|
"""
|
|
This file contains helper functions for building the model and for loading model parameters.
|
|
These helper functions are built to mirror those in the official TensorFlow implementation.
|
|
"""
|
|
|
|
import re
|
|
import math
|
|
import collections
|
|
from functools import partial
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
from torch.utils import model_zoo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
GlobalParams = collections.namedtuple('GlobalParams', [
|
|
'batch_norm_momentum', 'batch_norm_epsilon', 'dropout_rate',
|
|
'num_classes', 'width_coefficient', 'depth_coefficient',
|
|
'depth_divisor', 'min_depth', 'drop_connect_rate', 'image_size'])
|
|
|
|
|
|
BlockArgs = collections.namedtuple('BlockArgs', [
|
|
'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
|
|
'expand_ratio', 'id_skip', 'stride', 'se_ratio'])
|
|
|
|
|
|
GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields)
|
|
BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields)
|
|
|
|
|
|
softmax_helper = lambda x: F.softmax(x, 1)
|
|
sigmoid_helper = lambda x: F.sigmoid(x)
|
|
|
|
class InitWeights_He(object):
|
|
def __init__(self, neg_slope=1e-2):
|
|
self.neg_slope = neg_slope
|
|
|
|
def __call__(self, module):
|
|
if isinstance(module, nn.Conv3d) or isinstance(module, nn.Conv2d) or isinstance(module, nn.ConvTranspose2d) or isinstance(module, nn.ConvTranspose3d):
|
|
module.weight = nn.init.kaiming_normal_(module.weight, a=self.neg_slope)
|
|
if module.bias is not None:
|
|
module.bias = nn.init.constant_(module.bias, 0)
|
|
|
|
def maybe_to_torch(d):
|
|
if isinstance(d, list):
|
|
d = [maybe_to_torch(i) if not isinstance(i, torch.Tensor) else i for i in d]
|
|
elif not isinstance(d, torch.Tensor):
|
|
d = torch.from_numpy(d).float()
|
|
return d
|
|
|
|
|
|
def to_cuda(data, non_blocking=True, gpu_id=0):
|
|
if isinstance(data, list):
|
|
data = [i.cuda(gpu_id, non_blocking=non_blocking) for i in data]
|
|
else:
|
|
data = data.cuda(gpu_id, non_blocking=non_blocking)
|
|
return data
|
|
|
|
|
|
class no_op(object):
|
|
def __enter__(self):
|
|
pass
|
|
|
|
def __exit__(self, *args):
|
|
pass
|
|
|
|
class SwishImplementation(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, i):
|
|
result = i * torch.sigmoid(i)
|
|
ctx.save_for_backward(i)
|
|
return result
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
i = ctx.saved_variables[0]
|
|
sigmoid_i = torch.sigmoid(i)
|
|
return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))
|
|
|
|
|
|
class MemoryEfficientSwish(nn.Module):
|
|
def forward(self, x):
|
|
return SwishImplementation.apply(x)
|
|
|
|
class Swish(nn.Module):
|
|
def forward(self, x):
|
|
return x * torch.sigmoid(x)
|
|
|
|
|
|
def round_filters(filters, global_params):
|
|
""" Calculate and round number of filters based on depth multiplier. """
|
|
multiplier = global_params.width_coefficient
|
|
if not multiplier:
|
|
return filters
|
|
divisor = global_params.depth_divisor
|
|
min_depth = global_params.min_depth
|
|
filters *= multiplier
|
|
min_depth = min_depth or divisor
|
|
new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)
|
|
if new_filters < 0.9 * filters:
|
|
new_filters += divisor
|
|
return int(new_filters)
|
|
|
|
|
|
def round_repeats(repeats, global_params):
|
|
""" Round number of filters based on depth multiplier. """
|
|
multiplier = global_params.depth_coefficient
|
|
if not multiplier:
|
|
return repeats
|
|
return int(math.ceil(multiplier * repeats))
|
|
|
|
|
|
def drop_connect(inputs, p, training):
|
|
""" Drop connect. """
|
|
if not training: return inputs
|
|
batch_size = inputs.shape[0]
|
|
keep_prob = 1 - p
|
|
random_tensor = keep_prob
|
|
random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device)
|
|
binary_tensor = torch.floor(random_tensor)
|
|
output = inputs / keep_prob * binary_tensor
|
|
return output
|
|
|
|
|
|
def get_same_padding_conv2d(image_size=None):
|
|
""" Chooses static padding if you have specified an image size, and dynamic padding otherwise.
