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Abstract

Support Vector Machine (SVM) learning has been recentlyppsed for image compression in
the frequency domain using a constaninsensitivity zone by Robinson and Kecman [1]. However,
according to the statistical properties of natural imaged the properties of human perception, a
constant insensitivity makes sense in the spatial domatnitbis certainly not a good option in a
frequency domain. In fact, in their approatchey made a fixed low-pass assumption as the number of
DCT coefficients to be used in the training was limitdthis paper extends the work of Robinson and
Kecman by proposinthe use of adaptive insensitivity SVMs [2] for image codirging an appropriate
distortion criterion [3], [4] based on a simple visual cartmodel. Training the SVM by using an
accurate perception model avoids anpriori assumption and improves the rate-distortion performance

of the original approach.
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. INTRODUCTION

A recent approach to machine learning problems is the Supfeator Machine (SVM) [5].
The Support Vector Regressor (SVR) [6] is its implementation flinction approximation.
Several applications of SVM have appeared in the conteximaige processing, such as face
recognition [7], image classification [8], texture segnagioh [9], and image fusion [10]. The
use of SVMs for image compression was originally presemdd1], where the authors used the
SVR to learn the gray levels in the image. However, the sikzdisproperties of the natural images
make the Discrete Cosine Transform (DCT) suitable for imageesentation [12], improving
the performance of the SVM learning [1]. According to thessults [1], the ability of SVMs
to model DCT-transformed image representations with a ssadllof parameters make them a
promising alternative to classical transform coding teghes based on quantization [13], [14].

However, the proposed SVM schemes for image compressioa hlvays used a fixed
accuracy level 4-insensitivity) per sample [1], [11]. A constant insensitivity zone makes sense
in the spatial domain because of the approximate station@mavior of the luminance samples
of natural images. Moreover, the perceptual relevance x#lpiis also approximately constant
across the spatial domain. However, these facts are noddngein a frequency domain: the
statistics of frequency coefficients of natural images gty non-stationary and their perceptual
relevance is highly uneven [15[he method proposed by Robinson and Kecman [1] limited the
number of DCT coefficients to a fixed number. This approach faetahe reconstructed image
by blurring some details in the image, such as sharp edgeglorftequency component3his
suggests that their results can be improved if the SVM legrim the DCT domain is modulated
by a perceptually-based frequency-dependent insemgitioine.

In order to obtain a good subjective performance in imagencpdpplications, it is important

to restrict the Maximum Perceptual Error (MPE) in each DCTfloament [3], [4], [15], [16].
In this work, we propose an SVM with adaptive insensitivigne [2] for image coding, which
is based on an appropriate Human Visual System (HVS) moderefore, using perception
models to design the adaptive insensitivity gives rise tdViSdbders which are optimal under
the MPE criterion, and there is no need to make adyhoc(low-pass) assumption in the SVM
training.

The structure of the paper is as follows. Section Il revienesdadaptive SVM formulation and
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how it can be used in DCT modeling schemes. Section Ill mas/dlhe perceptual weighting
in the DCT domain and analyzes the use of the MPE criterion @®@SWM coding scheme.
Section IV shows results of our proposal on benchmark imagestion V ends this paper with

some conclusionand further work.

Il. ADAPTIVE INSENSITIVITY IN THE SUPPORTVECTORREGRESSOR

The standard formulation of the SVR model is stated as fdlo@iven a labeled training
data set{(x;,v;), i = 1, ...,n}, wherex; € R? andy; € R, and a nonlinear mapping to a higher

dimensional space : R? — R whered < H, solve

w{g,ig}’b{%HWHQ +0) (& +£Z‘)} (1)
subject to:
Y — () w—b<e+& Vi=1,...,n (2)
T (x)WHb—y; <e+ & Vi=1,...,n (3)
§&,6 >0 Vi=1,...,n (4)

wherefi(*) andC' are, respectively, positive slack variables to deal widining samples with a
prediction error larger than (¢ > 0) and the penalization applied to these. The usual procedure
for solving SVRs introduces the linear restrictions (2)-(@#p Eq. (1) by means of Lagrange
multipliers o!*, computes the Karush-Kuhn-Tucker conditions, and soltes Wolfe's dual

problem using quadratic programming (QP) procedures [H].[

The regression estimate for a given input vectaihen takes the form

n

= f(x) = (0 —a])K(x;,x) +b 5)

