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Abstract—This report includes all the technical details of
the Sequential Principal Curves Analysis (SPCA) in a single
document. SPCA is an unsupervised nonlinear and invertible
feature extraction technique. The identified curvilinear features
can be interpreted as a set of nonlinear sensors: the response
of each sensor is the projection onto the corresponding feature.
Moreover, it can be easily tuned for different optimization criteria
–e.g. infomax, error minimization, decorrelation– by choosing the
right way to measure distances along each curvilinear feature.

Even though proposed in [1] and shown to work in multiple
modalities in [2], the SPCA framework has its original roots in the
nonlinear ICA algorithm in [3]. Later on, the SPCA philosophy
for nonlinear generalization of PCA originated substantially
faster alternatives at the cost of introducing different con-
straints in the model. Namely, the Principal Polynomial Analysis
(PPA) [4], and the Dimensionality Reduction via Regression
(DRR) [5]. This report illustrates the reasons why we developed
such family and is the appropriate technical companion for
the missing details in [1], [2]. See also the data, code and
examples in the dedicated sites http://isp.uv.es/spca.html and
http://isp.uv.es/after effects.html
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I. INTRODUCTION

CLASSICAL unsupervised learning such as Principal
Components Analysis (PCA) and Independent Compo-

nent Analysis (ICA) is useful to design artificial sensory
systems and to understand the organization of natural sensory
systems. On the artificial side, examples include representa-
tions/transforms for image coding [6]–[9] and image catego-
rization [10], [11]. On the natural side, examples include the
analysis of visual cortex [12]–[16]. PCA and ICA obtain basis
of the space according to different optimization criteria. These
basis functions can be interpreted as linear sensors: the pro-
jection of data onto these basis represents the response of the
set of sensors. PCA defines a sensor hierarchy: for example,
an image sensory system made out of principal directions with
highest eigenvalues minimizes the image reconstruction error
[6], [7]. In ICA, the basis is intended to provide responses
as independent as possible, which is equivalent to design a
sensory system that maximizes the transmitted information
(infomax) [17], [18].

Even though linear unsupervised techniques have been
successful to (1) design sets of artificial sensors, and (2) to
explain the receptive fields of biological sensors, they have
fundamental problems:
• Sensors are linear. Linear transforms are not efficient

when the data do not come from a linear manifold or
when the natural sensory system at hand is nonlinear. For
example, in vision, PCA or ICA models are too simple
for natural images [3], [19]–[26], and linear feature ex-
traction cannot explain the nonlinear responses of spatial
frequency analyzers in V1 [27]–[31].

• Features are treated independently. Projecting the data
in each basis function independently is an advantage to
interpret each dimension of the transform as a separate
sensor. However, this simplistic model ignores eventual
relations between linear responses. For instance, in vi-
sion, contrast masking experiments [27], [28] and neuron
recordings [29]–[31] indicate inhibitory interactions be-
tween linear mechanisms. Moreover, coefficients of linear
ICA-like image transforms are not independent [3], [19]–
[26].

• The metric is global. Linear transforms imply a constant
Jacobian and hence the induced metric is global, i.e. equal
in each point [22], [32], [33]. This is an important re-
striction since artificial and natural sensory systems have
limited resolution and more resources have to be allocated
in more populated regions of the space. This means a
point-dependent resolution/metric/sensitivity, and not just
a different weight per dimension [28], [33].

A number of nonlinear manifold learning techniques have
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been developed that could be used to address the obvious prob-
lems of linear techniques. Unfortunately, more sophisticated
methods are harder to interpret as a set of sensors. In order to
be suitable for the interpretation or design of sensory systems,
a nonlinear technique should have the following features:

• Explicit form of the sensors. An explicit representation
of the sensors (analogous to the principal directions in
PCA or the independent directions in linear ICA) is
desirable. Implicit transforms may be flexible enough to
capture data nonlinearities but one has no separate access
to the properties of each sensor, which is mandatory if
the properties of specific biological sensors have to be
reproduced. Note that an explicit set of nonlinear sensors
in the input space is helpful since it defines a curvilinear
coordinate system. In this situation the response of such
sensory system is just an intuitive change of coordinates.

• Out-of-sample problem. It is important that the method
is applicable to data which is not in the training set.

• Invertibility. Invertibility ensures that changes in the
response domain may be analyzed back in the original
space. This is useful to assess the representation error
when considering a reduced set of sensors (dimension-
ality reduction) or when they have limited resolution
(transform quantization). Invertibility is also useful to
obtain the meaning of the coordinates of the transform
domain back in the input space.

• Tunable metric. As stated above, sensitivity should be
focused on specific regions of the input space according
to the Probability Density Function (PDF). The method
has to include different principles guiding this point-
dependent metric. A clear definition of the metric accord-
ing to different organization criteria allows to explore the
principles underlying the behavior of biological systems.

Conventional nonlinear manifold learning methods do not
fulfill all the above requirements at the same time.

For instance, though efficient in many tasks, spectral meth-
ods [34]–[36] and kernel methods [37] do not generally
yield intuitive mappings between the original and the intrinsic
curvilinear coordinates of the low dimensional manifold. In
addition, even though a metric can be derived from particular
kernel functions [38], the interpretation of the transformation
is hidden behind implicit mappings, and out-of-sample exten-
sions are typically difficult, if not impossible.

An alternative family of manifold learning methods describe
complicated manifolds as a mixture of local models [39] that
may be merged into a single global representation [40]–[43].
The explicit direct and inverse transforms can be derived from
the obtained mixture model. However, explicit description of
the sensors is not straightforward, and moreover, the effect
of the local coordination in the (eventually point-dependent)
metric was not explicitly analyzed. In the context of nonlinear
ICA, an alternative way of merging locally disconnected
representations was proposed in [3]. In that case, the global
representation was based on the fact that the Jacobian of the
global nonlinear ICA may be differentially approximated by
local linear ICA [44]. Accordingly, the global representation
was obtained by integrating the Jacobian. However, obtaining

the global representation through integration in arbitrary paths
requires special symmetries in the manifold (e.g. Stokes con-
dition). Moreover, the invertibility of the transform was not
addressed therein [3].

Self-Organizing Maps (SOM) [45] and variants [46] are
based on tuning a predefined topology in such a way that the
curved sensors and the complete lattice of discrete responses
are obtained simultaneously. Therefore, training is computa-
tionally demanding in highly dimensional scenarios as is the
case for visual stimuli. Moreover, the appropriate choice of
the SOM lattice resolution (number of discrete perceptions
per dimension) requires a priori knowledge of the sensory
system one wants to model. Another candidate to describe
visual sensors is isometric feature mapping (Isomap) [47].
It computes geodesic distances in the manifold obtaining an
unfolded representation of the data. Nevertheless, it is not in-
vertible and hence the explicit description of the sensors in the
input space is not easy to obtain. Moreover, including different
design criteria in the Isomap metric is not straightforward.

