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The organization of the course:

@ Fundamentals of kernel methods
@ Supervised and unsupervised kernel-based classification
© Kernel methods for regression and time series analysis <<<

@ Nonlinear feature extraction with kernels



Definitions

Definitions

o Regression, curve fitting, function approximation
@ Regression models involve the following variables:

o The unknown parameters (weights) denoted as w
o The independent (input, features) variables, x
o The dependent (output, target) variable(s), y

@ A regression model f relates y with x:

y="f(x,w)+e
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Definitions

Regression, curve fitting, function approximation

@ Approximate m-dimensional continuous functions

@ To estimate a real function:
Rn
X

JEEEEN Rm

— Y= f(X, W)
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Definitions

Regression, curve fitting, function approximation

@ Approximate m-dimensional continuous functions

@ To estimate a real function:
Rn N Rm
x — y=f(x,w)

o How to choose the weights?
\/ Perform cross-validation to select parameters
v/ Choose a quality (performance, objective) criterion to optimize
? Minimize a cost function and regularize it
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Risk, loss, cost, objective, energy

=

"We've considered euery potenhial nisi except
The 1isks of auoiding all rises,"
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Risk, loss, cost, objective, energy

[ Loss Ly, f(x,w))
Squared loss (y — f(x,w))’
Absolute loss ly — f(x,w)]
e-insensitive loss (ly = f(x,w)| — &)+

Huber loss

{;e2 le| <46

5(le| — 2) otherwise

Log-cosh loss Ly, f(x,w)) = log(cosh(y — f(x,w)))

4 —square
—e-insensitive
—Huber

3

2

1

0,
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Risk, loss, cost, objective, energy

[ Loss [ £y, f(x,w)) [ Noise model, p(e) ‘
Squared loss 0.5(y — f(x,w))? —— exp(—e?/2)
Absolute loss, Laplacian ly — f(x,w)| 2 exp(—le])

. .. _ _ 1 _
e-insensitive loss (ly = f(x,w)| — )+ o) exp(—|e|:)
1a2 < a2 <
Huber loss 2€ s lef < 5. exp(—e”/2) e[ < 5.
o(le] = 5) otherwise exp(6/2 — |e|]) otherwise

Maximum likelihood (ML): ‘find the most likely function -model- that
generated the data’

max{p(x, y|w)} = max { H p(xi, yf\w)} = max { [T ptilxi, w)p(x;)}

i

= max { Hp(y,-|x,—, w)} 2 mﬁx{ - Iog(p(x,yIW))}
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Regularizer

@ Regularization is used to prevent overfitting and simplify the solution:
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Regularizer

@ Regularization is used to prevent overfitting and simplify the solution:

o Implicitly or explicitly penalize models based on the number of effective
parameters or directions
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Regularizer

@ Regularization is used to prevent overfitting and simplify the solution:
o Implicitly or explicitly penalize models based on the number of effective
parameters or directions
o Bayesian methods use a prior probability that (usually) gives lower
probability to more complex models
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Regularizer

Model Loss Regularizer
(entropy measure)
AIC/BIC b W)’ Iwlh
Ridge regression, KRR, GP (y — f(x,w))? [lw]|2
SVR ly — f(x,w)le w2
Lasso (y — f(x,w))’ (w2
Basis pursuit denoising (y — f(x,w))? [lwl]1
Reg Least Absolute Deviations | |y — f(x, w)| [lw|1

o D P+ T

Iwllg = Iwil?

J



Intro KRR SVM-ARMA KARMA Conclusions
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Regularized linear regression

ularized least squares linear regr

@ Add a ridge penalty to the loss function:
min {IY = XW|P” + AW’}
@ The weights (one per feature) are obtained easily

W=(X"X+A)"'X"Y

4

Homework

@ Demonstrate the normal equations for the regularized case (above)
@ Do a Matlab function that, given X and Y automatically:

o returns the v-fold results
o the optimal A parameter
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Kernel Regularized linear regression

Exercise: Kernelize the regularized least squares solution:
o Model: Y = XW

o Functional:

