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The organization of the course:

1 Fundamentals of kernel methods

2 Supervised and unsupervised kernel-based classification

3 Kernel methods for regression and time series analysis <<<

4 Nonlinear feature extraction with kernels
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Definitions

Definitions

Regression, curve fitting, function approximation

Regression models involve the following variables:

o The unknown parameters (weights) denoted as w
o The independent (input, features) variables, x
o The dependent (output, target) variable(s), y

A regression model f relates y with x:

ŷ = f (x,w) + e
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Definitions

Regression, curve fitting, function approximation

Approximate m-dimensional continuous functions
Polynomial Curve Fitting

To estimate a real function:

Rn −→ Rm

x −→ y = f (x,w)

How to choose the weights?√
Perform cross-validation to select parameters√
Choose a quality (performance, objective) criterion to optimize

? Minimize a cost function and regularize it
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Risk, loss, cost, objective, energy
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Risk, loss, cost, objective, energy

Loss `(y, f (x,w))

Squared loss (y − f (x,w))2

Absolute loss |y − f (x,w)|
ε-insensitive loss (|y − f (x,w)| − ε)+

Huber loss

(
1
2
e2 |e| ≤ δ
δ(|e| − δ

2
) otherwise

Log-cosh loss `(y, f (x,w)) = log(cosh(y − f (x,w)))

Losses for regression (Shawe-Taylor and Cristianini, 2004)

• Response: y ∈ R, prediction ŷ = f(x),

– quadratic (square) loss ℓ(y, f(x)) = 1
2(y − f(x))2

– Not many reasons to go beyond square loss!

• Other convex losses “with added benefits”

– ε-insensitive loss ℓ(y, f(x)) = (|y − f(x)| − ε)+
– Hüber loss (mixed quadratic/linear): robustness to outliers
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Risk, loss, cost, objective, energy

Loss `(y, f (x,w)) Noise model, p(e)

Squared loss 0.5(y − f (x,w))2 1√
2π

exp(−e2/2)

Absolute loss, Laplacian |y − f (x,w)| 1
2

exp(−|e|)
ε-insensitive loss (|y − f (x,w)| − ε)+

1√
2(1+ε)

exp(−|e|ε)

Huber loss

(
1
2
e2 |e| ≤ δ
δ(|e| − δ

2
) otherwise

(
exp(−e2/2) |e| ≤ δ
exp(δ/2− |e|) otherwise

Maximum likelihood (ML): ‘find the most likely function -model- that
generated the data’

max
w
{p(x, y |w)} = max

w

Y
i

p(xi , yi |w)

ff
= max

w

Y
i

p(yi |xi ,w)p(xi )

ff

= max
w

Y
i

p(yi |xi ,w)

ff
≈ max

w


− log(p(x, y |w))

ff
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Regularizer

Regularization is used to prevent overfitting and simplify the solution:

Implicitly or explicitly penalize models based on the number of effective
parameters or directions
Bayesian methods use a prior probability that (usually) gives lower
probability to more complex models
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Regularizer

Model Loss Regularizer
(entropy measure)

AIC/BIC (y − f (x,w))2 ‖w‖0

Ridge regression, KRR, GP (y − f (x,w))2 ‖w‖2

SVR |y − f (x,w)|ε ‖w‖2

Lasso (y − f (x,w))2 ‖w‖1

Basis pursuit denoising (y − f (x,w))2 ‖w‖1

Reg Least Absolute Deviations |y − f (x,w)| ‖w‖1



 DISCUSSION 	�

suggest that joint estimation of the �js and q might be an e�ective strategy�
but do not report any results�

q=4 q=2 q=1 q=0.5 q=0.1

Figure �� Contours of constant value of
P

j
j�jj

q for given values of q�

Figure � depicts the situation in 	 dimensions� Subset selection corresponds
to q� �� The value q � � has advantage of being closer to subset selection than
ridge regression �q � 	�� and is also the smallest value of q giving a convex region�
Furthermore� the linear boundaries for q � � are convenient for optimization�

