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Abstract

The procedure to compute the subjective difference between two input images should be equivalent to a straightforward difference
between their perceived versions, hence reliable subjective difference metrics must be founded on a proper perception model.

For image distortion evaluation purposes, perception can be considered as a set of signal transforms that successively map the original
image in the spatial domain into a feature and a response space. The properties of the spatial pattern analyzers involved in these transforms
determine the geometry of these different signal representation domains.

In this work the general relations between the sensitivity of the human visual system and the perceptual geometry of the different
representation spaces are presented. This general formalism is particularized through a novel physiological model of response summation
of cortical cells that reproduce the psychophysical data of contrast incremental thresholds. In this way, a procedure to compute subjective
distances between images in any representation domain is obtained.

The reliability of the proposed scheme is tested in two different contexts. On the one hand, it reproduces the results of suprathreshold
contrast matching experiences and subjective contrast scales (Georgeson and Shackleton, Vision Res. 34 (1994) 1061–1075; Swanson et al.,
Vision Res. 24 (1985) 63–75; Cannon, Vision Res. 19 (1979) 1045–1052; Biondini and Mattiello, Vision Res. 25 (1985) 1–9), and on the
other hand, it provides a theoretical background that generalizes our previous perceptual difference model (Malo et al., Im. Vis. Comp. 15
(1997) 535–548) whose outputs are linearly related to experimental subjective assessment of distortion.q 1999 Published by Elsevier
Science B.V. All rights reserved.
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1. Introduction

The design of image difference measures, reproducing the
subjective distance judgements by an average observer, has
both applied and academic interest.

On the one hand, such perceptually correlated difference
measures have a key importance in the design of signal
processing algorithms in visual communication systems to
be evaluated by human observer [1]. Observer-oriented
imaging systems, as multimedia broadcasting, medical
image database or surveillance devices for target detection,
should minimize theperceptual distortionof the output. The
measure of distortion is of central importance in image and
video coding techniques, motion estimation procedures and
adaptive noise removal for image enhancement. Hence, they
can be perceptually optimized if proper subjective metric is
used to guide their design.

On the other hand, the reproduction of the observer’s
opinion in a complex task such a distortion assessment is
a challenging problem that can be used to discriminate
between alternative perception models. For instance, in
the related context of color difference assessment, the
empirical ad hoc color difference formulae, such asCIELab,
are founded on color appearance models to obtain appro-
priate results [2]. Moreover, any proposed color vision
model must give rise to a reliable distance expression to
be valid.

Measuringsubjective difference between input images
defined in the spatial domain should correspond to the
evaluation of thedifference between the perceived images.
This implies that general purpose subjective metrics should
emerge from models including the behavior of the mechan-
isms underlying visual perception.

To this end, signal processing in the visual pathway can
be considered as a set of signal mappings from the original
spatial domain to a visual mechanism’s response domain.
The whole transform can be viewed as a two-stage process:
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in the first place, a low-level feature extraction process is
carried out and then, a response-to-features transform is
performed [3–7] (see Fig. 1).

This low-level two-stage process considered here is the
first bottle neck to the visual information flow in the image
perception. Hence, it can be used in the general purpose
image-independent applications to define the upper bound
of image distortion to be noticeable. Obviously, higher-level
interactions between the responses occur, but they are
outside the scope of this work due to their complexity and
their scene content dependent nature.

It is commonly assumed that the early feature extraction
process (including the local extraction of texture and edge
orientation at different scales) is performed through the
application of a set of Gabor or wavelet band-pass filters
[4–11]. This multichannel filtering process maps the origi-
nal signal to a local frequency-texture domain [12–13].

The second stage is performed through a set of non-linear
mechanisms tuned to certain regions of the feature space
(tuned to certain frequency bands and spatial positions).
These mechanisms respond to thestrength(amplitude or
contrast) of a given feature in the input signal [3–6].

Taking into account that a given local frequency trans-
form has been computed at the first perception stage, the
psychophysical and physiological experimentation try to
elucidate the non-linear response of the mechanisms tuned
to the different basis functions of such a paradigm [14–16].
The individual cells of the Magno and Parvocellular path-
ways [17–18] are the actual biological hardware of these
abstract analyzers. The models of summation of the indivi-
dual responses of these cells have to reproduce the global
psychophysical properties.

The different sensitivity, relative gain, and non-linearity
of the spatial analyzers emphasize some regions of the
feature space while reducing the perceptual importance of
other regions. Hence, theperceptual geometryof any

representation domain (the procedure to compute subjective
differences between two images in that domain) should be
computable from the geometry in other domain and the
properties of the transform mechanisms.

Therefore, if reliable data or a successful model of the
mechanism’s response is attached to the proper geometric
formalism, a complete scheme to compute image differ-
ences in the desired representation domain will be obtained.

Within this framework, two main contributions are
presented in this paper:

(a) Some general relations between the perceptual
geometry of the different representation domains are
proposed. An explicit expression of the perceptual metric
tensor as a function of the gradients of the contrast
response and the feature extraction transform is derived.
It is shown how this description of the perceptual geome-
try can be used with a wide class of contrast perception
models or data.
(b) As a practical application, the general formalism is
reduced to a particular image distortion measure through
a novel physiological model of contrast response summa-
tion of cortical cells. The proposed response model takes
into account the joint contributions of the parvo and
magnocellular pathways of the human visual system
with a frequency-dependent pooling exponent and repro-
duces the psychophysical contrast incremental threshold
data of sinusoidal gratings.

The reliability of the whole scheme (metric formalism,
together with a particular physiological response model) is
tested in two different contexts. On the one hand, it repro-
duces the results of suprathreshold contrast matching
experiences and subjective contrast scales [19–22], and on
the other hand, it provides a unified theoretical background
to some linear and non-linear transform-based perceptual
difference models [23–27]. It also generalizes our
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Fig. 1. Scheme of the two-stage process of low-level perception. The original signal in the spatial domain,ix, is mapped into a transformed domain of features
p. In the second stage,R, a number of specialised mechanisms non-linearly responds to the amplitudeIpi

of the different featurespi in the input image, giving
rise to the response representation,rp.



previously reported distortion assessment algorithm [28]
whose outputs are linearly related to experimental subjec-
tive assessment of impairment.

The structure of this paper is as follows: in Section 2, the
general formalism relating the sensitivity and the perceptual
geometry of a given representation domain with the trans-
forms and non-linearities of the visual mechanisms is
presented. The physiological model is developed and its
psychophysical consequences outlined in Section 3. In
Section 4, using the model to particularize the formalism,
the non-uniform sensitivity of the HVS in a particular
frequency-and-contrast domain and the corresponding
expression to compute subjective image differences are
presented. Section 5 shows how the complete scheme repro-
duces experimental data of contrast perception and subjec-
tive quality assessment. Some final remarks are made in
Section 6.

