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July 21, 2015

Abstract

It is provided a method for color image compression based on the following key steps:
(1) expressing the coefficients of local space-frequency representation of achromatic and
chromatic opponent channels in perceptually meaningful contrast units, (2) applying divi-
sive normalization non-linearities including relations among the coefficients of the achro-
matic and chromatic contrast channels, and (3) using machine learning algorithms to select
relevant data from the non-linearly normalized channels.

Psychophysical and numerical experiments have been conducted to estimate and val-
idate the parameters of the contrast and divisive normalization transforms. Besides, an
implementation of the proposed method has been experimentally compared to a JPEG
implementation. In both cases 16×16 DCT blocks were used, and when applicable, equiv-
alent chromatic and frequency dependent parameters were taken for a fair comparison. In
these conditions, experimental results on a 25 color image database show that the proposed
method gives rise to substantial compression gain over JPEG at the same (RMSE, SSIM
and S-CIELab) distortion in the commercially meaningful bit-rate range [1, 2.2] bits/pix.
Depending on the distortion measure applied, the compression gain is about 120% for the
same RMSE, 45% for the same SSIM, and 170% for the same S-CIELab.

Apparatus for implementing the method and software product are also claimed.

Keywords: Color Image coding/compression, Support Vector Machine (SVM), Support Vec-
tor Regression (SVR), Regression, Function Approximation, Adaptive Insensitivity, Discrete
Cosine Transform (DCT), Perceptual Distortion, Achromatic Perceptual Non-linearity, Red-
Green Non-linearity, Yellow-Blue Non-Linearity, Gain Control, Color Contrast, Sparse Coding,
Sparseness/Compactedness, Quantization, JPEG.
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1 Technical and scientific field of the invention

The present invention is related to a method, apparatus and software for being used in coding
or compression of color images. The method uses as basic tools a proper linear (or non-linear)
spatio-frequency transformation, followed by perceptually-adapted contrast functions per color
channel, different non-linear perceptual transforms per color channel, and the application of a
machine learning method for adaptive selection of the most informative data, which are finally
properly encoded. The method relates to, but not exclusively, still and moving color image
compression for transmission and/or storage.

2 Description of the prior art

Nowadays, the volume of imaging data increases exponentially in a very wide variety of applica-
tions, such as remote sensing, digital photography and consumer camcorders, medical imaging,
digital libraries and documents, movies, and video-conferences. This poses several problems and
needs for transmitting, storing and retrieving images. As a consequence, digital image compres-
sion is becoming a crucial technology. However, compressing an image is significantly different
than compressing raw binary data, given their particular statistical properties, and thus the
direct application of general-purpose compression methods is far from being optimal. Therefore,
statistical knowledge about the problem becomes extremely important to develop efficient coding
schemes.

The ISO/IEC 10918-1 standard, commonly referred to as JPEG [1], has become the most
popular image compression tool nowadays. Several methods have been proposed to increase
compression at the same image quality level, either based on machine learning techniques such
as neural networks, or under the inclusion of perceptual knowledge in the coding steps.

Neural networks have been used and patented for image coding in Patent No. 5005206 [2].
In the proposed scheme, the image is finally defined by the weights associated to a trained
neural network in a particular linear domain. Another patent using neural networks for image
compression is filed in Patent No. 6798914 [3]. The method combines artificial intelligence and
neural networks to convert digital image data into symbolic data which is further compressed with
run-length encoding. In all these schemes, the problems of using neural networks are present;
training instability, selection of a proper training algorithm, structure of the network, and the
choice of the free parameters. Lately, the introduction of another machine learning algorithm,
the support vector machine (SVM), working in a linear transformation (DCT) has been reported
in Patent No. WO/2003/050959 [4] for lossy data compression. The method is used in particular
for compressing grayscale images. The introduction of SVM offers some advantages and control
on the learning process: interpretability of the free parameters, sparsity in the application space,
and lack of heuristics in training as the optimization problem is convex and the solution is
unique. However, there is not a reported application of the method in colorful images or how
the scheme could deal with them. In addition, the direct application of the standard SVM in
the pre-specified (linear) working domain (the DCT domain) is not a good choice either. In
[5], the latter problem is solved by introducing an adaptive SVM that takes into account the
different perceptual relevance of the coefficients in the linear domain. Certainly, inclusion of
perceptual (or statistical) prior knowledge is of paramount relevance for image coding. In this
sense, DCTune is a technology for optimizing JPEG still image compression, and is covered by
Patent No. 5426512 [6]. DCTune calculates the best JPEG quantization matrices to achieve
the maximum possible compression for a specified perceptual error, given a particular image and
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a particular set of viewing conditions. This method is based on a point-wise non-linear model of
masking (auto-masking), but it does not consider relations among coefficients (cross-masking)
nor any machine learning method.

These methods produce good and competitive results compared to the existing standard JPEG
method. However, in all patents and method descriptions, some limitations are observed: (i)
there is not a single method that integrates perceptual knowledge and machine learning methods
for colorful image compression so far; (ii) the existing methods do not give proper transformation
schemes to deal with contrast in color images, or how could they be computed and introduced
in the already patented schemes; (iii) the existing methods do not introduce non-linear percep-
tual transformations with interactions among coefficients before an eventual learning machine
is applied; and (iv) the learning machine is not formulated to be independent on the domain of
application. Alternatives to all these shortcomings are given by the presented method, apparatus
and/or software.

3 Proposed alternatives

The invention presented hereafter consists of three essential blocks, which generalize the pre-
vious color image coding algorithms. Essentially, the scheme contains the following steps: (1)
color contrast transforms, (2) non-linear divisive normalization perceptual transform, and (3) a
general-purpose machine learning algorithm designed for the particular application domain at
hand. A final quantization process is generally applied to the image description provided by the
learning algorithm. These key processes are summarized in Fig. 1.

The method therefore extends the work in [7, 6, 8, 9, 10] by applying a non-linear perceptual
transform that does include interactions among the contrast coefficients after the common linear
transformation (e.g. DCT). Besides, it also uses a more general divisive normalization than
JPEG2000 [11, 12] because it applies the fast recursive inversion method introduced in [13, 14]
thus allowing a general (non-causal) interaction matrix eventually including interactions among
chromatic channels. Moreover, the proposed method solves the problems found in [10, 13]
since in those cases the color contrast preprocessing was not applied with the corresponding
inaccuracy of the non-linear (point-wise or divisive normalization) transform. The method also
differs from the neural-network based algorithms proposed so far in US Patents No. 5005206

[2], and No. 6798914 [3], since a general-purpose learning algorithm can be applied, which must
be necessarily adapted to the relative perceptual or statistical relevance of the coefficients to
be encoded in the working domain. In [5] the support vector regression (SVR) method was
applied on the DCT domain, as in [15, 4]. However, given the special requirements of the
domain, the algorithm was adapted to incorporate the perceptual relevance of the coefficients
in this domain, which was not previously considered in [15, 4]. SVR was applied in a non-linear
perceptual domain for achromatic image coding in [16], and due to the characteristics of the
used (perceptually Euclidean) domain (as analyzed in [17]), a static SVR could be correctly
applied. However, when working in other domains, the use of an adaptive SVR is necessary as
illustrated in [5], and further analyzed in [17]. The presented method is aimed at defining a
general purpose framework for color image coding, hence constituting a clear innovation in the
color image compression field.