Here we present the general formulation of an alternative
learning technique: the Sequential Principal Curves Analysis
(SPCA). The basic SPCA idea is generalizing the explicit set
of sensors of linear unsupervised learning by using a set of
Principal Curves (PCs). SPCA assumes a smooth manifold
made of local clusters, as the local coordination literature
[40]–[43]. However, unlike [40]–[43], no mixture of models
is computed here. On the contrary, as in [3], we integrate a
suitable Jacobian intended for component independence. The
distinctive features of SPCA are: (i) new PDF-based Jacobian
(or metric) that can be tuned to either the infomax or the error
minimization principles, (ii) using the concept of secondary
PCs [48], we obtain a set of non-linear sensors made of a
specific sequence of secondary curves, and (iii) straightforward
out-of-sample extension and invertibility.

Fig. 1 illustrates the SPCA concept. SPCA instrumentally
requires an algorithm to draw first [49] and secondary [48] PCs
from specific points (i.e. a local-to-global algorithm). Suitable
choices include those in [48], [50], [51] or the one used here
(see the Appendix below). However, note that the choice to
draw individual PCs is not the core of SPCA, but the PDF-
related metric and the specific sequential path for the Jacobian
integration leading to the curvilinear coordinate system (the
nonlinear sensors).

Related work includes extensions of PCA generalizing
principal components from straight lines to curves, based
on: (1) non-analytic principal curves [52], [53], (2) fitting
analytic curves [54]–[57], and (3) implicit methods using
neural networks and autoencoders [58]–[60].

The distinctive property of SPCA is that it identifies an
explicit system of separate sensors with tunable resolution.
In [52], [53] the authors suggest that their projection method
could be used for signal representation if applied sequentially.
However, they acknowledge that their current setting lacks the
required accuracy [53]. The nonlinear features identified by
neural networks [58]–[60] are not explicit in the formulation,
complicating their use in the interpretation of nonlinear sensors
(as for instance to understand image texture analyzers in V1).
Finally, the consideration of biologically plausible organiza-
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Fig. 1. The SPCA leading idea is removing redundancies by unfolding the dataset along the first and secondary principal curves (PCs)
while performing local equalization along the way. Left plot represents the input domain x and right plot represents the response domain r.
Gray regions represent the underlying PDFs. As in SOM, a curvilinear lattice is assumed (thin red, blue, and green curves). However, unlike
in SOM, the computation of the whole lattice is not needed: to transform certain x just the path in bold style, made of segments of PCs,
is required. Moreover, the specific resolution per dimension emerges from data: the proposed Jacobian with the embedded metric, Eq. 10,
implies that highly populated regions in the input (e.g. orange area) are expanded in the response while lower density regions (e.g. green
area) are shrunk. Given an origin, xo, in the first PC (red line) and some point of interest, x, the response for the point of interest is given
by the lengths (the integrals in Eq. 14) along this path: the first (or standard) PC in red, the second PC (in blue) in the orthogonal subspace
at x1

⊥, which is the (geodesic) orthogonal projection of x on the first PC, and the third PC (in green) in the orthogonal subspace at x2
⊥.

tion principles (such as infomax or error minimization) and
their metric effects were not addressed in [52]–[60].

The work is organized as follows. Section II reviews the
infomax and the error minimization principles and their geo-
metric effects. Section III motivates the proposed Jacobian and
integration path by making observations on smooth manifolds.
Section IV describes our proposal: the Sequential Principal
Curves Analysis with tunable metric. The experimental Sec-
tion V empirically checks the SPCA assumptions and abilities
through a series of examples: (1) sensible geodesic projections,
(2) convergence of transform and inverse, (3) nonlinear ICA
and optimal transform coding as a function of the PDF-
based metric. (4) dimensionality reduction, (5) domain adap-
tation, (6) enhanced classification through generalization of
the Mahalanobis metric. Finally the Appendix describes the
instrumental algorithm used here to draw a single Principal
Curve.

II. INFOMAX, ERROR MINIMIZATION AND LOCAL METRIC

Processing input samples x ∈ Rd requires the design of an
appropriate set of d sensors that transform observations into
r = R(x) ∈ Rd. Limited sensor resolution or internal noise
in the responses are modeled as some sort of quantization Q,

x
R
((

ff

R−1

r

Q
))
r? (1)

The infomax [17], [18] and error minimization [61] design
principles imply different links between the sensitivity of
the system (its Jacobian ∇R(x)), the non-Euclidean metric
induced by the system [22], [32], [33], and the signal PDF,
p(x). However, these links restrict but do not determine the
response function [62], [63]. In this section we review the links
and in Section III we make additional considerations that lead
to a particular design for R.

On the one hand, infomax looks for transforms R such that
r has independent components or maximum entropy, which
leads to [17], [18]:

|∇R(x)| ∝ p(x) (2)

On the other hand, minimization of |x−R−1(r?)|2 leads to a
different constraint. The optimal MSE sensitivity fulfils [61],

|∇R(x)| ∝ p(x)1/3 (3)

which is consistent with the classical optimal MSE distribution
of discrete perceptions in Vector Quantization [7]. The expo-
nent accompanying the PDF in the Jacobian will be hereafter
referred to as γ.

Non-linear responses have geometrical effects. Intuitively,
a sensory system with non-trivial response induces a non-
Euclidean metric in the input space: if the sensitivity (slope
of the response) is bigger at some region of the input space,
distortions in that region will be more relevant to the sys-
tem. In particular, assuming that the internal representation,
r, is Euclidean, the following perceptual metric matrix is
induced by the system at the input domain [22], [32], [33]:
M(x) = ∇R(x)> · ∇R(x).

Accordingly, relations between the sensitivity of the system
and the PDF of the input space (as required by infomax or
error minimization) will also give rise to relations between
the induced metric and the PDF:

|M(x)| ∝ p(x)2γ (4)

The above restrictions on |∇R| and |M | do not fully
determine R. In fact, an infinite family of transforms is
suitable for infomax [62], [63]. Next section makes additional
considerations that inspire our proposal for ∇R.

III. MOTIVATION IN THE INFOMAX CONTEXT

The following properties of curved smooth manifolds mo-
tivate the proposed Jacobian and integration path:
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1) Global linear transforms, v = W · x, are not appro-
priate for component independence in curved manifolds
since the conditional mean with regard to one linear
component (or direction), say v1, is not constant in
the range of v1. This means that the conditional PDF,
p(v2, . . . , vd|v1), depends on v1 and hence, the orthog-
onal subspace (v2, . . . , vd) statistically depends on v1.

2) Unfolding along one PC is a sensible step towards
independence since it makes equal the first moment
(the mean) of the conditional PDFs along the PC.
However, complete independence may require additional
processing.

