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Abstract— This paper introduces a new unsupervised method
for dimensionality reduction via regression (DRR). The algorithm
belongs to the family of invertible transforms that generalize
Principal Component Analysis (PCA) by using curvilinear instead
of linear features. DRR identifies the nonlinear features through
multivariate regression to ensure the reduction in redundancy
between the PCA coefficients, the reduction of the variance of
the scores, and the reduction in the reconstruction error. More
importantly, unlike other nonlinear dimensionality reduction
methods, the invertibility, volume-preservation, and straightfor-
ward out-of-sample extension, makes DRR interpretable and
easy to apply. The properties of DRR enable learning a more
broader class of data manifolds than the recently proposed Non-
linear Principal Components Analysis (NLPCA) and Principal
Polynomial Analysis (PPA). We illustrate the performance of
the representation in reducing the dimensionality of remote
sensing data. In particular, we tackle two common problems:
processing very high dimensional spectral information such as
in hyperspectral image sounding data, and dealing with spatial-
spectral image patches of multispectral images. Both settings pose
collinearity and ill-determination problems. Evaluation of the
expressive power of the features is assessed in terms of truncation
error, estimating atmospheric variables, and surface land cover
classification error. Results show that DRR outperforms linear
PCA and recently proposed invertible extensions based on neural
networks (NLPCA) and univariate regressions (PPA).

Index Terms— Manifold learning, nonlinear dimensionality
reduction, Principal Component Analysis (PCA), Dimensionality
Reduction via Regression, hyperspectral sounder, IASI, Landsat.

I. INTRODUCTION

In the last decades, the technological evolution of optical
sensors has provided remote sensing analysts with rich spatial,
spectral, and temporal information. In particular, the increase
in spectral resolution of hyperspectral sensors in general, and
of infrared sounders in particular, opens the doors to new ap-
plication domains and poses new methodological challenges in
data analysis. The distinct highly-resolved spectra offered by
hyperspectral images (HSI) allow us to characterize land-cover
classes with unprecedented accuracy. For instance, hyperspec-
tral instruments such as NASA’s Airborne Visible Infra-Red
Imaging Spectrometer (AVIRIS) covers the wavelength region
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from 0.4 to 2.5µm using more than 200 spectral channels,
at a nominal spectral resolution of 10 nm. The MetOp/IASI
infrared sounder poses even more complex image processing
problems, as it acquires more than 8000 channels per iFOV.
Actually, such improvements in spectral resolution have called
for advances in signal processing and exploitation algorithms
capable of summarizing the information content in as few
components as possible [1]–[4].

In addition to its eventual high dimensionality, the complex
interaction between radiation, atmosphere, and objects in the
surface leads to irradiance manifolds which consist of non-
aligned clusters that may change nonlinearly in different acqui-
sition conditions [5], [6]. Fortunately, it has been shown that,
given the spatial-spectral smoothness of the signal, the intrinsic
dimensionality of the data is small, and this can be used
both for efficient signal coding [3], [7], and for knowledge
extraction from a reduced set of features [8], [9]. The high
dimensionality problem is not only affecting the hyperspectral
data: very often, multispectral data processing applications
involve using spatial, multi-temporal or multi-angular features
that are combined with the spectral features [10], [11]. In such
cases, the representation space becomes more redundant and
pose challenging problems of collinearity for the algorithms.
In both cases, the key in coding, classification, and in bio-geo-
physical parameter retrieval applications reduces to finding the
appropriate set of features, that should be necessarily flexible
and nonlinear.

In order to find these features, in recent years a number of
feature extraction and dimensionality reduction methods have
been presented. Most of them are based on nonlinear functions
to allow describing data manifolds that exhibit nonlinear
relations (see [12] for a comprehensive review). Approaches
range from local methods [13]–[17], kernel-based and spectral
decompositions [9], [18]–[20], neural networks [21]–[23], or
projection pursuit formulations [24], [25]. Despite the the-
oretical advantages of nonlinear methods, the fact is that
classical principal component analysis (PCA) [26] is still the
most widely used dimensionality reduction technique in real
remote sensing applications [3], [27]–[29]. This is mainly
because PCA has different properties that make it useful in
real examples: it is easy to apply since it involves solving
a linear and convex problem, and it has a straightforward
out-of-sample extension. Moreover, the PCA transformation is
invertible and, as a result, the features extracted can be easily
interpreted.