It is an object and goal of the present invention to provide a method, apparatus and/or
software product/tool that yields improved performance in color image compression over existing
methods, apparatus and software for comparative processing effort, or at least to provide the
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Figure 1: Key blocks used in the invention.

public with a useful alternative.
Further objects of the present invention may become apparent from the following description.

Any discussion of the prior art throughout the specification provided here should in no way and
by no means be considered as an admission that such prior art is widely known or forms part of
common general knowledge in the field.

4 Summary and general overview of the invention

In this section, we present the method and analyze each of the blocks of the scheme for efficient
coding of color images.

4.1 Scheme of the invention

A general scheme of the invention is illustrated in figure 2. The scheme for color images coding
includes the following blocks:

Block 1 Initialization of parameters:

Block 1.A The user selects the desired rate (size of the coded image) or distortion (quality level
of the coded image).

Block 1.B Initialization/modification of the learning and quantization parameters.

In the initial step, 1.B selects the parameters of the machine learning procedure and
the quantization resolution to be applied to the description obtained by the learning
process. To do so, the entropy or distortion choices in 1.A are considered. This can
be done through a look-up table (LUT) relating free parameters and the obtained
distortion/rate over an appropriate image set.

In further steps, 1.B modifies the preset parameters taking into account the deviation
from the requested rate/distortion and the current values coming from block 16 and
17.

For example, if SVR is the selected learning procedure, 1.B would set/modify (1) the
insensitivity values, εf , the penalization factor, λ, and the parameters of the kernel
K (see block 9 and section 5.3); and (2) the number of bits used in the quantization
to be applied to the weights associated to the selected support vectors (see block 10).

Block 2 Receiving the color image data expressed in Red-Green-Blue digital channels (hereafter
RGB).

Block 3 Transforming the RGB signals to a color opponent space, that is, starting from the dig-
ital device-dependent color characterization, first obtain the color description in a device-
independent tristimulus space (such as CIE XYZ). This requires the calibration parameters
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Figure 2: General scheme of the invention. Key blocks have been highlighted.
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of the image acquisition device. If such parameters are not available, generic gamma curves
and primaries may be used [18]. Second, the X, Y, Z images are combined into the following
three channels: Achromatic (A), Red-Green (RG), Yellow-Blue (YB) channels according
to some linear or non-linear opponent color transform [19].

Block 4 Transforming each opponent color channel (Achromatic 4.A, Red-Green 4.B, Yellow-
Blue 4.C) to a local space-frequency domain. For example, using the block discrete cosine
transform (DCT), wavelet transform or any suitable linear or non-linear transformation.

Block 5 Computing each channel contrast with appropriate (perceptually-based) transforma-
tions; that is, expressing the amplitudes of the local-frequency signals in 4.A, 4.B and 4.C
in the appropriate contrast units to use the perception models in the corresponding steps
7.A, 7.B and 7.C.

In the achromatic case (5.A), this reduces to the standard Michelson contrast [20], but
for each of the chromatic channels (5.B, 5.C) both psychophysical experiments with the
chromatic basis functions of the transforms 4.B and 4.C, and numerical experiments on a
representative color image database, are strictly necessary (see section 5.1).

Block 6 Encode the low-pass residuals of the A, RG and YB, channels from 4.A, 4.B and 4.C,
respectively. This information may be DPCM and further entropy-coded.

Block 7 Apply a different non-linear perceptual transformation to each channel. In the case of
the achromatic channel (7.A) and assuming a DCT in block 4.A, the non-linear transform
introduced in [14, 17] can be applied. In the case of the chromatic channels (7.B, 7.C),
different transforms have to be applied, see section 5.2 for their explicit forms.

Block 8 (Optional) Store the original phase information of the non-linearly transformed chan-
nels in 7.A, 7.B. and 7.C. This block is only necessary if phase information is independently
encoded from amplitude information (related to blocks 11 and 12).

Block 9 Application and training of a machine learning procedure with parameters fixed in 1.B.
This procedure selects the most representative and informative coefficients that accurately
approximate each signal representation (7.A, 7.B, 7.C). In the case that the optional path
leading to block 8 is followed, the learning procedure is applied to the absolute value of
the signals. Otherwise, as the phase information is not processed separately, the learning
procedure is applied directly to the signals coming from 7.A, 7.B and 7.C.

For example, but not restricted to, training a SVR method, and saving the associated
weights and support vectors (see section 5.3).

Block 10 Quantization of the description obtained in block 9 using the quantization parameters
set in block 1.B. In the case of using a SVR, a uniform quantization of the weights associated
to the selected support vectors may be used.

Block 11 (Optional) Non-linear channel reconstruction from the quantized weights in the pre-
vious step 10. This block is only necessary if phase information is independently encoded
from amplitude information (block 8). The result from this reconstruction is used to
discard the unnecessary phase information coming from block 8 in block 12.

A proper procedure is necessary to invert the non-linear transforms 7.A, 7.B, 7.C. In the
case of using divisive normalization transforms [21], a recursive procedure can be used [14].
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Invertibility of the non-linearities in 7.A, 7.B and 7.C must be ensured. In [14], inversion
of the transform in 7.A was demonstrated. See section 5.2 for a study on the inversion
conditions necessary for the proposed transforms in blocks 7.B and 7.C to be valid.

Block 12 (Optional) Discard the phase information coming from optional block 8 according to
the discarded coefficients in the reconstruction (optional block 11) after the quantization
in block 10.

Block 13 Whenever amplitude and phase information have been separately processed, block
13 gathers the selected amplitude (coming from block 10) and phase (coming from block
12), and forwards the combined information to subsequent block 14. Otherwise, block 13
simply transmits the quantized weights with the corresponding phase information to block
14.

Block 14 Entropy coding of the signals. A variety of entropy coding schemes can be potentially
applied [22].

Block 15 Generate encoded stream from the entropy-coded signals in blocks 6 and preceding
block 14. The decoder (not shown here) should invert the whole process to reconstruct
the image. As noted in block 11, the only non-trivial inversion process is associated to
the non-linear transforms in blocks 7.A, 7.B and 7.C. See section 5.2 for a study on the
invertibility of the proposed transforms.

Block 16 Compute entropy or distortion.

Block 17 Go to block 1.B unless the pre-specified requirements of either quality (distortion) or
size (entropy) are achieved.

Block 18 Store or transmit the encoded color image.

4.2 Further capabilities

The application and use of the invention is not only restricted to the direct application of the
previous sequential steps, but it preferably involves the following further considerations:

• Preferably, the method may further include subdiving the input image data received in
step 1) into a number of parts, and performing the subsequent steps for each partition of
the data.

• Preferably, the method may further consider sorting the input data in a proper way to
make the whole process more efficient.

• Preferably, the step of developing the learning machine may consider exclusion of the
DC component of the data, or each portion of it, and storing or transmitting the DC
components as part of the compressed image.

• Preferably, the method may further include encoding the DC components before storing
them as part of the compressed image.

• Preferably, adjustment of contrast and subsequent associated free parameters of the non-
linear perceptual transform may involved alternative psychophysical experiments.
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• Preferably, the step of training the approximation function may include any of the following
(previous) steps: linear or non-linear feature selection or extraction under statistical and/or
perceptual facts.

• Preferably, the machine learning procedure is trained to identify a sequence of basis func-
tions and their corresponding weights, guided with proper criteria to optimize the com-
pactness of the resulting encoded data sequence and/or the quality of the encoded image.

