introvoyz041's picture
Migrated from GitHub
faa56b4 verified
"""senet in pytorch
[1] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu
Squeeze-and-Excitation Networks
https://arxiv.org/abs/1709.01507
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicResidualSEBlock(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, stride, r=16):
super().__init__()
self.residual = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, stride=stride, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels * self.expansion, 3, padding=1),
nn.BatchNorm2d(out_channels * self.expansion),
nn.ReLU(inplace=True)
)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels * self.expansion:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels * self.expansion, 1, stride=stride),
nn.BatchNorm2d(out_channels * self.expansion)
)
self.squeeze = nn.AdaptiveAvgPool2d(1)
self.excitation = nn.Sequential(
nn.Linear(out_channels * self.expansion, out_channels * self.expansion // r),
nn.ReLU(inplace=True),
nn.Linear(out_channels * self.expansion // r, out_channels * self.expansion),
nn.Sigmoid()
)
def forward(self, x):
shortcut = self.shortcut(x)
residual = self.residual(x)
squeeze = self.squeeze(residual)
squeeze = squeeze.view(squeeze.size(0), -1)
excitation = self.excitation(squeeze)
excitation = excitation.view(residual.size(0), residual.size(1), 1, 1)
x = residual * excitation.expand_as(residual) + shortcut
return F.relu(x)
class BottleneckResidualSEBlock(nn.Module):
expansion = 4
def __init__(self, in_channels, out_channels, stride, r=16):
super().__init__()
self.residual = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, 3, stride=stride, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels * self.expansion, 1),
nn.BatchNorm2d(out_channels * self.expansion),
nn.ReLU(inplace=True)
)
self.squeeze = nn.AdaptiveAvgPool2d(1)
self.excitation = nn.Sequential(
nn.Linear(out_channels * self.expansion, out_channels * self.expansion // r),
nn.ReLU(inplace=True),
nn.Linear(out_channels * self.expansion // r, out_channels * self.expansion),
nn.Sigmoid()
)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels * self.expansion:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels * self.expansion, 1, stride=stride),
nn.BatchNorm2d(out_channels * self.expansion)
)
def forward(self, x):
shortcut = self.shortcut(x)
residual = self.residual(x)
squeeze = self.squeeze(residual)
squeeze = squeeze.view(squeeze.size(0), -1)
excitation = self.excitation(squeeze)
excitation = excitation.view(residual.size(0), residual.size(1), 1, 1)
x = residual * excitation.expand_as(residual) + shortcut
return F.relu(x)
class SEResNet(nn.Module):
def __init__(self, block, block_num, class_num=1):
super().__init__()
self.in_channels = 64
self.pre = nn.Sequential(
nn.Conv2d(3, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.stage1 = self._make_stage(block, block_num[0], 64, 1)
self.stage2 = self._make_stage(block, block_num[1], 128, 2)
self.stage3 = self._make_stage(block, block_num[2], 256, 2)
self.stage4 = self._make_stage(block, block_num[3], 516, 2)
self.linear = nn.Linear(self.in_channels, class_num)
def forward(self, x):
x = self.pre(x)
x = self.stage1(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = F.adaptive_avg_pool2d(x, 1)
x = x.view(x.size(0), -1)
x = self.linear(x)
return x
def _make_stage(self, block, num, out_channels, stride):
layers = []
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
while num - 1:
layers.append(block(self.in_channels, out_channels, 1))
num -= 1
return nn.Sequential(*layers)
def seresnet18():
return SEResNet(BasicResidualSEBlock, [2, 2, 2, 2])
def seresnet34():
return SEResNet(BasicResidualSEBlock, [3, 4, 6, 3])
def seresnet50():
return SEResNet(BottleneckResidualSEBlock, [3, 4, 6, 3])
def seresnet101():
return SEResNet(BottleneckResidualSEBlock, [3, 4, 23, 3])
def seresnet152():
return SEResNet(BottleneckResidualSEBlock, [3, 8, 36, 3])