The new dimensionality reduction algorithms that involve
nonlinearities rarely fulfill the above properties. Nonlinear
models usually have complex formulations, which introduce



2 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. XX, NO. Y, MONTH Z 2015

a number of non-intuitive free parameters. Tuning these pa-
rameters implies strong assumptions about the manifold char-
acteristics (e.g. local Gaussianity or special symmetries), or a
high computational cost training. This complexity reduces the
applicability of nonlinear feature extraction to specific data, i.e.
the performance of these methods do not significantly improve
that of PCA on many remote sensing problems [3], [9], [27].
Moreover, these methods have problems to obtain out-of-
sample predictions, which is mandatory in most of the real ap-
plications. Another critical point is that the transform involved
by the nonlinear models is hard to interpret. This problem
could be alleviated if the methods were invertible since then
one could get the data back to the input domain (where units
are meaningful) and understand the results therein. Invertibility
allows to characterize the transformed domain, and to evaluate
its quality. However, invertibility is scarcely achieved in the
manifold learning literature. For instance, spectral and kernel
methods involve implicit mappings between the original and
the curvilinear coordinates, but these implicit features are not
easily invertible nor interpretable [30].

The desirable properties of PCA are straightforward in
methods that find projections onto explicit features in the
input domain. These explicit features may be either straight
lines or curves. This family of projection methods may be
understood as a generalization of linear transforms extending
linear components to curvilinear components. This family
ranges between two extreme cases: (1) rigid approaches where
features are straight lines in the input space (e.g. conventional
PCA, Independent Components Analysis -ICA- [31]), and
(2) flexible non-parametric techniques that closely follow
the data, such as Self-Organizing Maps (SOM) [32], or the
related Sequential Principal Curves Analysis (SPCA) [6], [33].
This family is discussed in Section II below. Both extreme
cases are undesirable because of different reasons: limited
performance (in too rigid methods), and complex tuning of
free parameters and/or unaffordable computational cost (in
too flexible methods). In this projection-onto-explicit-features
context, autoencoders such as Nonlinear-PCA (NLPCA) [23],
and approaches based on fitting functional curves, such as
Principal Polynomial Analysis (PPA) [34], [35], represent
convenient intermediate points between the extreme cases
in the family. Note that these methods have shown better
performance than PCA on a variety of real data [35], [36].
Actually, in the case of PPA, it is theoretically ensured to
obtain better results than PCA. The method proposed here,
Dimensionality Reduction via Regression (DRR), represents a
qualitative step towards the flexible end in this family because
of the multivariate nature of the regression (as opposed to
the univariate regressions done in PPA) while keeping the
convenient properties of PPA and PCA which make it suitable
for practical high dimensional problems (as opposed to SPCA
and SOM). Therefore, it extends the applicability of PPA to
more general manifolds, such as those encountered in remote
sensing data analysis.

Following the taxonomy in [35] these three methods
(NLPCA, PPA and DRR) could be included in the Principal
Curves Analysis framework [37]. This framework includes
both parametric (fitting analytic curves) [26], [38], [39], and

non-parametric [6], [33], [40]–[42] methods. NLPCA, PPA
and DRR exploit the idea behind this framework to define
generalizations of PCA of controlled flexibility.

Preliminary results of DRR were presented in [43]. Here
we extend the theoretical analysis of the method and the
experimental confirmation of the performance in hyperspectral
images. The remainder of the paper is organized as follows.
Section II reviews the properties and shortcomings of the
projection-onto-explicit-features family pointing out the quali-
tative advantages of the proposed DRR. Section III introduces
the mathematical details of DRR. We describe the DRR trans-
form and the key differences with PPA. We derive an explicit
expression for the inverse and we prove the volume preser-
vation property of DRR. The theoretical properties of DRR
are demonstrated and illustrated in controlled toy examples of
different complexity. In Section IV, we address two important
high dimensional problems in remote sensing: the estima-
tion of atmospheric state vectors from Infrared Atmospheric
Sounding Interferometer (IASI) hyperspectral sounding data,
and the dimensionality reduction and classification of spatio-
spectral Landsat image patches. In the experiments, DRR
is compared with conventional PCA [26], and with recent
fast nonlinear generalizations that belong to the same class
of invertible transforms, PPA [34], [35] and NLPCA [23].
Comparisons are made both in terms of reconstruction error
and of expressive power of the extracted features. We end the
paper with some concluding remarks in Section V.

II. FROM RIGID TO FLEXIBLE FEATURES

Here we illustrate how DRR represents a step forward with
regard to NLPCA and PPA in the family of projections onto
explicit curvilinear features ranging from rigid to flexible ex-
tremes. First, we review the basic details of previous projection
methods, and then we illustrate the advantages of the proposed
method in an easy to visualize example.

A. Representative projections onto lines and curves

Classical techniques such as PCA [26] or ICA [31] represent
the rigid extreme of the family, where, zero-mean samples
x ∈ Rd are projected onto d rectilinear features through the
projection matrix, V:

α = V · x

where αi are the Principal Components (PC scores for PCA)
or the Independent Components (for ICA), and the d linear
features in the input space are the column vectors (straight
directions) in V−1. These rigid techniques use a single set of
global features regardless of the input.

