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Abstract

Support Vector Machine (SVM) learning has been recently proposed for image compression in

the frequency domain using a constantε-insensitivity zone by Robinson and Kecman [1]. However,

according to the statistical properties of natural images and the properties of human perception, a

constant insensitivity makes sense in the spatial domain but it is certainly not a good option in a

frequency domain. In fact, in their approach,they made a fixed low-pass assumption as the number of

DCT coefficients to be used in the training was limited. This paper extends the work of Robinson and

Kecman by proposingthe use of adaptive insensitivity SVMs [2] for image coding using an appropriate

distortion criterion [3], [4] based on a simple visual cortex model. Training the SVM by using an

accurate perception model avoids anya priori assumption and improves the rate-distortion performance

of the original approach.
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I. I NTRODUCTION

A recent approach to machine learning problems is the Support Vector Machine (SVM) [5].

The Support Vector Regressor (SVR) [6] is its implementation for function approximation.

Several applications of SVM have appeared in the context of image processing, such as face

recognition [7], image classification [8], texture segmentation [9], and image fusion [10]. The

use of SVMs for image compression was originally presented in [11], where the authors used the

SVR to learn the gray levels in the image. However, the statistical properties of the natural images

make the Discrete Cosine Transform (DCT) suitable for image representation [12], improving

the performance of the SVM learning [1]. According to these results [1], the ability of SVMs

to model DCT-transformed image representations with a smallset of parameters make them a

promising alternative to classical transform coding techniques based on quantization [13], [14].

However, the proposed SVM schemes for image compression have always used a fixed

accuracy level (ε-insensitivity) per sample [1], [11]. A constant insensitivity zone makes sense

in the spatial domain because of the approximate stationarybehavior of the luminance samples

of natural images. Moreover, the perceptual relevance of pixels is also approximately constant

across the spatial domain. However, these facts are no longer true in a frequency domain: the

statistics of frequency coefficients of natural images is highly non-stationary and their perceptual

relevance is highly uneven [15].The method proposed by Robinson and Kecman [1] limited the

number of DCT coefficients to a fixed number. This approach can affect the reconstructed image

by blurring some details in the image, such as sharp edges or high frequency components. This

suggests that their results can be improved if the SVM learning in the DCT domain is modulated

by a perceptually-based frequency-dependent insensitivity zone.

In order to obtain a good subjective performance in image coding applications, it is important

to restrict the Maximum Perceptual Error (MPE) in each DCT coefficient [3], [4], [15], [16].

In this work, we propose an SVM with adaptive insensitivity zone [2] for image coding, which

is based on an appropriate Human Visual System (HVS) model. Therefore, using perception

models to design the adaptive insensitivity gives rise to SVM coders which are optimal under

the MPE criterion, and there is no need to make anyad-hoc(low-pass) assumption in the SVM

training.

The structure of the paper is as follows. Section II reviews the adaptive SVM formulation and
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how it can be used in DCT modeling schemes. Section III motivates the perceptual weighting

in the DCT domain and analyzes the use of the MPE criterion in the SVM coding scheme.

Section IV shows results of our proposal on benchmark images. Section V ends this paper with

some conclusionsand further work.

II. A DAPTIVE INSENSITIVITY IN THE SUPPORTVECTORREGRESSOR

The standard formulation of the SVR model is stated as follows. Given a labeled training

data set{(xi, yi), i = 1, ..., n}, wherexi ∈ R
d andyi ∈ R, and a nonlinear mapping to a higher

dimensional spaceφ : R
d → R

H whered ≤ H, solve

min
w,ξi,ξ∗i ,b

{

1

2
‖w‖2 + C

∑

i

(ξi + ξ∗i )

}

(1)

subject to:

yi − φT (xi)w − b ≤ ε + ξi ∀i = 1, . . . , n (2)

φT (xi)w + b − yi ≤ ε + ξ∗i ∀i = 1, . . . , n (3)

ξi, ξ
∗

i ≥ 0 ∀i = 1, . . . , n (4)

whereξ
(∗)
i andC are, respectively, positive slack variables to deal with training samples with a

prediction error larger thanε (ε > 0) and the penalization applied to these. The usual procedure

for solving SVRs introduces the linear restrictions (2)-(4)into Eq. (1) by means of Lagrange

multipliers α
(∗)
i , computes the Karush-Kuhn-Tucker conditions, and solves the Wolfe’s dual

problem using quadratic programming (QP) procedures [5], [17].