• Preferably, the method may further discard weights calculated by the learning method
by eliminating those weights without associated basis function, disregard of the proper
application of specific filters to the processed approximated signals. Also, the method may
preferably further include heuristic rules to discard weights. Preferably, the method may
further include discarding the information for any coefficient overpassing any meaningful
perceptual or statistical magnitude.

• Preferably, the method may include a system to correct the bias in the approximation
so the approximated values are all non-negative. These information may be eventually
combined with the associated phase information for signal value coefficients (its sign) in
order to properly handle the weights and/or associated basis functions.

• Preferably, the method may include encoding the data stream using entropy coding under
any variant.

• Preferably, the step of linear transformation of the data may include the DCT or any form
of Gabor-based or wavelet discrete transform.

• Preferably, different learning machines may be applied, either neural networks, spline-based
techniques, kernel-based methods, Bayesian networks, Gaussian Processes, or fuzzy logic.

• Preferably, the chromatic transformations can be adapted per image, and the contrasts
given by the transforms ultimately scaled (or further transformed) to properly fit the
subsequent non-linear perceptual transform ranges.

• Preferably, the non-linear perceptual transform may be adapted to user specifications, or
its information complemented by other non-linear perceptual or statistical transforms.

• Preferably, the quantization step may include further complementary adaptive coding
schemes.

Any of the previous options can be combined to ultimately lead to different functional
modes, disregard of the completeness of the general proposed scheme.

5 Detailed description to carry out the invention

In this section, we describe in detail possible implementations of the the key blocks in the general
scheme (namely 5.X, 7.X and 9) to carry out the invention.
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5.1 Contrast transforms

The first key element is an appropriate contrast transform of the local frequency representation of
the A, RG, and YB channels. This is a necessary preprocessing before the non-linear perceptual
transforms are applied: in order to apply psychophysically inspired parameters in the non-linear
transforms in blocks 7.A, 7.B and 7.C, the input signal has to be expressed in the appropriate
units. This section (and the blocks 5.A, 5.B, 5.C) are devoted to express the signal in the
appropriate contrast units.

The psychophysical literature [23, 24, 25] describes the non-linear response of human visual
sensors to oscillating input signals expressed in contrast units. Moreover, it has been found that
the shape of the non-linear response for the local-frequency chromatic sensors is similar to the
achromatic case [25], when expressing the inputs in the appropriate chromatic contrast units.
However, there is no general procedure to define such units for particular spatial basis functions
(such as block-DCT or particular wavelets) with chromatic modulation. Therefore, expressing
the amplitude of coefficients in contrast units is the key to (1) applying the relative scaling of
the parameters of the different achromatic and chromatic channels (as for instance the relative
frequency sensitivity [26, 27]), and (2) designing the parameters that control the shape of the
chromatic non-linearities from the achromatic one. The contrast transforms in blocks 5.A, 5.B
and 5.C are the key to simplify the formulation of the blocks 7.A, 7.B and 7.C.

The definition of contrast in the psychophysical literature is closely related to the particular
procedure to construct the stimuli used in the experiments. For instance, chromatic contrast is
defined by the luminance modulation of two basis functions of extreme colors, e1

(i) and e2
(i),

added in counter phase to generate gratings of perceptually uniform brightness [26, 27]. The
maximum luminance and color variations (the maximum amplitude of the stimuli, i.e. defining
what unit contrast is) is limited by the available color gamut of the particular color reproduction
device used in the experiment.

In order to apply the same kind of contrast definition, we have to (1) obtain the equations
that relate the amplitudes of local-frequency coefficients and the maximum modulation in color
space with the luminance and extreme colors of the equivalent gratings with uniform brightness,
and (2) ensure that the extreme colors computed according to the above equations in a big
enough color image database are inside the gamut of reproducible colors in the conventional
color reproduction devices. The idea is defining the unit of contrast by using the extreme
luminance and color variations found in natural images and being consistent with the definition
of color contrast in the psychophysical literature.

According to this, the achromatic and chromatic contrast definition in blocks 5.A, 5.B and
5.C is based in two steps:

• First, we obtain the equations that relate achromatic and chromatic contrasts to the am-
plitudes of local-frequency transform of the achromatic and chromatic channels (next sub-
section 5.1.1). These equations (for the chromatic channel, i) depend on some extreme
colors, e1

(i) and e2
(i), obtained from the maximum color deviation in that chromatic di-

rection, ∆T
(i)
max. Besides, when using linear color models, the average luminance of the

colors to be mixed to generate uniform brightness gratings is not the same because colors of
different chromaticity have different brightness for the same luminance [19]. This implies
that a psychophysical experiment is needed to find the right luminance proportion in the
mixture. Subsection 5.1.2 describes the procedure and the results of such an experiment
in the particular case of the DCT basis functions used in a possible implementation of the
invention.
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• Second, we study the limits of the maximum deviations, ∆T
(i)
max, in a representative color

image database. From the empirical study in subsection 5.1.3, we estimate the maximum
deviations that give rise to unit contrast gratings consistent with the assumptions made
in the psychophysical literature. These results are examples for the particular DCT choice
and the linear YUV choice.

Finally subsection 5.1.4 summarizes the resulting transforms for the appropriate contrast
definition used in blocks 5.A, 5.B and 5.C, when DCT and linear YUV are the selected image
and color representations.

5.1.1 Formulation: Contrast of achromatic and chromatic gratings from the trans-
form coefficients of images in opponent color spaces

The gratings (particular spatial basis functions) of frequency f used in psychophysical experi-
ments have a different color, described by a 3D vector T, at every spatial position, x:

T(x) = T0 + ∆T(f) ·B(f, x) (1)

where T0 is the average color, ∆T(f) represents the maximum (peak) chromatic oscillations
of that frequency with respect the average color, and B(f, x) is the selected basis function of
frequency f , such as those in the DCT. The index, f , identifying the basis function may be more
general than the frequency: in the wavelet case, f , would have frequency and space meaning.
In eq.1, we added the index, f , to the color deviation, ∆T(f), because in images containing
more than one basis functions, the amplitude of the color modulation is different for each basis
function, B(f, x).

In a linear ‘opponent color space’, such as for instance, the linear YUV color space [28], the
three components of vectors T = [T1, T2, T3]

>, stand for the luminance, T1 = Y , the Yellow-Blue
component, T2 = U , and the Red-Green component, T3 = V . Psychophysical experiments use
the above gratings to stimulate particular achromatic or chromatic sensors by using particular
modulations in the components of ∆T(f). The modulations, ∆Ti(f), are easily related to the
coefficients of the discrete spatial transform of corresponding image (color channel) in eq. 1 (see
eqs. 20 below). The problem is that the chromatic contrasts in the Yellow-Blue and the Red-
Green directions, as they are defined in the psychophysical literature [26, 27], are not trivially
related to ∆T2(f) and ∆T3(f). For the shake of clarity, in the following discussion we will
temporarily omit the index f from the color modulations ∆Ti(f).

Lets start from the easy (achromatic) case. In this case, no modulation is used in the chromatic
channels (∆T2 = ∆T3 = 0), so the grating that isolates the achromatic channel is:

T(1)(x) =

 T01
T02
T03

+

 ∆T1
0
0

 ·B(f, x) (2)

and the achromatic contrast is simply defined by the Michelson’s contrast of the achromatic
(only luminance) grating:

Cachrom =
∆T1
T01

(3)

where T01 is the average luminance (or the luminance of the average color), and the amplitude
∆T1 can be obtained from the corresponding local-frequency coefficients of the luminance chan-
nel using the equations 20. This definition can be extended to more complex wavelet basis by
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dividing each coefficient in each subband by the corresponding low-pass residual at that resolu-
tion [20]. As a result, the achromatic contrast is in the range Cachrom ∈ [0, 1] since ∆T1 ∈ [0, T01].

