)
if ‖φ(xi )− a‖2 > R2 → αi = C , µi > 0 (bounded SVs, outliers)

If C is properly tuned, most of the αi are zero → Sparsity

One-class SVM prediction function

To test a new sample x∗, we compute the distance to the center of the sphere

d(x∗, a)2 = ‖φ(x∗)−a‖2 = K(x∗, x∗)−2
nX

i=1

αi K(xi , x∗)+
nX

i,j=1

αiαj K(xi , xj ) > R2
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Formulation
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Effect of the free parameters

SUPPORT VECTOR DATA DESCRIPTION 53

Figure 2. Data description trained on a banana shaped data set. Kernel is a polynomial kernel with varying
degrees. Support vectors are indicated by the solid circles, the dashed line is the description boundary.

The polynomial kernel is given by

K (xi , x j ) = (xi · x j )
d (30)

where the free parameter d ∈ N+ gives the degree of the polynomial kernel. The testing
function of the SVDD (Eq. (14)) shows that only the second term accounts for the interaction
between the test object z and the support objects xi . Recall that xi · x j = cos(θi j )‖xi‖ · ‖x j‖
where θi j is the angle between object vector xi and x j . When data is not centered around
the origin, object vectors can become large. And when the θi j is small, cos(θi j ) ∼ 1 will
stay almost constant. Then for larger degrees d, the polynomial kernel is approximated by:

(xi · x j )
d = cosd (θi j )‖xi‖d · ‖x j‖d 
 ‖xi‖d · ‖x j‖d (31)

Equation (31) looses the sensitivity to θi j in the neighborhood of the training data (where
θ becomes small). The objects with the largest norm in the training set will overwhelm all
other terms in the polynomial kernel. This effect can be suppressed by centering the data
around the origin and rescaling the data to unit standard variance. Unfortunately rescaling
to unit variance might only magnify the noise in directions with small variance, and the
influence of the norms is not avoided. Finally, centering the data in the feature space by
subtracting the averaged x (as explained in Schölkopf, 1997) does not resolve the problem of
the large differences in vector norms. It can be shown that the centered SVDD is equivalent
to the original SVDD.

The influence of large norm objects is visible in figure 2. For a simple 2 dimensional
data set, descriptions are obtained using a polynomial kernel with different degrees, ranging
from d = 1.0 (left) to d = 6.0 (right). Again the solid circles indicate the support vectors,
the dashed line is the description boundary mapped in the input space. The rigid spherical
description is obtained for d = 1.0. For degree d = 6.0 the description is a sixth order
polynomial. Here the training objects most remote from the origin (the objects on the right)
become support objects and the data description only distinguishes on the basis of the norm
of the vectors. Large regions in the input space without target objects will be accepted by
the description.
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Effect of the free parametersSUPPORT VECTOR DATA DESCRIPTION 55

Figure 3. Data description trained on a banana shaped data set. A Gaussian kernel with different widths (s =
1, 5, 15) and different values for C (C = 40, almost the hard margin case, and C = 0.1) are used. Support vectors
are indicated by the solid circles, the solid white line is the description boundary.

decreasing the parameter C constraints the values for αi more, and more objects become
support vector. The error on the target class increases, but the covered volume of the data
description decreases with decreasing C .

2.4. Target error estimate

When an object drawn from the target distribution is rejected by the description, it is called
an error. By applying Leave-One-Out estimation (Vapnik, 1998; Bishop, 1995), it can be
shown that the number of support vectors is an indication of the expected error made on
the target set. For that the notion of essential support vectors has to be introduced (Vapnik,
1998). The expansion of the center of the description a = ∑

i αi xi is not unique. It might
be that more objects are on the boundary of the sphere than is necessary for the description
(for instance when four objects are on a circle in a 2 dimensional feature space where 3
are sufficient1). The essential support vectors are these objects which appear in all possible
expansions.

When one of the internal points (αi = 0) is left out of the training and the data description
is computed, the same solution is obtained as with the training set including this training
object. During testing this object will therefore be accepted by the description. When a non-
essential support vector is left out during training, the solution including this object is still
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Effect of the free parameters

How to tune the parameters without outliers?

