# -------------------------------------------------------- # TinyViT Model Architecture # Copyright (c) 2022 Microsoft # Adapted from LeViT and Swin Transformer # LeViT: (https://github.com/facebookresearch/levit) # Swin: (https://github.com/microsoft/swin-transformer) # Build the TinyViT Model # -------------------------------------------------------- import itertools from typing import Tuple import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath as TimmDropPath from timm.models.layers import to_2tuple, trunc_normal_ from timm.models.registry import register_model from ...common import LayerNorm2d from .adalora_block import TinyViTAdaloraBlock from .adapter_block import TinyViTAdapterBlock from .block import TinyViTBlock from .lora_block import TinyViTLoraBlock from .utils import Conv2d_BN, DropPath, Mlp class PatchEmbed(nn.Module): def __init__(self, in_chans, embed_dim, resolution, activation): super().__init__() img_size: Tuple[int, int] = to_2tuple(resolution) self.patches_resolution = (img_size[0] // 4, img_size[1] // 4) self.num_patches = self.patches_resolution[0] * \ self.patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim n = embed_dim self.seq = nn.Sequential( Conv2d_BN(in_chans, n // 2, 3, 2, 1), activation(), Conv2d_BN(n // 2, n, 3, 2, 1), ) def forward(self, x): return self.seq(x) class MBConv(nn.Module): def __init__(self, in_chans, out_chans, expand_ratio, activation, drop_path): super().__init__() self.in_chans = in_chans self.hidden_chans = int(in_chans * expand_ratio) self.out_chans = out_chans self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1) self.act1 = activation() self.conv2 = Conv2d_BN(self.hidden_chans, self.hidden_chans, ks=3, stride=1, pad=1, groups=self.hidden_chans) self.act2 = activation() self.conv3 = Conv2d_BN( self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0) self.act3 = activation() self.drop_path = DropPath( drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): shortcut = x x = self.conv1(x) x = self.act1(x) x = self.conv2(x) x = self.act2(x) x = self.conv3(x) x = self.drop_path(x) x += shortcut x = self.act3(x) return x class PatchMerging(nn.Module): def __init__(self, input_resolution, dim, out_dim, activation): super().__init__() self.input_resolution = input_resolution self.dim = dim self.out_dim = out_dim self.act = activation() self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0) stride_c=2 if(out_dim==320 or out_dim==448 or out_dim==576): stride_c=1 self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim) self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0) def forward(self, x): if x.ndim == 3: H, W = self.input_resolution B = len(x) # (B, C, H, W) x = x.view(B, H, W, -1).permute(0, 3, 1, 2) x = self.conv1(x) x = self.act(x) x = self.conv2(x) x = self.act(x) x = self.conv3(x) x = x.flatten(2).transpose(1, 2) return x class ConvLayer(nn.Module): def __init__(self, dim, input_resolution, depth, activation, drop_path=0., downsample=None, use_checkpoint=False, out_dim=None, conv_expand_ratio=4., ): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ MBConv(dim, dim, conv_expand_ratio, activation, drop_path[i] if isinstance(drop_path, list) else drop_path, ) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample( input_resolution, dim=dim, out_dim=out_dim, activation=activation) else: self.downsample = None def forward(self, x): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.downsample is not None: x = self.downsample(x) return x class BasicLayer(nn.Module): """ A basic TinyViT layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop (float, optional): Dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. local_conv_size: the kernel size of the depthwise convolution between attention and MLP. Default: 3 activation: the activation function. Default: nn.GELU out_dim: the output dimension of the layer. Default: dim """ def __init__(self, args, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., drop=0., drop_path=0., downsample=None, use_checkpoint=False, local_conv_size=3, activation=nn.GELU, out_dim=None, ): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks if args.mod == 'sam_adpt': block_class = TinyViTAdapterBlock elif args.mod == 'sam_lora': block_class = TinyViTLoraBlock elif args.mod == 'sam_adalora': block_class = TinyViTAdaloraBlock else: block_class = TinyViTBlock self.blocks = nn.ModuleList([ block_class(dim=dim, args = args,input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, mlp_ratio=mlp_ratio, drop=drop, drop_path=drop_path[i] if isinstance( drop_path, list) else drop_path, local_conv_size=local_conv_size, activation=activation, ) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample( input_resolution, dim=dim, out_dim=out_dim, activation=activation) else: self.downsample = None def forward(self, x): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.downsample is not None: x = self.downsample(x) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" class TinyViT(nn.Module): def __init__(self, args, img_size=224, in_chans=3, num_classes=1000, embed_dims=[96, 192, 384, 768], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_sizes=[7, 7, 14, 7], mlp_ratio=4., drop_rate=0., drop_path_rate=0.1, use_checkpoint=False, mbconv_expand_ratio=4.0, local_conv_size=3, layer_lr_decay=1.0, ): super().