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Abstract— Most signal processing problems involve the chal-
lenging task of multidimensional probability density function
(PDF) estimation. In this paper, we propose a solution to this
problem by using a family of rotation-based iterative Gaussian-
ization (RBIG) transforms. The general framework consists of the
sequential application of a univariate marginal Gaussianization
transform followed by an orthonormal transform. The proposed
procedure looks for differentiable transforms to a known PDF so
that the unknown PDF can be estimated at any point of the origi-
nal domain. In particular, we aim at a zero-mean unit-covariance
Gaussian for convenience. RBIG is formally similar to classical
iterative projection pursuit algorithms. However, we show that,
unlike in PP methods, the particular class of rotations used has
no special qualitative relevance in this context, since looking for
interestingness is not a critical issue for PDF estimation. The
key difference is that our approach focuses on the univariate
part (marginal Gaussianization) of the problem rather than on
the multivariate part (rotation). This difference implies that one
may select the most convenient rotation suited to each practical
application. The differentiability, invertibility, and convergence of
RBIG are theoretically and experimentally analyzed. Relation to
other methods, such as radial Gaussianization, one-class support
vector domain description, and deep neural networks is also
pointed out. The practical performance of RBIG is successfully
illustrated in a number of multidimensional problems such as
image synthesis, classification, denoising, and multi-information
estimation.

Index Terms— Gaussianization, independent component analy-
sis, multi-information, negentropy, principal component analysis,
probability density estimation, projection pursuit.

I. INTRODUCTION

MANY signal processing problems such as cod-
ing, restoration, classification, regression or synthesis

greatly depend on an appropriate description of the underlying
probability density function (PDF) [1]–[5]. However, density
estimation is a challenging problem when dealing with high-
dimensional signals because direct sampling of the input space
is not an easy task due to the curse of dimensionality [6]. As
a result, specific problem-oriented PDF models are typically
developed to be used in the Bayesian framework.
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The conventional approach is to transform data into a
domain where interesting features can be easily (i.e., mar-
ginally) characterized. In that case, one can apply well-
known marginal techniques to each feature independently and
then obtain a description of the multidimensional PDF. The
most popular approaches rely on linear models and statistical
independence. However, they are usually too restrictive to
describe general data distributions. For instance, principal
component analysis (PCA) [7], that reduces to discrete cosine
transform in many natural signals such as speech, images and
video, assumes a Gaussian source [3], [7]. More recently,
linear independent component analysis (ICA), which reduces
to wavelets in natural signals, assumes that observations come
from the linear combination of independent non-Gaussian
sources [8]. In general, these assumptions may not be com-
pletely correct, and residual dependences still remain after the
linear transform that looks for independence. As a result, a
number of problem-oriented approaches have been developed
in the last decade to either describe or remove the relations
remaining in these linear domains. For example, parametric
models based on joint statistics of wavelet coefficients have
been successfully proposed for texture analysis and synthesis
[5], image coding [9], or image denoising [10]. Nonlinear
methods using nonexplicit statistical models have been also
proposed to this end in the denoising context [11], [12] and in
the coding context [13], [14]. In function approximation and
classification problems, a common approach is to first linearly
transform the data, e.g., with the most relevant eigenvectors
from PCA, and then applying nonlinear methods such as
artificial neural networks or support vector machines in the
reduced dimensionality space [3], [4], [7].

Identifying the meaningful transform for an easier PDF
description in the transformed domain strongly depends on the
problem at hand. In this paper, we circumvent this constraint
by looking for a transform such that the transformed PDF is
known. Even in the case that this transform is qualitatively
meaningless, being differentiable, it allows us to estimate the
PDF in the original domain. Accordingly, in the proposed
context, the role (meaningfulness) of the transform is not
that relevant. Actually, as we will see, an infinite family of
transforms may be suitable to this end, so one has the freedom
to choose the most convenient one.

In this paper, we propose to use a unit-covariance Gaussian
as target PDF in the transformed domain and iterative trans-
forms based on arbitrary rotations. We do so because the match
between spherical symmetry and rotations makes it possible
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to define a cost function (negentropy) with nice theoretical
properties. The properties of negentropy allow us to show that
one Gaussianization transform is always found irrespective of
the selected class of rotations.

The remainder of this paper is organized as follows. In
Section II, we present the underlying idea that motivates
the proposed approach to Gaussianization. In Section III, we
give the formal definition of the rotation-based iterative Gaus-
sianization (RBIG), and show that the scheme is invertible
and differentiable, and converges for a wide class of ortho-
normal transforms, even including random rotations (RND).
Section IV discusses the similarities and differences of the
proposed method and projection pursuit (PP) [15]–[18]. Links
to other techniques [such as single-step Gaussianization trans-
forms [19], [20], one-class support vector domain descriptions
(SVDD) [21], and deep neural network architectures [22] are
also explored. Section V shows the experimental results. First,
we experimentally show that the proposed scheme converges
to an appropriate Gaussianization transform for a wide class
of rotations. Then, we illustrate the usefulness of the method
in a number of high-dimensional problems involving PDF
estimation: image synthesis, classification, denoising, and
multi-information estimation. In all cases, RBIG is compared
to related methods in each particular application. Finally,
Section VI draws the conclusions of the work.

II. MOTIVATION

This section considers a solution to the PDF estimation
problem by using a differentiable transform to a domain
with known PDF. In this setting, different approaches can be
adopted which will motivate the proposed method.

Let x be a d-dimensional random variable with (unknown)
PDF, px(x). Given some bijective differentiable transform of
x into y, G : R

d → R
d , such that y = G(x), the PDFs in the

original and the transformed domains are related by [23]

px(x) = py(G(x))

∣
∣
∣
∣

dG(x)

dx

∣
∣
∣
∣
= py(G(x))|∇xG(x)| (1)

where |∇xG| is the determinant of the Jacobian matrix. There-
fore, the unknown PDF in the original domain can be estimated
from a transform of known Jacobian leading to an appropriate
(known or straightforward to compute) target PDF py(y).