The regression estimate for a given input vectorx then takes the form

ŷ = f(x) =
n
∑

i=1

(αi − α∗

i )K(xi,x) + b (5)

where the inner productφ(xi)
T · φ(x) is represented with a kernel matrixK(xi,x). Note that

only samples with non-zero Lagrange multipliersα
(∗)
i count in the solution and are calledsupport

vectors. The immediate advantage of the method is that good approximating functions can be

obtained with a (relatively) small set of support vectors, leading to the concept ofsparsityand,

in turn, to the idea of inherent compression.

However, the main problem when considering this solution isthat we assume that each sample

containsa priori the same relevance to the modelling, which in general is not true. This can
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be easily alleviated by using a different penalization factor for each training samplei according

to a certainconfidence functionci on the samples. This idea can be also extended by using

different insensitivity zoneε for each sample. In this work, we use the profiled SVR approach

[2], which relaxes or tightens theε-insensitive region depending on each training sample. Now,

the objective function becomes [5]:

min
w,ξi,ξ∗i ,b

{

1

2
‖w‖2 + C

∑

i

ci(ξi + ξ∗i )

}

(6)

and restrictions over slack variables become sample-dependent:

yi − φT (xi)w − b ≤
ε

ci

+ ξi ∀i = 1, . . . , n (7)

φT (xi)w + b − yi ≤
ε

ci

+ ξ∗i ∀i = 1, . . . , n (8)

ξi, ξ
∗

i ≥ 0 ∀i = 1, . . . , n (9)

Therefore, now each sample has its own insensitivity errorεi = ε/ci, which intuitively means

that different samples hold different confidence intervals. By including linear restrictions (7)-(9)

in the corresponding functional (6), we can follow as in the standard case, which once again

constitutes a QP problem.

In the SVR image coding procedure [1], the whole image is firstdivided in blocks, and then a

2D DCT-transform is applied to each one of them. Then, dedicated SVR models are trained in the

frequency domain for each block and the obtained weights arequantized. Therefore, the signal is

described by the Lagrange multipliers of the support vectors needed to keep the regression error

below the thresholdsεi. Increasing the thresholds,εi, reduces the number of required support

vectors, thus reducing the entropy of the encoded image and increasing the distortion. The key

point here is choosingεi according to a meaningful criterion for the application.

In [2], [18], we designed profiles for the variation ofC and ε as a function of the sample

in complex pharmacokinetic problems. In [19], profiles weredefined in terms of clusters rather

than fixeda priori. In this paper, we will define theε-insensitive zone to restrict the Maximum

Perceptual Error (MPE) [3], [4], [15], [16] in each coefficient of the DCT. This profile will vary

the ε-insensitive region as a function of the frequency in the DCT domain.

July 8, 2005 DRAFT



5

III. M AXIMUM PERCEPTUALERROR FOR ADAPTIVE INSENSITIVITY

The core of the transform coding idea is that the relevance ofthe coefficients in the DCT-

transformed domain is highly uneven. This is because while some coefficients have a big

contribution to the distortion, others can be strongly modified without significant loss. In the

transform and quantization paradigm [14], the hierarchy ofcoefficients has led to uneven bit

allocation schemes (and non-uniform 1D quantizers for eachcoefficient) [3], [4], [15], [16]. This

implies that the maximum distortion introduced in each coefficient depends on both its frequency

and its amplitude. These ideas can be incorporated into the SVM paradigm by considering that the

maximum distortion is given by the insensitivity parameterε. Therefore, the distortion criteria

used to design the variable quantizer step in each coefficient could be applied to design an

adaptive insensitivity zone in the SVM case.

Classical quantizer design is founded on MSE minimization and gives rise to variable quan-

tization steps based on the variance of the coefficients and their particular probability density

function [14]. However, as the coded image has to be judged bya human observer, the cri-

terion should include the sensitivity of the human viewer. In that sense, the introduction of a

perceptual metric in average error criteria does not solve the problem because average perceptual

error minimization does not imply that every error is below (or proportional) to the perceptual

discrimination thresholds. In fact, it has been shown that keeping the distortion proportional to

the visibility thresholds (restricting the MPE of each coefficient) leads to better subjective results

than minimizing the average perceptual error [3], [4], [15], [16]. Therefore, the bottom line to

design the adaptive insensitivity zone of the SVM, which restricts the maximum error in each

coefficient, is drawn from the MPE criterion in each coefficient for each particular image region.