__init__() self.img_size=img_size #import pdb;pdb.set_trace() self.num_classes = num_classes self.depths = depths self.num_layers = len(depths) self.mlp_ratio = mlp_ratio activation = nn.GELU self.patch_embed = PatchEmbed(in_chans=in_chans, embed_dim=embed_dims[0], resolution=img_size, activation=activation) patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): kwargs = dict(dim=embed_dims[i_layer], input_resolution=(patches_resolution[0] // (2 ** (i_layer-1 if i_layer == 3 else i_layer)), patches_resolution[1] // (2 ** (i_layer-1 if i_layer == 3 else i_layer))), # input_resolution=(patches_resolution[0] // (2 ** i_layer), # patches_resolution[1] // (2 ** i_layer)), depth=depths[i_layer], drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], downsample=PatchMerging if ( i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint, out_dim=embed_dims[min( i_layer + 1, len(embed_dims) - 1)], activation=activation, ) if i_layer == 0: layer = ConvLayer( conv_expand_ratio=mbconv_expand_ratio, **kwargs, ) else: layer = BasicLayer( args = args, num_heads=num_heads[i_layer], window_size=window_sizes[i_layer], mlp_ratio=self.mlp_ratio, drop=drop_rate, local_conv_size=local_conv_size, **kwargs) self.layers.append(layer) # Classifier head self.norm_head = nn.LayerNorm(embed_dims[-1]) self.head = nn.Linear( embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity() # init weights self.apply(self._init_weights) self.set_layer_lr_decay(layer_lr_decay) self.neck = nn.Sequential( nn.Conv2d( embed_dims[-1], 256, kernel_size=1, bias=False, ), LayerNorm2d(256), nn.Conv2d( 256, 256, kernel_size=3, padding=1, bias=False, ), LayerNorm2d(256), ) def set_layer_lr_decay(self, layer_lr_decay): decay_rate = layer_lr_decay # layers -> blocks (depth) depth = sum(self.depths) lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)] #print("LR SCALES:", lr_scales) def _set_lr_scale(m, scale): for p in m.parameters(): p.lr_scale = scale self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0])) i = 0 for layer in self.layers: for block in layer.blocks: block.apply(lambda x: _set_lr_scale(x, lr_scales[i])) i += 1 if layer.downsample is not None: layer.downsample.apply( lambda x: _set_lr_scale(x, lr_scales[i - 1])) assert i == depth for m in [self.norm_head, self.head]: m.apply(lambda x: _set_lr_scale(x, lr_scales[-1])) for k, p in self.named_parameters(): p.param_name = k def _check_lr_scale(m): for p in m.parameters(): assert hasattr(p, 'lr_scale'), p.param_name self.apply(_check_lr_scale) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay_keywords(self): return {'attention_biases'} def forward_features(self, x): # x: (N, C, H, W) x = self.patch_embed(x) x = self.layers[0](x) start_i = 1 for i in range(start_i, len(self.layers)): layer = self.layers[i] x = layer(x) B,_,C=x.size() x = x.view(B, self.img_size//16, self.img_size//16, C) x=x.permute(0, 3, 1, 2) x=self.neck(x) return x def forward(self, x): x = self.forward_features(x) #x = self.norm_head(x) #x = self.head(x) return x _checkpoint_url_format = \ 'https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/{}.pth' _provided_checkpoints = { 'tiny_vit_5m_224': 'tiny_vit_5m_22kto1k_distill', 'tiny_vit_11m_224': 'tiny_vit_11m_22kto1k_distill', 'tiny_vit_21m_224': 'tiny_vit_21m_22kto1k_distill', 'tiny_vit_21m_384': 'tiny_vit_21m_22kto1k_384_distill', 'tiny_vit_21m_512': 'tiny_vit_21m_22kto1k_512_distill', } def register_tiny_vit_model(fn): '''Register a TinyViT model It is a wrapper of `register_model` with loading the pretrained checkpoint. ''' def fn_wrapper(pretrained=False, **kwargs): model = fn() if pretrained: model_name = fn.__name__ assert model_name in _provided_checkpoints, \ f'Sorry that the checkpoint `{model_name}` is not provided yet.' url = _checkpoint_url_format.format( _provided_checkpoints[model_name]) checkpoint = torch.hub.load_state_dict_from_url( url=url, map_location='cpu', check_hash=False, ) model.load_state_dict(checkpoint['model']) return model # rename the name of fn_wrapper fn_wrapper.__name__ = fn.__name__ return register_model(fn_wrapper) # @register_tiny_vit_model def tiny_vit_5m_224(pretrained=False, num_classes=1000, drop_path_rate=0.0): return TinyViT( num_classes=num_classes, embed_dims=[64, 128, 160, 320], depths=[2, 2, 6, 2], num_heads=[2, 4, 5, 10], window_sizes=[7, 7, 14, 7], drop_path_rate=drop_path_rate, ) # @register_tiny_vit_model def tiny_vit_11m_224(pretrained=False, num_classes=1000, drop_path_rate=0.1): return TinyViT( num_classes=num_classes, embed_dims=[64, 128, 256, 448], depths=[2, 2, 6, 2], num_heads=[2, 4, 8, 14], window_sizes=[7, 7, 14, 7], drop_path_rate=drop_path_rate, ) # @register_tiny_vit_model def tiny_vit_21m_224(pretrained=False, num_classes=1000, drop_path_rate=0.2): return TinyViT( num_classes=num_classes, embed_dims=[96, 192, 384, 576], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 18], window_sizes=[7, 7, 14, 7], drop_path_rate=drop_path_rate, ) # @register_tiny_vit_model def tiny_vit_21m_384(pretrained=False, num_classes=1000, drop_path_rate=0.1): return TinyViT( img_size=384, num_classes=num_classes, embed_dims=[96, 192, 384, 576], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 18], window_sizes=[12, 12, 24, 12], drop_path_rate=drop_path_rate, ) # @register_tiny_vit_model def tiny_vit_21m_512(pretrained=False, num_classes=1000, drop_path_rate=0.1): return TinyViT( img_size=512, num_classes=num_classes, embed_dims=[96, 192, 384, 576], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 18], window_sizes=[16, 16, 32, 16], drop_path_rate=drop_path_rate, )