One could certainly try to figure out direct (or even closed
form) procedures to transform particular PDF classes into a
target PDF [19], [20]. However, in order to deal with any
possible PDF, iterative methods seem to be a more reasonable
approach. In this case, the initial data distribution should be
iteratively transformed in such a way that the target PDF is
progressively approached in each iteration.

The appropriate transform in each iteration would be the
one that maximizes a similarity measure between PDFs. A
sensible cost function here is the Kullback–Leibler divergence
(KLD) between PDFs. In order to apply well-known properties
of this measure [24], [25], it is convenient to choose a unit
covariance Gaussian as target PDF: py(y) = N (0, I). With this
choice, the cost function describing the divergence between
the current data x and the unit covariance Gaussian is the

negentropy,1 J (x) = DKL (p(x)|N (0, I)). Negentropy can be
decomposed as the sum of two nonnegative quantities, the
multi-information and the marginal negentropy

J (x) = I (x) + Jm(x). (2)

This can be readily derived from [26, Eq. (5)], by con-
sidering as contrast PDF

∏

i qi (xi ) = N (0, I). The multi-
information is [26]

I (x) = DKL(p(x)| ∏i pi(xi )). (3)

Multi-information measures statistical dependence, and it
is zero if and only if the different components of x are
independent. The marginal negentropy is defined as

Jm(x) =
d

∑

i=1

DKL (pi (xi)|N (0, 1)) . (4)

Given a data distribution from the unknown PDF, in general
both I and Jm will be nonzero. The decomposition in (2)
suggests two alternative approaches to reduce J .

1) Reducing I : This implies looking for interesting (inde-
pendent) components. If one is able to obtain I = 0,
then J = Jm ≥ 0, and this reduces to solving a marginal
problem. Marginal negentropy can be set to zero with
the appropriate set of dimension-wise Gaussianization
transforms, � . This is easy as will be shown in the next
section.
However, this is an ambitious approach, since looking
for independent components is a nontrivial (intrinsically
multivariate and nonlinear) problem. According to this,
linear ICA techniques will not succeed in completely
removing the multi-information, and thus a nonlinear
postprocessing is required.

2) Reducing Jm : As stated above, this univariate problem is
easy to solve by using the appropriate � . Note that I will
remain constant since it is invariant under dimension-
wise transforms [26]. In this way, one ensures that
the cost function is reduced by Jm . Then, a further
processing has to be taken in order to come back to
a situation in which one may have the opportunity to
remove Jm again. This additional transform may consist
of applying a rotation R to the data, as will be shown
in the next section.

The relevant difference between the approaches is that, in
the first one, the important part is looking for the interesting
representation (multivariate problem), while in the second
approach the important part is the univariate Gaussianization.
In this second case, the class of rotations has no special
qualitative relevance, in fact, marginal Gaussianization is the
only part reducing the cost function.

The first approach is the underlying idea in PP methods
focused on looking for interesting projections [16], [17]. Since
the core of these methods is looking for meaningful projections

1This usage of the term negentropy slightly differs from the usual definition
[24] where negentropy is taken to be KLD between px(x) and a multivariate
Gaussian of the same mean and covariance. However, note that this difference
has no consequence assuming the appropriate input data standardization (zero
mean and unit covariance), which can be done without loss of generality.
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Fig. 1. Example of marginal Gaussianization in some particular dimension i . From left to right: marginal PDF of xi , uniformization transform u = Ui (xi ),
PDF of the uniformized variable p(u), Gaussianization transform G(u), and PDF of the Gaussianized variable pi (�

i (xi )).

(usually ICA algorithms), they suffer from a big computational
complexity, for example, robust ICA algorithms such as RAD-
ICAL [27] would lead to extremely slow Guassanization algo-
rithms, whereas relatively more convenient alternatives such as
FastICA [28] may not converge in all cases. This may explain
why, so far, Gaussianization techniques have been applied just
to low-dimensional (audio) signals in either simple contexts
based on pointwise nonlinearities [29], [30], or after ad hoc
speech-oriented feature extraction steps [31]. In this paper, we
propose following the simpler second approach using the most
computationally convenient rotation. Intentionally, we do not
pay attention to the meaningfulness of the rotations.

III. ROTATION-BASED ITERATIVE GAUSSIANIZATION

This section first introduces the basic formulation of the
proposed method, and then analyzes the properties of differ-
entiability, invertibility, and convergence. Finally, we discuss
on the role of the rotation matrix used in the scheme.

A. Iterative Gaussianization Based on Arbitrary Rotations

According to the above reasoning, we propose the following
class of RBIG algorithms, given a d-dimensional random
variable x(0), following an unknown PDF p(x(0)), in each
iteration k, a two-step processing is performed

G : x(k+1) = R(k) · �(k)(x(k)) (5)

where �(k) is the marginal Gaussianization of each dimen-
sion of x(k) for the corresponding iteration, and R(k) is
a generic rotation matrix for the marginally Gaussianized
variable �(k)(x(k)).

The freedom in choosing the rotations is consistent with the
intuition that there is an infinite number of ways to twist a PDF
in order to turn it into a unit-covariance Gaussian. In principle,
any of these choices is equally useful for our purpose, i.e.,
estimating the PDF in the original domain using (1). Note that,
when using different rotations, the qualitative meaning of the
same region of the corresponding Gaussianized domain will
be different. As a result, in order to work in the Gaussianized
domain, one has to take into account the value of the point-
dependent Jacobian. Incidentally, this is also the case in the
PP approach and, more generally, in any nonlinear approach.
However, the interpretation of the Gaussianized domain is not
an issue when working in the original domain. Finally, it is
important to note that the method just depends on univariate
(marginal) PDF estimations. Therefore, it does not suffer from
the curse of dimensionality.

