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ABSTRACT

Video quality metrics are intended to replace hu-
man evaluation with evaluation by machine. To accu-
rately simulate human judgement, they must include
some aspects of the human visual system.

In this paper we present a class of low-complexity
video quality metrics based on the Standard Spatial
Observer (SSO). In these metrics, the basic SSO model
is improved with several additional features from the
current human vision models.

To evaluate the metrics, we make use of the data
set recently produced by the Video Quality Experts
Group (VQEG), which consists of subjective ratings of
160 samples of digital video covering a wide range of
quality. For each metric we examine the correlation
between its predictions and the subjective ratings.

The results show that SSO-based models with lo-
cal masking obtain the same degree of accuracy as
the best metric considered by VQEG (P5), and signif-
icantly better correlations than the other VQEG mod-
els. The results suggest that local masking is a key fea-
ture to improve the correlation of the basic SSO model.

1. INTRODUCTION

Video coding techniques are designed to optimize the
rate-distortion performance of the encoder for a better
use of the available bandwidth in the communication
channel [1]. In many applications the final user of the
visual information is a human observer. Therefore the
distortion measure used in the rate-distortion design
has to be meaningful in subjective terms.

It is well-known that simple energy based metrics
such as the Mean Square Error (MSE) are not suitable
to describe the subjective degradation perceived by a
viewer. To counter the limitations of MSE, designers
often include some aspects of models of early human
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vision in order to obtain better correlations between
the predictions of the metric and the opinion of human
observers [2, 3, 4]. However, these metrics are often
computationally expensive, and the relative value of
each element of the model remains obscure.

The aim of this paper is to present a class of low
complexity distortion metrics based in the Standard
Spatial Observer (SSO) [5, 6]. Here the basic SSO
model is improved using several additional features from
current human vision models (temporal frequency sen-
sitivity, temporal smoothing and summation, masking,
and a simple model that accounts for the subjective
effect of field duplication).

The different proposed metrics are evaluated ac-
cording to the VQEG recommendations [7].

This analysis has both theoretical and applied inter-
est. From the theoretical point of view it is interesting
to see which aspect of the models is more important to
give an adequate description of the observer behaviour
in a complex task involving natural images. This is par-
ticularly important because in the basic literature each
feature is studied separately using lab stimuli. There-
fore, it is difficult to assess the relevance of each feature
in natural conditions. From the applied point of view,
it is important to see whether the addition of features
can improve the basic performance of the SSO, and also
whether simple models such as the SSO are able to per-
form as well as other (more complex) VQEG models.
Besides, the ranking of the features of the model ac-
cording to their impact in the correlation will give the
necessary information to design the best behaved met-
ric for a given computational cost.

2. DISTORTION MEASURES WITH NESTED
ARCHITECTURE

Starting from a simple energy difference, such as the

MSE, we have included sequential refinements of this
measure using the basic ingredients of the current mod-
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els of early human vision [8]:

e Standard Spatial Observer [5, 6]:

— Operates on contrasts rather than luminances.

— Spatial contrast sensitivity function.
— Non quadratic norm for spatial summation.

e Temporal contrast sensitivity function [9].

e Second stage temporal filter prior to temporal
summation.

e Non quadratic norm for temporal summation [9].
e Local masking [8].
e Field replication model.

This modular (nested) structure allows a balanced
trade-off between accuracy and complexity.

3. IMPLEMENTATION OF SSO-BASED MODELS

The Standard Spatial Observer (SSO) is a very simple
algorithm that evaluates the perceptual distance be-
tween a pair of 2D contrast patterns. SSO-based video
metrics use this model (and some extensions of it) to
assess the visibility of the difference between the origi-
nal sequence and the distorted sequence,

d(z,t) = so(x,t) — sq(x,t) (1)

The subjective distortion, d, (i.e. the visibility of the
difference contrast pattern) in the plain SSO model is
computed by a quadratic temporal summation of the
differences, d(t), in each frame:

1/B.
d= (Z d(t)ﬁt> (2)

with 8; = 2. The difference in each frame is given by
the (,-norm of the visible frame difference, d(x,t)s,:

1/Ba
d(t) = (Z d(x,t)f:o) (3)

Here the Minkowski summation exponent is 3, = 2.9.
In this model, the visible frame difference is a filtered
version of the actual frame difference:

d(z,t)ss0 = FT 1 (CSF, - FT, (d(z,1)))  (4)

where F'T, stands for spatial Fourier Transform and
CSF, is the spatial Contrast Sensitivity Function in-
cluding the oblique effect.