Put a reasonable σ (median better than the mean of the distance between
samples)

If you have an estimation of the rate of expected outliers, tune ν = 1/nC

Typically: ν ∈ [0.1, 0.4] (force sparsity)

Heuristic: maximize the rate SVs/errors

Heuristic 2: update parameters for a new incoming sample

Analyze the receiver operating curve (ROC): f (u, v |θ)
u = proportion of false positives = P(f (x) = 1|y = −1)
v = proportion of true positives = P(f (x) = 1|y = 1)

ROC curves

• ROC plane (u, v)

• u = proportion of false positives = P (f(x) = 1|y = −1)

• v = proportion of true positives = P (f(x) = 1|y = 1)

• Plot a set of classifiers fγ(x) for γ ∈ R

v

1false positives0
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Effect of the free parameters

Hands on. From Theory to Computer

We only need to solve this problem:
1 Compute the kernel matrix with all samples, K.
2 Solve the problem:

min
α


1

2
α>Kα− 1>α

ff
subject to:

0 ≤ α ≤ C

Matlab solves it with quadprog.m:
alpha = quadprog(K,Ones,[],[],Ones,0,0,C);

Visit http://www.kernel-machines.org

Many SVM implementations: Pegasus, SVMlight , MySVM, SVMTorch,

Machine learning tools: Weka, Spider, Shogun

A fast C++ implementation is libSVM by Chih-Jen Li

A tuned (and even faster implementation):
http://www.uv.es/jordi

Tax DDTools: very useful for one-class and PDE!
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k-means algorithm

Given a set of observations {x1, x2, . . . , xn}, partition the n observations into k
sets (k ≤ n), S = {S1, S2, . . . , Sk} so as to minimize the within-cluster sum of
squares:

arg min
S

 kX
i=1

X
xj∈Si

‖xj − µi‖
2

ff
where µi is the mean of points in Si
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The Lloyd’s (iterative) algorithm

1 Initialization, t = 0: Set an initial set of k-means µ
(t)
1 , . . . ,µ

(t)
k

2 Assignment: Assign each observation to the cluster with closest mean:

S
(t)
i = {xj : ‖xj − µ

(t)
i ‖ ≤ ‖xj − µ

(t)
i∗ ‖, for all i∗ = 1, . . . , k}

3 Update: Assign the centroids to the new means:

µ
(t+1)
i =

1

|S (t)
i |

X
xj∈S

(t)
i

xj

4 Go to step (2) until convergence, i.e. any µi changes

5 Return the feature space codebook (the centroids to use in test)

k initial ‘means’ (e.g.
k = 3) are ran-
domly selected from
the data set

k clusters are created
by associating every
observation with the
nearest mean

The centroid of each
of the k clusters be-
comes the new means

Steps 2 and 3 are
repeated until con-
vergence has been
reached 76 / 90
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Algorithm

This algorithm minimizes the quantization error in feature space:
1 Project data: X→ Φ

2 Initialize the codebook: Mφ = [µ1,µ2, . . . ,µk ]>, µ ∈ H
3 Compute for each centroid µk the set Si

4 Update the codevectors:

µ
(t+1)
i =

1

|S (t)
i |

X
xj∈S

(t)
i

φ(xj )

5 Go to step (3) until any µi changes

6 Return the feature space codebook indices

Solution

1 Apply the Representer’s theorem to codevectors: µj =
1

|Sk |
P

xi∈Sk
αiφ(xi )

2 One can compute distances in H: ‖φ(xi )− µj‖2
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tion Framework Kernel-based 
hange dete
tion Experimental ResultsThe kernel k-meansSamples are mapped into a higher dimensional feature spa
e:input data
omplex andnonlinear mapping in ahigher dimensionalfeature spa
e−−→
ϕ(·)