B. Invertibility and Differentiation

The considered class of Gaussianization transforms is differ-
entiable and invertible. Differentiability allows us to estimate
the PDF in the original domain from the Jacobian of the
transform in each point, (1). Invertibility guarantees that the
transform is bijective, which is a necessary condition to apply
(1). Additionally, it is convenient for generating samples in
the original domain by sampling the Gaussianized domain.

Before getting into the details, we take a closer look at the
basic tool of marginal Gaussianization. Marginal Gaussianiza-
tion in each dimension i and each iteration k, i.e., � i

(k), can
be decomposed into two equalization transforms: 1) marginal
uniformization Ui

(k) based on the cumulative density function
of the marginal PDF, and 2) Gaussianization of a uniform
variable G(u) based on the inverse of the cumulative density
function of a univariate Gaussian, � i

(k) = G � Ui
(k), where

u = Ui
(k)(x (k)

i ) =
∫ x (k)

i

−∞
pi (x ′(k)

i ) dx ′(k)
i (6)

G−1(xi ) =
∫ xi

−∞
g(x ′

i) dx ′
i (7)

and g(xi) is just a univariate Gaussian. Fig. 1 shows an
example of the marginal Gaussianization of a 1-D variable xi .

1-D density estimation is an issue by itself, and it has been
widely studied [4], [32]. The selection of the most convenient
density estimation procedure depends on the particular prob-
lem and, of course, the univariate Gaussianization step in the
proposed algorithm could benefit from the extensive literature
on the issue. In our case, we take a practical approach, and no
particular model is assumed for the marginal variables to keep
the method as general as possible. Accordingly, the univariate
Gaussianization transforms are computed from the cumulative
histograms. Of course, alternative analytical approximations
could be introduced at the cost of making the model more
rigid. On the positive side, parametric models may imply better
data regularization and avoid overfitting. However, exploring
the effect of alternative density estimators will not be analyzed
here.

Let us consider now the issue of invertibility. By simple
manipulation of (5), it can be shown that the inverse transform
is given by

G−1 : x(k) = �−1
(k)(R

�
(k) · x(k+1)). (8)

The rotation R(k) is not a problem for invertibility since the
inverse is just the transpose, R−1

(k) = R�
(k). However, the key
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to ensure transform inversion is the invertibility of �(k). This
is trivially ensured when the support of each marginal PDF
is connected, i.e., there are no holes (zero-probability regions)
in the support. In this way, all the marginal CDFs are strictly
monotonic and hence invertible. Note that the existence of
holes in the support of the joint PDF is not a problem as long
as it gives rise to marginal PDFs with a connected support.
Problems in inversion will appear only when the joint PDF
gives rise to clusters that are so distant that their projections
onto the axes do not overlap. However, in such a situation,
it may make more qualitative sense to consider that distinct
clusters come from different sources and learn each one with
a different Gaussianization transform.

The Jacobian of the series of K iterations is just the product
of the corresponding Jacobian in each iteration

∇xG = ∏K
k=1 R(k) · ∇x(k)�(k). (9)

Marginal Gaussianization �(k) is a dimension-wise trans-
form, whose Jacobian is the diagonal matrix

∇x(k)�(k) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂�1
(k)

∂x (k)
1

· · · 0

...
. . .

...

0 · · · ∂�d
(k)

∂x (k)
d

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (10)

According to the two equalization steps in each marginal
Gaussianization (7), each element in ∇x(k)�(k) can be easily
computed by applying the chain rule on u defined in (6)

∂� i
(k)

∂x (k)
i

= ∂G
∂u

∂u

∂x (k)
i

=
(

∂G−1

∂xi

)−1

pi(x (k)
i )

= g(� i
(k)(x (k)

i ))−1 pi(x (k)
i ). (11)

Again, the differentiable nature of the considered Gaussian-
ization is independent of the selected rotations R(k).

C. Convergence Properties

Here we prove two general properties of random variables
that are useful in the contexts of PDF description and redun-
dancy reduction.

Property 3.1 (Negentropy reduction): Marginal Gaussian-
ization reduces the negentropy and this is not modified by
any posterior rotation

�J = J (x) − J (R�(x)) ≥ 0 ∀ R. (12)
Proof: Using (2), the negentropy reduction due to mar-

ginal Gaussianization followed by a rotation is

�J = J (x) − J (R�(x)) = J (x) − J (�(x))

since N (0, I) is rotation invariant. Therefore

�J = I (x) + Jm(x) − I (�(x)) − Jm(�(x)).

Since the multi-information is invariant under dimension-
wise transforms [26] (such as �), and the marginal negentropy
of a marginally Gaussianized variable is zero

�J = Jm(x) ≥ 0 ∀ R.

Property 3.2 (Redundancy reduction): Given a marginally
Gaussianized variable �(x), any rotation reduces the redun-
dancy among coefficients

�I = I (�(x)) − I (R�(x)) ≥ 0 ∀ R. (13)

Note that this property also implies that the combination of
marginal Gaussianization and rotation gives rise to redundancy
reduction since I (�(x)) = I (x).

Proof: Using (2) on both I (�(x)) and I (R�(x)), the
redundancy reduction is

�I = J (�(x)) − Jm(�(x)) − J (R�(x)) + Jm(R�(x)).

Since negentropy is rotation invariant and the marginal
negentropy of a marginally Gaussianized variable is zero

�I = Jm(R�(x)) ≥ 0 ∀ R.

The above properties suggest the convergence of the pro-
posed Gaussianization method. Property 3.1 (12) ensures that
the distance between the PDF of the transformed variable
to a zero-mean unit-covariance multivariate Gaussian is re-
duced in each iteration. Property 3.2 (13) ensures that redun-
dancy among coefficients is also reduced after each iteration.
According to this, the distance to a Gaussian will decay to
zero for a wide class of rotations.

D. On the Rotation Matrices

Admissible rotations are those that change the situation after
marginal Gaussianization in such a way that Jm is increased.
Using different rotation matrices gives rise to different prop-
erties of the algorithm.