Now we list the set of features we added to the basic
SSO measure. They are denoted individually by single
lower case letters (t, p, m, and h), but of course we also
used them jointly.

3.1. Temporal Pre-Filter Before the Spatial Summa-
tion (SSO+t)

This extension includes a temporal frequency response,
CSF. In this case the visible frame difference is:

d(z,t)ss01¢ = FT7  (CSFy - FTy (d(z,1)450))  (5)

We tried three values for the time constant (or cut
frequency) of the CSF, filter: the standard one (the
one to reproduce the Robson CSF [9]), one bigger (by
a factor 2) and one smaller (by a factor 2). We found
that (in the initial 25 sequences set) the best result was
obtained with the Robson-like CSF};.

3.2. Temporal Post-Filter After the Spatial Summa-
tion (SSO+p)

In this modification we jointly optimized the temporal
summation, §; in eq. 2, and a low-pass temporal fil-
ter, Fy, applied after the spatial summation to remove
high frequency oscillations in d(t). In this case, we use
d(t)sso+p In eq. 2, where:

d(t)ssorp = FT, " (Fy - FTy (d(t))) (6)

3.3. Local Masking (SSO+m)

In this extension the visible difference frame is not
d(z,t)ss0, but a masked version of it:

_ d(wat)sso
ssotm = ()50 (2,t)
YL ety

In this masking model each spatio-temporal difference
is attenuated by the local energy of the original pattern.
We crudely optimized the size of the neighbourhood
(the width of the Gaussian kernel, h) and the strength
of the masking effect using the constant, ¢, for a 90
sequences set. We found that:

d(x,1)

(7)

e The best width of the kernel is around twice the
size of the CSF', impulse response.

e The optimum ¢ implies a well-behaved non-linearity
(similar to the Naka-Rushton curve [8]).

We also tried global masking (i.e. considering the
energy of the whole frame and optimizing c), but it per-
formed poorly, so we decided to exclude those results
from this discussion (+m always means local masking).

3.4. Field Replication Adjustment (SSO+h)

Some video processing schemes (e.g. H.263) duplicate
individual fields of the two-field video frame. This in-
troduces a spatial misalignment between the pixels of
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the original and the distorted sequence. In distortion
measures based on pixel-by-pixel comparisons, this ef-
fect introduces a dramatic overestimation of the dis-
tortion. This overestimation is specially severe for se-
quences with rapidly moving objects.

We have developed an algorithm for detecting and
compensating for this over-estimation. Since our focus
in this paper is on vision models, and this is a special-
ized non-visual algorithm, we only describe it briefly.
The essence of the algorithm is to detect field dupli-
cation, estimate the over-estimation of error, and cor-
rect it. The overestimation can be deduced from the
amount of motion in the scene.

Note that when this procedure is used, it is applied
after all the processes are done, so sometimes it may
reduce the efficiency of previously optimized processes.

4. METHODS

The proposed algorithms were optimized and tested on
the 30Hz VQEG set to maximize the correlation be-
tween the predictions of the models, d, and the experi-
mental Differential Mean Opinion Score, DMOS. The
30Hz VQEG set consist of 160 stimuli (10 sequences
times 16 possible distortions). In order to decouple
optimization and evaluation, we used different subsets
and different correlation measures in both cases.

4.1. Optimization of the Parameters

Some of the extensions have parameters. The final val-
ues were chosen using a non-exaustive optimization.
These optimizations were done using a discrete param-
eter space and using a restricted subset of (25-90) se-
quences. They were optimized to maximize C', a sum of
parametric and non-parametric correlation measures:

C=P(x*>é)+ps (8)

where ps is the (non-parametric) Spearman correla-
tion, and P(x? > €2) is the x? parameter of the fit of
DMOS = f(d) where f is the sigmoid IT recommended
in VQEG [7]. In this case, €2 is just the sum of squared
errors taking into account the variances.