3) Additional processing after unfolding should make equal
the higher order moments. For instance, if manifolds
are approximated as mixtures of Gaussian clusters, the
second moment (the covariance) along the PC can be
made equal by local expansions (local metric changes)
in the unfolded domain. In general, by choosing a metric
proportional to the probability (Eq. 2), the conditional
PDFs are uniformized. In this way, all the moments are
constant along the PC.

A. Unfolding along the PC: the cumulants perspective

Unfolding along PCs (or alignment of the clusters in the
manifold) implies a step in the right (independence) direction
but it is not enough since a metric change is still needed. This
is easy to see by looking at the cumulant expansion of the
conditional PDFs.

Unfolding along a PC with parameter, u1, implies indepen-
dence with regard to orthogonal subspaces iff it gives rise to:

p(u2, . . . , ud|u1) = p(u2, . . . , ud) (5)

Therefore, the cumulant generating functions of both sides of
the above equation should be equal:

1−jω>m1+
1

2
ω>m2ω−. . . = 1−jω>m′1+

1

2
ω>m′2ω−. . .

(6)
where mi and m′i are the ith-order moments of each PDF,
and ω is the parameter of the characteristic functions. Inde-
pendence holds if mi = m′i, ∀i.

One PC satisfies the parametric equation [49]:

f(u1) = E[x|λ(x) = u1] (7)

where λ(x) is the orthogonal projection of x on the curve, so
{x|λ(x) = u1} is the orthogonal subspace at the curve point
u1. According to this, the curve passes through the average
of the orthogonal subspace (the origin of the subspace in the
unfolded representation):

E[u2, . . . , ud|u1] = 0,∀u1 ⇒ E[u2, . . . , ud] = 0 (8)

which means that unfolding along a PC makes the averages
equal: m1 = m′1 = 0. However higher order moments
(e.g. variance) may not be equal along the curve. Therefore,
unfolding is good in independence terms (i.e. it helps to fulfill
Eq. 6), but additional processing is needed to ensure the
equality of all higher order moments. Next subsection shows
an example based on Gaussian clusters where the additional

processing after unfolding reduces to making the covariances
equal (i.e. equalization).

B. Equalization after unfolding

Here we explore the effect of unfolding and local equal-
ization in multi information terms. To this end we consider
an elementary curved manifold made of two different local
clusters (Fig. 2), but the conclusions may be extended to more
complicated manifolds made of local clusters.

By definition, the PC will go through the averages of the
local clusters, i.e. the points c1 and c2 in our elementary
example. A set of concatenated rotations with appropriate
angles around the points along the PC, u = U(x), will
eventually unfold the PDF by aligning the averages of each
local cluster as well as the axes of the local models.

The change in multi-information, ∆I = I(x) − I(u),
using this family of concatenated rotations, U , is easy to
compute [64]:

∆I =
∑
xi

h(xi)−
∑
ui

h(ui) + E[log |∇U(x)|]. (9)

Note that this reduces to the change in the sum of marginal
entropies since |∇U(x)| = 1, ∀x as the local behavior is just
a rotation.

In this illustrative example, the family of concatenated local
rotations depends on three parameters: the angles α1, α2 and
θ1, and we may exhaustively look for the transform U that
optimizes the multi-information reduction. We computed the
sum of marginal entropies, or ∆I , for the whole family of
transforms U : see the isosurfaces of ∆I in the parameter
spaces at the top right. This example clearly indicates that
the maximum reduction in I (parameters identified by black
dots in the figure) also leads to unfolding and model alignment
(center left figure).

However, the variance of each local cluster may still depend
on the location along the unfolded PC. This residual depen-
dence can be removed by locally expanding or contracting
the unfolded domain through an appropriate point dependent
metric: r = D(x) · U(x). Horizontal contour lines at the
bottom right plot show the I values for different combinations
of metric changes applied at each cluster. Multi-information
by itself does not completely constrain the line element along
the unfolded dimension. However, if one additionally requires
constant probability in the transformed domain (clusters of
uniform volume), the solution is unique as shown by the
combination of multi-information contours and the curved
contours indicating uniform volume clusters. The minimum
I condition together with the equal volume condition (black
dot) is obtained when the first cluster is vertically expanded
to have the same height as the second cluster. As intuitively
expected, the optimal local expansion or contraction in I terms
and in achieving constant volume regions is the one that makes
the clusters equal (bottom left figure).

In a more general d-dimensional scenario, the required
additional processing after unfolding along a Principal Curve
could be setting the line element for local equalization in every
direction of the orthogonal subspaces. This would achieve
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Fig. 2. Unfolding and local equalization are optimal in multi-information and
in achieving uniform population per unit-volume cluster. Top left plot shows a
simple curved manifold, which was generated from particular misalignments
α1 = 10o, α2 = 20o, and θ1 = 30o, and particular ratios among the
standard deviations in the local principal directions, namely 0.83 and 1.5.
The effect of varying the parameters of the unfolding transform U in reducing
mutual information, ∆I , is shown in the right top plot (darker means higher
∆I). Middle left plot shows the same data under the identified optimal U(x),
and bottom left plot shows the data that jointly minimize I while achieve
uniform density clusters. The bottom right plot displays I and iso-density
contours (see text for details). The latent values are correctly identified by
minimizing I while enforcing uniform PDF. Conversely, unfolding along a
PC, local model alignment and local equalization minimize I .

a constant (uniform) PDF along the curve thus ensuring
the equality of all higher order moments. In 2-d settings
(as the one above) orthogonal subspaces are 1-d and the
additional equalization required after unfolding can be easily
solved. Unfortunately, in general, orthogonal subspaces have
dimension (d − 1), and the solution of multivariate equal-
ization is not unique [62], [63]. A suboptimal alternative is
performing the required equalization sequentially: following
one secondary PC at a time. Therefore, unfolding and point-
dependent equalization can be extended dimension-wise by
sequentially drawing additional locally orthogonal PCs.

Even though a sequential (dimension-wise) procedure does
not guarantee complete independence, equalization along sec-
ondary PCs is more sensible than using arbitrary linear di-
rections since, according to their definition [48], they capture
the main structure in the orthogonal subspaces. Moreover, the
benefits of unfolding and point-dependent metric suggested so
far, trivially generalize to more complicated manifolds that can
be locally decomposed into clusters, as commonly assumed in
the literature [3], [40]–[43].

Accordingly, unfolding along PCs and the use of local
metrics will be the basic processing elements of the proposed
technique.

IV. SEQUENTIAL PRINCIPAL CURVES ANALYSIS

The proposed transform consists of (1) certain differential
behavior, and (2) certain integration path for this Jacobian.