The above Properties 3.1 and 3.2 provide some intuition on
the suitable class of rotations. By using (12) and (13) in the
sequence (5), one readily obtains the following relations:

�J(k) = Jm(x(k)) = �I(k−1) (14)

and thus, interestingly, the amount of negentropy reduction
(the convergence rate) at some iteration k will be determined
by the amount of redundancy reduction obtained in the previ-
ous iteration k −1. Since dependence can be analyzed in terms
of correlation and non-Gaussianity [25], the intuitive candi-
dates for R include orthonormal ICA, hereafter simply referred
to as ICA, which maximizes the redundancy reduction, and
PCA, which removes correlation. RND will be considered here
as an extreme case to point out that looking for interesting
projections is not critical to achieve convergence. Note that
other rotations are possible, for instance, a quite sensible
choice would be randomly selecting projections that uniformly
recover the surface of an hypersphere [33]. Other possibilities
include extension to complex variables [34].

As an illustration, Table I summarizes the main characteris-
tics of the method when using ICA, PCA, and RND. The
table analyzes the closed-form nature of each rotation, the
theoretical convergence of the method, the convergence rate
(negentropy reduction per iteration), and the computational
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TABLE I

PROPERTIES OF THE GAUSSIANIZATION METHOD FOR DIFFERENT

ROTATIONS (SEE COMMENTS IN THE TEXT)

Rotation
Closed Theoretical Convergence CPU cost†

-form convergence rate [35]–[37]

ICA × √
Max �J O(2md(d+1)n)

PCA
√ √ O(d2(d + 1)n)�J = 2nd order

RND
√ √

�J ≥ 0 O(d3)

† Computational cost considers n samples of dimension d. The cost for the
ICA transform is that of FastICA running m iterations.

cost of each rotation. Section V-A is devoted to the experimen-
tal confirmation of the reported characteristics of convergence
presented here.

Using ICA guarantees the theoretical convergence of the
Gaussianization process since it seeks for the maximally non-
Gaussian marginal PDFs. Therefore, the negentropy reduction
�J (12) is always strictly positive, except for the case that
the Gaussian PDF has been finally achieved. This is con-
sistent with previously reported results [17]. Moreover, the
convergence rate is optimal for ICA since it gives rise to
the maximum Jm(x) (indicated in Table I with “Max �J”).
However, the main problem of using ICA as the rotation
matrix is that it has no closed-form solution, so ICA algorithms
typically resort to iterative procedures with either difficulties
in convergence or high computational load.

Using PCA leads to suboptimal convergence rate because it
removes second-order redundancy (indicated in Table I with
“�J = 2nd order”), but it does not maximize the marginal non-
Gaussianity Jm(x). Using PCA guarantees the convergence
for every input PDF except for one singular case, consider a
variable x(k) which is not Gaussian but all its marginal PDFs
are univariate Gaussian and with a unit covariance matrix. In
this case, �J(k+1) = Jm(x(k)) = 0, i.e., no approximation
to the Gaussian in negentropy terms is obtained in the next
iteration. Besides, since �(k+1)(x(k)) = x(k), the next PCA,
i.e., R(k+1), will be the identity matrix. Thus x(k+1) = x(k).
As a result, the algorithm may get stuck into a negentropy
local minimum. In our experience, this undesired effect never
happened in real datasets. On the other hand, advantages of
using PCA is that the solution is closed-form and very fast,
and even though the convergence rate is lower than for ICA,
the solution is achieved in a fraction of the time.

Using RND transforms guarantees the theoretical conver-
gence of the method since RND ensure that, even in the
above considered singular case, the algorithm will not be stuck
into this particular non-Gaussian solution. On the contrary,
if the achieved marginal non-Gaussianity is zero after an
infinite number of RND, it is because the desired Gaussian
solution has been finally achieved (Cramer-Wold Theorem
[38]). In practice, the above property of RND can be used as
a way to check convergence when using other rotations (e.g.,
PCA), when the zero marginal non-Gaussianity situation is
achieved, a useful safety check consists of including RND-
based iterations. In the RND case, the convergence rate is

clearly suboptimal, yet nonnegative (�J ≥ 0), i.e., the amount
of negentropy reduction may take any value between zero and
the maximum achieved by ICA. However, the method is much
faster in practice. Even though it may take more iterations
to converge, the cost of each transform does not depend on
the number of samples. The rotation matrix can be computed
by fast orthonormalization techniques [37]. In this case, the
computation time of the rotation is negligible compared to
that of the marginal Gaussianization.

IV. RELATION TO OTHER METHODS

In this section, we discuss the relation of RBIG to previously
reported Gaussianization methods, including iterative PP-like
techniques [15]–[17] and direct approaches suited for particu-
lar PDFs [19], [20], [39]. Additionally, relations to other ma-
chine learning tools, such as support vector domain description
[21] and deep neural networks [22] are also considered.

A. Iterative Projection Pursuit Gaussianization

As stated above, the aim of PP techniques [15], [16] is
looking for interesting linear projections according to some
projection index measuring interestingness, and then this inter-
estingness is captured by removing it through the appropriate
marginal equalization, thus making a step from structure
to disorder. When interestingness or structure is defined by
departure from disorder, non-Gaussianity, or negentropy, PP
naturally leads to iterative application of non-orthogonal ICA
transforms followed by marginal Gaussianization, as in [17]

G : x(k+1) = �(k)(RICA · x(k)). (15)

As stated in Section II, this is Approach 1 to the Gaussian
goal. Unlike PP, RBIG aims at the Gaussian goal following
Approach 2. The differences between (15) and (5) (reverse
order between the multivariate and the univariate transforms)
suggest the different qualitative weight given to each coun-
terpart. While PP gives rise to an ordered transition from
structure to disorder,2 RBIG follows a disordered transition
to disorder.