W = i 1Y - X+ W

o After deriving and setting to zero, W = (X" X)7*XTY = XY




Kernel Regularized linear regression

Exercise: Kernelize the regularized least squares solution:

o Model: Y = XW

o Functional:

W = i 1Y - X+ W
o After deriving and setting to zero, W = (X" X)7*XTY = XY

e Model: Y = ®W

o Functional:

W3, = m|n {||Y oW + |W|| }

15/70



Kernel Regularized linear regression

Exercise: Kernelize the regularized least squares solution:

o Model: Y = XW
o Functional:
W* = mm {||Y XW|| + (W] }

o After deriving and setting to zero, W = (X" X)7*XTY = XY

Hint
o Model: Y = dW

o Functional:

| A\

W3, = m|n {||Y oW + |W|| }

Derive, use the representer theorem and apply simple matrix manipulation
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Kernel Regularized linear regression

Regularized least squares linear classification

Inputs: X € R"™<¢

o

e Outputs: Y € R Y = [y1,ys,. .. ,yn]T
@ Model: Y = Xw

@ Functional:

w* = min {||Y — Xwl]* + )\HWHZ}

o After deriving and setting to zero, w = (XX + Alg)'XTY

17 /70
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Kernel Regularized linear regression

Regularized least squares linear classification

o Inputs: X € R"™*?

o Outputs: Y € R™ Y = [y1,y2,...,ya] "
@ Model: Y = Xw
@ Functional:

w”* = min {||Y — Xwl]* + )\HWHZ}

o After deriving and setting to zero, w = (XX + Alg)'XTY

Regularized kernel least squares classification
o Model: Y = dwy
o Functional:

wic = in {1V @wn* + Alwn

o Dual weights: o = (K + Al,)~tY

o Primal weigths: wy = &«

@ Decision function Y = ®dwy = Ko




Kernel Regularized linear regression

Exercise: Kernel ridge regression

@ Solve the ‘normal equations’ in feature spaces

@ Assume squared cost function

@ Regularize the weights

| N

Solution
o a=(A+K) 1y
o y=Ka

A

>> sigma=3; gamma=le-5

>> K = kernelmatrix(’rbf’,X,X,sigma);

>> alpha = inv(gamma*eye(length(Y)) + K)*Y;
>> Ypred = alphaxK;

>> assessment(Y,Ypred, ’regress’)
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KRR problems and solutions

Like Least-Squared Regression, (Kernel) Ridge Regression is sensitive
to outliers:

because the quadratic loss function penalized large residue.



(o] )

KRR problems and solutions

Problems!

@ One weight per example — Risk of overfitting
o High computational cost for n > 2000, different (o, \) to try!

N
~
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KRR problems and solutions

@ One weight per example — Risk of overfitting

@ High computational cost for n > 2000, different (o, A) to try!

@ Do proper cross validation and control A. Plot A- RMSE e !!!

o Standard code: alpha = inv(gamma + K) * Y;

@ Cholesky decomposition is faster (~4-fold) but not sparse again:
R = chol(K+gammaxeye(n)) ;
alpha = R\(R’\Y);

@ Nystrom method uses the Sherman-Morrison-Woodbury formula:

A+vwH'=D'-D'Vi+Vv'D'V)'viD!
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KRR problems and solutions

@ One weight per example — Risk of overfitting

@ High computational cost for n > 2000, different (o, A) to try!

@ Do proper cross validation and control A. Plot A- RMSE e !!!

o Standard code: alpha = inv(gamma + K) * Y;
@ Cholesky decomposition is faster (~4-fold) but not sparse again:
R = chol(K+gammaxeye(n)) ;
alpha = R\(R’\Y);
@ Nystrom method uses the Sherman-Morrison-Woodbury formula:
A+vwH'=D'-D'Vi+Vv'D'V)'viD!