|
|
Static padding is necessary for ONNX exporting of models. """
|
|
if image_size is None:
|
|
return Conv2dDynamicSamePadding
|
|
else:
|
|
return partial(Conv2dStaticSamePadding, image_size=image_size)
|
|
|
|
def get_same_padding_conv2d_freeze(image_size=None):
|
|
""" Chooses static padding if you have specified an image size, and dynamic padding otherwise.
|
|
Static padding is necessary for ONNX exporting of models. """
|
|
if image_size is None:
|
|
return Conv2dStaticSamePadding_freeze
|
|
else:
|
|
return partial(Conv2dStaticSamePadding_freeze, image_size=image_size)
|
|
|
|
class Conv2dDynamicSamePadding(nn.Conv2d):
|
|
""" 2D Convolutions like TensorFlow, for a dynamic image size """
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True):
|
|
super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
|
|
self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2
|
|
|
|
def forward(self, x):
|
|
ih, iw = x.size()[-2:]
|
|
kh, kw = self.weight.size()[-2:]
|
|
sh, sw = self.stride
|
|
oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
|
|
pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
|
|
pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
|
|
if pad_h > 0 or pad_w > 0:
|
|
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
|
|
return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
|
|
|
|
|
|
class Conv2dStaticSamePadding(nn.Conv2d):
|
|
""" 2D Convolutions like TensorFlow, for a fixed image size"""
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, image_size=None, **kwargs):
|
|
super().__init__(in_channels, out_channels, kernel_size, **kwargs)
|
|
self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2
|
|
|
|
|
|
assert image_size is not None
|
|
ih, iw = image_size if type(image_size) == list else [image_size, image_size]
|
|
kh, kw = self.weight.size()[-2:]
|
|
sh, sw = self.stride
|
|
oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
|
|
pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
|
|
pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
|
|
if pad_h > 0 or pad_w > 0:
|
|
self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2))
|
|
else:
|
|
self.static_padding = Identity()
|
|
|
|
def forward(self, x):
|
|
x = self.static_padding(x)
|
|
x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
|
|
return x
|
|
|
|
def Conv2dStaticSamePadding_freeze(inputs, weight, bias=None, image_size=None, stride=(1,1), padding=0, dilation=(1,1), groups=1):
|
|
""" 2D Convolutions like TensorFlow, for a fixed image size"""
|
|
|
|
if type(stride) == int:
|
|
stride = [stride] * 2
|
|
else:
|
|
stride = stride if len(stride) == 2 else [stride[0]] * 2
|
|
|
|
assert image_size is not None
|
|
ih, iw = image_size if type(image_size) == list else [image_size, image_size]
|
|
kh, kw = weight.size()[-2:]
|
|
sh, sw = stride
|
|
oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
|
|
pad_h = max((oh - 1) * stride[0] + (kh - 1) * dilation[0] + 1 - ih, 0)
|
|
pad_w = max((ow - 1) * stride[1] + (kw - 1) * dilation[1] + 1 - iw, 0)
|
|