2. Sensitivity of the visual system and perceptual
geometry in different representation spaces

In this section, some usual psychophysical terminology is
geometrically formalized, and the relations between the
methods to compute perceptual image differences and the
experimental data or response models are derived. These
relations will be used to obtain the perceptual metrics
from the non-linear contrast response model of Section 3.
The same definitions could be applied to direct psychophy-
sical data of incremental threshold in any transform domain.
The formalism can deal with non-linear feature extraction
transforms and with complex post-transform masking
schemes.

2.1. Basic terminology

2.1.1. System response and representation domains
As stated above (Fig. 1), the standard formulation of

contrast perception models [3–7] assume that the system
response to a given input image is the result of changing
the representation domain through a transform,T, followed
by a non-linear response transform,R:

Response; ix [ Rm!T Ip [ Rn!R rp [ Rn
: �1�

The spatial domain representationof the signal is the
input luminance function atm points in the image plane,
ix � �ix1

; ix2
; ix3

;…ixm
�. The feature space representationof

the signal is the transformed function
Ip � �Ip1

; Ip2
; Ip3

;…Ipn
�, where each parameterpi represent

a particular basis function of the transformT. Ipi
gives the

strengthof the featurepi in the input signal. Theresponse or
neural representationof a signal is the pointrp �
�rp1

; rp2
; rp3

;…; rpn
� obtained fromIp after the application

of the response functionsRpi
�I � of the detectors tuned to

each featurepi. Note that, in general, this formulation may
include changes in the dimensionality of the representation,

and masking between features. Each response component,
rpi

, is a function of every component of the signal in the
feature space representation, i.e. the response of the detector
of the featurepi not only depends on thecontrast of
the basis functionpi in the input signal,Ipi

; but it may
also have contributions from the other components:
rpi
� Rpi

��Ip1
; Ip2

; Ip3
;…; Ipn

��.

2.1.2. Perceptual distance between images
Given two input images represented in the response space

by rp and rp 1 Drp, respectively, the perceptual difference
between them must be a function of the unidimensional
differences,Drpi

, i.e. a function of the response of the indi-
vidual detectors tuned to each feature of the transform
domain. Ab -order norm of the difference vector is widely
used to take into account the contribution of each individual
detector [29–30]:

D�r ; r 1 Dr� � iDrib �
X
pi ; pj

�Dr pj �b=2W�r�pi
pj
�Drpi

�b=2
0@ 1A1=b

;

�2�
whereb is the so-called summation index. This expression
allows mutual interactions between the different specialized
detectors through the crossed termspi ± pj .

A perceptual hierarchy between the different dimensions
(features, textures or frequencies) at a given pointr accord-
ing to the weights of themetric matrix, W(r), which control
the contribution of each unidimensional distortion to the
global perception of distortion can be established. The
perceptually relevant features of the signal are those with
a significant weight. Intuitively, it can be seen that there is a
close relationship between metric and sensitivity.

As we shall see, point-dependent metrics can be used to
describe domains where the sensitivity is non-uniform.

While the metric controls the relative importance of each
variation in the detector response to the global perception of
change in the input, the summation index controlshow to
sumthese different contributions. Basically, three different
behaviors are obtained as a function of the summation index
[30]: linear behavior (b � 1), vectorial behavior (b � 2),
and peak detection behavior (b! ∞).

Considering a constant value of distance in Eq. (2), one
has the equation of equal distortion locus at a pointr. In this
superquadric equation [31], the values of the metric deter-
mine the relative length and orientations of the principal
axis of the quadric whereas theb parameter determines
the convexity of the loci.

The different perceptual models agree in the uniformity
of the response space, and differ in the pooling exponent,b ,
and in the expression of the non-linear transformR. The
simpler models [3,29] assume thatR functions are compu-
table from the experimental data about amplitude JNDs of
isolated basis functions. In the more recent and complex
models [6], the non-linearity of the response to each basis
function depend, to a certain extent, on the amplitude of the
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other frequency coefficients. The value of the exponentb is
fixed to 2 in some schemes [3] (or to 2.4 in Ref. [9]), assum-
ing the so-called ideal observer approximation [6,29], while
a greater value (b , 4) is used in other special cases [6].

For mathematical convenience, a vectorial summation,
b � 2, will be assumed here in every representation
space. This constraint does not substantially affect the
consequences obtained from the distortion measure
because, as we shall see, our interest will be focused on
the relative length of the principal axis of the locus at a
given point and on the relative volume of the loci at different
points of the domain, which exclusively depend on the
metric, and not on the summation index.

It will be assumed that in the neural representation space,
all unidimensional increments are equally weighted and
there is no cross-correlation between the detector response
in the distortion computation, i.e. euclidean metric will be
assumed in the response domain [3]. This assumption is
consistent with the equivalence of perception and neural
representation at this level: once in the response representa-
tion, all regions and directions of the domain should have
the same perceptual importance. Any way, the assumption
of an identity metric for the response space does not imply
any constraint to the final model because any non-unifor-
mity or interaction between the responses could be included
as interdependencies between the components ofIp and non-
linearities in the functionsRp(I).

In this way, the perceptual difference between two
patterns in the considered domains (response domain,
feature domain and spatial domain) can be expressed as
follows:

D2�r ; r 1 Dr� � DrTDr ; �3�

D2�I ; I 1 DI � � DITWDI ; �4�

d2�i; i 1 Di� � DiTwDi: �5�
The invariance of the perceptual difference with regard to

the representation domain is the key to obtain the relation-
ship between the properties of the mechanisms of the visual
pathway and the metric in each domain. In Section 2.3, it is
shown how the metrics in the spatial domain and in the
feature space can be obtained from the non-linear response
of the feature detectors.

2.1.3. Incremental thresholds and discrimination
boundaries

The incremental thresholds in the neighborhood of a
given point,i0, I0, or r0, are the variationsDi(i0), DI(I0), or
Dr(r0), to be added to the given patterns to make the result
just discriminable from the original signal.

The discrimination boundaries in the neighborhood of a
given point are the loci of points that are at just noticeable
distance (JND) from the central point.

Assuming the distance expressions (3)–(5), the

discrimination boundaries in the response space will be
spheres of uniform radius all over the domain, while in
the other representation spaces, their shape and volume
will depend on the transformsT andR.

2.1.4. Sensitivity and resolution in a representation domain
The sensitivity of the system at a given point of a repre-

sentation domain is proportional to the inverse of the eucli-
dean volume of the ellipsoidal discrimination boundary at
that point. The sensitivity is high in the regions where a
small variation in the signal is enough to put the represen-
tative point beyond the discrimination boundary. This defi-
nition is equivalent to a definition of resolution. The system
is named to have more sensitivity in the regions where the
resolution (number of discriminable patterns per unit of
area) is bigger.

As the volume of an ellipsoid defined by a certain quad-
ratic form is proportional to the product of the eigen-values
of the inverse of this matrix, the sensitivity at the different
representation spaces can be defined by:

S�r� � ������������
det�W�r��p � 1; �6�

S�I � � ������������
det�W�I ��p

; �7�

s�i� � �����������
det�w�i��p

: �8�
A definition of the sensitivity exclusively based on the

volume of the discrimination loci does not emphasize the
fact that the discrimination may be dimension-dependent. It
may depend on the feature (e.g. it may depend on the
frequency).