@ There are tricks to make the KRR sparse

23 /70
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Reduced-rank (Sparse) KRR

A sparsification procedure [Cawley04]

o Find a reduced basis in H
@ Method for training a reduced rank method

Step 1: Form a basis in feature space

@ Define a subset of the vectors, ¢s(xi) = {&(xi)}ies
o Compute the reconstruction error for every sample
5= lo0x) —ds()IP _ | KEKSIKs
ll¢(xi)II? Kii
@ The basis is built by minimizing the reconstruction error §;, i.e. maximize:

1 = KSKKs:
oS} = > e
=l

o Greedy algorithm: start with S = [0], maximize £(S), stop when Kss
singular




KARMA Conclusions

oe o)

Reduced-rank (Sparse) KRR

A sparsification procedure [Cawley04]

o Find a reduced basis in H
@ Method for training a reduced rank method

Step 2: Training procedure
o Model: Y = ®dws
@ The selected basis induces a reduced rank representer’s theorem:

ws = > Big(xi) = ®s 3

i€eS

o The KRR functional to minimize slightly changes
wi = min { Y — @+ s
@ So the dual weights:
B=(K+A,)Y
B = (K5Ks: + Ass) 'K5Y

o Primal weights: ws = ®I 3

@ Decision function Y = dws = K. 53




SVR also works in a supervised way

We have input-output data pairs {(x;, i), i = 1,..., n}, where x; € R? and
vi € R.

First, map the data and then do a linear regression in the feature space:
¢ R SRY d<H
The linear model in H:
i =f(xi,w) = ¢T(x,-)w +b

where w is the weight vector and b is the bias term

We assume and additive noise model:
yi=yi+e

where e; are the committed errors by the model



SVR also works in a supervised way

We have input-output data pairs {(x;, i), i = 1,..., n}, where x; € R? and
vi € R.

First, map the data and then do a linear regression in the feature space:
¢ R SRY d<H
The linear model in H:
i =f(xi,w) = ¢T(x,-)w +b

where w is the weight vector and b is the bias term

We assume and additive noise model:
yi=yi+e

where e; are the committed errors by the model
What’s new versus KRR?
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The SVR formulation

@ The e-insensitive SVR is the SVM implementation for regression and
function approximation

@ The (regularized) primal functional to be minimized is:
.1 o
min{Slw|® + €D (& + &)}
with respect to w, &, & and b, subject to:

yi— ¢ (xi)w—b< e+ Vi=1,...,n
ST (x)WH+b—y <e+& Vi=1
&, >0 Vi=1




@ Introduce restrictions in the primal through Lagrange multipliers:
Lp= Slwl®+ CEi(& + &) — 3, aile —yi+ ¢ (xi)w + b)

=Y iai(e+yi— @ (xi)w — b) — > (il + piE;)

@ Derive and set to zero:

92 —w = > (e~ o) )lx) =0

ow Py
?927 =C—oi—pi,=0,i=1,...,L
gé: =C—af —p/=0,i=1,.,L

o Lagrange multipliers must be positive: a;, o, pi, u; >0



@ The dual (Wolfe's) problem becomes:

La=> yilai—ai)—ed (ai+a])
i=1 i=1

n

1 * *
) (@i — of )i + ;i )K(xi, x;)

iJ
s.t.
c>a>0

’



@ The dual (Wolfe's) problem becomes:

La=> yilai—ai)—ed (ai+a])
i=1 i=1

n

1 * *
=5 2_(ai —ai)(ai + af)K(xi, x;)
i
s.t.
c>a>0

’

@ Predictions:

9i=f(xi,w) = ¢’ (x;))w+ b= Z(Oéi — a7 )K(xi,x) + b



SVR in Matlab

o The SVR problem is a QP problem with linear constraints

@ The dual problem in matrix form:

(a—a)y—el’(a+a”) - %(a —a") K(a — a¥)

s.t.
c>a" >0,
.
where a(*) = [ag*), e ,af,*)} andy = [y1,-- ,ya] -
@ Use this:

>> help quadprog

QUADPROG Quadratic programming.