A. Proposed differential behavior (Jacobian).

Local unfolding and equalization along PCs, can be ex-
pressed as:

∇R(x) = D(x) · ∇U(x) (10)

where u = U(x) is the unfolding transform that consists of
concatenated local rotations along the proposed path made of
a sequence of PCs, and the diagonal matrix D(x) represents
the local length of the line element along this path (change
of metric). Note that ∇U(x) is orthonormal for all x since
the unfolding U can be formulated as a set of concatenated
local rotations. In fact, in agreement with [48], [50], [51], the
method we (instrumentally) use here to draw local-to-global
PCs relies on local PCA to estimate the tangent to the curve
(see Appendix). Note that using local-PCA to compute PCs
is consistent with the assumption of local Gaussian clusters,
which is usual in the literature [3], [40]–[43].

In order to adapt the metric to the density, we set the
elements of D using the marginal PDF on the unfolded
coordinates and an appropriate exponent γ ≥ 0:

D(u)ii ∝ pui
(ui)

γ (11)

where each marginal PDF is estimated following k-neighbors
rule. The induced metric is: M(x) = ∇U(x)>·D(x)2·∇U(x).
Assuming that local clusters can be factorized by the local
rotations (e.g. ∇U(x) are local PCAs), we have:

|M(x)| = |D(x)|2 ∝
∏n
i=1 pui(ui)

2γ = p(u)2γ

= p(x)2γ |∇U(x)|−2γ = p(x)2γ ,
(12)

which is the behavior required in Eq. (4) and encompasses
both infomax and error minimization depending on γ.

B. Proposed integration path.

Given an arbitrary origin on the first PC, xo, assumed to
give zero response, ro = 0, and some point of interest, x;
the transform R(x) will be given by the integration of the
proposed Jacobian along certain integration path from xo to x.
As illustrated in Fig. 1, the proposed path is made of segments
of the first and secondary PCs. The first PC is just the standard
PC of the set [49], while secondary PCs were introduced
in [48]. In the proposed path, the i-th PC is followed up
to the geodesic projection of the point x on this PC, xi⊥.
Here geodesic projections are understood as projections that
follow the local structure of the manifold. Geodesic projections
are obtained from orthogonal projections according to the
procedure described later.
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(a) (b) (c) (d) (e)

Fig. 3. Curved locally orthogonal subspaces from secondary PCs and the appropriate PDF-dependent metric. Delicado’s secondary PCs (e.g. second PC in
blue and third PC in green in a and b) capture the structure in the orthogonal subspace with regard to the Hastie’s PC (in red). A locally orthogonal curved
subspace can be defined by considering additional 3rd PC curves at certain points on the 2nd PC (dashed and dotted green curves in c and e). Taking these
points to be separated by constant cumulated density, as would be given by constant steps in r2 (or integrated metric in 2nd dimension), the 3rd PCs divide
the subspace in regions of constant population. If the same procedure is applied on the remaining dimensions (blue PCs in e), one obtains the lattice with
constant population in each non-uniform cell, as in Fig. 1.

C. Direct Transform.

The SPCA transform of x is given by integrating the
proposed ∇R along the proposed path:

r = R(x) = C ·
∫ x

xo

∇R(x′)·dx′ = C ·
∫ x

xo

D(x′)·∇U(x′)·dx′

(13)
where C is just a constant diagonal matrix that independently
scales each component of the response. The selected path
implies displacements in one PC at a time. According to
this, the vector du′ = ∇U(x′)dx′ has only one non-zero
component: the one corresponding to the considered PC at the
considered segment. Therefore, the response of each sensor
to the point x is just the length on each PC in the path,
measured according to the metric related to the local PDF
with the selected γ,

ri = Cii ·
∫ xi

⊥

xi−1
⊥

D(x′) ·∇U(x′) ·dx′ = Cii

∫ ui
i⊥

0

pui
(u′i)

γ du′i

(14)
The scaling constants, Cii, are a global response ranking.

SPCA is initialized by setting (i) the origin of the coordinate
system, and (ii) the scale of the different dimensions and the
order in which they will be visited by the sequential algorithm.
Sensible choices for the origin are those suggested in other
local-to-global PC algorithms [48], [50], [51]: the most dense
point of the distribution (if known) or the mean of the data.
Then a set of d locally orthogonal PCs is drawn at the selected
origin, which will be used to set the order and the relative scale
of the dimensions. In our case, we set the scaling constants
Cii according to an information distribution criterion: we
use the number of quantization bins per dimension given
by classical bit allocation results in transform coding [7], i.e
higher marginal entropy first. Other criteria could be used,
as for instance the total standard deviation of the projected
data (as in global PCA) or the total Euclidean length of the
curvilinear axes.

D. Inverse Transform.

Given a set of training samples from the source, the origin
in the input space, xo, and the initialization (dimension order
and scale), the computation of the inverse, x = R−1(r), is
simple. It just involves drawing the first PC through the origin

and taking the length r1 on this curve, measured according
to pu1

(u1)γ . Displacement on the first curve by the length
r1 leads to the first projection x1

⊥. Then, the second locally
orthogonal curve is drawn from x1

⊥, and one takes a second
displacement r2 on this second PC leading to the second
projection, x2

⊥. This process is repeated sequentially in every
dimension until the point x is found by taking the displacement
rd from xd−1⊥ on the d-th PC.

Out-of-sample. Note that the transform can be easily applied
to new samples (eqs. 13 and 14) as long as they are not too
far from the training samples, i.e. as long as they come from
the same source.

The reminder of the section is devoted to show how the
concept of secondary PCs in [48] together with the local met-
ric proposed here can be used to define (1) locally orthogonal
subspaces, and (2) projections following the local structure
of the manifold, which we called geodesic projections above.
These are the ingredients behind the proposed SPCA path.

E. Locally orthogonal subspaces.

Hastie’s first PC summarizes the whole dataset [49]. Then,
one may consider hyperplanes orthogonal to this first PC and
local basis at those hyperplanes to describe the residuals. In
principle, any set of (d−1) linearly independent vectors living
in the corresponding hyperplane would suffice. However, as
noted by Delicado [48], the residual at those hyperplanes may
also have a curved structure. Therefore, it makes sense to draw
a secondary PC at the hyperplane to capture this structure (e.g.
blue curve in Fig. 3.a). Fig. 3 shows how the secondary PCs
idea together with the proposed PDF-dependent metric can be
used to define the lattice assumed in Fig. 1.

Even though SPCA does not require its explicit com-
putation, such underlying lattice following the structure of
the PDF illustrates the equalization properties of the SPCA
representation. Delicado lists a set of conditions for these
secondary PCs to exist [48]. A rigorous application of SPCA
should start by checking that Delicado’s conditions hold for the
dataset at hand. In Section V we take an empirical approach
and show that in practice SPCA does induce the kind of PDF-
dependent curvilinear lattices assumed in this section.
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Fig. 4. Iterative procedure to find the geodesic projections of the point to be
transformed x. In the first iteration the orthogonal projection is used as starting
point for each secondary PC of the sequence (left plot). However, in general,
the target point is not reached by drawing secondary PCs from the orthogonal
projections. The residual from attempt k to reach the point, xd

⊥(k) − x, can
be expressed in the local linear coordinates at the approximated point (center
plot). The components of the residual in the local representation can be used
to correct the position of the estimated projection on the curves, Eq. 15. At the
new corrected projections, new local secondary PCs are drawn. The resulting
path gets closer to the target (right plot).