However, in [26, 27], the definition of the chromatic contrast takes into account the way in
which chromatic gratings are experimentally designed. In order to generate a purely chromatic
modulation around an average color, T0, in a given direction, Ti, with i = 2, 3, two luminance
gratings with extreme chromaticity from the unit-luminance colors e1

(i) and e2
(i), are added in

counter phase (see the top row of fig. 3):

T(i)(x) = e1
(i)

(
T01
2

(1 + ηi) + ∆Y
(i)
1 ·B(f, x)

)
+ e2

(i)

(
T01
2

(1− ηi)−∆Y
(i)
2 ·B(f, x)

)
(4)

where the luminance modulations ∆Y
(i)
j are in the ranges: ∆Y

(i)
1 ∈ [0, T01

2
(1 + ηi)] and ∆Y

(i)
2 ∈

[0, T01
2

(1− ηi)] with the following constraints:

• The average color is obtained from the sum of the extreme colors ej
(i) with their luminance

scaled in a particular proportion (given by the factor ηi):

T0 = e1
(i)T01

2
(1 + ηi) + e2

(i)T01
2

(1− ηi) (5)

• The luminance modulations, ∆Y
(i)
j , are coupled:

∆Y
(i)
2 =

(1− ηi)
(1 + ηi)

∆Y
(i)
1 (6)

• The overall deviation in the chromatic direction i, ∆T(i) induces no modulation in the
orthogonal chromatic channel, i.e.:

∆T(2) =

 η2T01
∆T2

0

 (7)

or

∆T(3) =

 η3T01
0

∆T3

 (8)

Note that given the difference between brightness and luminance [19], in order to obtain iso-
brightness gratings, the luminance of the two gratings of different color have different average
luminance (thus inducing a residual luminance modulation ηiT01). The deviation from the aver-
age luminance (the factor ηi) has to be experimentally determined for each chromatic channel.
Section 5.1.2 is devoted to estimate this factor for DCT basis functions of specific frequency and
average color.

In the psychophysics literature, the chromatic contrast for channel i is defined as the Michel-
son’s contrast of the two counter-phase luminance gratings giving rise to the purely chromatic
grating:

C
(i)
chrom =

∆Y
(i)
1

T01
2

(1 + ηi)
=

∆Y
(i)
2

T01
2

(1− ηi)
(9)
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Figure 3: Example of a purely chromatic grating in the Yellow-Blue chromatic direction. In this case,
a 16 × 16 DCT basis function of frequency fx = 8 and fy = 0 in cycl/deg is considered. The average
color is T0 = [80 80 80]> in RGB NTSC or T0 = [80 0 0]> in linear YUV, the chromatic contrast is

C
(2)
chrom = 0.85 assuming a maximum modulation in the U channel ∆T2max = 45. The top row shows

the two counter-phase gratings of extreme chromaticity e1
(2) (yellow at the left), and e2

(2) (blue at the
center), to generate the purely chromatic grating (at the right). Average luminance values of the yellow
and blue gratings have been chosen to obtain constant brightness in the final grating (ηY B = 0.14,
see section 5.1.2), and it isolates the response in the Yellow-Blue channel (∆T2 6= 0 and ∆T3 = 0).
The center row shows the luminance of the gratings in the top row. The bottom plot shows the
CIE xy chromatic coordinates of the extreme (unit luminance) colors ej

(2) with j = 1, 2 (stars) and the
actual colors in the grating (circles). Increasing the chromatic contrast means simultaneously increasing

the luminance amplitudes ∆Y
(2)
j , thus increasing the chromaticity range covered by the circles in the

bottom plot. In the extreme (unit contrast) case, the chromatic range would be exactly determined by
the extreme colors ej

(2). Reducing the chromatic contrast means reducing the luminance amplitudes
∆Yj and reducing the chromatic range. In the zero contrast limit the only color of the grid would be
the average color T0 (the central circle in the bottom diagram).
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From Eqs. (1), (4) and (9), a relation between the color modulation in the i-th chromatic
direction, ∆T(i), and the corresponding chromatic contrast can be derived:

∆T(i) =

(
e1

(i) − 1− ηi
1 + ηi

e2
(i)

)
T01
2

(1 + ηi)C
(i)
chrom (10)

The unit contrast case (taking C
(i)
chrom = 1) gives a relation between what is considered the

maximum modulation in this channel, ∆T
(i)
max, and the extreme colors, ej

(i):

e1
(i) =

1

T01 (1 + ηi)

(
∆T(i)

max + T0

)
(11)

e2
(i) =

2

T01(1− ηi)

(
T0 −

T01
2

(1 + ηi)e1
(i)

)
(12)

Psychophysical experimentation assumes maximum modulation in such a way that the extreme
colors are inside the available gamut of the display at hand. According to such criterion, in
section 5.1.3 we will explore a representative color image data base to estimate the maximum
possible modulation around the average color in each image in such a way that the extreme colors
are always inside the gamut of standard displays (e.g. the dashed triangle of the chromaticity
diagram in fig. 3).

From eq. 10, it can be obtained the chromatic contrast C
(i)
chrom from the modulation ∆Ti

C
(i)
chrom =

∆Ti(
e1

(i) − 1−ηi
1+ηi

e2
(i)

)
i

T01
2

(1 + ηi)

=
∆Ti

(∆T
(i)
max)i

(13)

Given the achromatic and chromatic contrasts as a function of the modulation in each chro-
matic opponent channel (eqs. 3 and 13), the last piece of information necessary to express the
amplitudes of the local-frequency transforms into contrasts is the relationship between the coef-
ficients of the discrete transform and the corresponding modulations.

In the case of the DCT, this relation can be found elsewhere [29]. Here, the indices x, f used
before are explicitly declared as x = (m,n) and f = (p, q). With this notation, the 2D-DCT
coefficients, a(p, q), of the spatial domain representation of an M × N image block, A(m,n),
are [29]:

a(p, q) = βpβq

M−1∑
m=0

N−1∑
n=0

A(m,n) cos

(
π(2m+ 1)p

2M

)
cos

(
π(2n+ 1)q

2N

)
(14)

where βp = 1/
√
M for p = 0 and βp =

√
2/
√
M for p > 0, βq = 1/

√
N for q = 0 and

βq =
√

2/
√
N for q > 0.

The inverse of the DCT is written as:

A(m,n) =
M−1∑
p=0

N−1∑
q=0

βpβq a(p, q) cos

(
π(2m+ 1)p

2M

)
cos

(
π(2n+ 1)q

2N

)
(15)

If the acquired image is a simple basis function (in the chromatic channel i) defined as:

Ai(m,n) = T0i + ∆Ti(p, q) cos

(
π(2m+ 1)p

2M

)
cos

(
π(2n+ 1)q

2N

)
, (16)
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one can write the appropriate relation between the coefficients of the image channel i, ai(p, q)
and the actual chromatic modulation in the corresponding frequency ∆Ti(p, q):

T0i = βoβo ai(o, o) =
1√
MN

ai(o, o) (17)

∆Ti(o, q) = βoβq ai(o, q) =

√
2√

MN
ai(o, q) (18)

∆Ti(p, o) = βpβo ai(p, o) =

√
2√

MN
ai(p, o) (19)

∆Ti(p, q) = βpβq ai(p, q) =
2√
MN

ai(p, q) (20)

5.1.2 Experiment 1: Blue-Yellow and Red-Green luminance proportions in uniform
brightness gratings

In this section, we describe the psychophysical experiments carried out to estimate the right
proportions of average luminance of the chromatic gratings used to generate purely chromatic
gratings in the U and V directions with uniform brightness, i.e. the factors ηi in the above
equations.