The encouraging results reported here suggest that absolute value constraints
might prove to be useful in a wide variety of statistical estimation problems�
Further study is needed to investigate these possibilities�

Software

Public domain S&Splus language functions for the lasso are available at the
statlib archive at Carnegie
Mellon University� There are functions for linear
models� generalized linear models� and the proportional hazards model� To
obtain them� ftp to lib�stat�cmu�edu and retrieve the �le S�lasso� or send
electronic mail to statlib�lib�stat�cmu�edu with the message send lasso

from S�
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Regularized linear regression

Regularized least squares linear regression

Add a ridge penalty to the loss function:

min
W

n
‖Y − XW‖2 + λ‖W‖2

o
The weights (one per feature) are obtained easily

Ŵ = (X>X + λI)−1X>Y

Homework

1 Demonstrate the normal equations for the regularized case (above)
2 Do a Matlab function that, given X and Y automatically:

returns the v -fold results
the optimal λ parameter
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Kernel Regularized linear regression

Exercise: Kernelize the regularized least squares solution:

Model: Y = XW

Functional:

W∗ = min
W


‖Y − XW‖2 + ‖W‖2

ff
After deriving and setting to zero, W = (X>X)−1X>Y = X†Y

Hint

Model: Y = ΦW

Functional:

W∗H = min
WH


‖Y −ΦW‖2 + ‖W‖2

ff

Hint2

Derive, use the representer theorem and apply simple matrix manipulation
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Kernel Regularized linear regression
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Kernel Regularized linear regression

Regularized least squares linear classification

Inputs: X ∈ Rn×d

Outputs: Y ∈ Rn×1, Y = [y1, y2, . . . , yn]>

Model: Y = Xw
Functional:

w∗ = min
w


‖Y − Xw‖2 + λ‖w‖2

ff
After deriving and setting to zero, w = (X>X + λId)−1X>Y

Regularized kernel least squares classification

Model: Y = ΦwH
Functional:

w∗H = min
wH


‖Y −ΦwH‖2 + λ‖wH‖2

ff
Dual weights: α = (K + λIn)−1Y

Primal weigths: wH = Φ>α

Decision function Y = ΦwH = Kα
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Kernel Regularized linear regression

Exercise: Kernel ridge regression

Solve the ‘normal equations’ in feature spaces

Assume squared cost function

Regularize the weights

Solution

α = (λI + K)−1y

ŷ = Kα

Matlab

>> sigma=3; gamma=1e-5

>> K = kernelmatrix(’rbf’,X,X,sigma);

>> alpha = inv(gamma*eye(length(Y)) + K)*Y;

>> Ypred = alpha*K;

>> assessment(Y,Ypred,’regress’)
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KRR problems and solutionsNonlinear Regression

Like Least-Squared Regression, (Kernel) Ridge Regression is sensitive
to outliers:
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3

because the quadratic loss function penalized large residue.
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KRR problems and solutions

Problems!

One weight per example → Risk of overfitting

High computational cost for n > 2000, different (σ, λ) to try!

Solutions

Do proper cross validation and control λ. Plot λ- RMSEtest !!!

Standard code: alpha = inv(gamma + K) * Y;

Cholesky decomposition is faster (∼4-fold) but not sparse again:
R = chol(K+gamma*eye(n));

alpha = R\(R’\Y);
Nyström method uses the Sherman-Morrison-Woodbury formula:

(A + VV>)−1 = D−1 −D−1V(I + V>D−1V)−1V>D−1

There are tricks to make the KRR sparse
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Reduced-rank (Sparse) KRR

A sparsification procedure [Cawley04]

Find a reduced basis in H
Method for training a reduced rank method

Step 1: Form a basis in feature space

Define a subset of the vectors, φS(xi ) ≡ {φ(xi )}i∈S

Compute the reconstruction error for every sample

δi =
‖φ(xi )− φS(xi )‖2

‖φ(xi )‖2
= 1−

K>Si K
−1
SS KSi

Kii

The basis is built by minimizing the reconstruction error δi , i.e. maximize:

