# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math from typing import List, Optional, Tuple, Type import torch import torch.nn as nn import torch.nn.functional as F from ..common import LayerNorm2d from ..ImageEncoder import AdaloraBlock, AdapterBlock, Block, LoraBlock class PatchEmbed(nn.Module): """2D Image to Patch Embedding""" def __init__( self, img_size, patch_size, in_chans, embed_dim, ): super().__init__() self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=(patch_size, patch_size), stride=(patch_size, patch_size), bias=True, ) def forward(self, x): B, C, H, W = x.shape x = self.proj(x) return x @torch.jit.export def get_abs_pos( abs_pos: torch.Tensor, has_cls_token: bool, hw: List[int] ) -> torch.Tensor: """ Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token dimension for the original embeddings. Args: abs_pos (Tensor): absolute positional embeddings with (1, num_position, C). has_cls_token (bool): If true, has 1 embedding in abs_pos for cls token. hw (Tuple): size of input image tokens. Returns: Absolute positional embeddings after processing with shape (1, H, W, C) """ h = hw[0] w = hw[1] if has_cls_token: abs_pos = abs_pos[:, 1:] xy_num = abs_pos.shape[1] size = int(math.sqrt(xy_num)) assert size * size == xy_num if size != h or size != w: new_abs_pos = F.interpolate( abs_pos.reshape(1, size, size, -1).permute(0, 3, 1, 2), size=(h, w), mode="bicubic", align_corners=False, ) return new_abs_pos.permute(0, 2, 3, 1) else: return abs_pos.reshape(1, h, w, -1) # Image encoder for efficient SAM. class ImageEncoderViT(nn.Module): def __init__( self, args, img_size: int, patch_size: int, in_chans: int, patch_embed_dim: int, normalization_type: str, depth: int, num_heads: int, mlp_ratio: float, neck_dims: List[int], act_layer: Type[nn.Module], ) -> None: """ Args: img_size (int): Input image size. patch_size (int): Patch size. in_chans (int): Number of input image channels. patch_embed_dim (int): Patch embedding dimension. depth (int): Depth of ViT. num_heads (int): Number of attention heads in each ViT block. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. act_layer (nn.Module): Activation layer. """ super().__init__() self.args = args self.img_size = img_size self.image_embedding_size = img_size // ((patch_size if patch_size > 0 else 1)) self.transformer_output_dim = ([patch_embed_dim] + neck_dims)[-1] self.pretrain_use_cls_token = True pretrain_img_size = 224 self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, patch_embed_dim) # Initialize absolute positional embedding with pretrain image size. num_patches = (pretrain_img_size // patch_size) * ( pretrain_img_size // patch_size ) num_positions = num_patches + 1 self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, patch_embed_dim)) self.blocks = nn.ModuleList() if args.mod == 'sam_adpt': block_class = AdapterBlock elif args.mod == 'sam_lora': block_class = LoraBlock elif args.mod == 'sam_adalora': block_class = AdaloraBlock else: block_class = Block for i in range(depth): vit_block = block_class( args = self.args, dim=patch_embed_dim, num_heads=num_heads, use_rel_pos=True, mlp_ratio=mlp_ratio, input_size=(img_size // patch_size, img_size // patch_size), ) self.blocks.append(vit_block) self.neck = nn.Sequential( nn.Conv2d( patch_embed_dim, neck_dims[0], kernel_size=1, bias=False, ), LayerNorm2d(neck_dims[0]), nn.Conv2d( neck_dims[0], neck_dims[0], kernel_size=3, padding=1, bias=False, ), LayerNorm2d(neck_dims[0]), ) def forward(self, x: torch.Tensor) -> torch.Tensor: assert ( x.shape[2] == self.img_size and x.shape[3] == self.img_size ), "input image size must match self.img_size" x = self.patch_embed(x) # B C H W -> B H W C x = x.permute(0, 2, 3, 1) x = x + get_abs_pos( self.pos_embed, self.pretrain_use_cls_token, [x.shape[1], x.shape[2]] ) num_patches = x.shape[1] assert x.shape[2] == num_patches # x = x.reshape(x.shape[0], num_patches * num_patches, x.shape[3]) for blk in self.blocks: x = blk(x) # x = x.reshape(x.shape[0], num_patches, num_patches, x.shape[2]) x = self.neck(x.permute(0, 3, 1, 2)) return x