X=QUADPROG(H,f,A,b) attempts to solve the quadratic programming problem:
min 0.5%x’*H*x + f’*x subject to: A*x <=b

X

o Identify terms: x := (o — a*)" and H := K and passing it to MATLAB:

alphas = quadprog(H,-Y’+e*f,[1,[]1,f1,0,zeros(size(Y’)),C*f, [1,0PTIONS);
@ The bias term b is obtained from averaging some SVs.

e This is cool: sparsity in & — a* means interpretability!
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A Robust SVR formulation

o Change the e-insensitive SVR cost function to accomodate three kinds of
noise sources (insensitively, quadratic, linear):

0, |ei|<e

L(er) = 55(] & | =€), e<|e|<ec
C(lei|—e)—36C% |e|>ec

Lp(e)

+€ ec e

@ "Robust Support Vector Regression for Biophysical Parameter Estimation
from Remotely Sensed Images” Gustavo Camps-Valls, L. Bruzzone, Jose
L. Rojo-lvarez, Farid Melgani IEEE Geoscience and Remote Sensing
Letters, July 2006. Volume: 3, Issue: 3, pp. 339- 343




>> R=[R -R;-R R];

>> Y=Y(:);

>> fi=[ones(size(Y’)) -ones(size(Y’))];

>> Y=[Y;-Y];

>> H=(R+deltaxeye(size(R,1)));

>> unos=ones(size(Y’));

>> OPTIONS = optimset(’LargeScale’,’on’,’diffmaxchange’,le-8,...
’Diagnostics’,’off’,’Display’,’off’);

>>

alpha=quadprog(H,-Y’+e*unos, [1,[],f1,0,zeros(size(Y’)),C*unos, [1,0PTIONS) ;



Data collection and experimental setup

In this work, we use two different datasets:

@ MERIS dataset.

o SIMULATED DATA = NO UNCERTAINTY

e 1000 samples for cross-validating, 4000 for testing.
@ SeaBAM dataset.

o REAL DATA = UNCERTAINTY
o 460 samples for cross-validating, 460 for testing.
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Numerical Results

Table: Mean error (ME), root mean-squared error (RMSE), mean absolute error
(ABSE), and correlation coefficient (r) of models in the test set.

-2.36e- .01 .061 .
quare -9.96e-4  0.031 0.018  0.998
e-Huber-SVR -3.26e-6  0.011 0.004  0.999
SeaBAM database
e-SVR -0.070 0.139 0.105  0.971
quared loss -0.034 .14 107 .97
-Huber-SVR -0.020 0.137 0.104 0.972

@ e-Huber-SVR is more accurate (RMSE, ABSE) and unbiased (ME) than
the rest of the models

o For the MERIS data, appreciable numerical and statistical differences.

@ For the SeaBAM dataset, the proposed method showed an improved
numerical performance but no statistical differences.
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Robustness to reduced datasets

T
03k o g-SVR i
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Figure: Evolution of the RMSE in the test SeaBAM set as a function of the number of
training samples.
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@ Efficiency of oligonucleotides in RNA sequences

@ Drug concentration prediction

© Image coding



“Predictions are hard, particularly those concerning the future...”

Andreas S. Weigend, 1990.
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@ Independent and identically distributed (i.i.d.) signals (or random
variables)

@ Time series, speech and images are not iid signals
@ How to:

o Define SVM methods for TSA?
o Kernelize linear structures with the kernel trick?
o How to define static and dynamic (online) kernel methods?
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@ Independent and identically distributed (i.i.d.) signals (or random
variables)

@ Time series, speech and images are not iid signals
@ How to:

o Define SVM methods for TSA?
o Kernelize linear structures with the kernel trick?
o How to define static and dynamic (online) kernel methods?

v

Autoregressive and moving average (ARMA) processes

FIR and IIR filters
Adaptive filters
Auto-correlation, memory depth and temporal resolution
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@ Independent and identically distributed (i.i.d.) signals (or random
variables)

@ Time series, speech and images are not iid signals
@ How to:

o Define SVM methods for TSA?
o Kernelize linear structures with the kernel trick?
o How to define static and dynamic (online) kernel methods?