L(S) =
1

n

nX
i=1

K>Si K
−1
SS KSi

Kii

Greedy algorithm: start with S = [0], maximize L(S), stop when KSS

singular
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Reduced-rank (Sparse) KRR

A sparsification procedure [Cawley04]

Find a reduced basis in H
Method for training a reduced rank method

Step 2: Training procedure

Model: Y = ΦwS

The selected basis induces a reduced rank representer’s theorem:

wS =
X
i∈S

βiφ(xi ) = Φ>S β

The KRR functional to minimize slightly changes

w∗S = min
wS


‖Y −ΦwS‖2 + λ‖wS‖2

ff
So the dual weights:

β = (K + λIn)−1Y

β = (K>:SKS : + λISS)−1K>:SY

Primal weights: wS = Φ>S β

Decision function Y = ΦwS = K:,Sβ
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SVR

SVR also works in a supervised way

We have input-output data pairs {(xi , yi ), i = 1, ..., n}, where xi ∈ Rd and
yi ∈ R.

First, map the data and then do a linear regression in the feature space:

φ : Rd → RH , d ≤ H

The linear model in H:

ŷi = f (xi ,w) = φT (xi )w + b

where w is the weight vector and b is the bias term

We assume and additive noise model:

yi = ŷi + ei

where ei are the committed errors by the model

What’s new versus KRR?
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SVR

The SVR formulation

The ε-insensitive SVR is the SVM implementation for regression and
function approximation

�

�
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�
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��
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The (regularized) primal functional to be minimized is:

min
w,ξ,b
{1

2
‖w‖2 + C

X
i

(ξi + ξ∗i )}

with respect to w, ξi , ξ
∗
i and b, subject to:

yi − φT (xi )w − b ≤ ε+ ξi ∀i = 1, . . . , n

φT (xi )w + b − yi ≤ ε+ ξ∗i ∀i = 1, . . . , n

ξi , ξ
∗
i ≥ 0 ∀i = 1, . . . , n
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SVR

Introduce restrictions in the primal through Lagrange multipliers:

LP = 1
2
‖w‖2 + C

P
i (ξi + ξ∗i )−

P
i αi (ε− yi + φT (xi )w + b)

−
P

i α
∗
i (ε+ yi − φT (xi )w − b)−

P
i (µiξi + µ∗i ξ

∗
i )

Derive and set to zero:

∂Lp

∂w
= w −

nX
i=1

(αi − α∗i )φ(xi ) = 0

∂Lp

∂b
=

nX
i=1

(α∗i − αi ) = 0

∂Lp

∂ξi
= C − αi − µi ,= 0, i = 1, ..., L

∂Lp

∂ξ∗i
= C − α∗i − µ∗i = 0, i = 1, ..., L

Lagrange multipliers must be positive: αi , α
∗
i , µi , µ

∗
i ≥ 0
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SVR

The dual (Wolfe’s) problem becomes:

Ld =
nX

i=1

yi (αi − α∗i )− ε
nX

i=1

(αi + α∗i )

−1

2

nX
i,j

(αi − α∗i )(αi + α∗i )K(xi , xj)

s.t.
C ≥ α(∗)

i ≥ 0,

Predictions:

ŷi = f (xi ,w) = φT (xi )w + b =
X

i

(αi − α∗i )K(xi , x) + b
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SVR in Matlab

The SVR problem is a QP problem with linear constraints

The dual problem in matrix form:

(α−α∗)T y − ε1T (α + α∗)− 1

2
(α−α∗)T K(α−α∗)

s.t.
C ≥ α(∗)

i ≥ 0,

where α(∗) =
h
α

(∗)
1 , · · · , α(∗)

n

iT
and y = [y1, · · · , yn]T .

Use this:
>> help quadprog

QUADPROG Quadratic programming.

X=QUADPROG(H,f,A,b) attempts to solve the quadratic programming problem:

min 0.5*x’*H*x + f’*x subject to: A*x <= b

x

Identify terms: x := (α−α∗)T and H := K and passing it to MATLAB:
alphas = quadprog(H,-Y’+e*f,[],[],f1,0,zeros(size(Y’)),C*f,[],OPTIONS);

The bias term b is obtained from averaging some SVs.