B. Direct (Single-Iteration) Gaussianization Algorithms

Direct (non-iterative) Gaussianization approaches are pos-
sible if the method has to be applied to restricted classes of
PDFs. For example: 1) PDFs that can be marginally Gaussian-
ized in the appropriate axes [19], or 2) elliptically symmetric
PDFs so that the final Gaussian can be achieved by equalizing
the length (norm) of the whitened samples [20], [39].

The method proposed in [19] is useful when combined with
tools that can identify marginally Gaussianizable components,
somewhat related to ICA transforms. Nevertheless, the use of
alternative transformations is still an open issue. Erdogmus
et al. proposed PCA, vector quantization, or clustering as
alternatives to ICA in order to find the most potentially

2In PP the structure of the unknown, PDF in the input domain is progres-
sively removed in each iteration starting from the most relevant projection and
continuing by the second one, and so on, until total disorder (Gaussianity) is
achieved.
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(0.34) (0.04) (0.0006)

(0.59) (0.034) (0.0002)

(0.066) (0.052) (0.0001)

Fig. 2. Gaussianization of pairs of neighbor pixels from different images with
RG and RBIG: natural image (top row), remote sensing landsat channel in the
optical range (middle row), and intensity of a ERS2 synthetic aperture radar
(SAR) image (bottom row). Contour plots show the PDFs in the corresponding
domains. The estimated mutual information (in bits) is given in parentheses.

“Gaussianizable” components. In this sense, the method could
be seen as a particular case of PP in that it only uses one
iteration, first finding the most appropriate representation and
then using marginal Gaussianization. Elliptically symmetric
PDFs constitute a relevant class of PDFs in image processing
applications since this kind of functions is an accurate model
of natural images (e.g., Gaussian scale mixtures [10] and
related models [40] share this symmetry). Radial Gaussian-
ization (RG) was specifically developed to deal with these
particular kinds of models [20]. This transform consists of a
nonlinear function that acts radially, equalizing the histogram
of the magnitude (energy) of the data to obtain the histogram
of the magnitude of a Gaussian. Other methods have exploited
this kind of transformation to generalize it to L p symmetric
distributions [39]. Obviously, elliptical symmetry is a fair
assumption for natural images, but it may not be appropriate
for other problems. Even in the image context, particular
images may not strictly follow distributions with elliptical
symmetry, therefore, if RG-like transforms are applied to these
images, they will give rise to non-Gaussianized data.

Fig. 2 shows this effect in three types of acquired images:
1) a standard grayscale image, i.e., a typical example of a
natural photographic image; 2) a band (in the visible range)
of a remote sensing multispectral image acquired by the
Landsat sensor; and 3) a ERS2 SAR intensity image for the
same scene (of course, out of the visible range). In these
illustrative examples, RG and RBIG were trained with the
data distribution of pairs of neighbor pixels for each image,
and RBIG was implemented using PCA rotations according
to the results in Section V-A. Both RG and RBIG strongly
reduce the mutual information of pairs of neighbor pixels (see
the mutual information values, in bits), but it is noticeable
that RG is more effective and has higher I reduction in the
natural image cases (photographic and visible channel images),

in which the assumption of elliptically symmetric PDF is more
reliable. However, it obviously fails when considering non-
natural (radar) images, far from the visible range (I is not
significantly reduced). The proposed method is more robust to
these changes in the underlying PDF because no assumption
is made.

C. Relation to Support Vector Domain Description

The SVDD is a one-class classification method that finds a
minimum volume sphere in a kernel feature space that contains
1 − ν fraction of the target training samples [21]. The method
tries to find the transformation (implicit in the kernel function)
that maps the target data into a hypersphere. The proposed
RBIG method and the SVDD method are conceptually similar
due to their apparent geometrical similarity. However, RBIG
and SVDD represent two different approaches to the one-
class classification problem, PDF estimation versus separation
boundary estimation. RBIG for one-class problems may be
naively seen as if test samples were transformed and classified
as target if lying inside the sphere containing 1−ν fraction of
the learned Gaussian distribution. According to this interpre-
tation, both methods reduce to the computation of spherical
boundaries in different feature spaces. However, this is not true
in the RBIG case, note that the value of the RBIG Jacobian
is not the same at every location in the Gaussianized domain.
Therefore, the optimal boundary to reject a ν fraction of the
training data is not necessarily a sphere in the Gaussianized
domain. In the case of the SVDD, though, by using an
isotropic RBF kernel, all directions in the kernel feature spaces
are treated in the same way.

D. Relation to Deep Neural Networks

RBIG is essentially an iterated sequence of two opera-
tions, nonlinear dimension-wise squashing functions and linear
transforms. Intuitively, these are the same processing blocks
used in a feedforward neural network (linear transform plus
sigmoid-shaped function in each hidden layer). Therefore, one
could see each iteration as one hidden layer processing of
the data, and thus argue that complex (highly non-Gaussian)
tasks should require more hidden layers (iterations). This view
is in line with the field of deep learning in neural networks
[22], which consists of learning a model with several layers of
nonlinear mappings. The field is very active nowadays because
some tasks are highly nonlinear and require accurate design
of processing steps of different complexity. Note, that it may
appear counterintuitive that full Gaussianization of a dataset is
eventually achieved with a large enough number of iterations,
thus leading to overfitting in the case of a neural network
with such number of layers. Nevertheless, note that capacity
control also applies in RBIG, we have observed that early
stopping criteria must be applied to allow good generalization
properties. In this setting, one can see early stopping in the
Gaussianization method as a form of model regularization.
This is certainly an interesting research line to be pursued in
the future.