On the contrary, flexible techniques adapt the set of features
to the local properties of the input. Examples include SOM
[32] where a flexible grid is adapted to the data and samples
can be represented by projections onto the local axes defined
by the edges of the parallelepiped corresponding to the closest
node. Similarly, local-PCA [44] and local-ICA [45] project
the data onto local axes corresponding to the closest code
vector. More generally, local-to-global methods integrate these
local-linear representations into a single global curvilinear
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representation [46]. In particular, using the fact that local
eigenvectors are tangent to first and secondary principal curves
[47], Sequential Principal Curves Analysis (SPCA) [6], [33]
integrates local PCAs, V(x′), along a sequence of d principal
curves to get a curvilinear representation

r =

∫ x

x0

D(x′) ·V(x′) · dx′,

where the local metric, D(x′), sets the line element along
the curves. SPCA is inverted by taking the lengths, ri, along
the sequence of principal curves drawn from the origin, x0.
Similarly to SOM, SPCA assumes a grid of curves adapted to
the data. However, as opposed to SOM, SPCA does not learn
the whole grid, but only d segments of principal curves per
sample.

The above methods identify explicit curves/features that
follow the data, but they are hard to train (e.g. parameters to
control their flexibility depend on the problem) and require
many samples to be reliable, which make them hard to
use in high-dimensional scenarios. Other methods have been
proposed to generalize the rigid representations by considering
curvilinear features instead of straight lines [26]. For instance,
in NLPCA [21], [23] an invertible internal representation is
computed through a two stage neural network,

r = W2 · g1(W1 · x)

where the matrices Wi represent sets of linear receptive fields,
and g1 is a set of fixed point-wise nonlinearities. The inverse
of this autoencoder [22] can be used to make the curvilinear
coordinates explicit.

Fitting general parametric curves in Rd, as done in [38],
[39], is difficult because of the unconstrained nature of the
problem [26], [35]. Alternatively, PPA [35] follows a defla-
tionary sequence in which a single polynomial depending on a
straight line (univariate fit) is computed at a time. Specifically,
the i-th stage of PPA accounts for the i-th curvilinear dimen-
sion by using two elements: (1) one-dimensional projection
onto the leading vector e(i), and (2) polynomial prediction of
the average at the orthogonal subspace,

αi = e(i)> · x(i−1)

x(i) = E
(i)
⊥ · x

(i−1) − f (i)(αi) (1)

where the polynomial prediction, f (i)(αi), is removed from
the data in the orthogonal subspace. Superindices in the above
formula represent the stage. As a result, data at the i-th stage
is represented by αi and by the (d − i)-dimensional residual
that cannot be predicted from that projection. Prediction us-
ing this univariate polynomial is a way to remove possible
nonlinear dependencies between the linear subspace of e(i)

and its orthogonal complement. Despite its convenience, the
univariate nature of the fits restricts the kind of dependencies
that can be taken into account since more information about
the orthogonal subspace (better predictions) could be obtained
if more dimensions were used in the prediction. Moreover,
using a single parameter, αi, to build the i-th polynomial

implies that the i-th curvilinear feature has the same shape
along the (i− 1)-th curve.

DRR addresses these limitations by using multivariate in-
stead of univariate regressions in the nonlinear predictions. As
a result, DRR improves energy compaction and extends the
applicability of PPA to more general manifolds while keeping
its simplicity, which make it suitable in high dimensional
problems (as opposed to SPCA and SOM).

B. Qualitative advantages of DRR

The advantages of DRR are illustrated in Fig. 1 where we
compare representative invertible representations of this family
on two curved and noisy manifolds of the class introduced
by Delicado [47] (in red and blue). This class of manifolds,
originally presented to illustrate the concept of secondary
principal curves [47], is convenient since one can easily
control the complexity of the problem by introducing tilt (non-
stationarity) on the secondary principal curves (dark color)
along the first principal curve (light color). This controlled
complexity is useful to point out the limitations of previous
techniques (e.g. required symmetry in the manifold) and how
these limitations are alleviated by using the (more general)
DRR model. The performance is compared in the input domain
through the dimensionality reduction error and through the
accuracy of the identified curvilinear features. These mani-
folds come from a two-dimensional space of latent variables
(positions along the first and secondary curves). As a result,
the dimensionality reduction error depends on the unfolding
ability of the forward transform: the closer the transformed
data fit a flat rectangle, the smaller the error when truncating
the representation. On the other hand, the identified features
depend on how the inverse transform bends a cartesian grid in
the latent space: the better the model represents the curvature
of data, the bigger the fidelity of the identified features.

