# ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ import math from typing import List, Optional import torch import torch.nn as nn import torch.nn.functional as F class LoRALayer(): def __init__( self, r: int, lora_alpha: int, lora_dropout: float, merge_weights: bool, ): self.r = r self.lora_alpha = lora_alpha # Optional dropout if lora_dropout > 0.: self.lora_dropout = nn.Dropout(p=lora_dropout) else: self.lora_dropout = lambda x: x # Mark the weight as unmerged self.merged = False self.merge_weights = merge_weights class Embedding(nn.Embedding, LoRALayer): # LoRA implemented in a dense layer def __init__( self, num_embeddings: int, embedding_dim: int, r: int = 0, lora_alpha: int = 1, merge_weights: bool = True, **kwargs ): nn.Embedding.__init__(self, num_embeddings, embedding_dim, **kwargs) LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=0, merge_weights=merge_weights) # Actual trainable parameters if r > 0: self.lora_A = nn.Parameter(self.weight.new_zeros((r, num_embeddings))) self.lora_B = nn.Parameter(self.weight.new_zeros((embedding_dim, r))) self.scaling = self.lora_alpha / self.r # Freezing the pre-trained weight matrix self.weight.requires_grad = False self.reset_parameters() def reset_parameters(self): nn.Embedding.reset_parameters(self) if hasattr(self, 'lora_A'): # initialize A the same way as the default for nn.Linear and B to zero nn.init.zeros_(self.lora_A) nn.init.normal_(self.lora_B) def train(self, mode: bool = True): nn.Embedding.train(self, mode) if self.merge_weights and self.merged: # Make sure that the weights are not merged if self.r > 0: self.weight.data -= (self.lora_B @ self.lora_A).T * self.scaling self.merged = False def eval(self): nn.Linear.eval(self) if self.merge_weights and not self.merged: # Merge the weights and mark it if self.r > 0: self.weight.data += (self.lora_B @ self.lora_A) * self.scaling self.merged = True def forward(self, x: torch.Tensor): if self.r > 0 and not self.merged: result = nn.Embedding.forward(self, x) if self.r > 0: after_A = F.embedding( x, self.lora_A.T, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse ) result += (after_A @ self.lora_B.T) * self.scaling return result else: return nn.Embedding.forward(self, x) class Linear(nn.Linear, LoRALayer): # LoRA implemented in a dense layer def __init__( self, in_features: int, out_features: int, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0., fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out) merge_weights: bool = True, **kwargs ): nn.Linear.__init__(self, in_features, out_features, **kwargs) LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=merge_weights) self.fan_in_fan_out = fan_in_fan_out # Actual trainable parameters if r > 0: self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features))) self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r))) self.scaling = self.lora_alpha / self.r # Freezing the pre-trained weight matrix self.weight.requires_grad = False self.reset_parameters() if fan_in_fan_out: self.weight.data = self.weight.data.T def reset_parameters(self): nn.Linear.reset_parameters(self) if hasattr(self, 'lora_A'): # initialize A the same way as the default for nn.Linear and B to zero nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5)) nn.init.zeros_(self.lora_B) def train(self, mode: bool = True): def T(w): return w.T if self.fan_in_fan_out else w nn.Linear.train(self, mode) if self.merge_weights and self.merged: # Make sure that the weights are not merged if self.r > 0: self.weight.data -= T(self.lora_B @ self.lora_A) * self.scaling self.merged = False def eval(self): def T(w): return w.T if self.fan_in_fan_out else w nn.Linear.eval(self) if self.merge_weights and not self.merged: # Merge the weights and mark it if self.r > 0: self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling self.merged = True def forward(self, x: torch.Tensor): def T(w): return w.T if self.fan_in_fan_out else w if self.r > 0 and not self.merged: result = F.linear(x, T(self.weight), bias=self.bias) if self.r > 0: result += (self.lora_dropout(x) @ self.lora_A.T @ self.lora_B.T) * self.scaling return result else: return F.linear(x, T(self.weight), bias=self.bias) class MergedLinear(nn.Linear, LoRALayer): # LoRA implemented in a dense layer def __init__( self, in_features: int, out_features: int, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0., enable_lora: List[bool] = [False], fan_in_fan_out: bool = False, merge_weights: bool = True, **kwargs ): nn.Linear.