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The organization of the course:

@ Fundamentals of kernel methods
@ Supervised and unsupervised kernel-based classification
© Kernel methods for regression and time series analysis

@ Nonlinear feature extraction with kernels <<<
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Feature selection/extraction is essential before classification or regression
High number of correlated features leads to:

- Collinearity
- Overfitting
- Hughes phenomenon

o Linear methods offer Interpretability ~ knowledge discovery.
Linear algorithms are commonly used: PCA, PLS, CCA, ...

Linear algorithms fail when data distributions are curved (nonlinear feature
relations)
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o Feature selection/extraction is essential before classification or regression
@ High number of correlated features leads to:

- Collinearity
- Overfitting
- Hughes phenomenon

o Linear methods offer Interpretability ~ knowledge discovery.
Linear algorithms are commonly used: PCA, PLS, CCA, ...

Linear algorithms fail when data distributions are curved (nonlinear feature
relations)

PCA is widely used
PCA is not optimal in supervised problems: PLS is very good here

PLS is suboptimal in the mean-square-error sense
Orthonormalized PLS (OPLS) is optimal in MSE sense (Roweist, 1999)
Unfortunately, real problems are commonly non-linear — Kernels methods
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Notation preliminaries

Data {x,-,y,-}le, x;i € RN, y; € RM.

Input Data Matrix X = [x1,...,x]"

Label Matrix Y=y, ..,y]"

Number of projections np

Projected Inputs X' = XU

Projected Outputs Y =YV

Projection matrices U (N X np), and V (M X np)
Covariance Coy = E{(x — )y — 1))} ~ %XTY
Frobenius norm of a matrix  ||A||2 = i ag.
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Linear feature extraction

Toy example

@ Imagine a classification problem in which labels matter (a lot!).
o “Blind" feature extraction is not a good choice.
@ Let's see what happens with different methods ...
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Linear feature extraction

Principal Component Analysis (PCA)

e “Find projections maximizing the variance of the data:”

PCA: maximize: Tri(XU)T(XU)} = Tr{U"C.U}
subject to: U U =1
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Linear feature extraction

Principal Component Analysis (PCA)

e “Find projections maximizing the variance of the data:”

PCA: maximize: Tri(XU)T(XU)} = Tr{U"C.U}
subject to: U U =1

@ >> [U D] = eig(C); [Prove it!]
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Linear feature extraction

Principal Component Analysis (PCA)

e “Find projections maximizing the variance of the data:”

PCA: maximize: Tri(XU)T(XU)} = Tr{U"C.U}
subject to: U U =1

@ >> [U D] = eig(C); [Prove it!]
@ >> opts.disp = 0; Nf=3; [U D] = eigs(C,Nf,’LM’,opts);
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Linear feature extraction

Partial Least Squares (PLS)

e “Find directions of maximum covariance between the projected input and
output data:”

PLS: maximize: Tri(X )T$YV)} =Tr{U"C,V}
subjectto: U U=V V=1
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Linear feature extraction

Partial Least Squares (PLS)

e “Find directions of maximum covariance between the projected input and
output data:”

PLS: maximize: Tri(X )T$YV)} =Tr{U"C,V}
subjectto: U U=V V=1

@ >> [U Sx Dx] = svds(X’#*Y,Nf) ;[Prove it!]
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Linear feature extraction

Canonical correlation analysis (CCA), Hotelling (1936)

@ Unlike PCA or PLS, CCA looks for directions of max I/O correlation:

T 2
u Cyv

CCA: u,v = arg max %

u,v u Cxxu v nyV
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Linear feature extraction

Canonical correlation analysis (CCA), Hotelling (1936)

@ Unlike PCA or PLS, CCA looks for directions of max I/O correlation:

T 2
u Cyv

CCA: u,v = arg max %

u,v u Cxxu v nyV

@ This is invariant to a scaling of the projection vectors u and v, so ...

CCA(2): u,v =arg max u' Cyv

subject to: u'Cou=v' C,v=1
o CCA in terms of the complete projection matrices U and V:
CCA(3): U,V = arg max Tr{U'C,V}
VRY;
subject to: U'C U=V 'C,V =1

o Introducing Lagrange multipliers ...