Let us start by considering the performance on the easy case:
manifold in red with no tilt along the second principal curve.
The previously reported techniques perform as expected: on
the one hand, progressively more flexible techniques (from
PCA to SPCA) reduce the distortion after dimensionality
reduction (in MSEDR terms) because they better unfold test
data. As a result, removing the third dimension in the rigid-
to-flexible family progressively introduces less error. On the
other hand, the identified features in the input domain are
progressively more similar to the actual curvilinear latent
variables when going from the rigid to the flexible extremes.
In this specific easy example the proposed DRR outperforms
even the flexible SPCA in MSEDR terms. Moreover, since this
particular manifold may not require increased flexibility (and
hence may be better suited to the PPA model), PPA slightly
outperforms DRR in MSEF terms.

Results for the more complex manifold (tilted secondary
curves, in blue) provide more insight into the techniques
since it pushes them (specifically PPA) to their limits. Firstly,
note that the increase in complexity is illustrated by an
increase in the errors in all methods. For instance, linear PCA,
that identifies the same features in both cases, doubles the
normalized MSEs. While the reduction in performance is not
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MSEDR 100 48 ± 2 23.1 ± 0.6 3.3 ± 0.3 17 ± 3
MSEF 100 66.4 ± 0.7 42.1 ± 0.4 49 ± 1 12 ± 1
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MSEDR 269 ± 4 80 ± 40 97 ± 2 26.5 ± 0.3 19 ± 3
MSEF 209 ± 2 85 ± 30 85.6 ± 0.4 69 ± 2 15 ± 4

Fig. 1. Performance of the family of invertible representations on illustrative manifolds of different complexity. Complexity of the considered manifolds
(top panel) depends on the tilt in secondary principal curves along the first principal curve [47]. Sample data are shown together with the first and secondary
principal curves generated by the latent variables (angle and radius) in the input domain. Results of the different techniques for the considered manifolds are
depicted in the same color as the input data (red for the no-tilt manifold, and blue for the tilted manifold). Previously reported representations range from
rigid schemes such as PCA [26] to flexible schemes such as SPCA [6], [33], including practical nonlinear generalizations of PCA such as NLPCA [23] and
PPA [35] which are examples of intermediate flexibility between the extreme cases. Performance is compared in terms of reconstruction error when removing
the third dimension (dimensionality reduction MSEDR numbers are relative to the PCA error in the easy case), and in terms of the mean squared distance
between the identified and the actual curvilinear features (MSEF numbers are relative to the PCA error in the easy case). MSEDR is related to the unfolding
ability of the model (see the Transform rows), and MSEF is related to its ability to get appropriate curvilinear features from an assumed latent cartesian grid
(see the Identified Features rows). We used 104 training samples and optimal settings in all methods. Dimensionality reduction was tested on the 17 × 13
highlighted curvilinear grid sampled from the true latent variables. The features in the input space were identified by inverting a 17× 13 2-d cartesian grid
in the transform domain. This (assumed) latent grid was scaled in every representation to minimize MSEF. Standard deviations in errors come from models
trained on 10 different data set realizations.
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that relevant in SPCA (remember these flexible techniques
cannot be applied in high dimensional scenarios), this twisted
manifold certainly challenges fast generalizations of PCA:
the MSEs dramatically increase for NLPCA and PPA. Even
though NLPCA identifies certain tilt in the secondary feature
along the first curve, it seems too rigid to follow the data
structure. PPA displays a different problem: as stated above, by
construction, the i-th curvilinear feature in PPA cannot handle
relations with the (i − 1)-th curve beyond the prediction of
the mean. This is because the data in all orthogonal subspaces
along the (i − 1)-th curve collapse, and are described by
a single curve depending on a single parameter (univariate
regression). This leads to using the same i-th curve all along
the (i−1)-th feature (note the repeated secondary curves along
the first curve in both, red and blue, cases). This is good
enough when data manifolds have the required symmetry (PPA
performance is over NLPCA in the first case), but leads to
dramatic errors when the method have to deal with relations
between three or more variables, as for the manifold in blue,
where PPA performance is below NLPCA. This latter effect
frequently appears in hyperspectral images, as different (non-
stationary) nonlinear relations between spectral channels occur
for different objects [3], [48], [49].

Finally, note that DRR clearly improves PPA in the chal-
lenging example in blue, mainly because it uses multiple
dimensions (instead of a single one) to predict each lower
variance dimension in the data. As a result, it can handle
non-stationarity along the principal curves leading to better
unfolding (lower MSEDR) and tilted secondary features (lower
MSEF ). This removes the symmetry requirement in PPA and
broadens the class of manifolds suited to DRR.

III. DIMENSIONALITY REDUCTION VIA REGRESSION

PCA removes the second order dependencies between the
signal components, i.e. PCA scores are decorrelated [26].
Equivalently, PCA can be casted as the linear transform
that minimizes reconstruction error when a fixed number of
features are neglected. However, for general non-Gaussian
sources, and in particular for hyperspectral images, PCA
scores still display significant statistical relations, see [3][ch.
2]. The scheme presented here tries to nonlinearly remove the
information still shared by different PCA components.