Stimuli. Stimuli were generated with computer controlled CRT monitors and 8-bit resolution
graphic cards. The systems were colorimetrically calibrated and controlled using Matlabr,
with the library COLORLAB [18].

Colors ej
(i) were chosen along the directions of color space nulling one chromatic channel

in YUV space, in such a way that:

• They caused modulations differing in sign only along the i direction from the average
color T0. The selected average color was taken from the average color of a public color
image data base [30]. In the NTSC RGB color space, we have: T0 = [132 116 90]>,
with a luminance of 117.8 cd/m2.

• The modulation induced was as large as the color gamut of the monitor could allow.
Two luminance DCT gratings, of 8 cpd, each with the chromaticity of one of these
colors, and initially with the same mean luminance, were generated in counter phase,
and added. The resulting image, subtending 0.25 degrees, was presented against a
grey background of 50 cd/m2 in an otherwise dark room.

Prior to the actual measurements and by mean of successive adjustments, the mean lumi-
nance of the achromatic point, T0 was modified in such a way that:

• Luminance was inside the range of possible values for the monitor used for all pixels
in the resulting image.

• A sufficient luminance range remained for the observer to increase the luminance
of one of the gratings constituting the final image to reach the constant brightness
condition.

With these restrains, the chosen luminance value for the average color was 80 cd/m2.
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Measurement. Observers, adapted for one minute to the grey background, were shown the
images described above and asked to fixate them foveally. The task of the observer was
to adjust the variable ηi, in such a way that the two hemiperiods of the resulting grating,
appeared to have the same brightness, For this, the method of adjustment (MOA) was
used [31]. For each observer, the result of the experiment was the mean of five trials. The
final result was obtained as the average of a set of 3 näıf observers, in the [25, 38] age range.

Results. The proportion factors of Yellow-Blue and Red-Green proportions found in the above
experiment were:

ηY B = η2 = ηU = 0.14± 0.06 (21)

ηRG = η3 = ηV = 0.02± 0.07 (22)

Since the values ηi depend on (1) the chromaticity of the extreme colors ej
(i), (2) the frequency

of the grating, and (3) the spatial nature of the basis function, the above values are strictly valid
only for the described conditions. Using different basis functions (e.g. using wavelets instead of
block DCT) or different opponent color spaces would require specific experimentation using the
above procedure. In the current implementation of the invention, we assume that the proportions
found in the above conditions are approximately valid for different average colors and spatial
basis functions.

It has to be noted that using non-linear color models with better isolation of the achromatic
perception in the corresponding achromatic channel may alleviate the need of this experimental
step in order to obtain purely chromatic gratings.

5.1.3 Experiment 2: Maximum modulation in opponent spaces in natural images

In this section, we describe the numerical experiment used to estimate reasonable values for the
maximum color modulation for natural images in the chromatic directions of the linear YUV
space. The values (∆T

(i)
max)i are necessary for the color contrast definition in eq. 13. In order

to be consistent with the experimental constraints applied in the psychophysical literature, a
particular choice of maximum modulation values has to fulfill the following condition: for a
typical natural image with average color T0, the extreme colors in eqs. 12 have to be inside the
color gamut of a typical color display.

Experiment. In order to find these values, we started from an arbitrarily large initial guess,
e.g. (∆T

(i)
max)i = 256, and checked the above condition for the ej

(Y B) and ej
(RG) colors

(computed by using eq. 12 with the experimental proportions 22) over a representative
set of natural color images (see next section for the details on the database). If, for some
image, one of the computed extreme colors was outside the color gamut of a typical CRT
monitor, the corresponding maximum modulation, ∆Umax or ∆Vmax, was reduced by a
5%. The search procedure stopped when the condition is satisfied for every image in the
database.

Due to the limitations of the database (e.g. limited range of average luminance), the
outcome of the above procedure is just a set of recommended values. The recommended
values do not guarantee a maximum bound for the chromatic contrast: particular images
may exist giving rise to chromatic contrasts larger than 1 specially in low luminance and/or
high saturation conditions. For such images larger maximum modulation values may give
rise to more convenient contrast values.
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Database. We ran the numerical experiment on a database consisting of 100 images from the
McGill University color image database [30] (mainly wildlife images) and 25 raw images
taken in our lab (mainly human faces). In the latter case, the Canon EOS 20 D cam-
era used in taking the pictures was calibrated with the COLORLAB library [18] and a
PhotoResearch SpectraScan PR650 spectroradiometer.

Results. Figure 4 shows two sample images limiting the maximum modulation in the V and
U directions respectively. The CIE xy chromatic diagrams below show the colors of the
corresponding image (in gray), the average color (in black), and the extreme colors (in red
and blue). The dotted triangle in the chromatic diagrams represents the gamut of available
colors in a typical CRT monitor (similar to NTSC or PAL RGB primaries). As seen in the
chromatic diagrams, the left image limits the modulation in the V (Red-Green) direction
while the right image limits the modulation in the U (Yellow-Blue) direction.

The maximum modulations compatible with the psychophysical assumptions in the ana-
lyzed database were:

∆Umax = 30± 2 (23)

∆Vmax = 43± 2 (24)

The associated error, ±2, corresponds to the 5% step in the search procedure. Besides,
due to the above considerations on the limitations of the database, these values are just a
convenient recommendation that may be improved by introducing some sort of dependence
on the average luminance in more refined implementations of the invention.

5.1.4 Summary: achromatic and chromatic contrast definition

According to the general scheme of the invention (see fig. 2), the set of signal transforms carried
out by blocks 3, 4.X and 5.X can be summarized as follows:

A′(x)
Chrom.Transf.−→ A(x)

Space−Freq.Transf.−→ a(f)
Contrast.T ransf.−→ c(f) (25)

where the components of vectors, A′(x), are the tristimulus values of the color in the pixel x
in the initial (non-opponent) color space (e.g. NTSC RGB); the vectors, A(x), obtained from
the chromatic transform in block 3, are the corresponding colors in an opponent representation
(such as linear YUV space); the elements of the vectors, a(f), are the coefficients of the local
space-frequency transforms applied on the images Ai(x), i.e., a1(f) stands for the coefficients
of the transform of the achromatic image, a2(f) stands for the coefficients of the transform of
the Blue-Yellow image, and a3(f) stands for the coefficients of the transform of the Red-Green
image (obtained using the blocks 4.A, 4.B and 4.C respectively). Finally, the contrast transform
expresses each amplitude, ai(f), in achromatic or chromatic contrast units, giving the vectors

c(f). The components of the contrast vector are: c1(f) = Cachrom(f), c2(f) = C
(Y B)
chrom(f), and

c3(f) = C
(RG)
chrom(f).