Autoregressive and moving average (ARMA) processes

FIR and IIR filters
Adaptive filters
Auto-correlation, memory depth and temporal resolution

o SVM-ARMA
o Kernel ARMA

A




Independent and identically distributed (i.i.d.) random variables

@ i.i.d random variables: if each random variable has the same probability
distribution as the others and all are mutually independent.

o aka, Exchangeable random variables: sequence such that future samples
behave like earlier samples, i.e.: any order is equally likely
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Independent and identically distributed (i.i.d.) random variables

@ i.i.d random variables: if each random variable has the same probability
distribution as the others and all are mutually independent.

o aka, Exchangeable random variables: sequence such that future samples
behave like earlier samples, i.e.: any order is equally likely

o Why? This assumption typically simplifies many formulations
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Independent and identically distributed (i.i.d.) random variables

i.i.d random variables: if each random variable has the same probability
distribution as the others and all are mutually independent.

o aka, Exchangeable random variables: sequence such that future samples
behave like earlier samples, i.e.: any order is equally likely

Why? This assumption typically simplifies many formulations
Examples of iid signals:

o roulette wheel
o dice rolls
e coin flips
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Independent and identically distributed (i.i.d.) random variables

i.i.d random variables: if each random variable has the same probability
distribution as the others and all are mutually independent.

o aka, Exchangeable random variables: sequence such that future samples
behave like earlier samples, i.e.: any order is equally likely

Why? This assumption typically simplifies many formulations
Examples of iid signals:

o roulette wheel
o dice rolls
e coin flips

Examples of non-iid signals:

o exchange rates
e speech
e image/video sequences
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(Auto)correlation function

@ Auto-correlation function (‘correlogram’): Given a stationary process
{x:}, the ACF is

px(h) = corr(Xesn, xt) = Zx(k)x(k + h)

>> x=sin(1:100)+randn(1,100); stem(xcorr(x))

@ Signal processing:
Identify pulsar events,
tempo, beats, pitch

@ Image processing:
| extent and period of
I ||| l!I. |||| Il i pixel relations in space

‘HII I ‘III' |IH LI U

08

ACF
04

0.0
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Auto-regressive and Moving-average (ARMA) process

o ARMA modeling. Given the input-output time series {x,} and {y.}

P Q
Yn = Z aiYn—i+ Z bjxp—j+1+en,n=1,..., N
i=1 j=1

N— N——
AR MA



SVM-ARMA
L]

Auto-regressive and Moving-average (ARMA) process

o ARMA modeling. Given the input-output time series {x,} and {y.}

P Q
Yn = Z aiYn—i+ Z bjxp—j+1+en,n=1,..., N
i=1 j=1

N— N——
AR MA

@ The error terms e, are generally assumed to be iid sampled from a normal
distribution with zero mean, N(0, o2)
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Auto-regressive and Moving-average (ARMA) process

o ARMA modeling. Given the input-output time series {x,} and {y.}

P Q
Yo = Z aiYn—i+ Z bjxp—j+1+en,n=1,..., N
i=1 j=1

Nt N————
AR MA

@ The error terms e, are generally assumed to be iid sampled from a normal
distribution with zero mean, N(0, o2)

@ After choosing P and Q, just obtain a; and b; by least squares regression:
mind{[ly — Ya — Xb[[*} = min{]ly - Zw|*}
a, w

wherey € R™ Y e R™P a e RP*!, X e R"™*? and b € RO*.
y
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Auto-regressive and Moving-average (ARMA) process

o ARMA modeling. Given the input-output time series {x,} and {y.}

P Q
Yo = Z aiYn—i+ Z bjxp—j+1+en,n=1,..., N
i=1 j=1

Nt N————
AR MA

@ The error terms e, are generally assumed to be iid sampled from a normal
distribution with zero mean, N(0, o2)

After choosing P and Q, just obtain a; and b; by least squares regression:
mind{[ly — Ya — Xb[[*} = min{]ly - Zw|*}
a, w

where y € R™! ¥ e R™P a e R”*! X € R"™*? and b € R9*1,

Overfitting naively controlled by choosing low P and Q values
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Auto-regressive and Moving-average (ARMA) process

o ARMA modeling. Given the input-output time series {x,} and {y.}

P Q
Yo = Z aiYn—i+ Z bjxp—j+1+en,n=1,..., N
i=1 j=1

Nt N————
AR MA

@ The error terms e, are generally assumed to be iid sampled from a normal
distribution with zero mean, N(0, o2)