This is cool: sparsity in α−α∗ means interpretability!
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H-SVR

A Robust SVR formulation

Change the ε-insensitive SVR cost function to accomodate three kinds of
noise sources (insensitively, quadratic, linear):

L(ei ) =

8<:0, | ei |≤ ε
1

2δ
(| ei | −ε)2, ε ≤| ei |≤ eC

C(| ei | −ε)− 1
2
δC 2, | ei |≥ eC

�����

��� ��

��

��

���

���

”Robust Support Vector Regression for Biophysical Parameter Estimation
from Remotely Sensed Images” Gustavo Camps-Valls, L. Bruzzone, Jose
L. Rojo-lvarez, Farid Melgani IEEE Geoscience and Remote Sensing
Letters, July 2006. Volume: 3, Issue: 3, pp. 339- 343
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H-SVR

>> R=[R -R;-R R];
>> Y=Y(:);
>> f1=[ones(size(Y’)) -ones(size(Y’))];
>> Y=[Y;-Y];
>> H=(R+delta*eye(size(R,1)));
>> unos=ones(size(Y’));
>> OPTIONS = optimset(’LargeScale’,’on’,’diffmaxchange’,1e-8,...
’Diagnostics’,’off’,’Display’,’off’);
>>
alpha=quadprog(H,-Y’+e*unos,[],[],f1,0,zeros(size(Y’)),C*unos,[],OPTIONS);
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H-SVR

Data collection and experimental setup

In this work, we use two different datasets:
1 MERIS dataset.

SIMULATED DATA = NO UNCERTAINTY
1000 samples for cross-validating, 4000 for testing.

2 SeaBAM dataset.
REAL DATA = UNCERTAINTY
460 samples for cross-validating, 460 for testing.
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H-SVR

Numerical Results

Table: Mean error (ME), root mean-squared error (RMSE), mean absolute error
(ABSE), and correlation coefficient (r) of models in the test set.

ME RMSE ABSE r
MERIS database
ε-SVR -2.36e-4 0.015 0.061 0.998
Squared loss SVR -9.96e-4 0.031 0.018 0.998
ε-Huber-SVR -3.26e-6 0.011 0.004 0.999
SeaBAM database
ε-SVR -0.070 0.139 0.105 0.971
Squared loss SVR -0.034 0.140 0.107 0.971
ε-Huber-SVR -0.020 0.137 0.104 0.972

ε-Huber-SVR is more accurate (RMSE, ABSE) and unbiased (ME) than
the rest of the models
For the MERIS data, appreciable numerical and statistical differences.

For the SeaBAM dataset, the proposed method showed an improved
numerical performance but no statistical differences.
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H-SVR

Robustness to reduced datasets

10
1
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R
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Number of training samples

ε−SVR
Squared Loss SVR
RCF−SVR

Figure: Evolution of the RMSE in the test SeaBAM set as a function of the number of
training samples.

37 / 70



Intro KRR SVR IID SVM-ARMA KARMA Conclusions

PD-SVR

1 Efficiency of oligonucleotides in RNA sequences

2 Drug concentration prediction

3 Image coding
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“Predictions are hard, particularly those concerning the future...”

Andreas S. Weigend, 1990.
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Motivation

Independent and identically distributed (i.i.d.) signals (or random
variables)

Time series, speech and images are not iid signals

How to:
Define SVM methods for TSA?
Kernelize linear structures with the kernel trick?
How to define static and dynamic (online) kernel methods?