F. Geodesic projections.

In order to reach the target x following the structure of the
manifolds (e.g. through geodesics) Delicado’s secondary PCs
are drawn from certain projections on the 1st, 2nd, ... PCs.
If orthogonal projections are used, in general the target is not
reached by the PCs. Fig. 4 describes the proposed iterative
procedure to reach the target. The idea is modifying the current
projections (or lengths ri) to reduce the approximation error.
At iteration k we have:

r(k + 1) = r(k) + α δ(k)

δ(k) = C ·D(xd⊥(k)) · ∇U(xd⊥(k)) · (xd⊥(k)− x)
(15)

Results in synthetic and real manifolds in section V confirm
the practical convergence of the geodesic projection thus
leading to accurate transforms and inverses.

V. EXPERIMENTS AND EXAMPLES

In this section we focus on the intrinsic properties of SPCA
which are independent of the algorithm to draw individual
PCs1. According to this, in each experiment we assume that
that the algorithm chosen to draw individual PCs is tuned to
the manifold at hand. In our case, this reduces to the minimiza-
tion of the projection error (see Appendix). An implementation
of SPCA with worked examples reproducing all the results of
the work is available at http://isp.uv.es/spca.html.

The foundations of SPCA and its applications are analyzed
in four sets of experiments:
• Underlying assumptions in SPCA. These experiments

are intended to illustrate that the statements in Section
IV actually hold in practice: (1) the concept of secondary
PCs of Delicado can be used to define locally orthogonal
subspaces and geodesic projections, and (2) the iterative
procedure to get the geodesic projections converges giv-
ing rise to a transform with accurate inverse. We check
this in synthetic data and in two kinds of real data: color
manifolds and image (spatial texture) manifolds.

1The particular algorithm chosen to draw individual PCs will certainly have
an impact in SPCA results, but its relevance is merely instrumental. Details
on our particular choice to draw individual PCs, the effect of its parameters,
and the procedure to set them, can be found at the Appendix. However, note
that other local-to-global algorithms to draw individual PCs (e.g. PCs in [48],
[50], [51]) would also be suitable for SPCA.

• Unfolding, Nonlinear ICA and Transform Coding.
These experiments show that tuning the SPCA metric
leads either to (1) plain unfolding, (2) identification
of nonlinear independent components, or (3) optimal
transform coding. We check this both in synthetic data
and in image texture data.

• Dimensionality reduction. The performance of SPCA is
compared to standard manifold learning techniques in a
noisy swiss roll.

• Domain Adaptation. The performance of SPCA to
find a meaningful canonical representation for manifold
alignment is compared to PCA + whitening in a color
constancy application.

• Classification: generalization of Mahalanobis distance.
The manifold dependent metric associated to SPCA can
be used in classification problems (e.g. k-nearest neigh-
bors) as alternative to Mahalanobis distance.

A. Underlying assumptions in SPCA

Locally orthogonal subspaces and geodesic projections.
Figures 5 and 6 shows 2D and 3D examples of how the
described SPCA procedure identifies curved subspaces which
are locally orthogonal to the first PC.

In Fig. 5 we synthesized samples using marginal PDFs of
increasing variance along a spiral. In a part of the spiral we
used a Laplacian marginal, giving rise to a clear ridge in the
manifold, while in the other part we used a uniform marginal.
1000 samples of such manifold were used for training. Here
we show orthogonal subspaces computed at linearly spaced
steps using SPCA with Euclidean metric (γ = 0) and different
origin points x0 on the first PC (highlighted dot on the red
curve). Results show that (1) Euclidean metric does imply
uniform spacing along the first PC (independent of the local
PDF), (2) results are fairly independent of the chosen origin
x0, and (3) identified subspaces display meaningful curvature
so that samples far from the first PC are projected onto the
first PC following the local PDF. Examples of Fig. 8, below,
confirm that SPCA appropriately identifies subspaces and their
distribution along the manifold for other metric choices.

Fig. 6 shows examples of the identified subspaces with
the non-stationary manifolds used by Delicado to define the
concept of secondary Principal Curves [48].

These results illustrate the fact that Delicado’s conditions
for the existence of secondary PCs hold in practice for smooth
manifolds (even displaying strong curvature) and the fact that
these secondary PCs can be used to define locally orthogonal
subspaces and geodesic projections as proposed in Section IV.

Convergence. The ability to reach any point in the manifold
using the proposed path through the geodesic projections (Eq.
15 and Fig. 4) is the key to obtain meaningful transforms
with accurate inverse. Here we check the convergence of such
procedure in three cases: (1) the synthetic manifold considered
above, (2) tristimulus color data from a calibrated color image
database [1], and (3) spatial texture -luminance only- data from
another calibrated color image database [65].
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Fig. 5. Locally orthogonal subspaces (in black) and geodesic projections (e.g. along black curves) are independent of the selected origin of coordinates
(highlighted dots on the red curve).

Fig. 6. Locally orthogonal subspaces (curves in dark color) along the first Principal Curve (bold curve in light color) in Delicado’s manifolds [48]: the
one in red with fixed locally orthogonal subspaces and the one in blue with twisted orthogonal subspaces. Left: Theoretical model and noisy data. Center:
Original features in the SPCA transform domain (unfolding). Right: SPCA features (cartesian reticle in the transform domain) back in the input domain.

Figure 7 -top row in left and central panels- shows the shape
of the manifolds coming from real data. The color manifold
in LMS space (long, medium and short wavelength) displays
the classical correlation between tristimulus components [1],
[15], [66]. Figure shows 300 test color samples, but 20000
samples were used for training. The spatial texture data come
from 15× 15 luminance patches. PCA rotation and whitening
was applied to these patches (225-dimensional vectors). PCA
was computed using 2.5 ·106 samples. Then, 15000 particular
image samples were selected for training falling close to a
particular 3d subspace (only 3 active PCA components and
the rest close to zero). 1000 test samples are shown at the top
of the central panel. Axes are named as Ci for contrast of
each PCA component. The image texture samples show the
classical elongation along the first principal component and

the sparse elliptical symmetry in the other dimensions [67],
[68].

In all cases (synthetic data, color data and texture data), test
points were transformed using SPCA using different metrics
(γ = 0 for the synthetic and color data, and γ = 1, i.e.
equalization, for the texture data). Original and transformed
(unfolded) synthetic data are omitted in Fig. 7 since they are
shown in Fig. 8. Real data transformed are shown in the bottom
row of the left and central panels in Fig. 7. Note that γ = 1
achieves component independence as predicted by the theory.