This is particularly important if linear transformations
and responses are considered, such as for example in the
classical models that use Fourier transforms and linear filter-
ing [32], or more recently proposed Gabor or Wavelet trans-
forms and linear filtering [11]. In these cases, the ellipsoidal
discrimination boundaries are scaled and rotated in the same
way all over the domain, thereby keeping a constant volume
for every point of the representation. In such cases, it is
desirable to have a definition of sensitivityin each dimen-
sion pi ; Spi

�r�; Spi
�I � or Sxi

�i�, inversely proportional to the
incremental thresholds in the direction of the axispi of the
representation.

Spi
�r� �

��������
W�r�pi

pi

q
� 1; �9�

Spi
�I � �

��������
W�I �pi

pi

q
; �10�

Sxi
�i� �

�������
w�i�xi

xi

q
: �11�

In linear characterizations of the response in feature
domains with frequency meaning, the sensitivity,Spi

�I �; is
the classicalContrast Sensitivity Function[32], valid for
near-threshold amplitudes�Ipi

p�.
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2.2. Response, perceptual metric and sensitivity from
incremental thresholds

Assuming that certain local frequency transform has
been carried out, the psychophysical experimenta-
tion use the basis functions of the transform to

measure the incremental thresholds in the axis
directions of the feature space, varying the amplitude
of the input stimulus until the observer detects the
changes.

In this section, we show how to use these experimental
data to compute the system characterization: the sensitivity
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Fig. 2. Two-dimensional example of the effect of the transformsT and R in the metric and in the shape of the discrimination boundaries according to
expressions (16) and (18). The discrimination boundaries at a set of corresponding points in the different representation spaces are shown on the right. The
expressions and the shape of the transforms used in this example are shown on the left.



functions and the perceptual metric of the representation
spaces.

2.2.1. System response and feature incremental thresholds
Consider a linear approximation of the response function,

R(I), in a neighborhood of a point,I0:

R�I0 1 DI � � R�I0�1 7R�I0�DI : �12�
In this case, the variation of the response when varying

the signal in the feature space is:

Dr � 7R�I0�DI ; �13�
where

7R�I0� � :

2Rp1
�I �

2Ip1

… 2Rp1
�I �

2Ipn

..

. ..
.

2Rpn
�I �

2Ip1

… 2Rpn
�I �

2Ipn

0BBBBBBBB@

1CCCCCCCCA

��������������
I � I0:

Considering the JND and substituting the increment,
Dr � 7R�I0�DI ; in the expression of the difference in the
response domain (Eq. (3)), we have an equation that relates
the experimental incremental thresholds in the feature space
with the gradient of the response function:

DIT7RT7RDI 2 JND� 0: �14�
With the proper experimental measures of incremental

thresholds, this system of equations can be solved numeri-
cally as an optimization problem, searching for the para-
meters7R that fulfill the constraint (14) [33].

As proposed in a color vision context [34], this differen-
tial characterization of the detection mechanisms, through
the local gradient7R�I �, is really powerful if the response
representation is additive, not necessarily linear. If the
response is additive, assuming a certain value of the
response of the system at a given point, such as the origin,
the response of the system at any point can be obtained by
just adding the differential variations obtained from Eq.
(14).

r�I � � r�I0�1
ZI

I0

7R�I 0� dI 0: �15�

In the linear case, this expression could be further simpli-
fied as the gradient of the response would be constant.

2.2.2. Perceptual metric and non-linearities in the response
Comparing the expressions (4) and (14) in the case of

incremental thresholds and JNDs, it is clear that the gradient
of the response function has the role of metric in (14), hence

W � 7RT7R: �16�
This is consistent with the tensorial character of the

metric. The general definition of a tensor establishes that
given a generic co-ordinate change,h, the coefficients of a

tensorG defined in the transformed domain are related to
their expression,g, in the original domain through [35]:

g� 7hTG7h �17�
which reduces to expression (16), taking the identity as
metric in the neural representation as assumed above.

Reasoning in the same way, in the case of the transform
from the spatial domain to the feature representation, it
holds that

w� 7TT7RT7R7T �18�
From expression (16), it can be stated that perceptual

distances in the feature domain fully rely on the non-linear-
ities of the responseR. The perceptual effect of the ampli-
tude variations in the feature space, and the volume of the
discrimination ellipsoids will depend on the slope of the
response function. It will be small in smooth response
areas while it will be bigger in the rapidly changing
response areas. If the response is linear, the gradient is
constant and this implies a point invariant metric (and
uniform sensitivity).

The orientation of these discrimination boundaries will
also depend on the characteristics of the response function.
If the response of the detector of each featurepi exclusively
depends on the amplitude of that feature in the input signal,
Ipi
; then the gradient matrices,7R, and the metric,W, will be

diagonal, and the discrimination ellipsoids will be aligned
with the axis of the representation. If some interaction exists
between features, Eq. (16) implies that the metric will be
non-diagonal and the ellipsoids will be rotated accordingly.

Fig. 2 shows an explicit example of a system with 2D
inputs (only two pixels in the spatial domain) and a 2D
feature space. In this case, the feature extraction transform
is just a linear change of coordinates (such a Fourier trans-
form or a projection over a basis of wavelet functions). The
detectors tuned to each feature have different non-linear
response without masking between the features (such as in
independent multichannel schemes).

The discrimination boundaries at a set of corresponding
points in the different representation spaces are shown in the
figures.

As stated above, an euclidean metric is assumed in the
response domain. It can be seen how the non-linearities of
the response functions,R, determine the non-uniformities of
the feature domain as expressed in Eq. (16). As there is no
masking between the features,7R is diagonal, and then, the
discrimination regions are aligned with the axis.

The non-linear responses imply that the gradient is point-
dependent, and the shape and the volume of the discrimina-
tion regions become non-uniform in the feature domain.
Note how the regions with high slope response (low values
of Ip1

and high values ofIp2
) are dilated in the response

representation emphasizing their perceptual importance.
However, the regions with a smooth response (high values
of Ip1

and low values ofIp2
) are compressedby the R
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Fig. 3. Sensitivity of the system described in the example of Fig. 2 in the different representation domains.



transform, giving relatively low volume regions in the final
representation.

As theT transform is linear, the discrimination regions in
the space domain are uniformly scaled and rotated to give
the ellipsoid regions of the feature domain.