Concepts

Autoregressive and moving average (ARMA) processes

FIR and IIR filters
Adaptive filters

Auto-correlation, memory depth and temporal resolution

Outline

SVM-ARMA

Kernel ARMA
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Independent and identically distributed (i.i.d.) random variables

i.i.d random variables: if each random variable has the same probability
distribution as the others and all are mutually independent.

aka, Exchangeable random variables: sequence such that future samples
behave like earlier samples, i.e.: any order is equally likely

Why? This assumption typically simplifies many formulations

Examples of iid signals:
roulette wheel
dice rolls
coin flips

Examples of non-iid signals:
exchange rates
speech
image/video sequences
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(Auto)correlation function

Auto-correlation function (‘correlogram’): Given a stationary process
{xt}, the ACF is

ρx(h) = corr(xt+h, xt) =
X

k

x(k)x(k + h)

>> x=sin(1:100)+randn(1,100); stem(xcorr(x))

Signal processing:
Identify pulsar events,
tempo, beats, pitch

Image processing:
extent and period of
pixel relations in space
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Auto-regressive and Moving-average (ARMA) process

ARMA modeling. Given the input-output time series {xn} and {yn}

yn =
PX

i=1

aiyn−i| {z }
AR

+
QX

j=1

bjxn−j+1| {z }
MA

+en, n = 1, . . . ,N

The error terms en are generally assumed to be iid sampled from a normal
distribution with zero mean, N (0, σ2

n)

After choosing P and Q, just obtain ai and bj by least squares regression:

min
a,b
{‖y − Ya− Xb‖2} = min

w
{‖y − Zw‖2}

where y ∈ Rn×1, Y ∈ Rn×P , a ∈ RP×1, X ∈ Rn×Q and b ∈ RQ×1.

Overfitting naively controlled by choosing low P and Q values

M-estimates: regularization and time-varying cost functions ...

Matlab’s sysid toolbox: ar.m, arx.m, armax.m, pem.m, etc.
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(Linear) SVM-ARMA formulation: the Vapnik’s cost

Standard SVM for regression uses Vapnik’s ε-insensitive loss ....

Lε(en) =

(
|en| − ε, if |en| ≥ ε,
0, if |en| < ε

... and regularize model weights with the `2 norm:

LP(ai , bj , en) =
1

2

 
PX

i=1

a2
i +

QX
j=1

b2
j

!
+ C

NX
n=ko

Lε(en)

Primal problem:

LP (ai , bj , ξn, ξ
∗
n ) =

1

2

 
PX

i=1

a2
i +

QX
j=1

b2
j

!
+ C

NX
n=ko

(ξn + ξ∗n )

subject to

yn −
PX

i=1

aiyn−i −
QX

j=1

bjxn−j+1 ≤ ε+ ξn

− yn +
PX

i=1

aiyn−i +
QX

j=1

bjxn−j+1 ≤ ε+ ξ∗n

ξ(∗)
n ≥ 0
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(Linear) SVM-ARMA formulation: the Vapnik’s cost

Do:
∂LPD

∂ai
= 0;

∂LPD

∂bj
= 0;

∂LPD

∂ξ
(∗)
n

= 0

This gives:

0 ≤ α(∗)
n ≤ C (1)

ai =
NX

n=ko

(αn − α∗n) yn−i (2)

bj =
NX

n=ko

(αn − α∗n) xn−j+1 (3)

... and also the input and output autocorrelation matrices emerge:

RP
y (m, k) =

PX
i=1

ym−iyk−i

RQ
x (m, k) =

QX
j=1

xm−j+1xk−j+1
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(Linear) SVM-ARMA formulation: the Vapnik’s cost

The dual problem becomes

LD = −1

2
(α−α∗)

T
h
Rx

Q + Ry
P
i

(α−α∗) +

+ (α−α∗)
T

y − ε1T (α + α∗)

The QP problem, zTHz + bTz, becomes

z =
ˆ

αT , α∗T
˜T

H = −1

2

»
Rx

Q + Ry
P , −Rx

Q − Ry
P

−Rx
Q − Ry

P , Rx
Q + Ry

P

–
b =

ˆ
yT − ε, −yT − ε

˜T

Clearly H is not invertible!

Regularization solves it: H′ = H + γI
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(Linear) SVM-ARMA formulation: the Vapnik’s cost

So what we want to actually solve is:

LSVM
D = −1

2
(α−α∗)

T
h
Rx

Q + Ry
P
i

(α−α∗) +

+ (α−α∗)
T

y − ε1T (α + α∗)−

−γ
2

“
αT Iα + α∗T Iα∗

”
(s.t. 0 ≤ α(∗) ≤ C).