=1
where the inner produep(x;)” - ¢(x) is represented with a kernel matrix(x;,x). Note that
only samples with non-zero Lagrange multiplie(éé) count in the solution and are callsdpport
vectors The immediate advantage of the method is that good appetxign functions can be
obtained with a (relatively) small set of support vectoeading to the concept a&parsityand,
in turn, to the idea of inherent compression.
However, the main problem when considering this solutiain@ we assume that each sample

containsa priori the same relevance to the modelling, which in general is m@t. {This can
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be easily alleviated by using a different penalizationdador each training sampleaccording

to a certainconfidence functior; on the samples. This idea can be also extended by using
different insensitivity zone for each sample. In this work, we use the profiled SVR approach
[2], which relaxes or tightens theinsensitive region depending on each training sample.,Now

the objective function becomes [5]:

: 1 .
min {—IIWIIQ+CZ@(&+§>} (6)
W,fi,fi ,b 2 i
and restrictions over slack variables become sample-digp¢n
T € .
yi_ﬁb(Xi)W—ng—i—fi Vi=1,...,n (7
qu(xi)w—i—b—yigg—i—ff Vi=1,....n 8)

Therefore, now each sample has its own insensitivity erfor ¢/¢;, which intuitively means
that different samples hold different confidence intervBIg including linear restrictions (7)-(9)
in the corresponding functional (6), we can follow as in ti@ndard case, which once again
constitutes a QP problem.

In the SVR image coding procedure [1], the whole image is @irgtded in blocks, and then a
2D DCT-transform is applied to each one of them. Then, deglit&8VR models are trained in the
frequency domain for each block and the obtained weightsjaaatized. Therefore, the signal is
described by the Lagrange multipliers of the support vact@eded to keep the regression error
below the thresholds;. Increasing the thresholds;, reduces the number of required support
vectors, thus reducing the entropy of the encoded image rasrdasing the distortion. The key
point here is choosing; according to a meaningful criterion for the application.

In [2], [18], we designed profiles for the variation 6f ande¢ as a function of the sample
in complex pharmacokinetic problems. In [19], profiles wdsedined in terms of clusters rather
than fixeda priori. In this paper, we will define the-insensitive zone to restrict the Maximum
Perceptual Error (MPE) [3], [4], [15], [16] in each coeffinteof the DCT. This profile will vary

the e-insensitive region as a function of the frequency in the D@Mmdin.
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[11. M AXIMUM PERCEPTUALERROR FOR ADAPTIVE INSENSITIVITY

The core of the transform coding idea is that the relevancth@fcoefficients in the DCT-
transformed domain is highly uneven. This is because wlolaes coefficients have a big
contribution to the distortion, others can be strongly rfiedi without significant loss. In the
transform and quantization paradigm [14], the hierarchycaéfficients has led to uneven bit
allocation schemes (and non-uniform 1D quantizers for eaeffficient) [3], [4], [15], [16]. This
implies that the maximum distortion introduced in each fioeint depends on both its frequency
and its amplitude. These ideas can be incorporated into\the g&radigm by considering that the
maximum distortion is given by the insensitivity parameteiherefore, the distortion criteria
used to design the variable quantizer step in each coefficenld be applied to design an
adaptive insensitivity zone in the SVM case.

Classical quantizer design is founded on MSE minimizatiod gines rise to variable quan-
tization steps based on the variance of the coefficients lagid particular probability density
function [14]. However, as the coded image has to be judge@ Ibyiman observer, the cri-
terion should include the sensitivity of the human viewer.that sense, the introduction of a
perceptual metric in average error criteria does not sdileegtoblem because average perceptual
error minimization does not imply that every error is belaw proportional) to the perceptual
discrimination thresholds. In fact, it has been shown tlesping the distortion proportional to
the visibility thresholds (restricting the MPE of each damént) leads to better subjective results
than minimizing the average perceptual error [3], [4], [1BF]. Therefore, the bottom line to
design the adaptive insensitivity zone of the SVM, whichtriets the maximum error in each
coefficient, is drawn from the MPE criterion in each coefiintiéor each particular image region.

In our case, we have to compute the human visual insengitivitevery DCT coefficient from
the corresponding slope of an appropriate vision respomgkmCurrent models of human visual
cortex assume that each regioh,of the input image around some spatial positignyndergoes
a two-stage transform [20], [21]:

ALy By (10)

whereT is a linear transform in which the input is analyzed by a satrof-norm oriented local-

frequency sensors (V1 neurons) with receptive fields catalely similar to the block-DCT basis
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functions [22]:

yi=> Ty A (11)
J

andR is a transduction function that represents the gain of eadicplar sensof];, and maps the
linear transform representation into a perceptually E@en response representation [21]. The
Euclidean nature of the response representation implagstile linear transform representation,
y, IS not Euclidean [23].