2.2.3. Sensitivity and non-linearities in the response
A straightforward substitution of the expressions of the

perceptual metric in the definitions (6)–(11) gives the rela-
tion between the sensitivity at any point of the representa-
tion domains as a function of the gradients of the response
transforms:

S�r� � �������
det�I �p � 1; �19�

S�I � �
����������������������
det�7R�I �T7R�I ��

q
; �20�

s�i� �
�������������������������������������������
det�7T�i�T7R�T�i��T7R�T�i��7T�i�

q
� �21�

in the same way, the sensitivity in each dimension is:

Spi
�r� �

���
I pi
pi

q
� 1; �22�

Spi
�I � �

������������
7Rpk

pi 7Rpi
pk

q
; �23�

sxi
�i� �

�������������������������
7Tpk

xi 7Rpi
pk7Rpm

pl 7Txi
pm

q
; �24�

where summation is assumed over repeated indices.
Fig. 3 shows the sensitivity surfaces in the different repre-

sentation domains for the example of Fig. 2. The assumption
of euclidean metric in the response domain implies uniform
sensitivity in this domain. The non-linearities in the
response functions give rise to dilations and compressions
of the regions of the feature space when transformed byR.
This implies high sensitivity in the dilated regions and low
sensitivity in the compressed ones. The linear feature
extraction transformT rotate and scale the sensitivity
surface, maintaining the relative differences in sensitivity
between corresponding points in the spatial domain and in
the feature domain. The surface shown in Fig. 3(b) corre-
sponds to the surface in Fig. 3(a) over the considered discri-
mination ellipsoids: the other part of the surface is outside of
the considered range in Fig. 3(b) and (c).

2.3. Derivation of simple perceptual metrics from linear
perception models

The formalism presented in the previous sections repro-
duce the metrics described in the papers of Nill [23], Gran-
ger [24] or in the review of Barten [25], when the low-level
processing of the visual system is modeled as a linear, space
invariant system. The metrics that include the CSF or other
qualitatively similar Fourier filter show high correlation in
the opinion of the observer [28]. Assuming a linear beha-
vior, the system can be described by a weighting function

over the coefficients of a linear transform such as the Fourier
transform [32] or a wavelet transform [11]. This coefficient-
selective weighting function has been interpreted as the
sensitivity of the system in each dimension of the trans-
formed domain,Spi

(the CSF in the Fourier domain or its
equivalent in other basis domain).

If no interaction between features is considered, which is
a good approximation when using wide band channels such
as in a Gabor or wavelet transform [4,8–10], the transformR
will be a diagonal matrix containing the linear weights (the
sensitivity function) in the diagonal:Rpi

pi
� Spi

.
Under these assumptions, the transformsT and R are

linear, and their gradients equal to the transform matrices.
Hence, the expressions for the metrics in the frequency and
the spatial domain are:

W � RTR; �25�

w� TTRTRT; �26�
where the orthogonal matrixT contains the basis functions
[36], and the non-zero coefficients of the diagonal matrixR
are given by the sensitivity weights.

Note that the perceptual relevance of each feature in the
frequency domain, the diagonal of the metricW, is given by
the square of the sensitivity function. Moreover, the metric
in the spatial domain (the perceptual effect of the surround-
ing on a given point) is given by the autocorrelation of the
impulse response (the inverse transform of the square of the
sensitivity filter function) which is point invariant.

In this case, the perceptual difference between two
images,i and i 0, is:

d2�i; i 0� � �i 2 i 0�TTTRT�TT21�RT�i 2 i 0�; �27�
where we have used the orthogonality of the transform
(TT � T21), such that

d2�i; i 0� � �TTRT�i 2 TT�RTi0�T�TTRT�i 2 T�TRTi0� �28�
and taking into account that, in this model, the perceived
image,ı̂, is the inverse transform of the weighted spectrum,
ı̂ � TTRTi; we will have:

d2�i; i 0� � �ı̂ 2 ı̂ 0�T�ı̂ 2 ı̂ 0�: �29�
In this way, the perceptual difference between two input

images, i and i 0, is given by the euclidean difference
between the filtered versions,ı̂ and ı̂ 0, as reported in the
approaches that use qualitative reasoning [23–25].

d2�i; i 0� �
X
xi

�ı̂xi
2 ı̂ 0xi

�2 �
X
fi

�Sfi Ifi 2 Sfi I
0
fi �2; �30�

whereSfi is the filter or sensitivity function, andI andI 0 are
the expansions of the imagesi and i 0 in the selected basis.

In short, the application of the general distance definitions
(Eqs. (3)–(5)) and the metric dependence with the response
(Eqs. (16) and (18)) to a particular linear perception model
gives the expected results: the differences in the frequency
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domain must be weighted by the filter function, and the
perceptual importance of the spatial surround is related to
the impulse response of the system.

2.4. Perceptual metrics from complex perception models

Although in the distortion measure, proposed in this paper
(Section 4), we restrict ourselves to post-transform non-line-
arities without inter-coefficient masking (Section 3), in this
section some comments will be made about the application
of the presented formulation (Eqs. (14)–(24)) to the more
general contrast response models including post-transform
feature interactions [6].

In the more recent contrast perception models, the cross-
coefficient interactions are modeled by a normalization of
the responses by a pooled signal over the channels [6].

Rpi
�I � � I n

pi

B 1
X
pj

Hpipj
Im
pj

� I n
pi

Ppi

; �31�

whereIpi
is the response of the Gabor filterpi, n andm are

the excitatory and inhibitory exponents (withn. m, andn ,
2), and the inhibitory pooling is controlled by the kernel,
Hpipj

, which gives the effect of the featurepj in the response
pi. To obtain the metric in the feature domain, the gradient
matrix of the response function has to be computed (Eq.
(16)):

7R�I �pipj
� dRpi

�I �
dIpj

� n
In21
pi

Ppi

dpipj
2 m

In
pi

Im21
pj

P2
pi

Hpipj
: �32�

Note that the gradient is input-dependent and has a posi-
tive diagonal term,d , given by the excitatory contribution,
and a negative (inhibitory) term proportional to the kernel
H. As there exist interaction (masking) between coefficients,
the kernelH and the corresponding metricW in the feature
space are non-diagonal.

The presented formalism considers masking between
features in the distortion measure as non-diagonal elements
in the metric of the feature space. It can also be used to
compute perceptual metrics in the spatial domain even
with non-linear feature extraction transforms using the
gradients of the transforms.

The main restriction of the proposed formalism is the
ideal observer assumption, i.e.b � 2 in the Minkowski
summation in the response domain [6]. Vectorial summa-
tion of the distortions in each dimension has to be assumed
to use the tensor calculus to derive the relations between the
metric in the different representations. This choice implies a
restriction of the convexity of the JND regions (b � 2
implies ellipsoids), but does not restrict more important
characteristics as their relative volume or orientation. The
presented formulation can be applied to a wide range of
contrast perception models including non-uniform sensitiv-
ity, non-linear transforms and masking between features.

In this work a physiological model of the non-linear

response to the contrast of periodic patterns is proposed to
be used with the presented formulation to obtain a particular
distortion measure. This model and the geometric formalism
provide a theoretical foundation to our previous non-linear
perceptual difference measure based on the empirical bit
allocation of the human visual system in a frequency
domain [28].

3. Non-linear physiological model of contrast response
summation

In the usual psychophysical experimentation, sinusoidal
patterns of different frequency are used to measure the
contrast incremental thresholds. Hence, a frequency feature
space is assumed through a Fourier transformT. In this case,
the strength of each feature, of each frequencyfi, is the
contrast (the normalized amplitude) of the sinusoidal grat-
ing of frequencyfi.