In these examples, the iteration described in Eq. 15 stopped
when the reconstruction error |x − xd⊥| was smaller than a
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maximum Euclidean distance). Bottom, residuals as a function of the iterations in the computation of the path. Convergence saturates since iterations stopped
once the accuracy threshold was reached.

fraction of the maximum Euclidean distance in the manifold2.
In the experiments, a large fraction of test points is reached

within the accuracy threshold in a single iteration. Figure 7
shows the evolution of the reconstruction error for the points
that were not reached in the first iteration. In our implemen-
tation, the convergence constant α in Eq. 15 was set to 0.01.
However, faster convergence results and improved accuracy
could be obtained with adaptive α as in gradient descent
procedures [69]. The aim of these convergence examples is just
to illustrate that the transform works in practical situations: in
the proposed examples, accurate direct and inverse transforms
are obtained within less than 15 iterations of the algorithm.
Note that convergence saturates since the iteration for each
point stopped once the accuracy threshold was reached.

B. Unfolding, Nonlinear ICA and Transform Coding

Synthetic example. The advantage of using PCs to design
a set of sensors is that their flexibility makes them suitable to
describe curved manifolds, as pointed out in Fig. 8. No matter
the metric used, an unwrapped representation of the data is
obtained. When using γ = 0 the data is unfolded and the orig-
inal local metric is preserved (e.g. the different distributions
inside the manifold remain the same). When using γ = 1,
we obtain a representation where the different distributions
are almost uniformized, leading to a representation where the
different dimensions are almost independent. Finally, when
using γ = 1

3 , the reconstruction error is minimized. In
this latter case, redundancy is certainly reduced with regard

2In our case we used 0.001. Note that this amounts to 0.1 in LMS units for
the color case, and about 0.15 cd/m2 in luminance for the image case. In
both real cases these reconstruction errors are negligible since they are under
the quantization error in conventional displays.

to the input domain, however, the kurtotic structure of the
Laplacian is more visible than in the second case. Note also
the differences in the distribution of the inverted lattices: while
in the γ = 0 case, lattice cells are approximately uniform no
matter the local population (local metric independent of the
PDF), in the other cases, the size is related to the population,
e.g. the γ = 1 case results in tighter slices around the peak
of the Laplacian distribution. As anticipated in Section III,
unfolding alone (γ = 0) is not enough to remove redundancies
in general, but incorporating local changes in the metric can
achieve independent components.

Encoding spatial texture. Efficient representation of spatial
information is a challenging problem for manifold learning
techniques and a suitable scenario to check the effect of
different optimality criteria. In this section the training set
consists of 2 ·105 4-dimensional vectors from 2×2 luminance
patches of natural images from the calibrated McGill database
[65]. SPCA was trained on these samples in the PCA domain
using γ = 1 and γ = 1/3 metrics. Note that given the
symmetry of image data3, plain unfolding, i.e. γ = 0, is
very similar to PCA. SPCA was then applied to 1500 test
samples from the McGill database and to 2500 samples from
the standard image Barbara (not included in the training set).

The ability of SPCA for transform coding is illustrated by
using sensors with limited resolution (uniform quantization in
each dimension of the transformed domain) in the considered
representations. In every case, resolution in each dimension
was set according to standard bit allocation [7]. Figure 9 shows
the reconstruction error as a function of the resolution of the
sensors for 60 randomly chosen samples from the Barbara
image. Figure 9 also shows reconstructed images from the

3Image texture manifolds are not curved as shown in Fig. 7
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Fig. 8. Infomax or error minimization through SPCA. The sets in the
first row were transformed using SPCA (second row) with different γ values.
Additionally, Cartesian lattices in the response domain were inverted back
into the input domain leading to the curved lattices in the top row. Results are
analyzed in terms of independence (Mutual Information), and reconstruction
error (RMSE). In each case, MI was computed in the transform domain,
while RMSE values refer to the quantization error in the input domain
using the corresponding lattices as codebook. For reference, in the original
domain results were MI = 0.75 bits and RMSE=0.63 (using uniform scalar
quantization). Note how γ = 1 obtains better results in independence while
γ = 1

3
is better for RMSE minimization. The Euclidean choice, γ = 0, leads

to constant-size cells independent of the PDF.

quantized representations using the same sensor resolution
(number of quantization bins). The resolution-distortion plot
shows that SPCA with the error minimization metric sub-
stantially reduces the RMSE in image coding with regard to
Euclidean metric (γ = 0, or uniform quantization of PCA) and
to the infomax SPCA. The decoded images show the practical
relevance of the numerical gain achieved by the non-Euclidean
γ = 1/3 approach.

The ability of SPCA for nonlinear ICA is qualitatively and
quantitatively assessed by inspecting the conditional PDFs
between AC coefficients (as in [20], [21], [26]) and by the cor-
responding mutual information (MI) measures (see Fig. 10).
Bow-tie structures in the conditional PDFs and MI measures in
the spatial domain and in the PCA domain are consistent with
previously reported results for natural images [26]. Uniform
conditional PDF and small MI show that SPCA with the
infomax metric strongly reduces the redundancy between the
coefficients of the representation. On the contrary, in the case
of SPCA with the error minimization metric the bow-tie shape
is still visible in the conditional PDF.

These results confirm the theoretical prediction that SPCA
can be tuned either for infomax (using γ = 1) or for error
minimization (using γ = 1/3).

C. Dimensionality reduction

Dimensionality reduction with SPCA consists of consid-
ering d′ < d components of the response vector. Figure 11
shows the qualitative performance of SPCA in dimensionality
reduction by unfolding a noisy version of the popular 2d swiss
roll embedded in R3. We compare SPCA to the solutions
given by other popular dimensionality reduction methods
such as those based on geodesic computation (Isomap [47]),

spectral methods (LLE [34]), and local model coordination
(charting [43]).

Bottom row of Fig. 11 shows the scatter plot of the samples
according to the coordinates identified by each algorithm. In
this transformed domain the variation in the first dimension
is depicted with a hue change from red to blue, while the
variation in the second dimension is depicted with a luminance
change from dark to bright. Top row of Fig. 11 shows the
samples in the original domain colored according to the color
code found in the transformed domain. Therefore, the quality
of the curvilinear coordinates can be evaluated in two ways:
(1) by assessing the shape of the unfolded sets of samples, and
(2) by assessing the meaningfulness of the color distribution
in the original domain.