A. DRR scheme

It is well known that, even though PCA leads to a domain
with decorrelated dimensions, complete independence (or non
redundant coefficients) is guaranteed only if the signal has a
Gaussian probability density function (PDF). Here, we propose
a scheme to remove this redundancy (or uninformative data).
The idea is simple: just predict the redundant information
in each coefficient that can be extracted from the others.
Only the non-predictable information (the residual prediction
error) should be retained for data representation. Specifically,
we start from the linear PCA representation outlined above:
α = Vx. Then, we propose to predict each coefficient, αi,
through a multivariate regression function, fi(·), that takes the

higher variance components as inputs for prediction. The non-
predictable information is:

yi = αi − α̂i = αi − fi(α1, α2, ..., αi−1), (2)

and this residual, yi, is the i-th dimension of the DRR domain.
This prediction+substraction is applied d − 1 times, ∀ i =
d, d − 1, . . . , 2, where d is the dimension of the input. As a
result, the DRR representation of each input vector x, is:

r = R(x) = (α1, y2, y3, . . . , yd)
>.

B. Properties of DRR

a) DRR generalizes PCA: In the particular case of using
linear regressions in fi(·), i.e. linear-DRR, the prediction α̂i
would be equal to zero. Note that this is the result when using
classical (least squares) solution since αi is uncorrelated with
each α1, α2, . . . , αi−1. Therefore fi(α1, α2, . . . , αi−1) = 0,
and then yi = αi, i.e. linear-DRR reduces to PCA.

As a result, if the employed nonlinear functions fi(·) gen-
eralize the linear functions, DRR will obtain at least as good
results as PCA. The flexibility of these functions with regard
to the linear case will reduce the variance of the residuals, and
hence the reconstruction error in dimensionality reduction.

b) DRR is invertible: Given the DRR transformed vector,
(α1, y2, y3, . . . , yd)

>, and knowing the functions of model
fi(·), the inverse is straightforward since it reduces to se-
quentially undo the forward transformation: we first predict
coefficient (i+1)-th from previous (known) coefficients using
the known regression function, and then, we use the known
residual to correct the prediction:

αi = α̂i + yi = fi(α1, α2, ..., αi−1) + yi (3)

c) DRR has an easy out-of-sample extension: Note that
forward and inverse DRR transforms can be applied to new
data (not in the training set) since there is no restriction
to apply the prediction functions fi(·). See Sec. III-C for a
discussion on the selected regression functions in this work.

d) DRR is a volume preserving transform: A nonlinear
transform preserves the volume of the input space if the
determinant of its Jacobian is one for all x [50]. Here we
prove that the nature of DRR ensures that its Jacobian fulfills
this property.

DDR can be thought of as a sequential algorithm in which
only one dimension is addressed at a time through the ele-
mentary transform Ri consisting of prediction and substraction
(Eq. (2)). Yet mathematically convenient to formulate the Jaco-
bian, this sequential view is does not prevent the parallelization
discussed later. Hence, the (global) Jacobian of DRR, ∇R, is
the product of the Jacobians of the elementary transforms in
this sequence times the matrix of the initial PCA as follows:

∇R(x) =

(
d∏
i=2

∇Ri

)
V.

The i-th elementary transform leaves all, but the i-th di-
mension, unaltered. Therefore, each elementary Jacobian is
the identity matrix except for the i-th row, which depends
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on α1, · · · , αi−1 through the derivatives of the i-th regression
function with regard to each component in the previous stage:

∇Ri =



1
1

0
. . . 0

1
−∂fi
∂α1

−∂fi
∂α2

· · · −∂fi∂αi−1
1

1

0
. . .

1
1


Whatever these derivatives are (whatever regression function

is selected), the determinant of such a simple matrix is always
one at every point x. Therefore, the determinant of the global
Jacobian is guaranteed to be one including the PCA transform,
V, which is orthonormal.

e) Parallelization of DRR: Multivariate regression in
DRR is a qualitative advantage over other methods (as dis-
cussed in Section II). However it is computationally expensive.
Fortunately, the proposed DRR allows trivial parallel imple-
mentation of the forward transform. Note that the prediction of
each component is actually done from a subset of the original
PC scores. Therefore, all the prediction functions, fi(·), can
be applied at the same time after the initial PCA step, and
sequential implementation is not necessary. This is an obvious
computational advantage over PPA, which necessarily requires
a sequential implementation, but it represents a qualitative
advantage too, since in PPA each feature depends on the pre-
vious nonlinear features (see Eq. 1), while in DRR nonlinear
regressions only depend on linear features, but not on previous
curvilinear coefficients. As opposed to the forward transform,
the inverse is not parallelizable since, in order to predict the
i-th PCA coefficient, we need the previous linear PCs, which
implies operating sequentially from i = 2, . . . , d.