Contrast incremental thresholds were usually measured
for fixed frequencies as a function of the background
contrast, giving a function,DCfi �Cfii �; named Contrast
Discrimination Function (CDF). The CDF was described
as dipper-shaped. As background contrast increases, the
contrast incremental threshold decreases, giving a minimum
value lower than the contrast absolute threshold when the
pedestal contrast is close to the absolute threshold [15–16].
After this behavior in the low contrast range, contrast incre-
mental threshold rises exponentially with background
contrast. The slope of CDF is a log–log plot, and varies
from a low value at low spatial frequencies to a value
near unity at high spatial frequencies [37–38].

The physiological evidence of the existence of two main
parallel pathways with different functions [17,39–41] for
the information processing in the human visual system
can help us to understand the observed differences. The
parvocellular pathway is specially sensitive to high
spatial-low temporal frequencies, giving sustained
responses, whereas the magnocellular pathway drives the
transient responses of human visual system to low
spatial–high temporal frequencies [18,42]. A wide variety
of topics relating the psychophysical experiments, which
correlates with the properties of the physiological pathways,
can be found in the literature [17,42–44].

A change in the linear part of the CDF is observed if the
spatiotemporal characteristics of the stimuli used in the
experience facilitates the response of magno or parvocellu-
lar pathways [37,45,46]. These results seem to be consistent
with the hypothesis of a dual mechanism for signal proces-
sing in the human visual system, mediated by two physio-
logical pathways, the magnocellular and the parvocellular.
If such is the case, a theoretical prediction of the CDF
curves may be derived from the contrast response functions
(CRF) of the cells of these pathways.

Here, we propose a frequency-dependent model of
response summation of the cells of the parvocellular
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pathway to reproduce the psychophysical contrast discrimi-
nation data of each global frequency detection mechanism.

The contrast response function of an individual cell of the
parallel pathways can be fitted as a Naka–Rushton function
[47–48]:

Rfi ;a�Cfi � � R0
fi

Cn
fi

Cn
fi

1 an
fi

; �33�

whereR0
fi is a constant related to the saturation level of the

cell,afi is the semisaturation constant and the exponentn is
the parameter that controls the slope of the CDF.

Nevertheless, the extensive works of Albretch and Hamil-
ton [47] and Sclar et al. [48] studying the contrast response
of cells at different stages of the visual system, give us a set
of fitting parameters of the response function. These para-
meters show significant statistical differences between the
different cells in a pathway, speciallyafi , the parameter with
more distortion. This implies that the global contrast
response of the system cannot be derived from the response

expression of a single cell. In this way, a contrast response
summation model must be proposed to collect all the contri-
butions from each cell to give a global response that repro-
duces the CDF data.

The experiences of small lesions in the LGN in monkeys,
affecting the magno or parvo pathways suggests that the
contrast pattern processing is mediated by the parvocellular
pathways, whereas the magnocellular pathway has only a
minor contribution [40–41]. The role of the magnocellular
pathway is to mediate the temporal aspects of perception,
such as motion and high frequency flicker detection [18].

If this be the case, it is possible to suggest that the discri-
mination task can be carried out fundamentally with the
parvocellular contributions. The change in the slope of the
CDF would then be related to the spatiotemporal sensitivity
of this pathway. To test this hypothesis, we can assume that
the different,afi -dependent cell responses are combined by
probability summation, to yield the global response,Rfi �Cfi �.
This global response should control the performance of the
detection mechanism of frequencyfi [30]:

Rfi �Cfi � �
X
a

�Rfi ;a�Cfi ��q
 !1=q

�34�

whereq is the probability summation index.
This expression is similar to Eq. (2), which combines the

responses of the different feature detection mechanisms, but
note that Eq. (34) describes the combination of different
response cells pertaining to a single frequency detection
mechanism. Taking theafi distribution values for the parvo
pathway, we can calculate the combined response of the
cells at V1 level for different values ofq (from q� 1 to
q� 5). The contrast incremental thresholds can be derived
from Eqs. (13) and (34), yielding

DCfi �Cfi � �
nDrfi

R0
fi

C2n21
fi

X
a

Rfi ;a�Cfi �q
 !�1=q�21

�
X
a

Rfi ;a�Cfi �q11an

 !
; �35�

where Drfi is the response incremental threshold in the
neural representation, which has been assumed to be a
constant for every frequency and amplitude.

If we derive the CDF from the response curves, we obtain
curves that reproduce the behavior of the CDF even in the
low-contrast range. A linear behavior in the medium–high
contrast range (above 10%) is observed, with the slope
increasing with the value ofq. Fig. 4 shows the set of
CDFs generated for differentq values. Fig. 5 plots the varia-
tion of the slope of the linear part of the CDF with the
probability summation constant. We observe that for values
of high probability summation (q < 1), the exponent of the
CDFs have a value of 0.4. The slope reaches unity whenq
increases toq < 4.

These psychophysical results suggest that only one
mechanism (with spatiotemporal sensitivities similar to
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that of the parvocellular pathway) drives the response of the
system for contrast discrimination. When the spatio-
temporal characteristics of the stimulus are not adequate
for this mechanism, i.e. short duration stimuli or low spatial
frequencies, the response is obtained from the linear
summation of the pooled individual responses. Stimuli
whose characteristics allow a good response from the parvo-
cellular pathway, give a response with low probability
summation. In this case, the response of the system is
mediated by the most sensitive cells to the stimuli, and a
slope close to unity is obtained. Although vector models of
interaction (q� 2) are the most common, values ofq around
4 have been proposed by other authors [49].

The variation of the constantq can be interpreted as an
actual gain control mechanism, by varying the combined
response curve as a function of the input stimulus in order
to provide a reliable response. This model can explain in a
simple way the variation of the slope of the CDF with spatial
frequency, in contrast with previous models of contrast
discrimination. From Fig. 5, we will obtain an empirical
expression of the relationship,q� q�fi�:

qfi � q0
f a
i

f q
i 1 b

 !
�36�

q0, a andb being the best fitting constants.

4. Non-linear sensitivity and subjective distortion in a
frequency domain

In this section, a novel distortion measure is derived from
the presented formalism particularized through the proposed
contrast response summation model.

This distortion measure weighs the differences between
the amplitudes of the feature representation coefficients by a
non-uniform sensitivity function related to the number of
discriminable patterns per unit of area in the frequency and
contrast domain: theInformation Allocation Function
[28,50].

As in the proposed model, the response to each frequency
pattern is not affected by any other basis pattern in the input
image, the linear approximation ofR, the gradient7R is a
point-dependent diagonal matrix. The elements of the diag-
onal of7R�I � are the slopes of the unidimensional response
curvesRfi �Ifi �; or Rfi �Cfi �, at the normalized amplitudeIfi
(contrastCfi ) for each coefficientfi.

Sensitivity functions in the spatial and in the
frequency domain can be derived from the response
model (Eqs. (34) and (36)) and from the relations (20) and
(21). In this case, a sensitivity value can be obtained for
each 2D pattern.