if pad_h > 0 or pad_w > 0:
|
|
static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2))
|
|
else:
|
|
static_padding = Identity()
|
|
|
|
x = static_padding(inputs)
|
|
x = F.conv2d(x, weight, bias, stride, padding, dilation, groups)
|
|
return x
|
|
|
|
|
|
class Identity(nn.Module):
|
|
def __init__(self, ):
|
|
super(Identity, self).__init__()
|
|
|
|
def forward(self, input):
|
|
return input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def efficientnet_params(model_name):
|
|
""" Map EfficientNet model name to parameter coefficients. """
|
|
params_dict = {
|
|
|
|
'efficientnet-b0': (1.0, 1.0, 224, 0.2),
|
|
'efficientnet-b1': (1.0, 1.1, 240, 0.2),
|
|
'efficientnet-b2': (1.1, 1.2, 260, 0.3),
|
|
'efficientnet-b3': (1.2, 1.4, 300, 0.3),
|
|
'efficientnet-b4': (1.4, 1.8, 380, 0.4),
|
|
'efficientnet-b5': (1.6, 2.2, 456, 0.4),
|
|
'efficientnet-b6': (1.8, 2.6, 528, 0.5),
|
|
'efficientnet-b7': (2.0, 3.1, 600, 0.5),
|
|
}
|
|
return params_dict[model_name]
|
|
|
|
|
|
class BlockDecoder(object):
|
|
""" Block Decoder for readability, straight from the official TensorFlow repository """
|
|
|
|
@staticmethod
|
|
def _decode_block_string(block_string):
|
|
""" Gets a block through a string notation of arguments. """
|
|
assert isinstance(block_string, str)
|
|
|
|
ops = block_string.split('_')
|
|
options = {}
|
|
for op in ops:
|
|
splits = re.split(r'(\d.*)', op)
|
|
if len(splits) >= 2:
|
|
key, value = splits[:2]
|
|
options[key] = value
|
|
|
|
|
|
assert (('s' in options and len(options['s']) == 1) or
|
|
(len(options['s']) == 2 and options['s'][0] == options['s'][1]))
|
|
|
|
return BlockArgs(
|
|
kernel_size=int(options['k']),
|
|
num_repeat=int(options['r']),
|
|
input_filters=int(options['i']),
|
|
output_filters=int(options['o']),
|
|
expand_ratio=int(options['e']),
|
|
id_skip=('noskip' not in block_string),
|
|
se_ratio=float(options['se']) if 'se' in options else None,
|
|
stride=[int(options['s'][0])])
|
|
|
|
@staticmethod
|
|
def _encode_block_string(block):
|
|
"""Encodes a block to a string."""
|
|
args = [
|
|
'r%d' % block.num_repeat,
|
|
'k%d' % block.kernel_size,
|
|
's%d%d' % (block.strides[0], block.strides[1]),
|
|
'e%s' % block.expand_ratio,
|
|
'i%d' % block.input_filters,
|
|
'o%d' % block.output_filters
|
|
]
|
|
if 0 < block.se_ratio <= 1:
|
|
args.append('se%s' % block.se_ratio)
|
|
if block.id_skip is False:
|
|
args.append('noskip')
|
|
return '_'.join(args)
|
|
|
|
@staticmethod
|
|
def decode(string_list):
|
|
"""
|
|
Decodes a list of string notations to specify blocks inside the network.
|
|
|
|
:param string_list: a list of strings, each string is a notation of block
|
|
:return: a list of BlockArgs namedtuples of block args
|
|
"""
|
|
assert isinstance(string_list, list)
|
|
blocks_args = []
|
|
for block_string in string_list:
|
|
blocks_args.append(BlockDecoder._decode_block_string(block_string))
|
|
return blocks_args
|
|
|
|
@staticmethod
|
|
def encode(blocks_args):
|
|
"""
|
|
Encodes a list of BlockArgs to a list of strings.