In our case, we have to compute the human visual insensitivity for every DCT coefficient from

the corresponding slope of an appropriate vision response model. Current models of human visual

cortex assume that each region,A, of the input image around some spatial position,s, undergoes

a two-stage transform [20], [21]:

A
T

−→ y
R

−→ r (10)

whereT is a linear transform in which the input is analyzed by a set ofunit-norm oriented local-

frequency sensors (V1 neurons) with receptive fields qualitatively similar to the block-DCT basis
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functions [22]:

yi =
∑

j

Tij · Aj (11)

andR is a transduction function that represents the gain of each particular sensor,Ti, and maps the

linear transform representation into a perceptually Euclidean response representation [21]. The

Euclidean nature of the response representation implies that the linear transform representation,

y, is not Euclidean [23].

In this way, a small distortion in the transform representation, ∆y, induces a distortion that

can be approximated by using the Jacobian of the transduction function:

r + ∆r ≃ R(y) + ∇R(y) · ∆y (12)

Then, the maximum perceptual distortion for that spatial region is given by

MPEs = ‖∆r‖∞ = max(∇R(y) · ∆y) (13)

The global perceived distortion in an image withn spatial regions will be a particular spatial

pooling (β-norm) of thesen local distortions from each local (block) response representation:

MPE = ‖(MPE1, · · · , MPEn)‖β =

(

∑

s

MPEβ
s

)1/β

(14)

where β is the summation exponent in this spatial pooling. The most accurate gain control

models of V1 sensors include non-linearities with interactions between the outputs of the linear

sensors [20], [21], thus giving rise to a non-diagonal input-dependent Jacobian [23]. Using such

models would not be easy to derive a bound,εi, for the distortion in each coefficient,∆yi, from

Eq. (13). However, if we restrict ourselves to the most simple model in which each sensor has

a constant linear gain given by theContrast Sensitivity Function (CSF)[24]:

∆ri = CSFi · ∆yi, (15)

the Jacobian is a diagonal matrix with∇R(y)ii = CSFi. According to this, in order to keep the

perceptual error below some arbitrary threshold, MPEs = τ , every distortion,∆yi, has to be:

∆yi ≤ τ · CSF−1
i (16)

Therefore, the insensitivity region for each coefficientyi should be given by the CSF:

εi = τ · CSF−1
i (17)
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Figure 1 shows the CSF, i.e. the relative slope for each sensor(or basis function) of the

DCT representation,which is expressed in cycles/degree. The behavior of the visual system in

the frequency domain (e.g. the CSF) is commonly defined in physically meaningful units such

as cycles/degree or samples/degree. These units refer to the number of discrete samples per

angle subtended by the image at a given viewing distance. Thefrequency meaning of the DCT

coefficients is given by the selected sampling frequency (orequivalently by the size and viewing

distance).

The discrimination ability of a sensor (its insensitivityε) can be obtained from the slope of its

response curve.Figure 2 shows that the bigger the slope, the smaller the insensitivity: different

slopes in the response of each sensor imply different insensitivities, and hence different bounds

on ∆yi for the same perceptual error MPEs = τ .

Using insensitivity values according to Eq. (17) is optimalin the MPE sense because it ensures

that the MPEs is below the selected threshold,τ , for every region,s, thus minimizing the global

MPE.

IV. RESULTS AND DISCUSSION

The general encoding procedure proposed by Robinson and Kecman [1] consists of learning

the DCT representation of each block of the image to obtain a set of support vectors and their

corresponding Lagrange multipliers. These weights are then uniformly quantized. The number

of selected support vectors and thus the entropy of the encoded signal is controlled by a factor

applied to theε-insensitivity zone (the parameterτ in Eq. (17)). Tailoring differentε profiles

will produce critically different support vector distributions in the frequency domain and hence

different error distributions in this domain. Therefore, different ε profiles lead to results of quite

different perceptual quality.

In this section, we show the benefits of the proposed MPE optimal profile (CSF-SVR approach,

Eq. (17)) by comparing its results with a generic uniform tube (ε-SVR approach), and with the

method proposed by Robinson and Kecman [1] (RKi-1 approach). We compare these three

different SVM training strategies in terms of (a) the distribution of support vectors, and (b)

the effect that these distributions have in the compressionperformance. Following the same

approach of [1], we used the RBF kernel, trained the SVR models without the bias termb, and

modeled the absolute value of the DCT coefficients. For the sake of a fair comparison, all the
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free parameters (ε-insensitivity, penalization parameterC, Gaussian width of the RBF kernel,

and uniform quantization level of the weigths) were optimized for all the considered models.