Finally, we would like to note that it does not escape our
notice that the exploitation of the RBIG framework in the
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TABLE II

AVERAGE (± STD. DEV.) CONVERGENCE RESULTS

RND PCA ICA

Dim. iterations time [s] iterations time [s] iterations time [s]

2 14 ± 3 0.01 ± 0.01 7 ± 3 0.005 ± 0.002 3 ± 1 6 ± 5
4 44 ± 6 0.06 ± 0.01 33 ± 6 0.05 ± 0.01 11 ± 1 564 ± 223
6 68 ± 7 0.17 ± 0.01 43 ± 12 0.1 ± 0 11 ± 2 966 ± 373
8 92 ± 4 0.3 ± 0.1 54 ± 23 0.2 ± 0 16 ± 1 1905 ± 534

10 106 ± 10 0.4 ± 0 58 ± 25 0.3 ± 0.1 19 ± 1 2774 ± 775
12 118 ± 10 0.5 ± 0.2 44 ± 5 0.2 ± 0.1 21 ± 2 3619 ± 323
14 130 ± 8 0.7 ± 0.1 52 ± 21 0.4 ± 0.1 19 ± 1 4296 ± 328
16 139 ± 10 0.7 ± 0 73 ± 36 0.4 ± 0.2 22 ± 1 4603 ± 932

k

RND

PCA

ICA

1 5 10 20 35

Fig. 3. Scatter plots of 2-D data in different iterations for the considered
rotation matrices: (top) RND, (middle) PCA, and (bottom) ICA.

previous contexts might eventually be helpful in designing
new algorithms or helping understanding them from different
theoretical perspectives. This is of course out of the scope of
this paper.

V. EXPERIMENTAL RESULTS

This section shows the capabilities of the proposed RBIG
methods in some illustrative examples. We start by experi-
mentally analyzing the convergence of the method depending
on the rotation matrix in a controlled toy dataset, and give
useful criteria for early stopping. Then, the method’s perfor-
mance is illustrated for mutual information estimation, image
synthesis, classification, and denoising. In each application,
results are compared to standard methods in the particular
field. A documented MATLAB implementation is available
at http://www.uv.es/vista/vistavalencia/RBIG.htm.

A. Method Convergence and Early Stopping

The RBIG method is analyzed here in terms of convergence
rate and computational cost for different rotations: i.e., or-
thonormal ICA, PCA, and RND. Synthetic data of varying
dimensions (d = 2, . . . , 16) was generated by first sampling
from a uniform distribution (UU) hypercube and then applying
a rotation transform. This way, we can compute the ground-
truth negentropies of the initial distributions, and estimate the
reduction in negentropies in every iteration by estimating the
difference in marginal negentropies, (13). A total of 10000
samples was used for the methods, and we show average

and standard deviation results for five independent random
realizations.

2-D scatter plots in Fig. 3 qualitatively show that differ-
ent rotation matrices give rise to different solutions in each
iteration but, after a sufficient number of iterations, all of
them transform the data into a Gaussian independently of the
rotation matrix.

RBIG convergence rates are illustrated in Fig. 4. The
top plots show the negentropy reduction for the different
rotations as a function of the number of iterations and data
dimension. We also give the actual negentropy estimated
from the samples, which is a univariate population estimate
since (12) can be used. Successful convergence is obtained
when the accumulated reduction in negentropy tends to the
actual negentropy value (cyan line). Discrepancies are due to
the accumulation of computational errors in the negentropy
reduction estimation in each iteration.

The bottom plots in Fig. 4 give the result of the multivariate
Gaussianity test in [41], when the outcome of the test is 1,
it means accepting the hypothesis of multidimensional Gaus-
sianity. Several conclusions can be extracted: 1) the method
converges to a multivariate Gaussian independently of the
rotation matrix; 2) ICA requires fewer iterations to converge,
but it is closely followed by PCA; 3) RND take a higher
number of iterations to converge and show high variance in the
earlier iterations; and 4) convergence in cumulative negentropy
is consistent with the parametric estimator in [41] which, in
turn, confirms the analysis in Table I.

Despite the previous conclusions, and as pointed out before,
in practical applications it is not the length of the path to the
Gaussian goal that matters, but the time required to complete
this path. Table II compares the number of iterations for
appropriate convergence and the CPU time of five realizations
of RBIG with different matrix rotations (RND, PCA, and ICA)
in several dimensions. While, in general, CPU time results
are obviously implementation dependent, note that results in
Table II are fairly consistent with the computational burden
per iteration shown in Table I since each ICA computation
itself is an iterative procedure which needs m iterations.

The use of ICA rotations critically increases the conver-
gence time. This effect is more noticeable as the dimension
increases, thus making the use of ICA computationally un-
feasible when the number of dimensions is moderate or high.
The use of PCA in RBIG is consequently a good tradeoff
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Fig. 4. Cumulative negentropy reduction (top) and multivariate Gaussian significance test (bottom) for each iteration in 2-D (left) and 4-D (right) synthetic
problem. Average and standard deviation results from five realizations are shown.

between Gaussianization error and computational cost if the
number of iterations is properly chosen. An early stopping
criterion could be based on the evolution of the cumulative
negentropy reduction or of a multivariate test of Gaussianity
such as the one used here [41]. Both are sensible strategies
for early stopping. According to the observed performance, we
restrict ourselves to the use of PCA as the rotation matrix in the
experiments hereafter. Note that, by using PCA, the algorithm
might not converge in a singular situation (see Section III-
D). However, we checked that such singular situation never
happened by jointly using both criteria in each iteration.

B. Multi-Information Estimation

As previously shown, RBIG can be used to estimate the
negentropy, and therefore could be used to compute multi-
information (I ) of high-dimensional data (2). Essentially, one
learns the sequence of transforms to Gaussianize a given
dataset, and the I estimate reduces to computing the cumula-
tive �I since, at convergence, full independence is supposedly
achieved. We illustrate the ability of RBIG in this context
by estimating multi-information in three different synthetic
distributions with known I : UU, GG, and a marginally
composed exponential and Gaussian distribution (EG). An
arbitrary rotation was applied in each case to obtain nonzero
multi-information. In all cases, we used 10000 samples and
repeated the experiments for 10 realizations. Two kinds of
experiments were performed.

1) A 2-D experiment, where RBIG results can be com-
pared to the results of naive (histogram-based) mutual
information estimates (NE) and to previously reported
2-D estimates such as the Rudy estimate (RE) [42] (see
Table III).