In this way, a small distortion in the transform represeatgtAy, induces a distortion that

can be approximated by using the Jacobian of the transduftiitction:
r+ Ar~ R(y) + VR(y) - Ay (12)
Then, the maximum perceptual distortion for that spatiglae is given by
MPE, = [|Ar[|oc = max(VR(y) - Ay) (13)

The global perceived distortion in an image withspatial regions will be a particular spatial

pooling (5-norm) of thesen local distortions from each local (block) response reprtgen:

1/8

where 3 is the summation exponent in this spatial pooling. The masumate gain control
models of V1 sensors include non-linearities with intdmatg between the outputs of the linear
sensors [20], [21], thus giving rise to a non-diagonal irgependent Jacobian [23]. Using such
models would not be easy to derive a boung for the distortion in each coefficientyy;, from
Eq. (13). However, if we restrict ourselves to the most semplodel in which each sensor has

a constant linear gain given by tl@ontrast Sensitivity Function (CSI24]:
Ar; = CSE - Ay, (15)

the Jacobian is a diagonal matrix withR(y);; = CSF. According to this, in order to keep the

perceptual error below some arbitrary threshold, MREr, every distortion Ay;, has to be:
Ay; <7-CSF! (16)
Therefore, the insensitivity region for each coefficighshould be given by the CSF:
g; =7 -CSF! (17)
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Figure 1 shows the CSF, i.e. the relative slope for each sesdbasis function) of the
DCT representationwhich is expressed in cycles/degree. The behavior of theal/isystem in
the frequency domain (e.g. the CSF) is commonly defined inipafyg meaningful units such
as cycles/degree or samples/degree. These units refeetaumber of discrete samples per
angle subtended by the image at a given viewing distance frEélqggency meaning of the DCT
coefficients is given by the selected sampling frequenceuivalently by the size and viewing
distance).

The discrimination ability of a sensor (its insensitivitycan be obtained from the slope of its
response curverigure 2 shows that the bigger the slope, the smaller thengitsaty: different
slopes in the response of each sensor imply different intsgtiss, and hence different bounds
on Ay; for the same perceptual error MPE 7.

Using insensitivity values according to Eq. (17) is optinmalhe MPE sense because it ensures
that the MPE is below the selected threshold, for every regions, thus minimizing the global
MPE.

IV. RESULTS ANDDISCUSSION

The general encoding procedure proposed by Robinson anddfeflh consists of learning
the DCT representation of each block of the image to obtaint @fsgupport vectors and their
corresponding Lagrange multipliers. These weights ara theformly quantized. The number
of selected support vectors and thus the entropy of the excsinal is controlled by a factor
applied to thes-insensitivity zone (the parameterin Eq. (17)). Tailoring different profiles
will produce critically different support vector distritons in the frequency domain and hence
different error distributions in this domain. Therefor&featent ¢ profiles lead to results of quite
different perceptual quality.

In this section, we show the benefits of the proposed MPE @ppmofile (CSF-SVR approach,
Eq. (17)) by comparing its results with a generic uniformetpSVR approach), and with the
method proposed by Robinson and Kecman [1] (RKi-1 approach®).cdmpare these three
different SVM training strategies in terms of (a) the disition of support vectors, and (b)
the effect that these distributions have in the comprespeniormance. Following the same
approach of [1], we used the RBF kernel, trained the SVR modg#lout the bias termd, and
modeled the absolute value of the DCT coefficients. For the sdla fair comparison, all the
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free parameterse{insensitivity, penalization parametét, Gaussian width of the RBF kernel,
and uniform quantization level of the weigths) were optiedzZor all the considered models.
The value ofr in (17) was tuned iteratively to produce a given compressatio and depends
on the image. Note that high valuesoincrease the width of the tube, which in turn produce

lower number of support vectors and consequently yield ériglompression ratios

A. Distribution of support vectors

Figure 3 shows a representative example of the distribudfaie selected SVs by the three
models considered in this work. These distributions reflemt the selection of a particular
insensitivity profile modifies the learning behavior of theéNs.