According to the formulation and experimental results presented in this section, if the selected
chromatic representation is linear YUV, and the selected spatial representation is block DCT
with M ×N block size, the recommended contrast transformations are listed below:
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• For the luminance (Y ) channel (block 5.A),

Cachrom(p, o) =
√

2
a1(p, o)

a1(o, o)
(26)

Cachrom(o, q) =
√

2
a1(o, q)

a1(o, o)
(27)

Cachrom(p, q) = 2
a1(p, q)

a1(o, o)
(28)

• For the Yellow-Blue (U) channel (block 5.C),

C
(2)
chrom(p, o) =

√
2√

MN

a2(p, o)

30
(29)

C
(2)
chrom(o, q) =

√
2√

MN

a2(o, q)

30
(30)

C
(2)
chrom(p, q) =

2√
MN

a2(p, q)

30
(31)
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Figure 4: Sample images limiting the maximum modulation in the V and U directions (top) and the
corresponding colors (bottom).
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• For the Red-Green (V ) channel (block 5.B),

C
(3)
chrom(p, o) =

√
2√

MN

a3(p, o)

43
(32)

C
(3)
chrom(o, q) =

√
2√

MN

a3(o, q)

43
(33)

C
(3)
chrom(p, q) =

2√
MN

a3(p, q)

43
(34)

5.2 Non-linear perceptual transforms

This section is devoted to the description of the non-linear perceptual transforms applied to the
local-frequency transforms expressed in achromatic and chromatic contrast units.

5.2.1 Divisive normalization transforms (Achromatic, Yellow-Blue and Red-Green)

The second key process in the present invention deals with the application of a non-linear per-
ceptual transformation to the contrast of the achromatic and chromatic channels. The roots
of this transform are motivated by perceptual (contrast gain control and masking experiments)
and statistical (efficient coding) facts of image perception.

The whole perceptual transformation is modeled as a three step process: first a set of linear
filters are applied to each channel (this step corresponds to blocks 4A, 4B and 4C in Fig 2); next,
the contrast of each coefficient is obtained using the procedure described in the previous section
(blocks 5A, 5B and 5C in Fig 2); and, finally a non-linear transform is applied to the output
of the second stage (blocks 7A, 7B and 7C in Fig 2). This last transform can be a point-wise
non-linearity or preferably a non-linear transform [21, 24]. In the later case, the energy of each
linear coefficient is normalized by a combination of the energies of neighboring coefficients in
frequency, thus for each channel the response at a particular frequency is obtained as follows:

ri(f) =
sgn(ci(f)) · |si(f) · ci(f)|γ

θ(f) +
∑N2

f ′=1 h(f, f ′)|si(f ′) · ci(f ′)|γ
(35)

where subscript i = 1, 2, 3 denotes the channel; ci(f) are the outputs of the local-frequency
analyzers in contrast units; si(f) are CSF-shaped functions; γ is an exponent; θ(f) is a regular-
izing function; and, h(f, f ′) determines the interaction neighborhood among coefficients in the
non-linear normalization of the energy.

h(f, f ′) ∝ exp

(
− ‖f − f

′‖2

σ2
|f |

)
(36)

where σ|f | =
1
6
|f |+ 0.05, |f | is given in cycles per degree (cpd), and the Gaussian is normalized

to have unit volume.
The above interaction kernel is just an example including intra-block frequency relations, but

it could be generalized to include spatial and chromatic interactions.
This general divisive normalization model is well-established for the achromatic case based on

achromatic contrast incremental thresholds of sinusoidal or Gabor patches [24] and equivalent
physiological experiments [21]. This achromatic model has been successfully applied in several
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image processing applications including achromatic image coding [14, 17] and achromatic image
denoising [16].

In the chromatic case, similar non-linear behavior has been reported with sinusoidal and Gabor
patches [25, 32]. This is why in the proposed implementation of the invention, the parameters
controlling the non-linearity in the chromatic case (γ, θ and h) are proposed to be equal to those
used in the achromatic case. However, the overall frequency sensitivities are adapted for each
chromatic channel, based on previous linear-models work [26, 27].

Since all the psychophysical and physiological results are based on measures using sinusoidal
or Gabor patches, the experimental parameters have to be adapted to the particular image
representation domain in encoding applications (e.g. DCT, Wavelets, ICA, etc.). If the image
representation choice is block-DCT, we recommend to use the particular values illustrated in
figs. 5, 6 and 7 following the comments of Dr. Uriegas [32], Dr. Watson [33] and Dr. Heeger [34].
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Figure 5: Parameters si(f) for each channel in Eq. (35)
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Figure 6: Parameter θ(f) in Eq. (35)

The response in the achromatic channel has been computed under two input conditions in order
to illustrate how the model in eq. 35 accounts for different perceptual facts. First, the response,
r1(f), of a sensor tuned to a frequency f , is computed when the input is c1 = [0, c1(f),0] (fig. 8
shows the results for two particular sensors: r1(f = 4) and r1(f = 10)). Second, the response
of a sensor, r1(f), has been obtained in the presence of an additional pattern with a different
spatial frequency, i.e., when the input is c1 = [0, c1(f),0, c1(f

′),0] (fig. 9 shows the results
obtained for sensors r1(f = 4) and r1(f = 10) when the inputs are c1 = [0, c1(4),0, c1(6),0] and
c1 = [0, c1(6),0, c1(10),0] respectively). The perceptual facts reproduced are:

20



a) b) c

Figure 7: Three illustrative frequency interaction neighborhoods (rows of h(f, f ′)) in Eq. (35).
Each surface corresponds to a different frequency.

• Frequency selectivity : the visibility of distortions depends on the spatial frequency . Note
that in figure 8, the slope of the response curve is larger for 4 cpd than for 10 cpd, thus a
larger amount of distortion is required in 10 cpd to obtain the same perceived distortion.
In other words, 4 cpd noise is more visible than 10 cpd noise of the same energy. This
general behavior is given by the band-pass function s1(f) (see figure 5).

• Auto-masking : the amount of distortion needed to obtain a constant perceptual distortion
increases with the contrast of the input. See in figure 8 how ∆c increases with the contrast
of the stimulus. This is due to the fact that the response is attenuated when increasing
the contrast because of the normalization term in the denominator of Eq. (35).

• Cross-masking : the attenuation (and the corresponding response saturation and sensitivity
decrease) also occurs when other patterns c1(f

′) with f ′ 6= f are present. Note in figure 9
that the required amount of distortion increases as the contrast of the mask of different
frequency is increased. Moreover, given the Gaussian shape of the interaction neighbor-
hood, patterns of closer frequencies mask the distortion more effectively than background
patterns of very different frequency. Accordingly, the 6 cpd mask induces a larger variation
of the acceptable noise in 4 cpd than in 10 cpd.

A similar behavior would be obtained for the chromatic channels.

5.2.2 Experiment 3: checking the inversion of the non-linear transform

Invertibility condition. These non-linear transforms must be invertible in order to reconstruct
the image at the decoder from the coded stream. In [14] a closed-form inversion procedure
was proposed and the invertibility was studied for the achromatic case. This procedure
involves the inversion of the matrix (I − Dri · h), where I is the identity matrix, Dri is
a diagonal matrix with the absolute value of the elements of ri(f) and h is the matrix
that models the relations between coefficients. The inversion condition states that all the
eigenvalues of Dri · h must be less than one. There is no theoretical guarantee that this
condition holds for all images (neither in the already proposed achromatic case, nor in the
chromatic cases proposed here). Therefore, the invertibility of the chromatic non-linear
transforms (blocks 7.B and 7.C) has to be explicitly checked empirically.
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Figure 8: Responses and associated visibility thresholds of the two sensors tuned to frequencies
4 and 10 cpd in auto-masking (zero background) conditions. The required amount of distortion
∆c to obtain some specific distortion in the response domain τ is shown for different contrasts
of the input pattern.
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Figure 9: Responses and associated visibility thresholds of the two sensors tuned to frequencies
4 and 10 cpd when masked by a pattern of different frequency (6 cpd) at different contrast: 0
(auto-masking, solid line) and 0.5 (dashed line). In this case, the required amount of distortion
∆c to obtain some specific distortion in the response domain τ at a given contrast of the stimulus
increases when the contrast of the mask increases.