After choosing P and Q, just obtain a; and b; by least squares regression:
mind{[ly — Ya — Xb[[*} = min{]ly - Zw|*}
a, w

where y € R™! ¥ e R™P a e R”*! X € R"™*? and b € R9*1,

Overfitting naively controlled by choosing low P and Q values

o M-estimates: regularization and time-varying cost functions ...
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Auto-regressive and Moving-average (ARMA) process

o ARMA modeling. Given the input-output time series {x,} and {y.}

P Q
Yo = Z aiYn—i+ Z bjxp—j+1+en,n=1,..., N
i=1 j=1

Nt N————
AR MA

@ The error terms e, are generally assumed to be iid sampled from a normal
distribution with zero mean, N(0, o2)

@ After choosing P and Q, just obtain a; and b; by least squares regression:
mind{[ly — Ya — Xb[[*} = min{]ly - Zw|*}
a, w

where y € R™! ¥ e R™P a e R”*! X € R"™*? and b € R9*1,
e Overfitting naively controlled by choosing low P and Q values
o M-estimates: regularization and time-varying cost functions ...

o Matlab’s sysid toolbox: ar.m, arx.m, armax.m, pem.m, etc.
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SVM-ARMA

@0000

(Linear) SVM-ARMA formulation: the Vapnik’s cost

o Standard SVM for regression uses Vapnik's e-insensitive loss ....

e

0, if |en] < e
o ... and regularize model weights with the ¢, norm:

P Q N
1
Lo(ar by er) = & (Z 243 bf) 1S L(en)
i=1 j=1

n=ko

@ Primal problem:

Lp (ai, by, &0, &) = % <Za, +Zb2> +CZ (&n+ &)

n=ko
subject to

P Q

— Z aiYn—i — Z bixa—jr1 < e+é&,
i—1 =1
P Q

—yn+ Z aiyn—i + Z bixn—jy1 < e+E&,
i=1 j=1

N ) B 54 /70



SVM-ARMA

0@000

(Linear) SVM-ARMA formulation: the Vapnik’s cost

e Do:

@ This gives:
0<al<cC (1)

=" (an—a;)yo s (2)

N

b = Z (an — o) Xo—jn1 3)

n=ko

@ ... and also the input and output autocorrelation matrices emerge:
P

Z}/mffykfi

i=1

Q
R)E?(ITI7 k) = me—j+1xk—j+1
j=1

R} (m, k)
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SVM-ARMA

00e00

(Linear) SVM-ARMA formulation: the Vapnik’s cost

@ The dual problem becomes

Lp = f% (a—a*)’ [RXQ + RyP] (¢ —a™)+
+(a—a))y—el” (a+a”)
o The QP problem, z"Hz + b"z, becomes
7 = [ aT, a7 ]T
1 [ R.°+R,”, —-R?-R, }

H = -3 R?-R,”, ROC+R/

b = [y —¢ —yT—s]T
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SVM-ARMA

00e00

(Linear) SVM-ARMA formulation: the Vapnik’s cost

@ The dual problem becomes
1 * *
LD:fE(afa )" [RXQJrRyP] (a —a™)+
+(a—a))y—el” (a+a”)

o The QP problem, z"Hz + b"z, becomes

7 = [ al, o ]T

H - L[ Re+R" -RO-RS
- 2| R-R", RO+R/

b = [y —¢ —yT—s]T

@ Clearly H is not invertible!
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SVM-ARMA

00e00

(Linear) SVM-ARMA formulation: the Vapnik’s cost

@ The dual problem becomes
Lp = f% (a—a*)’ [RXQ + RyP] (¢ —a™)+
+(a—a))y—el” (a+a”)
o The QP problem, z"Hz + bz, becomes
7 = [ aT, a7 ]T
H - 71[ R+ R/, -R?-R,” }
2| -R°—R/", RO+R/
b = [y —e -y —¢ ]T
@ Clearly H is not invertible!

e Regularization solves it: H' = H + 1l



SVM-ARMA

[elefe] lo]

(Linear) SVM-ARMA formulation: the Vapnik’s cost

@ So what we want to actually solve is:
1 * *
LM = —E(a—a )" [RXQ+RyP] (a—a™)+
+(a-a") y—el" (a+a”)—
f% <aTla + a”loﬁ)

(st. 0 <™ < Q).
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SVM-ARMA

[elefe] lo]

(Linear) SVM-ARMA formulation: the Vapnik’s cost

@ So what we want to actually solve is:
1 * *
LM = —E(a—a )" [RXQ+RyP] (a—a™)+
+(a-a") y—el" (a+a”)—
f% <aTla + a”loﬁ)

(st. 0 <™ < Q).

