|
"""vgg in pytorch |
|
|
|
|
|
[1] Karen Simonyan, Andrew Zisserman |
|
|
|
Very Deep Convolutional Networks for Large-Scale Image Recognition. |
|
https://arxiv.org/abs/1409.1556v6 |
|
""" |
|
'''VGG11/13/16/19 in Pytorch.''' |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
cfg = { |
|
'A' : [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], |
|
'B' : [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], |
|
'D' : [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], |
|
'E' : [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'] |
|
} |
|
|
|
class VGG(nn.Module): |
|
|
|
def __init__(self, features, num_class=100): |
|
super().__init__() |
|
self.features = features |
|
|
|
self.classifier = nn.Sequential( |
|
nn.Linear(512, 4096), |
|
nn.ReLU(inplace=True), |
|
nn.Dropout(), |
|
nn.Linear(4096, 4096), |
|
nn.ReLU(inplace=True), |
|
nn.Dropout(), |
|
nn.Linear(4096, num_class) |
|
) |
|
|
|
def forward(self, x): |
|
output = self.features(x) |
|
output = output.view(output.size()[0], -1) |
|
output = self.classifier(output) |
|
|
|
return output |
|
|
|
def make_layers(cfg, batch_norm=False): |
|
layers = [] |
|
|
|
input_channel = 3 |
|
for l in cfg: |
|
if l == 'M': |
|
layers += [nn.MaxPool2d(kernel_size=2, stride=2)] |
|
continue |
|
|
|
layers += [nn.Conv2d(input_channel, l, kernel_size=3, padding=1)] |
|
|
|
if batch_norm: |
|
layers += [nn.BatchNorm2d(l)] |
|
|
|
layers += [nn.ReLU(inplace=True)] |
|
input_channel = l |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def vgg11_bn(): |
|
return VGG(make_layers(cfg['A'], batch_norm=True)) |
|
|
|
def vgg13_bn(): |
|
return VGG(make_layers(cfg['B'], batch_norm=True)) |
|
|
|
def vgg16_bn(): |
|
return VGG(make_layers(cfg['D'], batch_norm=True)) |
|
|
|
def vgg19_bn(): |
|
return VGG(make_layers(cfg['E'], batch_norm=True)) |
|
|
|
|
|
|