|
|
|
|
:param blocks_args: a list of BlockArgs namedtuples of block args
|
|
:return: a list of strings, each string is a notation of block
|
|
"""
|
|
block_strings = []
|
|
for block in blocks_args:
|
|
block_strings.append(BlockDecoder._encode_block_string(block))
|
|
return block_strings
|
|
|
|
|
|
def efficientnet(width_coefficient=None, depth_coefficient=None, dropout_rate=0.2,
|
|
drop_connect_rate=0.2, image_size=None, num_classes=1000):
|
|
""" Creates a efficientnet model. """
|
|
|
|
blocks_args = [
|
|
'r1_k3_s11_e1_i32_o16_se0.25', 'r2_k3_s22_e6_i16_o24_se0.25',
|
|
'r2_k5_s22_e6_i24_o40_se0.25', 'r3_k3_s22_e6_i40_o80_se0.25',
|
|
'r3_k5_s11_e6_i80_o112_se0.25', 'r4_k5_s22_e6_i112_o192_se0.25',
|
|
'r1_k3_s11_e6_i192_o320_se0.25',
|
|
]
|
|
blocks_args = BlockDecoder.decode(blocks_args)
|
|
|
|
global_params = GlobalParams(
|
|
batch_norm_momentum=0.99,
|
|
batch_norm_epsilon=1e-3,
|
|
dropout_rate=dropout_rate,
|
|
drop_connect_rate=drop_connect_rate,
|
|
|
|
num_classes=num_classes,
|
|
width_coefficient=width_coefficient,
|
|
depth_coefficient=depth_coefficient,
|
|
depth_divisor=8,
|
|
min_depth=None,
|
|
image_size=image_size,
|
|
)
|
|
|
|
return blocks_args, global_params
|
|
|
|
|
|
def get_model_params(model_name, override_params):
|
|
""" Get the block args and global params for a given model """
|
|
if model_name.startswith('efficientnet'):
|
|
w, d, s, p = efficientnet_params(model_name)
|
|
|
|
blocks_args, global_params = efficientnet(
|
|
width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s)
|
|
else:
|
|
raise NotImplementedError('model name is not pre-defined: %s' % model_name)
|
|
if override_params:
|
|
|
|
global_params = global_params._replace(**override_params)
|
|
return blocks_args, global_params
|
|
|
|
|
|
url_map = {
|
|
'efficientnet-b0': 'http://storage.googleapis.com/public-models/efficientnet/efficientnet-b0-355c32eb.pth',
|
|
'efficientnet-b1': 'http://storage.googleapis.com/public-models/efficientnet/efficientnet-b1-f1951068.pth',
|
|
'efficientnet-b2': 'http://storage.googleapis.com/public-models/efficientnet/efficientnet-b2-8bb594d6.pth',
|
|
'efficientnet-b3': 'http://storage.googleapis.com/public-models/efficientnet/efficientnet-b3-5fb5a3c3.pth',
|
|
'efficientnet-b4': 'http://storage.googleapis.com/public-models/efficientnet/efficientnet-b4-6ed6700e.pth',
|
|
'efficientnet-b5': 'http://storage.googleapis.com/public-models/efficientnet/efficientnet-b5-b6417697.pth',
|
|
'efficientnet-b6': 'http://storage.googleapis.com/public-models/efficientnet/efficientnet-b6-c76e70fd.pth',
|
|
'efficientnet-b7': 'http://storage.googleapis.com/public-models/efficientnet/efficientnet-b7-dcc49843.pth',
|
|
}
|
|
|
|
|
|
def load_pretrained_weights(model, model_name, load_fc=True):
|
|
""" Loads pretrained weights, and downloads if loading for the first time. """
|
|
state_dict = model_zoo.load_url(url_map[model_name])
|
|
if load_fc:
|
|
model.load_state_dict(state_dict)
|
|
else:
|
|
state_dict.pop('_fc.weight')
|
|
state_dict.pop('_fc.bias')
|
|
res = model.load_state_dict(state_dict, strict=False)
|
|
assert set(res.missing_keys) == set(['_fc.weight', '_fc.bias']), 'issue loading pretrained weights'
|
|
print('Loaded pretrained weights for {}'.format(model_name))
|
|
|
|
def gram_matrix(input):
|
|
a, b, c, d = input.size()
|
|
|
|
|
|
|
|
features = input.view(a * b, c * d)
|
|
|
|
G = torch.mm(features, features.t())
|
|
|
|
|
|
|
|
return G.div(a * b * c * d)
|
|
|