@ This corresponds to changing the loss function!

e




SVM-ARMA
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(Linear) SVM-ARMA formulation: the Vapnik’s cost

Example:
¥n = 0.03y,—1 — 0.01y,—2 + 3x, — 0.5x,-1 + 0.2x,_2

with

{xa} ~ N(0,1), {en} ~ N(0,0.1), {on} = {yn} + {en}
and impulsive noise {j,}: 30% of samples with £10 + U(0, 1)

20l0g(MSD)
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Kernelization of ARMA 1.

@ The ARMA process can be vectorized, where S = max(P, Q) and pad
with zeroes the shortest series:

T T
Yn = [}/nfly}/nfb cee 7_)/n75] ) Xp = [Xm Xn—1y- .- 7Xn75+1]
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Kernelization of ARMA 1.

@ The ARMA process can be vectorized, where S = max(P, Q) and pad
with zeroes the shortest series:
T T
Yn = [}/nfly}/nfb e 7_)/n75] s Xp = [Xm Xp—1y--- 7Xn75+1]
@ The standard way is to use the SVR for regression ...
@ Build/stack/encapsule the data: z, = [yI,XZ]T

@ Map them to H with ¢(z,) : RS — R5,
© Build a linear regression there: y, = quS(z,,) + en
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Kernelization of ARMA 1.

@ The ARMA process can be vectorized, where S = max(P, Q) and pad
with zeroes the shortest series:
T T
n= [}/n717}/n727 oo 7_)/n75] s Xp = [Xm Xn—1y+-- 7Xn75+1]
@ The standard way is to use the SVR for regression ...
@ Build/stack/encapsule the data: z, = [yI,XZ]T
@ Map them to H with ¢(z,) : RS — R5,
© Build a linear regression there: y, = quS(z,,) + en

@ The primal problem (using the e-Huber loss) is then:

#(36) -3 54+ £ T (@)

neh

2
e (@re) - Y15

neh neh
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Kernelization of ARMA 1.

@ The ARMA process can be vectorized, where S = max(P, Q) and pad
with zeroes the shortest series:
T T
n= [}/n717}/n727 oo 7_)/n75] s Xp = [Xm Xn—1y+-- 7Xn75+1]
@ The standard way is to use the SVR for regression ...
@ Build/stack/encapsule the data: z, = [yI,XZ]T

@ Map them to H with ¢(z,) : RS — R5,
© Build a linear regression there: y, = quS(z,,) + en

@ The primal problem (using the e-Huber loss) is then:

#(36) -3 54+ £ T (@)

neh

2
e (@re) - Y15

neh neh

@ The solution is the classical one

9 = ls(ar — ay)K(zr,20)
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Kernelization of ARMA 2.

@ Define ARMA in H:
Yo =a'¢(yn) + b’ ¢(xn) + en

with a = [al,...,aH]T and b = [bl,...,b/./]—r

@ The primal problem minimizes:

(B (a0, b1, 67) = 3 i(a? F oY (6467) 4

nehl
2
Y @re) - Y1

n€ly n€lh

@ The prediction model is now:

9o = Lslar — af) [K(yr,¥n) + K(xr, xa)]
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Example

Example: neon laser time series (dataset A in the Santa Fe competition):
@ 1-step ahead time series prediction problem:
Yo = f([Yo—1, Yn—2, -+, Yo—k], W)

@ A complex transition from periodic to chaotic

o Noise-free, stationary, low dimensionality

Mean-Square Error (MSE)

40 60 80 100 120 340 350 360 370 380 390
Number of training samples Time sample
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Conclusions

Conclusions

@ Given definition of the most useful kernel regression methods
Other regression methods are available

Analyzed how to derive the equations
Multioutput SVR is not solved yet

Kernel Bayesian approaches: RVM and GP
Adaptive kernel learning is becoming very popular
Everything relies on the proper definition of K
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