The individual extensions were optimized one at a
time. In the measures obtained using combinations of
the extensions, the parameters were not re-optimized.

4.2. Comparison between Models

The comparison between the SSO based models and
the PO-P9 distortion metrics proposed in the VQEG
project was done according to the root mean square

(RMS) error recommended by VQEG. For a given model,
J, the RMS error, €, is:

| o 1/2 | leo 1/2
A — —_— 24 f— —_— Jpp— .,2
€ <160;em> (160;([)1%051 d”)>
9)

The €; numbers may give a ranking of the compared
models as shown in section 5. However, the VQEG rec-
ommendations do not make clear how to decide when
the differences in €; are significant.

In order to solve this we used the Fisher-Snedecor
test on each pair of deviations, €; and e, to decide if
they are equal or different. This test is based on the
fact that given two y2-like independent variables (such
as €5 and €;) the quotient,

|a-w

Qe = - (10)

SN

is distributed according to a Fisher-Snedecor PDF. Once
this is known, one can compute the probability P(Q;x >
1) = P(e; > €;) In our case, the independence was de-

termined using the Spearman correlation (ps, < 0.5)

between €; and €.

The independence condition does not allow a strict
comparison between very similar models (which of course
are not independent). However, it may be applied to
independent-enough models (such as any SSO based
model and any P0-P9 VQEG models). By doing this,
one can get a sense of the sort of difference in €; which
is significant.

5. RESULTS AND DISCUSSION

Table 1 shows the RMS error for the 30 distortion met-
rics considered in this study, €¢; with j = 1,---,30. A
useful reference is the PO model in VQEG (the stan-
dard PSNR).

The features described in section 3 have also been
applied to the MSE difference because, in principle, it
is similar to the SSO measure: MSE is just the SSO
with no CSF filter and quadratic spatial summation.
However, note that the MSE based results are poorer
than SSO. This suggests that the CSF filtering and the
spatial summation in SSO have a substantial effect.

Also note that the interactions between the different
individual extensions of the SSO model are not trivial.

Figure 1 shows the P(e = ¢j,) for different models
Jjo. Values above the straight line mean that these ¢
are not significantly different from €;,. The first (left
hand) solid line means the probability of each ¢ (or
model) to be worse than the best model (the one with
lowest €). When this line drops below the significance
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| Model €

1 | SSO+m+h 0.066
2 | SSO+m+p+h 0.066
3 | P5 0.068
4 | SSO+t+m+p+h | 0.068
5 | SSO+t+m+h 0.068
6 | SSO+m+p 0.069
7 | SSO+t+m+p 0.069
8 | SSO+t+m 0.071
9 | SSO+m 0.072
10 | SSO+p+h 0.074
11 | MSE+m 0.076
12 | P1 0.076
13 | SSO+p 0.076
14 | SSO+h 0.076
15 | SSO 0.079
16 | SSO+t+p+h 0.081
17 | P2 0.081
18 | SSO+t+p 0.082
19 | SSO+t+h 0.082
20 | SSO+t 0.084
21 | MSE 0.085
22 | PO (PSNR) 0.086
23 | P9 0.087
24 | P3 0.092
25 | P7 0.093
2 | PS8 0.096
27 | MSE+m+p 0.098
28 | P4 0.103
29 | MSE+m+p+h | 0.106
30 | P6 0.154

Table 1. Model ranking for 160 VQEG 30Hz sequences.

value (P = 0.1) the model is worse than the best. This
happens for the model in 10** place, so the results of
the first nine models are statistically equivalent. The
same analysis can be done for the 10** model (dashed
line). In this case, the first model which is significantly
worse is the 20** model. This procedure can be applied
in the same way for the other significantly different
models (jo = 20,25,29). It allows us to give some
illustrative boundaries between significantly different
models (as shown in table 1).

6. CONCLUSION

The results show that SSO-based models with local
masking attain the same degree of accuracy as the best
VQEG model (P5) and significantly better correlations
than many other VQEG models. The results also sug-
gest that local masking is a key feature to improve the
performance of the basic SSO model.

Fig. 1. P(e, = ¢j,) with jo = 1,10,20,25,29.
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