↓nonlinearsolution ininput spa
e linear learningalgorithm(k-means)←−Basi
sThe expli
it 
omputation of the mapping ϕ(·) is 
ostly andoften not bearableThe dot produ
ts 〈ϕ(·),ϕ(·)〉 
an be repla
ed by k(·, ·)The value returned by the kernel fun
tion 
orrespond to thedot produ
t in the (high dimensional) feature spa
eUnsupervised CD by Kernel Clustering SPIE Remote Sensing 2010, Toulouse slide 5 of 14
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tion Framework Kernel-based 
hange dete
tion Experimental ResultsThe kernel k-meansThe kernel versionTrue 
lusters are often not re
ognizable in the input spa
ePerform k-means in the feature spa
e spanned by the kernel.d2(ϕ(xi),mk) = ‖ϕ(xi )−mk‖2 (1)where mk =
1
|πk | ∑j∈πk ϕ(xj) (2)In other words:d2(ϕ(xi ),mk) = k(xi , xi ) +

1
|πk |2 ∑j ,l∈πk k(xj , xl )

− 2
|πk | ∑j∈πk k(xi , xj)Unsupervised CD by Kernel Clustering SPIE Remote Sensing 2010, Toulouse slide 6 of 14
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tion Framework Kernel-based 
hange dete
tion Experimental ResultsThe kernel k-means...but some problems arise1. As k-means, the 
onvergen
e of the kernel version is greatlyin�uen
ed by the initial assignments (initial 
enters or initiallabeling)2. The kernel fun
tion need some parameters to be tuned. Howto do it keeping the algorithm unsupervised?k(xi , xj ) = 〈xi , xj〉 k(xi , xj) = exp(−‖xi − xj‖2/2σ2)linear k-means σ need to be tuned
Unsupervised CD by Kernel Clustering SPIE Remote Sensing 2010, Toulouse slide 7 of 14
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tion Framework Kernel-based 
hange dete
tion Experimental ResultsInitialization1. The initializationFind some `training' pixelsExploit the magnitude of thedi�eren
e image in order to�nd some 
hange / no
hange pixelsThe distribution of themagnitude of su
h image
an be used!
Thus, ideally:

0

+ t - t 

}Overlapping

zone
No change region Change region

f(δ)

δ

TUnsupervised CD by Kernel Clustering SPIE Remote Sensing 2010, Toulouse slide 8 of 14
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tion Framework Kernel-based 
hange dete
tion Experimental ResultsHow to 
hoose kernel parameters?
2. Tuning the kernel parametersFind the 
orre
t hyperparameters:Map samples into 
ompa
t
lusters (spheri
ity)Enfor
e 
luster separation(far 
enters)Combination of two 
riteria arg min

σ

∑k 1
|πk | ∑i∈πk d2

σ(ϕ(xi ),mk)
Unsupervised CD by Kernel Clustering SPIE Remote Sensing 2010, Toulouse slide 9 of 14
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tion Framework Kernel-based 
hange dete
tion Experimental ResultsQB VHRThe Zuri
h VHRQui
kBird 0.5 m pixel size1 Compute the magnitude
δ = ‖xt2 − xt1‖2 Sele
t pixels from bothdistributions, 
onsideringhigh noise and false 
hangein the threshold zone3 Find the 
orre
t parameter(here, the σ of a GaussianRBF kernel) ZH t1 (2002) ZH t2 (2006)

Unsupervised CD by Kernel Clustering SPIE Remote Sensing 2010, Toulouse slide 10 of 14
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(a) CVA (b) k-means (
) kernel k-meansFor k-means and kernel k-means these maps are a sum of 15 binarymaps randomly initialized on the thresholded distributions.Unsupervised CD by Kernel Clustering SPIE Remote Sensing 2010, Toulouse slide 11 of 14
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False alarms redu
ed by
∼ 2% for the k-means (wrtCVA) ∼ 41% for the kernelk-means (wrt CVA)Hit rate is high for all theapproa
hesAUC Cohen's KappaCVA = 0.912 κ = 0.57k-means = 0.923 κ = 0.62kernel k-means = 0.974 κ = 0.74Unsupervised CD by Kernel Clustering SPIE Remote Sensing 2010, Toulouse slide 12 of 14
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Conclusions

Conclusions

Given definition of the most useful kernel supervised and unsupervised
classifiers
Other classifiers are available: KFDA, kernel SOM, kernel fuzzy means,
etc.
Analyzed how to derive the equations

Everything relies on the proper definition of K
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