2) A set of d-dimensional experiments, where RBIG results
are compared to actual values (see Table IV).

Table III shows the results (in bits) for the mutual informa-
tion estimation in the 2-D experiment to standard approaches.
The ground-truth (GT) result is also given for comparison
purposes.

TABLE III

AVERAGE (± STD. DEV.) MULTI-INFORMATION (IN BITS) FOR THE

DIFFERENT ESTIMATORS IN 2-D PROBLEMS

DIST EG GG UU

RBIG 0.49 ± 0.01 1.38 ± 0.004 0.36 ± 0.03
NE 0.35 ± 0.02 1.35 ± 0.006 0.39 ± 0.002
RE 0.32 ± 0.01 1.29 ± 0.004 0.30 ± 0.002

Actual 0.51 1.38 0.45

Original data Gaussianized data Synthesized data

Fig. 5. Toy data examples synthesized using RBIG.

For Gaussian and exponential-Gaussian data distributions,
RBIG outperforms the rest of methods, but when data are mar-
ginally uniform, NE yields better estimates. Table IV extends
the previous results to multidimensional cases, and compares
RBIG to the actual I . Good results are obtained in all cases.
Absolute errors slightly increase with data dimensionality.
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TABLE IV

MULTI-INFORMATION (IN BITS) WITH RBIG IN DIFFERENT d -DIMENSIONAL PROBLEMS

Dim. EG GG UU
d RBIG Actual RBIG Actual RBIG Actual
3 1.12 ± 0.03 1.07 1.91 ± 0.01 1.9 1.6 ± 0.1 1.6
4 5 ± 0.1 5.04 1.88 ± 0.02 1.86 2.2 ± 0.1 2.2
5 4.7 ± 0.1 4.82 1.77 ± 0.02 1.75 2.7 ± 0.1 2.73
6 7.8 ± 0.1 7.9 2.11 ± 0.01 2.08 3.5 ± 0.1 3.72
7 6.2 ± 0.1 6.33 2.68 ± 0.03 2.65 3.6 ± 0.1 3.92
8 8.1 ± 0.1 8.19 2.72 ± 0.02 2.68 4.1 ± 0.1 4.29
9 9.5 ± 0.1 9.6 3.22 ± 0.02 3.18 5.3 ± 0.1 5.69

10 12.7 ± 0.1 13.3 3.45 ± 0.03 3.4 5.8 ± 0.2 6.24

Original

RG

RBIG

Fig. 6. Example of real (top) and synthesized faces with RG (middle) and RBIG (bottom).
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Fig. 7. Histogram of the similarity (inner product) between the distribution
of original and synthesized face images for 300 realizations. For reference, the
average image energy (average inner product) in the original set is 1.81×104.

C. Data Synthesis

RBIG obtains an invertible Gaussianization transform that
can be used to generate (or synthesize) samples. The approach
is simple, the transform G is learned from the available
training data, and then synthesized samples are obtained from
random Gaussian samples in the transformed domain inverted
back to the original domain using G−1. Two examples are
given here to illustrate the capabilities of the method.

1) Toy Data: Fig. 5 shows examples of 2-D non-Gaussian
distributions (left column) transformed into a Gaussian (center
column). The right column was obtained sampling data from
a zero-mean unit-covariance Gaussian and inverting back the
transform. This example visually illustrates that the synthe-
sized data approximately follow the original PDF.
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Fig. 8. Overall accuracy (left) and kappa statistic, κ (right) for RBIG (solid
line) and SVDD (dashed line) in different scenes: Naples 1995 (top), Naples
1999 (center) and Rome 1995 (bottom).

2) Face Synthesis: In this experiment, 2500 face images
were extracted from [43], eye-centered, cropped to have the
same dimensions, mean and variance adjusted, and resized to
17×15 pixels. Images were then reshaped to 255-dimensional
vectors, and Gaussianized with RG and RBIG. Fig. 6 shows
illustrative examples of original and synthesized faces with
RG and RBIG.
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RBIG (0.79, 0.42)SVDD (0.67, 0.32)GT

Fig. 9. GT and classification maps obtained with SVDD and RBIG for the Naples 1995 scene. The white points represent urban area and the black points
represent non-urban area. The corresponding overall accuracy and κ-statistic are given in parenthesis.

Note that both methods achieve good visual qualitative
performance. In order to assess performance quantitatively,
we compared 200 actual and synthesized images using the
inner product as a measure of local similarity (see Fig. 7).
We averaged this similarity measure over 300 realizations and
show the histograms for RG and RBIG. Results suggest that
the distribution of the samples generated with RBIG is more
realistic (similar to the original dataset) than the obtained
with RG.

D. One-Class Classification

In this experiment, we assess the performance of the RBIG
method as a one-class classifier. Its performance is illustrated
in the challenging problem of detecting urban areas from
multispectral and SAR images. The GT data for the images
used in this section were collected in the urban expansion
monitoring ESA-ESRIN DUP project3 [44]. The considered
test sites were the cities of Rome and Naples, Italy, for two
acquisitions dates (1995 and 1999). The available features
were the seven Landsat bands, two SAR backscattering in-
tensities (0–35 days), and the SAR interferometric coherence.
We also used a spatial version of the coherence specially
designed to increase the urban area discrimination [44]. After
this preprocessing, all features were stacked at a pixel level,
and each feature was standardized.

We compared the RBIG classifier based on the estimated
PDF for urban areas with the SVDD classifier [21]. We used
the RBF kernel for the SVDD whose width was varied in the
range σ ∈ [10−2, . . . , 102]. The fraction rejection parameter
was varied in ν ∈ [10−2, 0.5] for both methods. The optimal
parameters were selected through threefold cross validation in
the training set, optimizing the κ statistic [45]. Training sets
of different size of the target class were used in the range
[500, 2500]. We assumed a scarce knowledge of the nontarget
class, 10 outlier examples were used in all cases. The test set
was constituted by 10 000 pixels of each considered image.
Training and test samples were randomly taken from the whole
spatial extent of each image. The experiment was repeated for
10 different random realizations in the three considered test
sites.