In the same way, the sensitivity in each dimension
through the expressions (23) and (24) can also be obtained.
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As the gradient is diagonal, only one term of the sum in
the expression (23) is non-null, so the sensitivity for
each transform coefficient as a function of the amplitude
is just the slope of the corresponding unidimensional
response curve at that amplitude point,Sfi �Ifi � �
2Rfi �Ifi �=2Ifi . The sensitivity at each position is more
difficult to analyze because the transformT mixes the
contributions of all the transform coefficients for every
spatial position.

Fig. 6 shows the sensitivity function for each dimension
of the frequency feature domain at different levels of
contrast for each coefficient. The contrast non-linearities
of the response model imply the non-uniformity of the

sensitivity for every coefficient. The particular result
shown here, the decrease of the incremental thresholds in
the low contrast region for every frequency has been
approximated to a constant value equal to the absolute
threshold as in Refs. [5,50], so the actual sensitivity surface
should be slightly higher in the low, over threshold, contrast
region.

As stated above, the sensitivity is proportional to the
number of discriminable patterns of a given frequency per
unit of amplitude (contrast). The non-uniformity in the
resolution shown in Fig. 6 was interpreted as a perceptual
information allocation function.

A system that distinguishesn different values of a signal
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Fig. 7. (a) Curves of equal perceived contrast of Georgeson et al. [19], (b) equivalent results generated by the proposed model.



is said to use log2 (n) bits to encode the signal [51]. Hence, if
the sensitivity Sfi �Ifi � is proportional to the number of
discriminable patterns per unit of contrast, the bits used
by the system to encode each region of the frequency and
contrast domain will be related to the logarithm of the
sensitivity function. This is the reason why the sensitivity
function Sfi �Ifi � has been calledInformation Allocation
(IAF) of the human visual system [28,50]. It has been
used to design a perceptually matched quantizer for image
and video compression [50,52]. The IAF has also been used
to design a perceptual distortion metric to weight the
differences between the amplitudes of a quantizedCosine
Transformof the input images [28]. In this case, qualitative
reasonings were used to construct the difference
expression.

Now, a strictly derived expression is obtained from Eqs.
(4) and (16), and the model of contrast response. As7R�I � is
diagonal,W(I) will also be diagonal, and the metric element
corresponding to each frequency component will be
W�I �fifi � �Sfi �Ifi ��2. So, given two imagesi and i 1 Di,
with frequency transformsI and I 1 DI , the perceptual
difference between them will be given by:

D2�I ; I 1 DI � � DITWDI �
X
fi

�Sfi �Ifi ��2DI2
fi : �37�

5. Suprathreshold contrast and distortion measurement
results

In this section, the proposed model for contrast

perception and image distortion evaluation is tested. On
the one hand, it is shown how the response model repro-
duces different experimental suprathreshold contrast results
[19–22]. The predicted behavior is closer to the experimen-
tal data than in the models with frequency-independent
summation index at cell level. On the other hand, it is
shown how the distortion prediction evaluated through the
proposed metric is linearly related to the observer’s opinion
under different noise conditions.

In this work we focus on the fit of experimental results by
the proposed model and on the analysis of the quality of
such predictions, but not on the experimental details. The
interested reader is referred to the specific references where
the experimental methods are described.

5.1. Suprathreshold contrast results from the contrast
response summation model

Assuming that the response of the mechanism to a certain
contrast,rfi �Cfi �, can be related directly to the perceived
contrast [21,53], the classic experiences of suprathreshold
perceived contrast should be reproduced by the proposed
model.

Fixing a given response value, equal response contrast
curves can be obtained looking for the pair (fi,Cf) that satis-
fied Eq. (34) with a frequency-dependentq (Eq. (36)).

Fig. 7(b) represents the equal perceived contrast curves as
a function of the spatial frequency derived in this way. The
obtained result is similar to the experimental one obtained
by Georgeson and Shackleton [19], Fig. 7(a), also reported
by Bowker [54].
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Fig. 8. (a) Contrast matching results of Swanson et al. [20] at threshold contrast, 10 and 40% contrast, (b) equivalent results generated by the proposed model.



The proposed model also reproduces the experimental
results of suprathreshold sensitivity measured through
contrast matching. For instance, our frequency-dependent
response summation model achieves a better reproduction
of the experimental results of Swanson et al. [20] than the
model proposed by these authors, specially at the low
frequencies region. It is interesting to point out that in this
work they use a fixed, frequency-independent, summation
index.

Fig. 8(a) shows the results of these authors together with
their predictions (continuous line in the figure). It can be
observed that at high contrasts, the low spatial frequencies
are not adjusted by their model. In our model, we consider
the possibility to vary the summation index with the spatial
frequency. When introducing this possibility, we can also
reproduce the results of these authors in the low spatial
frequency range (Fig. 8(b)).

The method of numerical estimation of the magnitude
developed by Stevens [55] is, potentially, the best way to
relate a given contrast and the sensation that it produces
(perceived contrast). In this method, the observer should
assign a numeric value to a series of contrasts, building a
scale of perceived contrasts. It is widely accepted that a
linear relationship between the perceived contrast and the
contrast of a sinusoidal grating is found [21–22,53]. This
result is reproduced by the presented model, which plots the
response curves as a function of the input contrast. Fig. 9
represents the results of estimation of the magnitude of
Cannon [21] compared with those generated from our
model. Note how the actual behavior of the experimental
data is non-linear in this representation as predicted by the
model.

It is also possible to compare our model predictions with
the curves of equal contrasts obtained by Biondini and
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model.
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Fig. 10. (a) Curves of equal input contrast in a perceived contrast-frequency plane for several luminances [22], (b) equivalent results generated bythe proposed
model. Our model does not include background luminance effects.

Fig. 11. Perceptual quality judgements in a variety of noise conditions [28] versus the difference value computed by Eq. (35).



Mattiello [22] in their exhaustive study on the relationship
between the perceived contrast and the contrast of the
stimulus. They represent curves of equal contrasts of the
stimulus in the plane of frequencies and perceived
contrast for different mean luminances (Fig. 10(a)). These
curves represent the differences of perceived contrast as a
function of the spatial frequency for a given input contrast.
Fig. 10(b) shows the great qualitative coincidence among
the experimental curves and the predictions of the
model.

As can be seen, our model reproduces the main results of
the contrast perception given in the bibliography. The
consideration of a variation of the summation index with
the spatial frequency supposes an improvement of
previously proposed models, so the use of this model to
evaluate the perceptual effect of contrast differences should
give a reliable subjective difference measure.

5.2. Subjective quality assessment from the contrast
response summation model

In this section, the experimental data about subjective
evaluation of distortion is linearly fitted to the dissimilarity
predicted by the algorithm. The results of two different
experiments are successfully reproduced by the same
expression, showing the reliability of the proposed metric.
The experimental data come from standard psychophysical
procedure used elsewhere [27], in which a set of observers
evaluated the distortion of a natural image corrupted by: (a)
equal energy noise with different spectrum, and (b) JPEG-
like lossy compression at different compression ratios.
These experiments are described in detail in Ref. [5].