Testing the invertibility condition in the chromatic cases. The invertibility condition was
empirically tested by computing the largest eigenvalue of the matrices Dr2 · h and Dr3 · h
for 25600 16 × 16 color image blocks from the color image dataset [30]. The invertibil-
ity condition was also checked for reconstructed r̂i from the quantized SVM weights for
different compression rates in the range [0.2, 2.2] bits/pix.

In this exploration, the largest eigenvalue for every image block and compression rate was
always lower than 1.

5.3 Support Vector Regression (SVR) with Adaptive Profile

An important third basic step in the coding scheme is the introduction of a machine learning
method for the selection of the most relevant coefficients in the specific image representation
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domain. The method must consider the particular characteristics of the domain, and thus the
different perceptual relevance of each coefficient in the working domain. We illustrate this ma-
chine learning block with the use of the support vector regression (SVR) method which has
demonstrated good capabilities for signal approximation with a small number of parameters
(signal samples, or support vectors) [35]. The standard SVR is revised in the following subsec-
tion. Noting that the standard approach defines a constant insensitivity independently of the
perceptual relevance of each sample, we subsequently propose a novel reformulation of the SVR
to work in non-Euclidean domains of data representation. Finally, some remarks are provided
to this important fact.

5.3.1 Standard SVR

Three SVR models are applied independently to the coefficients in each non-linear representation
domain r(f) = [r1(f), r2(f), r3(f)]>. Hereafter, and for the sake of clarity, we will present the
notation of the SVR for only one generic channel representation, r. Consequently, we are given
a paired set of N coefficients (f, r), where f = 1, . . . , N represents the spatio-frequency index
descriptor of coefficients r ∈ R in the particular non-linear perceptually-transformed channel
(either r1(f), r2(f) or r3(f)).

The standard formulation of the SVR maps the input data f to a higher dimensional space
where a linear regression is solved, which is non-linearly related to the input representation
space. The regression model is thus defined as

r̂f = F(f) = 〈w,φ(f)〉+ b (37)

where r̂ are the r coefficient estimations; 〈·, ·〉 represents the dot product operation; φ is a non-
linear mapping to a higher dimensional Hilbert space φ : R → H; w is a weight vector in the
transformed high-dimensional feature space; and b is the bias term in the regression model.

The SVR consists of solving the following regularized problem with linear constraints:

min
w,ξf ,ξ

∗
f ,b

{
1

2
‖w‖2 + λ

N∑
f=1

(ξf + ξ∗f )

}
(38)

subject to:

rf − (〈w,φ(f)〉+ b) ≤ ε+ ξf ∀f = 1, . . . , N (39)

(〈w,φ(f)〉+ b)− rf ≤ ε+ ξ∗f ∀f = 1, . . . , N (40)

ξf , ξ
∗
f ≥ 0 ∀f = 1, . . . , N (41)

Free parameter λ tunes the trade-off between fitting the model to the data (minimizing the
errors ξf and ξ∗f ) and keeping model weights ‖w‖ small (enforcing flatness in the feature space).
The method uses the so-called ε-insensitive loss function [35], which penalizes errors larger than
ε linearly. It is worth stressing that free parameter ε accounts for the allowed error or distortion.

The usual procedure for solving this optimization problem introduces the linear restrictions
(39)-(41) into Eq. (38) by means of Lagrange multipliers α

(∗)
f , computes the Karush-Kuhn-

Tucker conditions, and solves the Wolfe’s dual problem [36, 37]. This leads to solve a quadratic

programing (QP) problem in a space of dual parameters α
(∗)
f rather than in the space of model

parameters w. A very important result is that, by making zero the derivative of the obtained dual
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constrained functional, the weight vector in the feature space is expressed as a linear combination
of the mapped samples through the dual variables, that is:

w =
N∑
f=1

(αf − α∗f )φ(f). (42)

Now, by plugging (42) into (37), one obtains the solution for a particular input f ′:

r̂f ′ = F(f ′) =
N∑
f=1

(αf − α∗f )〈φ(f),φ(f ′)〉+ b, (43)

which explicitely depends of the dot product of mapped samples and the obtained dual weights
αf and α∗f . This result allows us to work implicitely in a higher dimensional space without
even knowing the coordinates of mapped samples explicitely, only the dot products among
them. These dot products are called kernel functions, K(f, f ′), and lead to the final regression
function:

r̂f ′ = F(f ′) =
N∑
f=1

(αf − α∗f )K(f, f ′) + b, (44)

where the inner product 〈φ(f),φ(f ′)〉 is represented with a kernel matrix K(f, f ′). Note that

only samples with non-zero Lagrange multipliers α
(∗)
f count in the solution and are called support

vectors. The immediate advantage of the method is that good approximating functions can be
obtained with a (relatively) small set of support vectors, leading to the concept of sparsity and,
in turn, to the idea of inherent compression.

The Gram (or kernel) matrix K(f, f ′) = 〈φ(f),φ(f ′)〉 can be seen as a similarity matrix
among samples and its proper definition is the key in the learning ability of the SVR method.
In all our experiments, the Radial Basis Function (RBF) kernel is used:

K(f, f ′) = exp

(
− |f − f

′|2

2σ2

)
(45)

This kernel mapping introduces a third free parameter to be optimized, the kernel width or
lengthscale σ.

5.3.2 SVR with Adaptive Insensitivity Profile

The main problem when considering the previous solution is that we assume that each sample
contains a priori the same relevance to the function approximation, which in general is not
true. This can be easily alleviated by using a different penalization factor for each sample f
according to a certain confidence function kf on the samples. This idea can be also extended by
using a different insensitivity zone ε for each sample. The proposed SVR with adaptive profile
[38] relaxes or tightens the ε-insensitive region depending on each training sample. Now, the
objective function becomes [36]:

min
w,ξf ,ξ

∗
f ,b

{
1

2
‖w‖2 + λ

N∑
f=1

kf (ξf + ξ∗f )

}
(46)
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and restrictions over slack variables become sample-dependent:

rf − (〈w,φ(f)〉+ b) ≤ ε

kf
+ ξf ∀f = 1, . . . , N (47)

(〈w,φ(f)〉+ b)− rf ≤
ε

kf
+ ξ∗f ∀f = 1, . . . , N (48)

ξf , ξ
∗
f ≥ 0 ∀f = 1, . . . , N (49)

Therefore, now each sample has its own insensitivity error εf = ε/kf , which intuitively means
that different samples hold different confidence intervals or allowed distortions. By including
linear restrictions (47)-(49) in the corresponding functional (46), we can follow as in the standard
case, which once again constitutes a QP problem.