C. Selecting the class of regression functions

In practice, the prediction functions fi(·) = α̂i reduce to
training a set of nonlinear regression models. In our exper-
iments, we used the kernel ridge regression (KRR) [51] to
implement the prediction functions fi(·), although any alter-
native regression method could be also applied. Notationally,
given N data points, the prediction for all of them is estimated
as:

α̂i =

N∑
j=1

k(α\i,Aj,\i) βj ,

where k(·, ·) is a kernel (similarity) function reproducing a dot
product in Hilbert space, α\i = (α1, . . . , αi−1), A ∈ RN×d
is the matrix containing all the N training samples in rows,
Ai ∈ RN×1 is the i-th column of A to be estimated, A\i ∈
RN×(i−1) denotes a submatrix containing columns 1, . . . , i−1
of A used as input data to fit the prediction model, and Aj,\i ∈
R1×(i−1) represents the feature vector in row j of A\i. In
this prediction function, β ∈ RN×1 is the dual weight vector

obtained by solving the least squares linear regression problem
in Hilbert space:

β = (K+ γI)−1Ai,

where K ∈ RN×N is the kernel matrix with entries Klm =
k(Al,\i,Am,\i), being l,m = 1, . . . , N . Two parameters must
be tuned for the regression: the regularization parameter γ and
the kernel parameters. In our experiments we used the standard
squared exponential kernel function, k(a, b) = exp(− 1

2σ2 ‖a−
b‖2), as it is a universal kernel which involves estimating only
the length-scale σ. Both σ and γ can be estimated by standard
cross-validation.

KRR can be quite convenient in the DRR scheme because
it implements flexible nonlinear regression functions, and
reduces to solving a matrix inversion problem with unique
solution. KRR offers a moderate training and testing compu-
tational cost1, includes regularization in a natural way, and
also offers the possibility to generate multi-output nonlinear
regression. The latter is an important feature to extend the
DRR scheme to multiple outputs approximation. Finally, KRR
has been successfully used in many real applications [51], [55]
including remote sensing data analysis involving hyperspectral
data [27]. However, it should be noted that, even in such
cases, a previous feature extraction was mandatory to attain
significant results [27], [53], [56], [57].

IV. EXPERIMENTAL RESULTS

In this section, we give experimental evidence of the perfor-
mance of the proposed algorithm in two illustrative settings.
First, we show results on the truncation error in a multispectral
image classification problem including spatial context. Then
we evaluate the performance of DRR in terms of both the
reconstruction error and the expressive power of the features
to perform multi-output regression of a challenging problem
involving hyperspectral infrared sounding data2.

Focusing in these two experiments is not arbitrary. The two
applications imply challenging high dimensional data: (1) mul-
tispectral image classification in which contextual information
is stacked to the spectral information highly increases the
dimensionality, and (2) hyperspectral infrared sounding data
used to estimate atmospheric state vectors is densely sampled.
In both cases the input space may become redundant because
of the collinearity introduced either by the (locally stationary)
spatial features or by the spectral continuity of natural sources.
In these experiments, in which d > 35, we compare DRR
with members of the invertible projection family described in
Section II suited to high dimensional scenarios. This implies
focusing on PCA, NLPCA and PPA, excluding SPCA and
SOM because of their prohibitive cost.

A. Experiment 1: Multispectral image classification

For our first set of experiments, we considered a Landsat
MSS image consisting of 82 × 100 pixels with a spatial

1While naive implementations scale as O(N3) for training, recent sparse
and low-rank approximations [52], [53] along with divide-and-conquer
schemes [54] can make KRR very efficient.

2Reproduction of the experiments in this work is possible using the generic
DRR toolbox at, http://isp.uv.es/drr.html

http://isp.uv.es/drr.html
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Fig. 2. Reconstruction error results on the contextual multispectral image classification. Comparison between PCA, PPA, NLPCA and DRR for different
number of extracted features, in both mean absolute reconstruction error (MAE) (left) and relative MAE with respect to PCA error (right), for which going
below the PCA means better results (less error).
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Fig. 3. Classification results on the contextual multispectral image classification. Comparison between PCA, PPA, NLPCA and DRR for different number
of extracted features, in both classification error (left) and relative classification error with respect to PCA accuracy (right), for which going below the PCA
means better results (less error).

resolution of 80m × 80m (all data acquired from a rectangular
area approximately 8 km wide) 3. Six classes are identified
in the image, namely red soil, cotton crop, grey soil, damp
grey soil, soil with vegetation stubble and very damp grey
soil. A total of 6435 labeled samples are available. Contex-
tual information was included stacking neighboring pixels in
3×3 windows. Therefore, 36-dimensional input samples were
generated, with a high degree of redundancy and collinearity.
We address two problems with this dataset: a pure spatio-
spectral dimensionality reduction problem, and the effect of
the reduced dimension in image classification.