Fig. 11 displays the quality assessment of the observers
(normalized between 0 and 100) plotted versus the numer-
ical results given by Eq. (37) in experiment: (a) circles, and
(b) squares. It used the approximated sensitivity surface of
Fig. 4 from Refs. [5,50].

A high correlation coefficient is obtained,r � 0:93, and
the x 2 test value (over 0.18) confirms the goodness of the
simultaneous linear fit of both experiments [33]. The quality
of the fit improves the results of several previously reported
metrics (Non-linear MSE [27,56], simple masking based
metrics through variance and local luminance [27,56],
Subjective Quality Factor and Square Root integral method
[25]) and is comparable to CSF-based metrics [23,25,27],
see the corresponding results in Ref. [5]). This preliminary
result, using the approximated frequency and amplitude
sensitivity surface, does not achieve as good results as our
IAF-based metric in Ref. [5]. In this case, a correlation
coefficient of 0.98 and ax 2 test value of 0.9 was obtained
for the same experimental data by the heuristically derived
expression:

D2�I ; I 0� �
X
fi

Sfi �Ifi ��QI 2 QI 0�2; �38�

whereQI andQI 0 are the quantized versions of the transform

representations,I andI 0, assuming a quantizer with bit allo-
cation given by the IAF, orSfi �Ifi �.

The rationale of this expression is to consider perception
as a representation process in a quantized domain (with
discrete perceptions). The density of such discrete percep-
tions in the feature space should be proportional to the
number of discriminable patterns per unit of area, i.e.
proportional to the sensitivity. In this way, the perceptual
difference should be computed from the IAFquantized
images and the remaining differences should also be
weighted by the IAF.

Expressions (37) and (38) are qualitatively similar. In
both the cases, the difference measure results from applying
the IAF twice. On the one hand in the heuristically derived
case [28], it is first applied to quantize the images and then
the resulting differences are weighted by the IAF. And on
the other hand, in the strictly derived expression presented
here (Eq. (37)), its square is applied to weight the transform
differences.

6. Final remarks

In this paper, a formalism to obtain the subjective metric
in the spatial or in the feature domain from the visual system
response was presented. These relations are general enough
to be used in complex human visual system model. They
deal with non-linear feature extraction schemes and mask-
ing between the features. The result is an image-dependent
metric determined by the non-linearities of the feature
extraction transform and the non-linearities of the mechan-
isms tuned to each feature.

Assuming a certain feature extraction transformT, expli-
cit expressions are given to obtain the metric from experi-
mental data about amplitude incremental thresholds of the
basis patterns ofT, or from a model of the system response
to the basis ofT.

This general formalism gives rise to some previously
reported metrics when a simple visual processing model is
assumed [23–27]. Here a novel perceptual difference
measure is proposed particularizing the general expressions
with a perception model that assumes a frequency-based
transform and a non-linear post-transform transduction.
The experimental non-linearities of the response functions
are derived from a frequency-dependent model of response
summation of the cells of the parvocellular pathway.

The model accurately reproduces the results of different
suprathreshold contrast experiments. The distortions
predicted by a preliminary version of the proposed metric
are linearly related with experimental distortion appearance
under a variety of noise conditions. An appropriate
consideration of the increase in the sensitivity in near
threshold contrast should be taken into account to get a
more accurate distortion evaluation results.

Better subjective metrics can be obtained particularizing
the presented formalism with models that account for
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interchannel masking [6], as indicated in Section 2.4. Future
research should be oriented to compare these refined
versions of the proposed algorithm with the recently devel-
oped metrics [57–59].

Acknowledgements

This work has been partially supported by the projects
CICYT 1FD 97-0279(TIC) and IVEI 96/003-35.

References

[1] N. Jayant, J. Johnston, R. Safranek, Signal compression based on
models of human perception, Proc. IEEE 81 (1993) 1385–1422.

[2] M.D. Fairchild, Color Appearance Models, Addison Wesley, Read-
ing, MA, 1977 Chapter 10.

[3] H.R. Wilson, D. Levi, L. Maffei, J. Rovamo, R. DeValois, The
perception of form: retina to striate cortex, in: L. Spillmann, J.S.
Werner (Eds.), Visual perception: the Neurophysiological Founda-
tions, Academic Press, San Diego, 1990 Chapter 10.

[4] J. Lubin, The use of psychophysical data and models in the analysis
od display system performance, in: A.B. Watson (Ed.), Digital Images
and Human Vision, MIT Press, Cambridge, MA, 1993 pp. 163–178.

[5] S. Daly, Visible differences predictor: an algorithm for the assessment
of image fidelity, in: A.B. Watson (Ed.), Digital Images and Human
Vision, MIT Press, Cambridge, MA, 1993 pp. 179–206.

[6] A.B. Watson, A model of visual contrast gain control and pattern
masking, J. Opt. Soc. Am. A 14 (1997) 2379–2391.

[7] A.B. Watson, The cortex transform: rapid computation of simulated
neural images, Comp. Vis. Graph. Im. Proc. 39 (1987) 311–327.

[8] J.G. Daugman, Spatial visual channels in the Fourier plane, Vision
Res. 24 (1984) 891–910.

[9] H.R. Wilson, J. Gelb, Modified line-element theory for spatial-
frequency and width discrimination, J. Opt. Soc. Am A. 1 (1984)
124–131.

[10] B.A. Wandell, Foundations of vision,Multiresolution Image Repre-
sentations, Sinauer Associates, Massachusetts, 1995 Chapter 8.

[11] J. Malo, A. Felipe, A.M. Pons, J.M. Artigas, Characterization of the
human visual system threshold performance by a weighting function
in the Gabor domain, J. Mod. Opt. 44 (1997) 127–148.

[12] A.C. Bovik, M. Clark, W.S. Geisler, Multichannel texture analysis
using localized spatial filters, IEEE Trans. Patt. Anal. Machine Intell.
12 (1990) 55–73.

[13] M.S. Landy, J.R. Bergen, Texture segregation and orientation gradi-
ent, Vision Res. 31 (1991) 679–691.

[14] J. Nachmias, R.V. Sansbury, Grating contrast: discrimination may be
better than detection, Vision Res. 14 (1974) 1039–1042.

[15] G.E. Legge, A power law for contrast discrimination, Vision Res. 18
(1981) 68–91.

[16] G.E. Legge, J.M. Foley, Contrast masking in human vision, J. Opt.
Soc. Am. 70 (1980) 1458–1471.

[17] P. Lennie, Parallel Visual pathways: a review, Vision Res. 20 (1980)
561–594.

[18] A.M. Derrington, P. Lennie, Spatial and temporal contrast sensitiv-
ities of neurones in lateral geniculate nucleus of macaque, J. Physiol.
357 (1984) 291–340.

[19] M.A. Georgeson, T.M. Shackleton, Perceived contrast of gratings and
plaids: nonlinear summation across oriented filters, Vision Res. 34
(1994) 1061–1075.

[20] W.H. Swanson, H.R. Wilson, S.C. Giese, Contrast matching data
inferred from contrast incremental thresholds, Vision Res. 24
(1985) 63–75.

