|
"""senet in pytorch |
|
|
|
|
|
|
|
[1] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu |
|
|
|
Squeeze-and-Excitation Networks |
|
https://arxiv.org/abs/1709.01507 |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
class BasicResidualSEBlock(nn.Module): |
|
|
|
expansion = 1 |
|
|
|
def __init__(self, in_channels, out_channels, stride, r=16): |
|
super().__init__() |
|
|
|
self.residual = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, 3, stride=stride, padding=1), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(inplace=True), |
|
|
|
nn.Conv2d(out_channels, out_channels * self.expansion, 3, padding=1), |
|
nn.BatchNorm2d(out_channels * self.expansion), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_channels != out_channels * self.expansion: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels * self.expansion, 1, stride=stride), |
|
nn.BatchNorm2d(out_channels * self.expansion) |
|
) |
|
|
|
self.squeeze = nn.AdaptiveAvgPool2d(1) |
|
self.excitation = nn.Sequential( |
|
nn.Linear(out_channels * self.expansion, out_channels * self.expansion // r), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(out_channels * self.expansion // r, out_channels * self.expansion), |
|
nn.Sigmoid() |
|
) |
|
|
|
def forward(self, x): |
|
shortcut = self.shortcut(x) |
|
residual = self.residual(x) |
|
|
|
squeeze = self.squeeze(residual) |
|
squeeze = squeeze.view(squeeze.size(0), -1) |
|
excitation = self.excitation(squeeze) |
|
excitation = excitation.view(residual.size(0), residual.size(1), 1, 1) |
|
|
|
x = residual * excitation.expand_as(residual) + shortcut |
|
|
|
return F.relu(x) |
|
|
|
class BottleneckResidualSEBlock(nn.Module): |
|
|
|
expansion = 4 |
|
|
|
def __init__(self, in_channels, out_channels, stride, r=16): |
|
super().__init__() |
|
|
|
self.residual = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, 1), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(inplace=True), |
|
|
|
nn.Conv2d(out_channels, out_channels, 3, stride=stride, padding=1), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(inplace=True), |
|
|
|
nn.Conv2d(out_channels, out_channels * self.expansion, 1), |
|
nn.BatchNorm2d(out_channels * self.expansion), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
self.squeeze = nn.AdaptiveAvgPool2d(1) |
|
self.excitation = nn.Sequential( |
|
nn.Linear(out_channels * self.expansion, out_channels * self.expansion // r), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(out_channels * self.expansion // r, out_channels * self.expansion), |
|
nn.Sigmoid() |
|
) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_channels != out_channels * self.expansion: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels * self.expansion, 1, stride=stride), |
|
nn.BatchNorm2d(out_channels * self.expansion) |
|
) |
|
|
|
def forward(self, x): |
|
|
|
shortcut = self.shortcut(x) |
|
|
|
residual = self.residual(x) |
|
squeeze = self.squeeze(residual) |
|
squeeze = squeeze.view(squeeze.size(0), -1) |
|
excitation = self.excitation(squeeze) |
|
excitation = excitation.view(residual.size(0), residual.size(1), 1, 1) |
|
|
|
x = residual * excitation.expand_as(residual) + shortcut |
|
|
|
return F.relu(x) |
|
|
|
class SEResNet(nn.Module): |
|
|
|
def __init__(self, block, block_num, class_num=1): |
|
super().__init__() |
|
|
|
self.in_channels = 64 |
|
|
|
self.pre = nn.Sequential( |
|
nn.Conv2d(3, 64, 3, padding=1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
self.stage1 = self._make_stage(block, block_num[0], 64, 1) |
|
self.stage2 = self._make_stage(block, block_num[1], 128, 2) |
|
self.stage3 = self._make_stage(block, block_num[2], 256, 2) |
|
self.stage4 = self._make_stage(block, block_num[3], 516, 2) |
|
|
|
self.linear = nn.Linear(self.in_channels, class_num) |
|
|
|
def forward(self, x): |
|
x = self.pre(x) |
|
|
|
x = self.stage1(x) |
|
x = self.stage2(x) |
|
x = self.stage3(x) |
|
x = self.stage4(x) |
|
|
|
x = F.adaptive_avg_pool2d(x, 1) |
|
x = x.view(x.size(0), -1) |
|
|
|
x = self.linear(x) |
|
|
|
return x |
|
|
|
|
|
def _make_stage(self, block, num, out_channels, stride): |
|
|
|
layers = [] |
|
layers.append(block(self.in_channels, out_channels, stride)) |
|
self.in_channels = out_channels * block.expansion |
|
|
|
while num - 1: |
|
layers.append(block(self.in_channels, out_channels, 1)) |
|
num -= 1 |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def seresnet18(): |
|
return SEResNet(BasicResidualSEBlock, [2, 2, 2, 2]) |
|
|
|
def seresnet34(): |
|
return SEResNet(BasicResidualSEBlock, [3, 4, 6, 3]) |
|
|
|
def seresnet50(): |
|
return SEResNet(BottleneckResidualSEBlock, [3, 4, 6, 3]) |
|
|
|
def seresnet101(): |
|
return SEResNet(BottleneckResidualSEBlock, [3, 4, 23, 3]) |
|
|
|
def seresnet152(): |
|
return SEResNet(BottleneckResidualSEBlock, [3, 8, 36, 3]) |