Fig. 8 shows the estimated κ statistic and the overall
accuracy (OA) in the test set achieved by SVDD and RBIG
in the three images. The κ scores are relatively small because

3Available at: http://dup.esrin.esa.int/ionia/projects/summaryp30.asp.

samples were taken from a large spatial area, thus giving rise
to a challenging problem due to the variance of the spectral
signatures. Results show that SVDD behavior is similar to that
of the proposed method for small training sets. This is because
more target samples are needed by the RBIG for an accurate
PDF estimation. However, for moderate and large training sets,
the proposed method substantially outperforms SVDD. Note
that training size requirements of RBIG are not too demanding,
using 750 samples in a 10-dimensional problem is enough for
RBIG to outperform SVDD when very little is known about
the nontarget class.

Fig. 9 shows the classification maps for the representative
Naples95 scene for SVDD and RBIG. Note that RBIG better
rejects the “non-urban” areas (in black). This may be because
SVDD training with few nontarget data gives rise to too
broad a boundary. As a result, too many pixels are identified
as belonging to the target class (in white). Another relevant
observation is the noise in neighboring pixels, which may
come from the fact that no spatial information was used. This
problem could be easily alleviated by imposing some post-
classification smoothness constraint or by incorporating spatial
texture features.

E. Image Denoising

Image denoising tackles the problem of estimating the
underlying image x from a noisy observation xn assuming an
additive degradation model: xn = x + n. Many methods have
exploited the Bayesian framework to this end [10], [46]–[48]

x̂ = argmin
x∗

{ ∫

L(x, x∗)p(x|xn)dx
}

(16)

where x∗ is the candidate image, L(x, x∗) is the cost function,
and p(x|xn) is the posterior probability of the original sample
x given the noisy sample xn . This last term plays an important
role since it can be decomposed (using the Bayes rule) as

p(x|xn) = Z−1 p(xn|x)p(x) (17)

where Z−1 is a normalization term, p(xn|x) is the noise model
(probability of the noisy sample given the original one), and
p(x) is the prior (marginal) sample model.

Note that, in this framework, the inclusion of a feasible
image model p(x) is critical in order to obtain a good
estimation of the original image. Images are multidimensional
signals whose PDF p(x) is hard to estimate with traditional
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Original Noisy (10.0, 0.76)

HT (8.05, 0.86) ST (6.89, 0.88) RBIG (6.48, 0.90)

Fig. 10. Original noisy (noise variance σ 2
n = 100) and restored “Barbara” images. The root-mean-square error (RMSE) and the perceptually meaningful

structural similarity index (SSIM) [49] are given in parentheses.

methods. The conventional approach consists of using para-
metric models to be plugged into (17) in such a way that the
problem can be solved analytically. However, mathematical
convenience leads to the use of too rigid image models. Here
we use RBIG in order to estimate the probability model of
natural images p(x).

In this illustrative example, we use the L2-norm as cost
function, L(x, x∗) = ||x − x∗||2, and an additive Gaussian
noise model, p(xn|x) = N (0, σ 2

n I). We estimated p(x) using
100 achromatic images of size 256 × 256 extracted from
the McGill Calibrated Colour Image Database.4 To do this,
images were transformed using the orthonormal QMF wavelet
domain with four frequency scales [50], and then each subband
was converted to patches in order to obtain different PDF
models for each subband according to well-known properties
of natural images in wavelet domains [12], [51]. In order
to evaluate (16), we sampled the posterior PDF at 8000
points from the neighborhood of each wavelet coefficient by
generating samples with the PDF of the noise model (p(xn|x)),
and evaluated the probability for each sample with the PDF
obtained in the training step p(x). The estimated coefficient
x̂ is obtained as the expected value over the 8000 samples of
the posterior PDF. Obtaining the expected value is equivalent
to using the L2 norm [52]. Note that the classical hard-

4Available at: http://tabby.vision.mcgill.ca/.

thresholding (HT) and soft-thresholding (ST) results [46] are
a useful reference since they can be interpreted as solutions
to the same problem with a marginal Laplacian image model
and L1 and L2 norms, respectively [47].

Fig. 10 shows the denoising results for the “Barbara”
image corrupted with Gaussian noise of σ 2

n = 100 using
marginal models (HT and ST) and using a RBIG as the PDF
estimator. Accuracy of the results is measured in Euclidean
terms (RMSE) and using a perceptually meaningful image
quality metric such as the SSIM [49]. Note that the RBIG
method obtains better results (numerically and visually) than
the classical methods due to the more accurate PDF estimation.

VI. CONCLUSION

In this paper, we proposed an alternative solution to the PDF
estimation problem by using a family of RBIG transforms.
The proposed procedure looks for differentiable transforms to
a Gaussian so that the unknown PDF can be computed at
any point of the original domain using the Jacobian of the
transform.

The RBIG transform consists of the iterative application of
univariate marginal Gaussianization followed by a rotation. We
showed that a wide class of orthonormal transforms (including
trivial RND) is well suited to Gaussianization purposes. The
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freedom to choose the most convenient rotation is the differ-
ence with formally similar techniques, such as PP, which is
focused on looking for interesting projections (which is an
intrinsically more difficult problem). In this way, here we pro-
posed to shift the focus from ICA to a wider class of rotations
since interesting projections as found by ICA are not critical to
solve the PDF estimation problem in the original domain. The
suitability of multiple rotations to solve the PDF estimation
problem may help to revive the interest of classical iterative
Gaussianization in practical applications. As an illustration, we
showed promising results in a number of multidimensional
problems such as image synthesis, classification, denoising,
and multi-information estimation.

Particular issues in each of the possible applications, such
as establishing a convenient family of rotations for a good
Jacobian or convenient criteria to ensure the generalization
ability, are subjects for future research.
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