(& T )n=2(% &)
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Linear feature extraction

Canonical correlation analysis (CCA), Hotelling (1936)

@ Unlike PCA or PLS, CCA looks for directions of max I/O correlation:

T 2
u Cyv
CCA: u,v = arg max %
u,v u Cxxu v nyV

@ This is invariant to a scaling of the projection vectors u and v, so ...

CCA(2): u,v =arg max u' Cyv

subject to: u'Cou=v' C,v=1
o CCA in terms of the complete projection matrices U and V:
CCA(3): U,V = arg max Tr{U'C,V}
uVv
subject to: U'C U=V 'C,V =1
o Introducing Lagrange multipliers ...
0 Co \iuy_) (C«x O u
(& T )n=2(% &)

@ >> A = [0 Cxy;Cxy’ 0]; B = [Cxx 0;0 Cyyl; [UV D] = eig(A,B);
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Linear feature extraction

Orthonormalized Partial Least Squares (OPLS)

@ “OPLS chooses the projection U to make X' the best approximation to X
in a reduced dimensionality space:”

OPLS: find: U = arg min{||Y — X'W||%}
where: W = (X'TX)7IX'Y
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Linear feature extraction

rmalized Partial Least Squares (OPLS)

“

e “.. which can be rewritten as [Worsley98]:"

OPLS: maximize:  Tr{U'C,,C/ U}
subject to: U'CiU=1

— - S 22/63



LFE

O0000e

Linear feature extraction

ormalized Partial Least Squares (OPLS)

“

e “.. which can be rewritten as [Worsley98]:"

OPLS: maximize:  Tr{U'C,,C/ U}
subject to: U'CiU=1

@ >> [U,D] = eig((X’*Y)*(Y’*X),X’*X) ;[Prove it!]
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Linear feature extraction

ormalized Partial Least Squares (OPLS)

“

e “.. which can be rewritten as [Worsley98]:"

OPLS: maximize:  Tr{U'C,,C/ U}
subject to: U'CiU=1

e >> [U,D]
e >> [U,D]

eig ((X?*Y)* (Y’ *X) ,X’*X) ; [Prove it!]
eig(inv (X’ *X) * (X’ *Y) * (Y’ *X)) ; [Prove it!]
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Remarks

Remarks on linear feature extraction for supervised problems

o Feature extraction is important for understanding and processing
(classification and regression)

Labels must play an important role in feature extraction

Traditional PCA fails since labels are obviated
Traditional PLS does a good, yet suboptimal, job

Orthonormalized PLS excels in linear feature extraction
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Remarks

Remarks on linear feature extraction for supervised problems

o Feature extraction is important for understanding and processing
(classification and regression)

Labels must play an important role in feature extraction
Traditional PCA fails since labels are obviated

Traditional PLS does a good, yet suboptimal, job
Orthonormalized PLS excels in linear feature extraction
Optimality:

PCA is optimal for reconstruction error

CCA is optimal for maximizing correlation with output

PLS is optimal for maximizing covariance with output
OPLS is optimal for minimizing MSE
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Linear vs. Non-linear feature extraction

Linear feature extraction. Advantages

o Simplicity.
@ Easy to understand.
@ Leads to convex optimization problems.

Linear feature extraction. Drawbacks

@ Unsuitable for non-linear problems

@ More dimensions than points?
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Linear vs. Non-linear feature extraction

Original data PCA
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KPCA
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Linear vs. Non-linear feature extraction

Original data OPLS
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Kernel methods for non-linear feature extraction

Kernel methods

Input features space Kernel feature space

© Map the data to an oco-dimensional feature spaces, H.

@ Solve a linear problem there.

Kernel trick

@ No need to know oo coordinates for each mapped sample ¢(x;)

o Kernel trick: "“if an algorithm can be expressed in the form of dot
products, its non-linear (kernel) version only needs the dot products
among mapped samples, the so-called kernel function:”

K(xi,x;) = (¢(xi), d(x;))

@ Using this trick, we can implement K-PCA, K-PLS, K-OPLS, etc.




Kerneling PCA ...

Principal Component Analysis (PCA)

e “Find projections maximizing the variance of the data:”

PCA: maximize: Tri(XU)T(XU)} = Tr{U"C.U}
subject to: U U =1
o Including Lagrange multipliers A, this problem is equivalent to
CxU=2U

>> [U lambda]
>> [U lambda]

eig(C);
eigs(C,p);

PCA;
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Kerneling PCA ...