It is observed a heavy warping of the tails of the embedding
for LLE. As a result, the second (dark/bright) dimension has
no meaning in the input domain. Color distribution (meaning
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SPCA γ = 0 SPCA γ = 1/3 SPCA γ = 1 LLE Isomap Charting

Fig. 11. Dimensionality reduction (from 3d to 2d): unfolding a noisy swiss roll with SPCA using different metrics, LLE, Isomap and Charting. In every
case, 2000 samples were used to learn the reduced dimensionality responses. The number of nearest neighbors in LLE and Isomap was varied in the range
[2, 50], and the number of local models in charting was varied in the range [2, 50]. We show the solutions with best qualitative performance. As stated above,
in the SPCA cases, the parameters of the algorithm to draw individual PCs were chosen to minimize the reconstruction error (see Appendix).

of dimensions) is consistent in Isomap and the SPCA results
no matter the selected metric: the first (hue) dimension means
angular position and the second (luminance) dimension means
height for a fixed angular position. It is reasonable that SPCA
(which sorts the dimensions according to entropy or variance)
gives rise to the same dimension sorting as Isomap, which
considers the length of the geodesics. In this example the
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length (and the variance) along the angular dimension is bigger
than in the other dimension. On the contrary, the sorting in the
case of charting is the opposite. Finally, it is worth to stress
that SPCA (no matter the metric) gives rise to more regular
and uniform scatter plots in the transform domain.

On top of improved data visualization, the invertibility of
SPCA allows to project the low dimensional samples back into
the original domain revealing the latent manifold, Fig. 12.

D. Domain Adaptation

Color constancy under change of observation conditions
is a challenge for machine learning techniques because it
involves strong changes in the samples coming from the same
physical objects. Changes in linear measurements (tristimulus

SPCA γ = 0 SPCA γ = 1/3 SPCA γ = 1

Fig. 12. Original samples (in gray) and SPCA samples with reduced
dimensionality projected back into the original domain (in blue). Top and
bottom row show the same data from different view points to illustrate the
fact that, no matter the metric strategy, the inverse of SPCA properly identifies
the underlying 2d manifold.
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values) may arise from changes in the spectral illumination and
from changes in the geometry of surfaces and light sources.
In general such changes are non-linear, specially those com-
ing from geometry changes, so they cannot be compensated
through linear techniques. The examples of the top row of
Fig. 13 show two pictures of similar objects illuminated with
different spectral radiance (CIE D65, left and CIE A, right)
under different illumination angles. The differences in spectral
radiance induce a rotation of the manifold in the color space,
and the change of surface and illumination geometry induce
the presence of shadows. This latter effect results in a different
distribution of samples within the PDF support. In the CIE A
case the low luminance region is relatively more populated.
According to this, color constancy is an appropriate problem
to assess the ability of a manifold learning technique in
(non-linear) domain adaptation. In this section, we apply the
proposed method for color compensation, or more specifically
for manifold matching, as an example of domain adaptation.
We compare the results with a classical linear technique for
chromatic adaptation based on PCA and whitening [70].

Our strategy for domain adaptation is related to the cor-
responding pair procedure, which has been proposed in the
computational color vision literature using psychophysically-
based models [71]. Given a color vision model, M, that
describes the perception, P , of a test, K, in some adaptation
state (e.g. under observation conditions, S), P = M(K,S),
the corresponding pair, K ′ in a different adaptation state, S′,
is given by [71]:

K ′ =M−1(M(K,S), S′). (16)

In our manifold learning context, this reduces to considering
the color statistics of natural scenes under illuminations S
and S′. Then, the K test points are transformed using SPCA
with the set of colors under illumination S, and inverted back
using the set of colors under S′. The match between invariant
(adapted) representations obtained using SPCA from different
linear (variant) representations, as suggested by Eq. (16), is
related to the nonlinear canonical correlation analysis [41].

As shown in Fig. 13, linear transforms can compensate the
rotation due to the spectral radiance change but the resulting
set is still biased towards the low luminance region. The
diagram in Fig. 13 illustrates the procedure for color compen-
sation using SPCA. Transforms leading to the corresponding
latent coordinates of the manifold in the environments A and
B may be used to estimate the position in environment A
of new points measured in environment B. Unlike in the
linear adaptation case above, the proposed nonlinear transform
not only removes the yellowish appearance, but additionally
reduces the shadows, as expected from a better PDF matching.
In particular, note how the highlighted point xB (the same one
as above) results in a white, higher luminance corresponding
point x̂A.

E. SPCA in classification

The manifold dependent metric associated to SPCA (Eq.
10 4) can be used in classification problems (e.g. k-nearest
neighbors) as alternative to Mahalanobis distance. Euclidean

Environment A: Environment B:
CIE D65 illumination CIE A illumination
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distance in the whitened SPCA domain is a generalization of
Mahalanobis metric (which is the Euclidean distance in the
whitened PCA domain). Similar generalizations can be done
with the related methods Principal Polynomial Analysis (PPA)
[4] and Dimensionality Reduction via Regression (DRR) [5].

An example of how this kind of metrics can benefit the
classification can be found in [4] (Figs. 3 and 4), where
we used PPA. The reason is that given a sample, the loci
of equidistant neighbors is an ellipsoid which is oriented
according to the local structure of the manifold (and not a
sphere). This minimizes the number of wrong-class samples
in the selected neighbors. On top of this advantage (shared
by PPA-based and DRR-based metrics), SPCA-based may be
even better since discrimination will be higher in high density
regions thus reducing the average misclassification error.

VI. SUMMARY

Here we introduced the full technical details of Sequential
Principal Curves Analysis [1], [2]. It is a nonlinear feature ex-
traction method appropriate to design artificial sensory systems
and to analyze the rationale of biological sensory systems. See
also [3]–[5] for prequels and sequels.

Here we introduced the general technical motivations of
SPCA: data unfolding along PCs, followed by local metric
change leads to to easily interpretable nonlinear independent
components. Moreover, splitting the infomax problem into
two stages (unfolding and equalization) allows us to propose
data representations guided by alternative optimization criteria
such as error minimization. SPCA can be seen as a particular
solution to the design of optimal feature extraction for either
independence or transform coding when imposing the preser-
vation of local geometry in addition to the infomax or the error
minimization goals. Following the first and secondary PCs
of the manifold ensures the interpretability of the identified
features, as opposed to spectral, kernel, projection-pursuit, and
neural networks methods for manifold learning.

We explicitly checked the underlying assumptions of SPCA
in synthetic and real examples: (1) secondary PCs can be used
to define locally orthogonal subspaces, (2) the proposed trans-
form converges so that SPCA is invertible, and (3) nonlinear
ICA and optimal transform coding are available using SPCA
by choosing the appropriate metric. We showed examples
of the use of SPCA in dimensionality reduction, domain
adaptation, and classification (by generalizing the Mahalanobis
distance).
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VIII. APPENDIX:
A BOTTOM-UP APPROACH TO DRAW

ONE PRINCIPAL CURVE

In this appendix we present a local-to-global algorithm
to draw first [49] or secondary [48] Principal Curves. This

is just an instrument to build the individual PCs required
in the sequence followed in SPCA. This element of the
general SPCA framework could be implemented with already
reported bottom-up algorithms such as those in [48], [50], [51].
However, given the unavailability of Matlab working code,
we developed our own algorithm where the local structure is
analyzed in terms of local PCA.