This corresponds to changing the loss function!

C

ε ec

L  (e)P

e

γ
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(Linear) SVM-ARMA formulation: the Vapnik’s cost

Example:

yn = 0.03yn−1 − 0.01yn−2 + 3xn − 0.5xn−1 + 0.2xn−2

with

{xn} ∼ N(0, 1), {en} ∼ N(0, 0.1), {on} = {yn}+ {en}

and impulsive noise {jn}: 30% of samples with ±10 + U(0, 1)
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0

5

10

15

20

25

e
k

−γ C γ C 
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−22
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−12

−10

−20log(σ
w

)

20
lo

g(
M

S
D

)
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Kernelization of ARMA 1.

The ARMA process can be vectorized, where S = max(P,Q) and pad
with zeroes the shortest series:

yn = [yn−1, yn−2, . . . , yn−S ]>, xn = [xn, xn−1, . . . , xn−S+1]>

The standard way is to use the SVR for regression ...

1 Build/stack/encapsule the data: zn =
ˆ
yT
n , x

T
n

˜>
2 Map them to H with φ(zn) : R2S → RB .
3 Build a linear regression there: yn = dTφ(zn) + en

The primal problem (using the ε-Huber loss) is then:

LSVM
P

“
dj , ξ

(∗)
n

”
=

1

2

BX
j=1

d2
j +

1

2γ

X
n∈I1

“
ξ2
n + ξ∗2

n

”
+ C

X
n∈I2

(ξn + ξ∗n )−
X
n∈I2

γC 2

2

The solution is the classical one

ŷn =
PN

r=S(αr − α∗r )K(zr , zn)
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ŷn =
PN

r=S(αr − α∗r )K(zr , zn)

64 / 70



Intro KRR SVR IID SVM-ARMA KARMA Conclusions

Kernelization of ARMA 1.

The ARMA process can be vectorized, where S = max(P,Q) and pad
with zeroes the shortest series:

yn = [yn−1, yn−2, . . . , yn−S ]>, xn = [xn, xn−1, . . . , xn−S+1]>

The standard way is to use the SVR for regression ...

1 Build/stack/encapsule the data: zn =
ˆ
yT
n , x

T
n

˜>
2 Map them to H with φ(zn) : R2S → RB .
3 Build a linear regression there: yn = dTφ(zn) + en

The primal problem (using the ε-Huber loss) is then:

LSVM
P

“
dj , ξ

(∗)
n

”
=

1

2

BX
j=1

d2
j +

1

2γ

X
n∈I1

“
ξ2
n + ξ∗2

n

”
+ C

X
n∈I2

(ξn + ξ∗n )−
X
n∈I2

γC 2

2

The solution is the classical one
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Kernelization of ARMA 2.

Define ARMA in H:

yn = aTφ(yn) + bTφ(xn) + en

with a = [a1, . . . , aH ]> and b = [b1, . . . , bH ]>

The primal problem minimizes:

LSVM
P

“
ai , bi , ξ

(∗)
n

”
=

1

2

HX
i=1

(a2
i + b2

i ) +
1

2γ

X
n∈I1

“
ξ2
n + ξ∗2

n

”
+

+ C
X
n∈I2

(ξn + ξ∗n )−
X
n∈I2

γC 2

2

The prediction model is now:

ŷn =
PN

r=S(αr − α∗r ) [K(yr , yn) + K(xr , xn)]
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Example

Example: neon laser time series (dataset A in the Santa Fe competition):

1-step ahead time series prediction problem:

yn = f ([yn−1, yn−2, ..., yn−k ],w)

A complex transition from periodic to chaotic

Noise-free, stationary, low dimensionality
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Conclusions

Given definition of the most useful kernel regression methods

Other regression methods are available

Analyzed how to derive the equations

Multioutput SVR is not solved yet

Kernel Bayesian approaches: RVM and GP

Adaptive kernel learning is becoming very popular

Everything relies on the proper definition of K
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