Kernel Principal Component Analysis (KPCA)

e “Find projections maximizing the variance of the mapped data:”

KPCA: maximize:  Tr{(®U)T (®U)} = Tr{UT & dU}
subject to: UTU =1

o The term ® ' @ is dy x do 11
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Kerneling PCA ...

Kernel Principal Component Analysis (KPCA)

e “Find projections maximizing the variance of the mapped data:”

KPCA: maximize:  Tr{(®U)T (®U)} = Tr{UT & dU}
subject to: UTU =1

o The term ® ' @ is dy x do 11

Kernel Principal Component Analysis

o Apply the representer’s theorem: U = & A where A = [er,...,an]"

e “Find projections maximizing the variance of the mapped data:”

KPCA (2): maximize:  Tr{ATK.K A}
subject to: ATK,A = |

o Including Lagrange multipliers A, this problem is equivalent to

K.Kia = \K,aa — K,a = \«x
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KPCA

Problem 1: the intrinsic dimensionality

o Choosing the kernel and its parameter(s)

@ Choosing the number of eigenvectors
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Problem 2: Finding preimages

“Given a point in 'H, find the corresponding point in X"

o For many points in the feature space there is no exact pre-image in the

input space

@ Inverting the mapping ¢ is an ill-posed problem

@ Some relaxed solutions exist.

)
\\ .¢(x

060

Po(x)

Y
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Problem 2: Finding preimages

@ Mika99: ‘minimize the feature space distance ||¢(X) — Po(x)||’

o lterative procedure, very computationally demanding
e local minimum
e inestable solutions
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Problem 2: Finding preimages

@ Mika99: ‘minimize the feature space distance ||¢(X) — Po(x)||’

o lterative procedure, very computationally demanding
o local minimum
e inestable solutions

o Kwok04: ‘constrain input distances by computing neighbor dist. in H’
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Problem 2: Finding preimages

noisy image; (300 training images) Mika et al.; proposed method;
(60 tramlng |mages ) Mika et al.; proposed method

1 [T T St S
(i %z% i s

fw—o

number of 0’ SNR
training images noisy images | our method | Mika et al.
300 0.25 2.32 6.36 5.90
0.3 1.72 6.24 5.60
0.4 0.91 5.89 5.17
0.5 0.32 5.58 4.86
60 0.25 2.32 4.64 4.50
0.3 1.72 4.56 4.39
0.4 0.90 4.41 4.19
0.5 0.35 4.29 4.06
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Experiment 1: Image denoising

kernelPCA nonlinearautoencodef PrincipalCurves linearPCA

Figure 1: De-noisingin 2-d (seetext). Depictedare the dataset (small points)andits
de-noisedversion (big points, joining up to solid lines). For linear PCA, we usedone
componenfor reconstructionasusingtwo componentsieconstructioris perfectandthus
doesnot de-noise. Note that all algorithmsexceptfor our approachhave problemsin
capturingthecircularstructurein the bottomexample.
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Experiment 1: Image denoising
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Figure4: De-Noisingof USPSdata(seetext). Theleft half shawvs: top: thefirst occurrence
of eachdigit in thetestset,secondow: the upperdigit with additve Gaussiamoise(c =
0.5), following five rows: the reconstructiorfor linear PCA usingn = 1,4, 16, 64,256
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Experiment 2: Image superresolution

@ Collect high-res face
images

@ Use KPCA with
RBF-kernel to learn
non-linear subspaces

@ For new low-res
image:
» scale to target
high resolution
> project to closest
point in face
subspace

o EAFE
geE g oy
56

reconstruction in r dimensions
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Signal and noise

Signal vs noise

o Signal: magnitude generated by an inaccesible system, sy
o Noise: magnitude generated by the medium corrupting the signal, ny
o Observation: signal corrupted by noise, xk = sk +nk, k=1,...,n

Separating signal from noise

o Eigenvalue perspective: the noise is in the low eigenvalues
o Feature extractors

o PCA: retain the eigenvectors with higher eigenvalues

o ICA: find the non-orthogonal projection of the signal with maximal
independent axes

e PLS: find projections maximally aligned with the labels

o Many feature extractors have been kernelized ...

o ... but all of them disregard the noise characteristics!
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Signal-to-noise ratio transformation

o Observation: x; € RY, j = 1,...,n
o Additive noise model: x; =s; + n;
@ Matrix notation: X =S + N, X € R™N.