1) Reconstruction accuracy: In the first problem, we com-
pare the dimensionality reduction performance in terms of
Mean Absolute Error (MAE) in the original domain. Note
that this kind of evaluation can be used only with invertible
methods. For each method, the data are transformed and

3Image available at http://www.ics.uci.edu/ mlearn/MLRepository.html

then inverted using less dimensions. This is equivalent to
truncate dimensions in PCA. In order to illustrate the ad-
vantage of using a given method instead of PCA, results are
shown in percentage with regard to the PCA performance:
%MAEmethod = 100 MAEmethod/MAEPCA, where MAEmethod
and MAEPCA refer to the MAE obtained with the considered
method and PCA, respectively.

Figure 2 shows the results of the experiment. We divided
the available labeled data into two sets (training and test) with
equal number of samples. The samples of each set have been
randomly selected from the original image dataset. The MAE
of reconstruction in the test set averaged over ten independent
realizations is shown. Several conclusions can be obtained:
Specifically, NLPCA obtains good results when a few number
of extracted features are obtained, but rapidly degrades its
performance with more than 10 extracted features, revealing
a clear inability to handle high-dimensional problems. Note
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that the available implementation of NLPCA4 is restricted to
extract at most 20 features. For a given number of extracted
features, the reconstruction error increases substantially with
regard to PCA (Fig. 2 right). PPA shows better results than
NLPCA, and it is better suited than PCA in all the number
of extracted features. Nevertheless, it is noticeable that DRR
is in all cases better than all the other methods, revealing a
maximum gain of +25% over PCA for very few features.

2) Classification accuracy: The second problem with this
dataset shows the classification results using the inverted data
into the original input space of the different methods. We used
the standard linear discriminant analysis on top of the inverted
data. In all cases, we used 3200 randomly selected examples
for training and the same amount for testing. Test results are
averaged over five realizations, and are shown in Fig. 3. The
performance results indicate similar trends observed in the
reconstruction error in Fig. 2. Essentially, DRR outperforms
the other methods, especially noticeable when a few number
of components are used for reconstruction and classification.
As the number of components increase, DRR and PPA show
similar results. These results suggest that DRR better compacts
the information in a lower number of components, which is
useful for both reconstruction and data classification.

3) Computational load: Table I shows the computation
cost for all considered methods for training and testing5. The
experiments used 3200 training and 3200 test samples, with
d = 36. Two main conclusions can be extracted: NLPCA is the
most computationally costly algorithm for training and DRR
for testing.

TABLE I
COMPUTATIONAL COST LANDSAT DATASET

PCA PPA NLPCA DRR
Training time (sec) 0.05 0.6 7944 1920
Testing time (sec) 0.007 0.16 0.05 35

B. Experiment 2: Regression from infrared sounding data

We here analyze the benefits of using DRR for the esti-
mation of atmospheric parameters from hyperspectral infrared
sounding data with a reduced dimensionality. We first motivate
the problem, and then describe the considered dataset. Again,
we are interested in analyzing the impact of the reduced di-
mensionality both in the reconstruction error and in a different
task, in this case, the retrieval of geophysical parameters.

Temperature and water vapor are atmospheric parameters
of high importance for weather forecast and atmospheric
chemistry studies [58], [59]. Observations from spaceborne
high spectral resolution infrared sounding instruments can be
used to calculate the profiles of such atmospheric parameters

4http://www.nlpca.org/
4While other more sophisticated nonlinear classifiers could be used here,

we are actually interested in this setting that allows us to study the expressive
power of the extracted features. An homologous setting will be also used in
the regression experiments of next subsection.

5Experiments were performed using Matlab on an Intel 3.3 GHz processor
with 48 GB RAM memory. No parallelization was applied on DRR in this
experiment.

Fig. 4. Surface temperature [in K] world map provided by the official
ECMWF model, http://www.ecmwf.int/.

with unprecedented accuracy and vertical resolution [60]. In
this work we focus on the data coming from the Infrared
Atmospheric Sounding Interferometer (IASI), the Microwave
Humidity Sensor (MHS) and the Advanced Microwave Sensor
Unit (AMSU) onboard of the MetOp-A satellite6. The IASI
instrument is the one that poses the major dimensionality
challenge due to its dense spectrum sampling: while MHS
and AMSU spectra consist of about twenty values together,
IASI spectra consist of 8461 spectral channels, between 3.62
and 15.5 µm, with a spectral resolution of 0.5 cm−1 after
apodization [61], [62]. Its spatial resolution is 25 km at nadir
with an Instantaneous Field of View (IFOV) size of 12 km
at an altitude of 819 km. This huge data dimensionality typi-
cally requires simple and computationally efficient processing
techniques.