The value ofτ in (17) was tuned iteratively to produce a given compressionratio and depends

on the image. Note that high values ofτ increase the width of theε tube, which in turn produce

lower number of support vectors and consequently yield higher compression ratios.

A. Distribution of support vectors

Figure 3 shows a representative example of the distributionof the selected SVs by the three

models considered in this work. These distributions reflecthow the selection of a particular

insensitivity profile modifies the learning behavior of the SVMs.

Using a straightforward constantε for all coefficients (ε-SVR approach) concentrates more

support vectors in the low frequency region because the variance of these DCT coefficients in

natural images is higher [12], [15]. However, it still yields a relatively high number of support

vectors in the high-frequency region. This is inefficient because of the low subjective relevance

of that region (see Fig. 1). Considering these vectors will not significantly reduce the (perceptual)

reconstruction error while it increases the entropy of the encoded signal.

The RKi-1 approach [1] uses a constantε but the authors solve the above problem by neglecting

the high-frequency coefficients in training the SVM for eachblock1. This is equivalent to the

use of an arbitrarily large insensitivity for the high-frequency region. As a result, this approach

relatively allocates more support vectors in the low/medium frequency regions. As the authors

suggest, this modification of the straightforward uniform approach is qualitatively based in the

basic low-pass behavior of human vision. However, such a crude approximation (that implies no

control of the distortion in the high-frequency region) canintroduce annoying errors in blocks

with sharp edges.

The proposed algorithm (CSF-SVR approach) uses a variableε according to Eq. (17). Tak-

ing into account the perception facts reviewed in Section III, the acceptable distortion in the

low/medium-frequency region is smaller than in the high-frequency region, giving rise to a

(natural) concentration of support vectors in the low/medium frequency region. Note that this

1If a (reasonable) sampling frequency of 64 cycles/degree is assumed, the cut-off value recommended in [1] is around 20

cycles/deg.
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concentration is even bigger than in the RKi-1 approach. However, the proposed algorithm does

not neglect any coefficient in the learning process. This strategy naturally reduces the number of

allocated support vectors in the high-frequency region with regard to the straightforward uniform

approach, but it does not prevent selecting some of them whenit is necessary to keep the error

below the selected threshold, which may be relevant in edge blocks.

B. Compression performance

Exhaustive compression experiments using several standard images (Lena, Barbara, Boats,

Peppers and Cameraman) were conducted using the different SVM training strategies at different

compression ratesin the range [0.05, 0.5] bits/pixel (bpp), i.e. 160:1 to 16:1compression

ratios, respectively. In all cases, the images were analyzed using16×16 block-DCT, assuming

a sampling frequency of 64 cycles/degree.We also include results using the standard JPEG as

a baseline method for reference purposes2.

Given the limitations of the available (subjective) distortion metrics [21], [25]–[27], the more

reliable evaluation of the subjective performance of the considered methods is the direct visual

inspection of the decoded images. However, it is also usual to describe the compression perfor-

mance using rate-distortion curves. In these curves, the volume of the encoded image (measured,

for instance, by its entropy in bits/pixel) is compared to anappropriate distortion measure. The

best algorithm is the one that achieves the lowest distortion for a range of bit rates. In this

case, the distortion measure should be meaningful for the application, i.e. it should represent the

subjective quality of the reconstructed image.

In this section, we analyze the performance of the algorithms through rate-distortion curves

using two different distortion measures: the standard MSE1/2 and the MPE of Eq. (14) with

β = 2 and using the CSF model for∇R. Results are shown in Fig. 4. According to the

standard MSE point of view, the performance of theSVM algorithms is basically the same (see

Fig. 4(a)), improving the results of JPEG as previously reported in [1]. However, we can observe

a substantial gain in MPE of the CSF-SVR model when looking at Fig. 4(b). As expected from

the discussion in Section III, the proposed scheme is optimal under the MPE criterion (and the

CSF model) and, of course, it is suboptimal in the MSE (or PSNR) sense. In fact, by taking into

2We used the JPEG implementation by Lagendijk, which is available athttp://www-ict.ewi.tudelft.nl.
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account the visual results presented in Fig. 5, it is clear that the MSE results are not useful to

represent the quality of the methods, as extensively reported elsewhere [21], [25]–[27]. These

results not only confirm the theoretical and practical validity of incorporating the CSF into the

SVM methodology, but also the meaningfulness of the MPE distortion measure [3], [15], [16],

[23]. The visual inspection of the results (Fig. 5) confirm that thenumericalgain in MPE shown

in Fig. 4(b) is alsoperceptually significant.