The SNR transformation

@ Define a linear transform W such that maximizes the SNR:

ISwi? _  xw|?
SNR = ~
VI N2 T NS N2

@ Assumed that signal and noise are mutually orthogonal:
S'TN=0,N'S=0

o This is equivalent to solving the generalized eigenproblem:
XTXW = uN"NW

o We only need to estimate the signal covariance, C,x = X' X, and the noise
covariance, Cnn &~ NTN.




Signal-to-noise ratio transformation

The noise covariance estimation

Assume stationary processes in wide sense:
o Differentiation: n; ~ x; — xj—1
; 1 ingt N A X 1 M .
Smoothing filtering: n; = x; — 17 >, ; akXi—k

Wiener estimates
Wavelet domain estimates

The MatLab SNR code

>> X = standardize(X);
>> N = diff(X);
>> [V D] = eig(X’*X,N’*N);

N
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Standard kernelization

KSNR through kernel trick

Replace X € R™*N with & € R"™*Nr
Replace N € R™N with &y € R"*No

O OV = b, Dy,

Not solvable in its present form given the inaccessibility and high
dimensionality of the involved matrices, N3 X Ny and Ng x Ng.

Left multiply both sides by ®, and use representer’s theorem, W = & T L:
KL = uKyKpL,

where
o K=®® T has elements K(x;,x;)
o K= o] has elements Ky(x;,n;)

@ Easy and simple to program!
o Potentially useful when signal and noise are nonlinearly related: occlusion,

strips, saturation, etc.
Two critical parameters to estimate!

45 /63



Standard kernelization

The MatLab KSNR code

>> X = standardize(X);

>> sigmal = estimateSigma(X,X);

>> Ks = kernelmatrix(’rbf’,X,X,sigmal);
>> Ksc = centering(Ks);

>> N = diff(X);

>> sigma2 = estimateSigma(X,N);

>> Kn = kernelmatrix(’rbf’,X,N,sigma2);
>> Knc = centering(Kn) ;

>> [V D] = eig(Ksc*Ksc,Knc*Knc’) ;
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Results in unsupervised change detection

RGB data from the DLR 3K camera system

3 cameras (16 Megapix) mounted in a plane

Speed: 3 Hz.

Two images acquired 0.7 seconds apart cover a busy motorway
Changes dominated by car movement

Additional changes: aircraft movement and different viewing angles

t; image t, image [ty — t1] image
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Results in unsupervised c
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Results in unsupervised change detection

KSNR (first 3 PCs)




@ Optimality: We focus on the OPLS.
Kernelization: We present the Kernel Orthonormalized PLS (KOPLS).
Scalability: We also make the method algorithmically feasible.

We analyze and characterize the method:
@ Theoretically:
o Computational cost.
o Memory.
@ Number of projections.
@ Experimentally:

o Toy examples.
@ Remote Sensing image classification.

o Biophysical parameter estimation.
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Kernel PLS

Data R

Mapping d(x) : RV — H

Mapped inputs matrix & = [p(x1),- .-, d(x)]T

Output matrix Y =[ys,...,y]"

Number of projections np

Projections of Mapped Inputs ' = U

Projections of Outputs Y =YV

Projection matrices U (dim(H) X np), and V (M X np)

Formulation

@ “The objective of KPLS is to find directions for maximum covariance:”

KPLS:  maximize: TrT{UTtiT\?V}
subject to: UTU=VTV =1

where ® and Y are centered versions of ® and Y, respectively.

@ Only a matrix of inner products of the patterns in H is needed (shawe Taylor,
2004).
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Kernel Orthonormalized PLS

Formulation of the KOPLS

@ “The objective of KOPLS is:”
KOPLS:  maximize: Tr{U’® YYTdU}
subject to: UT&'T&)U =1
@ The features derived from KOPLS are optimal (in the MSE sense).

Kernel trick for the KOPLS
@ All projection vectors (the columns of U) can be expressed as a linear
L .. =T
combination of the training data, U = & A.
@ The maximization problem is reformulated as:

KOPLS: maximize:  Tr{ATH.H,H,A}
subject to: ATH H,A =1

o Centered kernel matrices: Hy = $d " and H, =YY",
This is a generalized eigenproblem: H,H,H,.a = AHH

@ H, and H, can be approximated without computing and storing the whole
matrices.