One of the retrieval techniques available in the MetOp-IASI
Level 2 Product Processing Facility (L2 PPF) is a computation-
ally inexpensive method based on linear regression from the
principal components of the measured brightness spectra and
the atmospheric state parameters. We aim to introduce DRR
in such scheme as an alternative to PCA. In this application
it is important that dimensionality reduction minimizes the
reconstruction error and that the identified features are useful
in the retrieval stage.

We used a collection of 23 datasets of input data from the
different sensors: IASI, MHS and AMSU. The considered out-
put atmospheric variables are diverse, e.g. temperature, mois-
ture, and surface pressure. In each dataset provided by EU-
METSAT, the preprocessed input data were 110-dimensional.
Each input vector consisted of the following: one scalar
indicating the secant of satellite zenith angle, 19 radiance
values from the AMSU and MHS sensors, and 90 values
from the IASI sensor. The data from IASI were actually three
separate sets of 30 PC scores each, from three different IASI
bands. Note that, despite intra-band decorrelation, the vector
elements may still exhibit statistical dependency, which may
be significant even at a second order level, among different
bands and instruments.

6https://directory.eoportal.org/web/eoportal/satellite-missions/m/metop
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The data to be predicted (or output data) is 277-dimensional.
Each output vector consists of the following: 4 data cor-
responding to the surface temperature and moisture, the
skin temperature, and the surface pressure; and 273 data
corresponding to altitude profiles of temperature, moisture,
and ozone at 91 model levels each. An example of surface
temperature is shown in Fig. 4. Data was provided by the
official European Center for Medium-range Weather Forecast-
ing (ECMWF) model, http://www.ecmwf.int/, on March 4th,
2008.

1) Reconstruction accuracy: In this experiment, we study
the representation power of a small number of features ex-
tracted by DRR. The 110 input features are processed with
PCA [26], PPA [34], [35], NLPCA [21], [23] and the presented
DRR method. Here, the quality of the transformation is
evaluated solely with the mean absolute error (MAE) in the
input space between the original signal and the reconstructed
with the most relevant coefficients retained. Figure 5 illustrates
the effect of reconstructing the input data when using PCA,
PPA, NLPCA and DRR for different numbers of components.
On the one hand, as reported in [35], the performance in
PPA is similar or better than in NLPCA in reconstruction
error. On the other hand, it is important to note that results
in absolute and relative terms show that DRR clearly obtains
less reconstruction error than PCA and PPA for an arbitrary
number of features.

2) Retrieval accuracy: Figure 6 illustrates the effect of
using the features either from PCA, PPA or DRR for the
retrieval of the physical parameters described before. We used
linear regression in the features-to-parameters estimation. We
plotted the mean absolute error (MAE) for different number
of features. These plots show the effect of using different
(linear and non-linear) dimensionality reduction methods for
retrieval. Figure 6 shows the results for the first dataset for
illustration purposes (similar results were obtained for the
remainder datasets). Note that using DRR features to estimate
the features has clear benefits. For instance, using just the 20%
of the DRR features obtains the same accuracy as PCA when
using all the components.

3) Computational load: Times for training and testing are
shown in Table II (same computer resources as before). In this
experiment, we took 10000 training and 10000 test samples,
and d = 110. As in the previous experiment, NLPCA and
DRR are the most expensive in training and test, respectively.
In this experiment, however, times for DRR are notably higher
due to the increase in dimensionality but mostly to the bigger
training set.

TABLE II
COMPUTATIONAL COST IASI DATASET

PCA PPA NLPCA DRR
Training time (sec) 0.13 16 65389 14424
Testing time (sec) 0.01 0.3 1.3 1112

V. CONCLUSIONS

We introduced a novel unsupervised method for dimension-
ality reduction via the application of a multivariate nonlinear

regression to approximate each projection from the higher
variance scores. The method is shown to generalize PCA
and to achieve more data compression (smaller MSE for a
fixed number of retained components) and better features for
prediction (less error in classification and regression prob-
lems) than competitive nonlinear methods like NLPCA and
PPA. Besides, unlike other nonlinear dimensionality reduc-
tion methods, DRR is easy to apply, it has out-of-sample
extension, it is invertible, and the learned transformation is
volume-preserving. We focused on the challenging problems
of spatial-spectral multispectral land cover classification, and
atmospheric parameter retrieval from hyperspectral infrared
sounding data. Extension of DRR to cope with multiset/output
regression, as well as impact of the data dimensionality and
noise sources, will be explored in the future.
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He is member of the Asociación de Mujeres Investigadoras y Tecnólogas
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an associate professor (hab. Full professor) in the
Department of Electronics Engineering. His research
is conducted in the Image and Signal Processing
(ISP) group, http://isp.uv.es. He has been Visiting
Researcher at the Remote Sensing Laboratory (Univ.
Trento, Italy) in 2002, the Max Planck Institute
for Biological Cybernetics (Tübingen, Germany) in
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