__init__(self, in_features, out_features, **kwargs) LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=merge_weights) assert out_features % len(enable_lora) == 0, \ 'The length of enable_lora must divide out_features' self.enable_lora = enable_lora self.fan_in_fan_out = fan_in_fan_out # Actual trainable parameters if r > 0 and any(enable_lora): self.lora_A = nn.Parameter( self.weight.new_zeros((r * sum(enable_lora), in_features))) self.lora_B = nn.Parameter( self.weight.new_zeros((out_features // len(enable_lora) * sum(enable_lora), r)) ) # weights for Conv1D with groups=sum(enable_lora) self.scaling = self.lora_alpha / self.r # Freezing the pre-trained weight matrix self.weight.requires_grad = False # Compute the indices self.lora_ind = self.weight.new_zeros( (out_features, ), dtype=torch.bool ).view(len(enable_lora), -1) self.lora_ind[enable_lora, :] = True self.lora_ind = self.lora_ind.view(-1) self.reset_parameters() if fan_in_fan_out: self.weight.data = self.weight.data.T def reset_parameters(self): nn.Linear.reset_parameters(self) if hasattr(self, 'lora_A'): # initialize A the same way as the default for nn.Linear and B to zero nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5)) nn.init.zeros_(self.lora_B) def zero_pad(self, x): result = x.new_zeros((*x.shape[:-1], self.out_features)) result = result.view(-1, self.out_features) result[:, self.lora_ind] = x.reshape( -1, self.out_features // len(self.enable_lora) * sum(self.enable_lora) ) return result.view((*x.shape[:-1], self.out_features)) def train(self, mode: bool = True): def T(w): return w.T if self.fan_in_fan_out else w nn.Linear.train(self, mode) if self.merge_weights and self.merged: # Make sure that the weights are not merged if self.r > 0 and any(self.enable_lora): delta_w = F.conv1d( self.lora_A.data.unsqueeze(0), self.lora_B.data.unsqueeze(-1), groups=sum(self.enable_lora) ).squeeze(0) self.weight.data -= self.zero_pad(T(delta_w * self.scaling)) self.merged = False def eval(self): def T(w): return w.T if self.fan_in_fan_out else w nn.Linear.eval(self) if self.merge_weights and not self.merged: # Merge the weights and mark it if self.r > 0 and any(self.enable_lora): delta_w = F.conv1d( self.lora_A.data.unsqueeze(0), self.lora_B.data.unsqueeze(-1), groups=sum(self.enable_lora) ).squeeze(0) self.weight.data += self.zero_pad(T(delta_w * self.scaling)) self.merged = True def forward(self, x: torch.Tensor): def T(w): return w.T if self.fan_in_fan_out else w if self.merged: return F.linear(x, T(self.weight), bias=self.bias) else: result = F.linear(x, T(self.weight), bias=self.bias) if self.r > 0: after_A = F.linear(self.lora_dropout(x), self.lora_A) after_B = F.conv1d( after_A.transpose(-2, -1), #B, 12, M self.lora_B.unsqueeze(-1), #3072, 4, 1 groups=sum(self.enable_lora) ).transpose(-2, -1) result += self.zero_pad(after_B) * self.scaling return result class Conv2d(nn.Conv2d, LoRALayer): # LoRA implemented in a dense layer def __init__( self, in_channels: int, out_channels: int, kernel_size: int, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0., merge_weights: bool = True, **kwargs ): nn.Conv2d.__init__(self, in_channels, out_channels, kernel_size, **kwargs) LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=merge_weights) assert type(kernel_size) is int # Actual trainable parameters if r > 0: self.lora_A = nn.Parameter( self.weight.new_zeros((r*kernel_size, in_channels*kernel_size)) ) self.lora_B = nn.Parameter( self.weight.new_zeros((out_channels*kernel_size, r*kernel_size)) ) self.scaling = self.lora_alpha / self.r # Freezing the pre-trained weight matrix self.weight.requires_grad = False self.reset_parameters() def reset_parameters(self): nn.Conv2d.reset_parameters(self) if hasattr(self, 'lora_A'): # initialize A the same way as the default for nn.Linear and B to zero nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5)) nn.init.zeros_(self.lora_B) def train(self, mode: bool = True): nn.Conv2d.train(self, mode) if self.merge_weights and self.merged: # Make sure that the weights are not merged self.weight.data -= (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling self.merged = False def eval(self): nn.Conv2d.eval(self) if self.merge_weights and not self.merged: # Merge the weights and mark it self.weight.data += (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling self.merged = True def forward(self, x: torch.Tensor): if self.r > 0 and not self.merged: return F.conv2d( x, self.weight + (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling, self.bias, self.stride, self.padding, self.dilation, self.groups ) return nn.Conv2d.forward(self, x)