An illustrative example (cont’d)

Original data PCA



An illustrative example (cont’d)

Original data OPLS



An illustrative example (cont’d)

Original data KPCA
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An illustrative example (cont’d)

el s "
e - R
® 8
- i
Original data KOPLS
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Remarks

Remarks on non-linear feature extraction

@ Linear methods such as PCA, PLS or OPLS are not suitable for non-linear
classification /regression tasks.

@ Non-linear versions of these algorithms are readily obtained by applying
the kernel trick.

o KPLS and KOPLS consider labels for the derivation of the projection
vector, thus outperforming KPCA.

@ KOPLS inherits mean-square-error optimality from its linear counterpart.

Methods Characterization

| KOPLS [ KPLS
Kernel size | | x/ I
Storage Oo(P?) Oo(P?)
Max. np min{rank(®), rank(Y)} rank(®)




Experiment 1: Classification of LandSat images

Data collection

LandSat image, 82x100 pixels with a spatial resolution of 80mx80m

Six classes: red soil, cotton crop, grey soil, damp grey soil, soil with
vegetation stubble and very damp grey soil.

Contextual information: stack neighbouring pixels in 3x3 windows —
high-dimensional and redundant feature vectors!.

Training: 4435 samples.
Testing: 2000 samples.

Experimental setup

Methods: linear OPLS, KPLS and KOPLS.
RBF kernel: k(x;,x;) = exp (—||xi — x;||*/20°)
10-fold cross-validation on the training set to estimate o.

Classification procedure:

@ Extract np projections (np < rank(Y) for the KOPLS).

@ Project test data.

© Linear discriminant with the pseudoinverse of the projected data.
@ Winner-takes-all.




Experiment 1: Classification of LandSat images

ccuracy and feature expressi

100, 100

= 90 = R
g 80 . g .
s | _laemmmmTTTT 5
3 8
g 70 <
T 60 kS

3 —KOPLS
3

---KPLS

50

== =linear OPLS
. —
. KOPLS a0l _
1 2 3 4 5 10 10 10
Number or Features Number or Features (log)

@ The non-linear method provides a better representation of the
discriminative information.
o KOPLS performance, with only 5 features, is 91%.

o KPLS needs 100 features to achieve similar performance.

o Conclusions:
@ Non-linear OPLS methods provide much better results.

@ KOPLS yields features which contain more discriminative information
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Experiment 2: Oceanic chlorophyll concentration

Data collection

@ “Modeling the non-linear relationship between chlorophyll concentration
and marine reflectance.”

SeaBAM dataset (0'reily, 1998).

919 in-situ pigment measurements around the United States and Europe.
Training: 460 samples

Testing: 460 samples

Experimental setup

o Methods: linear PLS, KPLS and KOPLS.
o RBF kernel: k(xi,x;) = exp (—||xi — x||>/20?)
@ Leave-one-out root mean square error (LOO-RMSE) to validate the model.

o o tuned in the range [1072,10"]
np = rank(Y) =1 for the KOPLS.
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Experiment 2: Oceanic chlorophyll concentration

Accuracy and feature expression

Model ME RMSE MAE r

OPLS -0.034  0.257 0.188 0.903
KPLS, n, =1 0.042 0.366 0.278 0.790
KPLS, n, =5 -0.013 0.189  0.140 0.947
KPLS, n, =10 -0.013 0.149 0.115 0.968
KPLS, n, =20 -0.009 0.138 0.106 0.972
KOPLS, n, =1 -0.015 0.154 0.111 0.967

@ Linear OPLS performs poorly as the linear assumption does not hold.

o KPLS and the proposed KOPLS show a clear improvement in both
accuracy and bias compared to linear OPLS

@ KPLS and KOPLS show similar accuracy to SVR, and outperform in bias.
@ Results obtained with a lower computational and storage burden

@ The only one feature extracted with KOPLS provides a similar
performance to the 10 first features from KPLS.
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Conclusions
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Conclusions

Conclusions

o Given definition of the most useful kernel methods for nonlinear feature
extraction

@ KPCA is nice but difficult to handle (proper sigma for a task?)
@ Unlike KPLS, the proposed KOPLS is optimal in the sense of a minimum
quadratic error approximation of the label matrix.
@ Major problem: non-sparse computationally demanding methods
@ Other kernel methods are available:
o Kernel CCA

o Everything relies on the proper definition of the kernel (again)
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