5.3.3 Remarks: adaptive insensitivity and the working domain

In SVM-based image coding schemes, such as those in [15, 5, 17] the signal is described by
the Lagrange multipliers of the support vectors needed to keep the regression error below the
thresholds εf . Increasing the thresholds, εf , reduces the number of required support vectors,
thus reducing the entropy of the encoded image and increasing the distortion. The key point
here is choosing εf according to a meaningful criterion for the application domain. For example,
working in Euclidean domains justifies the use of a constant value of εf for all f . This condition
is met in the non-linear perceptual transformation included in the invention scheme, but it is
not in linear DCT or wavelet domains such as those used in [15], in which each coefficient has a
different relevance in representing the signal. See [5, 16, 17] for a more detailed discussion.

6 Experimental results to assess the performance of the

method

This section illustrates the performance of an implementation of the method for the compression
of a set of color images compared to the JPEG algorithm.

6.1 Experimental setup

The implementation of the proposed method, referred to as C-NL-SVR (Color-Non-Linear-SVR),
includes linear YUV space for color representation, 16×16 block-DCTs for image representation,
contrast transforms as in section 5.1, non-linear perceptual transform of each color channel with
the parameters given in section 5.2 and SVR learning processes of the non-linear representation as
described in section 5.3. Finally, the description (weights) selected by the regression algorithm
are uniformly quantized and encoded according to the scheme described in section 4. The
implementation of JPEG uses the same color representation and 16×16 block-DCT. Quantization
matrices based on the Achromatic and Chromatic Mullen CSFs [26] were used.

A set of 25 representative color images was used for comparison purposes (see Fig. 10). All
the images were compressed at different bit-rates in the range [0.1, 2.2] bits/pix. It has to be
stressed that the bit rate used in consumer electronics (cell phones, low-end digital cameras,
semi-professional and high-end digital cameras) ranges between 1 bit/pix for low quality JPEG
files to 2.2 bits/pix for high-quality JPEG files.
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Figure 10: Set of images considered for evaluating the compression capabilities of the method.

In all experiments, we trained three SVR models (one per transformed channel and block,
ri(f)) and modeled the (signed) value of the response coefficients, ri(f), i = 1, 2, 3. In our non-
linear representation domain, r, we used a different SVR with RBF kernel, constant insensitivity
parameter ε, and set a λ value arbitrarily large. In all cases, ε insensitivity and quantization
coarseness were jointly tuned to meet the specifications, either the desired entropy or distortion
(cf. Figure 2).

After training, the signal is described by the uniformly quantized Lagrange multipliers of
the support vectors needed to keep the regression error below the thresholds ε. The last step
is entropy coding of the quantized weights. The compression ratio (or desired distortion) is
essentially controlled by a factor applied to the thresholds, ε.

6.2 Numerical comparison with JPEG: rate-distortion and compres-
sion gain

In order to assess the quality of the coded images at the same bit-rate, three different distor-
tion measures were used, the standard (Euclidean) RMSE, and two perceptually meaningful
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measures: Structural SIMilarity (SSIM) index [39] and S-CIELab metric [40].
The averaged rate-distortion curves for all images in Fig. 10 are plotted in Fig. 11. In the

rate-distortion plots we indicate with bars the standard deviation obtained for each compression
rate. These plots show that the proposed C-NL-SVR is better than JPEG (the solid line is
under the dashed line for distortions and is over it for similarity, in the interesting bit-rate
range). However, a naive interpretation of the standard deviation bars overlapping could lead
to question the significance of this eventual gain.

Note however, that in image rate-distortion plots, standard deviation bars overlapping does
not necessarily mean equal behavior or statistically negligible gain: the overlapping comes from
the fact that different images in the database have intrinsically different complexity giving rise
to quite different distortions when encoded at a given bit rate. Figure 12(a) shows an example
of the above: in this case, it is shown the rate-distortion behavior of the two methods (solid and
dashed curves) for two different images of the database (black and blue curves). Of course, if you
average among such class of images the standard deviation is going to be big, but the important
thing is that the gain is consistent in every image: note for instance that, if you take some
particular entropy for the JPEG result in both images (e.g., red or purple dots in fig. 12(a)), the
entropy of the C-NL-SVR result with the same distortion is consistently much smaller.
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Figure 12: (a) Distortion curves for two example images (in black and blue) using RMSE for the
considered 16 × 16 JPEG (dashed) and the C-NL-SVR approach (solid line). (b) Illustrative scheme
for measuring the gain of the C-NL-SVR approach (solid line) versus JPEG (dashed). For a given
distortion level, the difference in rate between methods is measured and compared.

Therefore, it makes more sense to define some compression gain measure for each image and
bit-rate, and average these compression gains over the images in the dataset.

We define the compression gain of one method versus the other for a given distortion (or
entropy), D(H), in terms of the rate difference for the same distortion level:

Compression Gain : G(H) =
HJPEG(D(H))

HC−NL−SV R(D(H))
(50)

Fig. 12(b) shows an illustrative scheme for measuring the compression gain for a distortion
measure on a particular image (zoom of the RMSE rate-distortion for the black curves image of
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Figure 11: Average rate-distortion curves over the 25 images using (a) RMSE distortion, (b) S-CIELab
distortion, and (c) Structural SIMilarity index, for the considered 16 × 16 JPEG (dashed) and the C-
NL-SVR approach (solid line).
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the left plot). In the example illustrated in fig. 12(b) we consider the two possible cases (gain
smaller than 1 at low entropy and gain bigger than 1 at high entropy). Note that gain values
bigger than 1 mean that the proposed method use less bits to represent the image for the same
distortion. This compression gain can also be expressed in percentage terms by using:

Compression Gain (in %) : PG(H) = 100 · (G(H)− 1) (51)

In practical terms, for a given entropy, G = 2 or PG = 100% mean that 20 C-NL-SVR images
have the same volume in bits than 10 JPEG images (with the same measured quality).

Of course, the particular compression gain values depend on the selected quality measure and
the dataset.

Figure 13 show the compression gains obtained by the C-NL-SVR approach versus JPEG for
the three considered distortion measurements (RMSE, SSIM and S-CIELab) at every considered
entropy in the analyzed bit-rate range. In these plots, we have included the standard deviation
of the gains in order to assess the reliability of the approach.

Note that in the commercially meaningful range [1, 2.2] bits/pix, the proposed method largely
outperforms JPEG and permits compression improvements in the range [60, 180]% for RMSE,
[25, 60]% for SSIM, and [80, 275]% for the S-CIELAB. As the standard deviation bars do not
cross below the G = 1 line, this means that the gain is consistent over a wide range of images,
thus the proposed method clearly outperforms JPEG.

6.3 Visual comparison

Figures 14-18 show representative results of the considered methods on 5 images (‘Parrot’, ‘Lena’,
‘Roof’, ‘Flower3’, ‘Face1’) at different bit rates in the range [1.0, 2.2] bits/pix. The visual results
confirm that the numerical gains shown in Fig. 13 are also perceptually significant. In general,
JPEG leads to poorer (blocky) results. Also, it is worth noting that high frequency details
are smoothed. These effects are highly alleviated by introducing a machine learning procedure
like the SVR in the non-linear perceptual domain. See, for instance, Lena’s eyes and cheek
(Fig.15), her hat’s feathers (Fig.15), the better reproduction of the high frequency pattern in
the parrot’s eye (Fig.14), the vertical roof’s stick (Fig.16), and the annoying blocky effect in the
flower (Fig.17) and face images (Fig.18).
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Figure 13: Average gains (with standard deviation bars) of the C-NL-SVR approach with respect to
JPEG in terms of (a) RMSE distortion, (b) the Structural SIMilarity index, SSIM [39], and (c) the
S-CIELab error [40].
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