The visual effect of the different distribution of the support vectors due to the different

insensitivity profiles is clear in Fig. 5. First, it is obvious that the perceptually-based training

leads to better overall subjective results: the annoying blocking artifacts of theε-SVR and RKi-1

approaches are highly reduced in the proposed approach, giving rise to smoother, and perceptually

more acceptable, images. Second, the blocking artifacts inε-SVR and RKi-1 approaches may

come from different reasons. On the one hand, the uniformε-SVR wastes (relatively) too many

support vectors (and bits) in the high-frequency region in such a way that noticeable errors in the

low-frequency components (related to the average luminance in each block) are produced (see the

face of Barbara). However, note that due to the allocation of more vectors in the high-frequency

region, it is the method that better reproduces details suchas the high-frequency strips in the

Barbara clothes. On the other hand, neglecting the high-frequency coefficients in the training

(RKi-1 approach) does reduce the blocking a little bit, but itcannot cope with high contrast

edges that also produces a lot of energy in the high frequencyregion (for instance, Lena’s cheek

on the dark hair background).

An example of the performance of RKi-1 and CSF-SVR at high compression ratios (from

64:1 to 125:1) is illustrated in Fig. 6 and Table I. Both the numerical and visual results show the

same trend observed in Fig. 5. Specifically, the proposed method reduces the blocking effect due

to a better perceptually-based distribution of support vectors. The reduction in MPE distortion

in Table I is confirmed by the appearance of the CSF-SVR resultsin Fig. 6.

V. FINAL REMARKS

In this work, we have tailored anε-insensitivity function in the SVR model for image coding,

which is optimal under the MPE principle. This approach has been motivated by the fact that, in

the DCT-transformed domain, the use of a fixedε value is not consistent with the statistical and

perceptual properties of natural images. This approach hasrevealed to be more efficient than the
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original SVR-based coding schemes in terms of perceptually meaningful rate-distortion measure

and visual inspection, precludingad hocassumptions in the training algorithm.

An accurate consideration of a perceptually profiled SVR training has improved the results.

This fact suggests that further improvement could be achieved by including more sophisticated

non-linear perceptual models [4] in support vector coding schemes.
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Fig. 1. Contrast Sensitivity Function (CSF) of Nygan et al. [28]. The slopes of two particular sensors respectively tuned to

low-frequency stimuli(CSF4 = 1) and high-frequency stimuli(CSF10 = 0.54) have been highlighted.
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Fig. 2. Responses and associated visibility thresholds (insensitivity regions) of the two sensors whose slopes have been

highlighted in Fig. 1. The Euclidean nature of the response domain implies that two distortions,∆yi and∆yj , induce perceptually
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Fig. 4. Rate distortion curves of JPEG and the three SVM-based image coding methods. (a) Distortion measured with the

standard MSE1/2. (b) Distortion measured using the perceptually meaningful MPE. Theseresults are the average over the five

standard images, and the error bars stand for the standard deviation ofthe corresponding distortion at each point.
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Fig. 5. Examples of decoded images. (a) Lena, and (b) Barbara (zoom of the original images at 8 bits/pixel). The bit-rate for

these examples is 0.3 bpp(27:1) (Lena) and 0.4 bpp(20:1) (Barbara). (c) and (d) JPEG, (e) and (f)ε-SVR, (g) and (h) RKi-1,

and (i) and (j) CSF-SVR.
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(a)

(b) (c)

(d) (e)

Fig. 6. Examples of decoded images using the RKi-1 and the proposed CSF-SVR training strategies at high compression ratios:

0.1 bpp (64:1) [left] and 0.065 bpp (125:1) [right]. (a) Original Barbara image, (b) and (c) RKi-1, and (d) and (e) CSF-SVR.
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MSE1/2 MPE

Compression ratio RKi-1 CSF-SVR RKi-1 CSF-SVR

0.10 bpp (64:1) 17.5 17.4 6.2 5.0

0.08 bpp (100:1) 18.0 17.8 6.6 5.5

0.065 bpp (125:1) 18.7 18.5 7.1 6.4

TABLE I

OBJECTIVE (MSE1/2) AND SUBJECTIVE (MPE) ERRORS OF THE DECODED IMAGES AT HIGH COMPRESSION.
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