[21] M.W. Cannon, Contrast sensation: a linear function of stimulus
contrast, Vision Res. 19 (1979) 1045–1052.

[22] A.R. Biondini, M.L.F. Mattiello, Suprathreshold contrast perception
at different luminance levels, Vision Res. 25 (1985) 1–9.

[23] N.B. Nill, B.R. Bouzas, Objective image quality measure derived
from digital image power spectra, Opt. Engng 32 (1992) 813–825.

[24] E.M. Granger, K.N. Cupery, An optical merit function (SQF) which
correlates with subjective image judgements, Photog. Sci. Engng 16
(1972) 221–230.

[25] P.J.G. Barten, Evaluation of subjective image quality with the SQRI
method, J. Opt. Soc. Am. A 7 (1990) 2024–2031.

[26] J.A. Saghri, P.S. Cheatham, A. Habibi, Image quality measure based
on a human visual system model, Opt. Engng 28 (1989) 813–818.

[27] D.R. Fuhrmann, J.A. Baro, J.R. Cox, Experimental evaluation of
psychophysical distortion metrics for JPEG-encoded images, Proc.
SPIE (1993) 179–190.

[28] J. Malo, A.M. Pons, J.M. Artigas, Subjective image fidelity metric
based on bit allocation of the human visual system in the DCT
domain, Im. Vis. Comp. 15 (1997) 535–548.

[29] A.B. Watson, Detection and recognition of spatial forms, in: Brad-
dick, Sleigh (Eds.), Physical and Biological Processing of Images,
Springer, Berlin, 1983 pp. 100–114.

[30] R.F. Quick, A vector magnitude model of contrast detection, Kyber-
netic 16 (1974) 65–67.

[31] A.H. Barr, Superquadrics and angle-preserving transformations, IEEE
Comp. Graph. Appl. 1 (1981) 11–23.

[32] D.H. Kelly, Receptive field like functions inferred from large area
psychophysical measurements, Vision Res. 25 (1985) 1895–1900.

[33] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numer-
ical Recipes in C: the Art of Scientific Computing, Cambridge
University Press, Cambridge, 1992.

[34] P. Capilla, J. Malo, M.J. Luque, J.M. Artigas, Colour representation
spaces at different physiological levels: a comparative analysis, J.
Opt. 29 (1998) 324–338.

[35] B.A. Dubrovin, A.T. Fomenko, S.P. Novikov, Modern geometry:
methods and applications,Tensors: the Algebraic Theory, Springer,
New York, 1984 Chapter 3.

[36] A.N. Akansu, R.A. Haddad, Multiresolution signal decomposition,
Orthogonal Transforms, Academic Press, Boston, 1992 Chapter 2.

[37] E.L. Smith III, R.S. Harwerth, D.M. Levi, R.L. Boltz, Contrast incre-
ment thresholds of rhesus monkeys, Vision Res. 22 (1982) 1153–
1161.

[38] A.M. Pons, P. Capilla, J. Malo, A. Felipe, J.M. Artigas, Contrast
discrimination function and the transient sustained dichotomy,
Perception 24 (1995) 89.

[39] D.H. Hubel, M.S. Livingstone, Color and contrast sensitivity in the
lateral geniculate body and perimary visual cortex of the macaque
monkey, J. Neurosci. 10 (1990) 2223–2237.

[40] W.H. Merigan, J.H.R. Maunsell, Macaque vision after magnocellular
lateral geniculate lessions, Visual Neurosci. 5 (1990) 347–352.

[41] W.H. Merigan, L.M. Katz, J.H.R. Maunsell, The effects of parvocel-
lular lateral geniculate lesions on the acuity and contrast sensitivity of
macaque monkeys, J. Neurosci. 11 (1991) 994–1001.

[42] J.J. Kulikowski, D.J. Tolhurst, Psychophysical evidence for sustained
and transient detectors in human vision, J. Physiol. 232 (1973) 149–
163.

[43] C.R. Ingling, S.S. Grigsby, Perceptual correlates of magnocellular
and parvocellular channels: seeing form and depth in afterimages,
Vision Res. 30 (1990) 823–828.

[44] B.B. Lee, J. Pokorny, V.C. Smith, P.R. Martin, A. Valberg, Lumi-
nance and chromatic modulation sensitivity of macaque ganglion
cells and human observers, J. Opt. Soc. Am. A 7 (1990) 2223–2236.

[45] T.B. Lawton, C.W. Tyler, On the role of X and simple cells in human
contrast processing, Vision Res. 34 (1994) 659–667.

[46] J.I. Nelson, W.H. Seiple, Human VEP contrast modulation sensitivity:
separation of magno- and parvocellular components, Electroencelo-
graphy Clin. Neurophysiol. 84 (1992) 1–12.

A.M. Pons et al. / Displays 20 (1999) 93–110 109



[47] D.G. Albretch, D.B. Hamilton, Striate cortex of monkey and cat:
contrast response function, J. Neurophysiol. 48 (1982) 217–237.

[48] G. Sclar, J.H.R. Maunsell, P. Lennie, Coding of image contrast in
central visual pathways of the macaque monkey, Vision Res. 30
(1990) 1–10.

[49] K. Kranda, P.E. King-Smith, Detection of colored stimuli by inde-
pendent linear systems, Vision Res. 19 (1979) 733–745.

[50] J. Malo, A.M. Pons, J.M. Artigas, Bit allocation algorithm for code-
book design vector quantization fully based on human visual system
non-linearities for suprathreshold contrasts, Electr. Lett. 31 (1995)
1229–1231.

[51] N. Abramson, Information theory and coding, McGraw-Hill, New
York, 1964.

[52] J. Malo, F. Ferri, J. Albert, J.M. Artigas, Splitting criterion for
hierarchical motion estimation based on perceptual coding, Elect.
Lett. 34 (1998) 541–543.

[53] M.W. Cannon, S.C. Fullemkamp, A transducer model for contrast
perception, Vision Res. 31 (1991) 983–989.

[54] D.O. Bowker, Suprathreshold spatiotemporal response characteristics
of the human visual system, J. Opt. Soc. Am 73 (1985) 436–440.

[55] S.S. Stevens, On the psychophysical law, Psychol. Rev. 64 (1957)
153–181.

[56] H. Marmolin, Subjective MSE measures, IEEE Trans. Sys. Man
Cyber. 16 (1986) 486–489.

[57] A.B. Watson, R. Borthwick, M. Taylor, Image quality and entropy
masking, Proc. SPIE 00 (1997) 3016.

[58] V. Kayargadde, J.B. Martens, Perceptual characterization of images
degraded by blur and noise: model and experiments, J. Opt. Soc. Am.
A 13 (1996) 1166–1188.

[59] J.M. Baena, A. Toet, X.R. Fdez-Valdivia, A. Garrido, R. Rodriguez,
A computational visual distinctness metric, Opt. Engng 37 (1998)
1995–2205.

A.M. Pons et al. / Displays 20 (1999) 93–110110