Using a straightforward constaatfor all coefficients £&-SVR approach) concentrates more
support vectors in the low frequency region because theweei of these DCT coefficients in
natural images is higher [12], [15]. However, it still yisl@ relatively high number of support
vectors in the high-frequency region. This is inefficientdase of the low subjective relevance
of that region (see Fig. 1). Considering these vectors willsignificantly reduce the (perceptual)
reconstruction error while it increases the entropy of theoeed signal.

The RKi-1 approach [1] uses a constatut the authors solve the above problem by neglecting
the high-frequency coefficients in training the SVM for edsthck!. This is equivalent to the
use of an arbitrarily large insensitivity for the high-frezncy region. As a result, this approach
relatively allocates more support vectors in the low/mediuequency regions. As the authors
suggest, this modification of the straightforward uniforppeach is qualitatively based in the
basic low-pass behavior of human vision. However, such decapproximation (that implies no
control of the distortion in the high-frequency region) datroduce annoying errors in blocks
with sharp edges.

The proposed algorithm (CSF-SVR approach) uses a vari@ahblecording to Eqg. (17). Tak-
ing into account the perception facts reviewed in Sectidnthie acceptable distortion in the
low/medium-frequency region is smaller than in the higégfrency region, giving rise to a

(natural) concentration of support vectors in the low/medifrequency region. Note that this

lIf a (reasonable) sampling frequency of 64 cycles/degree is assutm cut-off value recommended in [1] is around 20

cycles/deg.
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concentration is even bigger than in the RKi-1 approach. KHewehe proposed algorithm does
not neglect any coefficient in the learning process. Thaetatyy naturally reduces the number of
allocated support vectors in the high-frequency regiomwegard to the straightforward uniform
approach, but it does not prevent selecting some of them whemecessary to keep the error

below the selected threshold, which may be relevant in edggké.

B. Compression performance

Exhaustive compression experiments using several sténdeges (Lena, Barbara, Boats,
Peppers and Cameraman) were conducted using the differdntti@ining strategies at different
compression ratesn the range [0.05, 0.5] bits/pixel (bpp), i.e. 160:1 to l@&dmpression
ratios respectively. In all cases, the images were analyzed ustnd 6 block-DCT, assuming
a sampling frequency of 64 cycles/degr¥ée also include results using the standard JPEG as
a baseline method for reference purpdses

Given the limitations of the available (subjective) disitmm metrics [21], [25]-[27], the more
reliable evaluation of the subjective performance of thesaered methods is the direct visual
inspection of the decoded images. However, it is also usudescribe the compression perfor-
mance using rate-distortion curves. In these curves, thenmof the encoded image (measured,
for instance, by its entropy in bits/pixel) is compared toagpropriate distortion measure. The
best algorithm is the one that achieves the lowest distorfiw a range of bit rates. In this
case, the distortion measure should be meaningful for thécagion, i.e. it should represent the
subjective quality of the reconstructed image.

In this section, we analyze the performance of the algosthinnough rate-distortion curves
using two different distortion measures: the standard M5SEnd the MPE of Eq. (14) with
# = 2 and using the CSF model fovR. Results are shown in Fig. 4. According to the
standard MSE point of view, the performance of 8M algorithms is basically the same (see
Fig. 4(a)), improving the results of JPEG as previously regzbin [1]. However, we can observe
a substantial gain in MPE of the CSF-SVR model when lookingigt #b). As expected from
the discussion in Section lll, the proposed scheme is optumder the MPE criterion (and the

CSF model) and, of course, it is suboptimal in the MSE (or PSNRR¥e. In fact, by taking into
2\We used the JPEG implementation by Lagendijk, which is availabke &ip: / / www= i ct . ewi . tudel ft.nl .
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account the visual results presented in Fig. 5, it is cleat the MSE results are not useful to
represent the quality of the methods, as extensively repatsewhere [21], [25]-[27]. These
results not only confirm the theoretical and practical vglidf incorporating the CSF into the
SVM methodology, but also the meaningfulness of the MPEodisin measure [3], [15], [16],
[23]. The visual inspection of the results (Fig. 5) confirmattthenumericalgain in MPE shown
in Fig. 4(b) is alsoperceptually significant

The visual effect of the different distribution of the suppeectors due to the different
insensitivity profiles is clear in Fig. 5. First, it is obvieuhat the perceptually-based training
leads to better overall subjective results: the annoyinglkihg artifacts of the-SVR and RKi-1
approaches are highly reduced in the proposed approadhg gise to smoother, and perceptually
more acceptable, images. Second, the blocking artifactsSWR and RKi-1 approaches may
come from different reasons. On the one hand, the unifoi®VR wastes (relatively) too many
support vectors (and bits) in the high-frequency regioruichsa way that noticeable errors in the
low-frequency components (related to the average lummaneach block) are produced (see the
face of Barbara). However, note that due to the allocation @fenvectors in the high-frequency
region, it is the method that better reproduces details siscthe high-frequency strips in the
Barbara clothes. On the other hand, neglecting the highuecy coefficients in the training
(RKi-1 approach) does reduce the blocking a little bit, butahnot cope with high contrast
edges that also produces a lot of energy in the high frequesgsgn (for instance, Lena’s cheek
on the dark hair background).