The proposed PC algorithm follows a local-to-global or
bottom-up approach since it identifies the local structure
around the selected Principal Curve origin, and progressively
builds the curve from that origin. In this appendix we show
the geometric meaning of the parameters of the technique
(instrumental parameters) and provide a particular procedure
to tune them for the dataset at hand: the appropriate set of
parameters is the one that minimizes the projection error onto
the Principal Curve. This procedure is consistent with the
original definition of Principal Curves and with the definition
of Principal Components in linear PCA.

Algorithm. This procedure draws one PC from a specific
point, xo, in a particular direction, Bi. The algorithm uses
PCA to find linear directions that go through the middle of the
dataset. Hence, the proposed PC consists of segments obtained
using local PCAs.

The procedure starts from xo, where a local PCA is
computed. Then, the most similar eigenvector to the desired
direction is taken. The eigenvector is modified so that it points
to the mean of the data in the direction ahead. The new point
of the PC, x1, is obtained by making a step from xo in the
direction of the modified eigenvector. The obtained segment
goes from xo to x1. The rest of the curve points are obtained
applying the same procedure departing from the new points
until one of these stopping criteria is met: (1) if the distance
between the new point, xn+1, and some of the previously
drawn PCs is less than a threshold τ , the algorithm stops since
the current PC is almost crossing a previous PC, and (2) if the
distance between the new point, xn+1, and all the points in the
manifold is bigger than a given distance, dout, the algorithm
stops since xn+1 is assumed to be out of the manifold.

Specifically, each point xn+1 ∈ PC is computed from the
previous point, xn, and the reference matrix, Bn, following
the procedure in Algorithm 1.

The parameters of the algorithm to draw one PC at a
given point basically control the rigidity of the curve. These
parameters include the size of the local neighborhood (set
using the k-neighbors rule), the stiffness q, and the step size
τ (see the table Algorithm 1).

Intuitively, the bigger the locality, the stiffness and the step
size, the bigger the rigidity, so the obtained Principal Curves
approach the global linear principal components, thus reducing
the flexibility of the technique to describe curved manifolds.

Effect of instrumental Principal Curve parameters In
this experiment we analyze the effect of the rigidity param-
eters. The experiment is done on a synthetic example of a
challenging 2D manifold: noisy spiral data. We generated
10000 samples from a curved manifold with changing PDF
along the underlying PC: half of the manifold follows an
increasing variance Laplacian distribution while the other half
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Effect of k-neighborhood: τ = 1, q = 10
k = 1% k = 10% k = 30%
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Fig. 14. Effect of the k-rule (top), the step size τ (middle), and the stiffness q (bottom) on the first and secondary PCs at different points. The first PC is
shown in red and the secondary are plotted in black. The secondary PC at the selected origin of coordinates is in bold style. Note that in this example the
crossing criterion is applied only between the first PC and each of the secondary PCs. The second row shows the data projected onto the first PC, which
helps in assessing the committed unfolding errors.

follows an increasing variance uniform distribution (Fig. 14).
As anticipated above, the rigidity of the PCs depends on

different parameters: (2) the size of the k-rule neighborhood,
(2) the step size, τ , and (3) the stiffness parameter q. Some
prescriptions to tune them are given below:

• The parameter k determines the number of samples of
the considered neighborhood for local PCA computation.
Too small k values give rise to noisy PCA estimates and
hence the obtained PC becomes unstable, while too large
k values may give rise to neighborhoods which are not
local enough and thus too rigid PCs are obtained. See
Fig. 14[top] for the illustration of these effects.

• The step size, τ , is the distance between the points where
local basis are computed when drawing the PCs before

setting the metric. Too large τ values give rise to too
rigid PCs while too small values not only increase the
computational time but also gives rise to unstable results:
when the curve approaches one extreme of the manifold
too small step size may cause unexpected turns, see
Fig. 14[middle]. This parameter is given in Euclidean
units in the input domain: if prior information on the
maximum possible curvature for the manifold is available,
this can be used to set the η value conveniently.

• Finally (Fig. 14[bottom]), the stiffness controls the impact
of the local mean ahead in the modification of the local
PCA direction. Too small stiffness results on a big impact
of the local mean, increased flexibility and unstable
results. Too large stiffness implies neglecting the local
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Fig. 15. Manifolds for the parameter estimation experiment: noisy swiss roll (left), and noisy 1-d curve in a 3d-space (right)
.

Algorithm 1 Draw one Principal Curve at a given point.
Input: dataset {xi|i = 1, . . . , N}
Set parameters: Line increment τ , stiffness q, and k nearest
neighbors
Output: PC formed by a set of basis Bn and connected points
1: Set origin at n = 0, xo, and center the data in xo

repeat
2: Define a neighborhood around xn according to the k-
neighbors rule
3: Compute PCA with the neighbors, obtaining eigenvectors V
4: Align and reorder V with the corresponding vectors in Bn

5: Compute the local mean ahead µ
6: Modify Vi to point the local mean ahead: V′

i = Vi +
1
q
·µ

7: Compute the new point: xn+1 = xn + τV′
i

8: Compute the new reference basis: Bn+1 = V
until New point is outside the manifold or the PC crosses a
previous PC

mean which for big τ leads to too rigid solutions.

Fitting the instrumental Principal Curve parameters
Different datasets may present different curvatures and in-
homogeneities so different parameters of the algorithm may
be needed. Here we present a criterion in order to tune the
parameters of the algorithm for a particular dataset. This
criterion is based on the definition of PC given in [49]: it is a
self-consistent smooth curve which passes through the middle
of a d-dimensional data cloud. In particular the parameters
can be selected in order to minimize the distance between the
data points and its projections on the drawn PC. This criterion
is equivalent to minimize the reconstruction error obtained
when using the PC for dimensionality reduction (reduction
from dimension d to dimension 1), and it is also equivalent
to minimize the variance in the subspace orthogonal to the
PC which is the optimization criterion in classical (linear)
Principal Component Analysis [54].

In order to show that different manifolds may require differ-
ent parameters of the algorithm, in the following experiment
we consider data from the manifolds shown in Fig. 15: swiss
roll, and 1-d curve embedded in a 3-d space. Figures 16 and
17 show how the error varies depending on the parameters
for the considered manifolds. The optimal parameters can be
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Fig. 16. Projection error in the swiss roll example. Darker means more error.
Each image is from different k-neighbors, inside each image the parameters
τ and q are modified.

obtained from the minima (lighter points) in these surfaces.
As apparent in the figures, these manifolds require different
parameters to minimize the projection error.
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