|
import sys |
|
|
|
import numpy |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.autograd import Function |
|
from torch.optim.lr_scheduler import _LRScheduler |
|
import torchvision |
|
import torchvision.transforms as transforms |
|
import torchvision.utils as vutils |
|
from torch.utils.data import DataLoader |
|
from dataset import Dataset_FullImg, Dataset_DiscRegion |
|
import math |
|
import PIL |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
|
|
import collections |
|
import logging |
|
import math |
|
import os |
|
import time |
|
from datetime import datetime |
|
|
|
import dateutil.tz |
|
|
|
from typing import Union, Optional, List, Tuple, Text, BinaryIO |
|
import pathlib |
|
import warnings |
|
import numpy as np |
|
from PIL import Image, ImageDraw, ImageFont, ImageColor |
|
from lucent.optvis.param.spatial import pixel_image, fft_image, init_image |
|
from lucent.optvis.param.color import to_valid_rgb |
|
from torchvision.models import vgg19 |
|
import torch.nn.functional as F |
|
import cfg |
|
|
|
import warnings |
|
from collections import OrderedDict |
|
import numpy as np |
|
from tqdm import tqdm |
|
from PIL import Image |
|
import torch |
|
|
|
|
|
|
|
|
|
args = cfg.parse_args() |
|
device = torch.device('cuda', args.gpu_device) |
|
cnn = vgg19(pretrained=True).features.to(device).eval() |
|
|
|
content_layers_default = ['conv_4'] |
|
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'] |
|
|
|
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device) |
|
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device) |
|
|
|
class ContentLoss(nn.Module): |
|
|
|
def __init__(self, target,): |
|
super(ContentLoss, self).__init__() |
|
|
|
|
|
|
|
|
|
self.target = target.detach() |
|
|
|
def forward(self, input): |
|
self.loss = F.mse_loss(input, self.target) |
|
return input |
|
|
|
def gram_matrix(input): |
|
a, b, c, d = input.size() |
|
|
|
|
|
|
|
features = input.view(a * b, c * d) |
|
|
|
G = torch.mm(features, features.t()) |
|
|
|
|
|
|
|
return G.div(a * b * c * d) |
|
|
|
class StyleLoss(nn.Module): |
|
|
|
def __init__(self, target_feature): |
|
super(StyleLoss, self).__init__() |
|
self.target = gram_matrix(target_feature).detach() |
|
|
|
def forward(self, input): |
|
G = gram_matrix(input) |
|
self.loss = F.mse_loss(G, self.target) |
|
return input |
|
|
|
|
|
|
|
class Normalization(nn.Module): |
|
def __init__(self, mean, std): |
|
super(Normalization, self).__init__() |
|
|
|
|
|
|
|
self.mean = torch.tensor(mean).view(-1, 1, 1) |
|
self.std = torch.tensor(std).view(-1, 1, 1) |
|
|
|
def forward(self, img): |
|
|
|
return (img - self.mean) / self.std |
|
|
|
def run_precpt(cnn, normalization_mean, normalization_std, |
|
content_img, style_img, input_img, |
|
style_weight=1000000, content_weight=1): |
|
model, style_losses, content_losses = precpt_loss(cnn, |
|
normalization_mean, normalization_std, style_img, content_img) |
|
|
|
|
|
|
|
model.requires_grad_(False) |
|
input_img.requires_grad_(True) |
|
|
|
model(input_img) |
|
style_score = 0 |
|
content_score = 0 |
|
|
|
for sl in style_losses: |
|
style_score += sl.loss |
|
for cl in content_losses: |
|
content_score += cl.loss |
|
|
|
content_weight = 100 |
|
style_weight = 100000 |
|
style_score *= style_weight |
|
content_score *= content_weight |
|
|
|
loss = style_score + content_score |
|
|
|
|
|
return loss |
|
|
|
|
|
def precpt_loss(cnn, normalization_mean, normalization_std, |
|
style_img, content_img, |
|
content_layers=content_layers_default, |
|
style_layers=style_layers_default): |
|
|
|
|
|
normalization = Normalization(normalization_mean, normalization_std).to(device) |
|
|
|
|
|
|
|
content_losses = [] |
|
style_losses = [] |
|
|
|
|
|
model = nn.Sequential(normalization) |
|
|
|
i = 0 |
|
for layer in cnn.children(): |
|
if isinstance(layer, nn.Conv2d): |
|
i += 1 |
|
name = 'conv_{}'.format(i) |
|
elif isinstance(layer, nn.ReLU): |
|
name = 'relu_{}'.format(i) |
|
|
|
|
|
|
|
layer = nn.ReLU(inplace=False) |
|
elif isinstance(layer, nn.MaxPool2d): |
|
name = 'pool_{}'.format(i) |
|
elif isinstance(layer, nn.BatchNorm2d): |
|
name = 'bn_{}'.format(i) |
|
else: |
|
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__)) |
|
|
|
model.add_module(name, layer) |
|
|
|
if name in content_layers: |
|
|
|
target = model(content_img).detach() |
|
content_loss = ContentLoss(target) |
|
model.add_module("content_loss_{}".format(i), content_loss) |
|
content_losses.append(content_loss) |
|
|
|
if name in style_layers: |
|
|
|
if style_img.size(1) == 1: |
|
style_img = style_img.expand(style_img.size(0),3, style_img.size(2),style_img.size(3)) |
|
target_feature = model(style_img).detach() |
|
style_loss = StyleLoss(target_feature) |
|
model.add_module("style_loss_{}".format(i), style_loss) |
|
style_losses.append(style_loss) |
|
|
|
|
|
for i in range(len(model) - 1, -1, -1): |
|
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss): |
|
break |
|
|
|
model = model[:(i + 1)] |
|
|
|
return model, style_losses, content_losses |
|
|
|
|
|
|
|
|