An example of the performance of RKi-1 and CSF-SVR at high cesgon ratios (from
64:1 to 125:1) is illustrated in Fig. 6 and Table I. Both the muital and visual results show the
same trend observed in Fig. 5. Specifically, the proposetiadateduces the blocking effect due
to a better perceptually-based distribution of supportamsc The reduction in MPE distortion
in Table | is confirmed by the appearance of the CSF-SVR resuliég. 6.

V. FINAL REMARKS

In this work, we have tailored astrinsensitivity function in the SVR model for image coding,
which is optimal under the MPE principle. This approach hesrbmotivated by the fact that, in
the DCT-transformed domain, the use of a fixedalue is not consistent with the statistical and

perceptual properties of natural images. This approachidvesiled to be more efficient than the
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original SVR-based coding schemes in terms of perceptuatigmmgful rate-distortion measure

and visual inspection, precludirgd hocassumptions in the training algorithm.

An accurate consideration of a perceptually profiled SVining has improved the results.

This fact suggests that further improvement could be aellidwy including more sophisticated

non-linear perceptual models [4] in support vector codicigesnes.
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5 Examples of decoded images. (a) Lena, and (b) Barbara (zdotieooriginal
images at 8 bits/pixel). The bit-rate for these examples3spp(27:1) (Lena) and
0.4 bpp(20:1) (Barbara). (c) and (d) JPEG, (e) and {f5VR, (g) and (h) RKi-1,
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Fig. 1. Contrast Sensitivity Function (CSF) of Nygan et al. [28]. Theetoof two particular sensors respectively tuned to
low-frequency stimuli(CSF, = 1) and high-frequency stimu{[CSF, = 0.54) have been highlighted.
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Fig. 2. Responses and associated visibility thresholds (insensitivity ggafnthe two sensors whose slopes have been
highlighted in Fig. 1. The Euclidean nature of the response domain impliesubalistortions Ay; andAy;, induce perceptually
equivalent effects if the corresponding variations in the responsthagameAr; = Ar; = 7. This is why, assuming a certain
threshold for MPE, the biggest the slope in the responsehe smallest the acceptable distortionyin giving rise to Eq. (17).
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Fig. 3. Distribution of support vectors (SVs) for eactprofile as a function of the frequency in the Lena image.
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Fig. 4. Rate distortion curves of JPEG and the three SVM-based imagegcottthods. (a) Distortion measured with the
standard MSE2. (b) Distortion measured using the perceptually meaningful MPE. Tressets are the average over the five

standard images, and the error bars stand for the standard deviatioa @drresponding distortion at each point.
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(i)

Fig. 5. Examples of decoded images. (a) Lena, and (b) Barbaoan(od the original images at 8 bits/pixel). The bit-rate for
these examples is 0.3 bfp7:1) (Lena) and 0.4 bp20:1) (Barbara). (c) and (d) JPEG, (e) and £f5VR, (g) and (h) RKi-1,
and (i) and (j) CSF-SVR.
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(d) (e)

Fig. 6. Examples of decoded images using the RKi-1 and the propode®¥R training strategies at high compression ratios:
0.1 bpp (64:1) [left] and 0.065 bpp (125:1) [right]. (a) Original Bamd image, (b) and (c) RKi-1, and (d) and (e) CSF-SVR.
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MSE!/2 MPE
Compression ratio || RKi-1 | CSF-SVR || RKi-1 | CSF-SVR
0.10 bpp (64:1) 17.5 17.4 6.2 5.0
0.08 bpp (100:1) || 18.0 17.8 6.6 5.5
0.065 bpp (125:1) || 18.7 18.5 7.1 6.4
TABLE |
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OBJECTIVE (MSE'/?) AND SUBJECTIVE (MPE) ERRORS OF THE DECODED IMAGES AT HIGH COMPRESSION
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