|
|
|
|
|
|
|
import urllib.request |
|
|
|
|
|
from functools import partial |
|
from pathlib import Path |
|
|
|
import torch |
|
|
|
from ..common import TwoWayTransformer |
|
from .modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam |
|
|
|
|
|
def build_sam_vit_h(args = None, checkpoint=None): |
|
return _build_sam( |
|
args, |
|
encoder_embed_dim=1280, |
|
encoder_depth=32, |
|
encoder_num_heads=16, |
|
encoder_global_attn_indexes=[7, 15, 23, 31], |
|
checkpoint=checkpoint, |
|
) |
|
|
|
|
|
build_sam = build_sam_vit_h |
|
|
|
|
|
def build_sam_vit_l(args, checkpoint=None): |
|
return _build_sam( |
|
args, |
|
encoder_embed_dim=1024, |
|
encoder_depth=24, |
|
encoder_num_heads=16, |
|
encoder_global_attn_indexes=[5, 11, 17, 23], |
|
checkpoint=checkpoint, |
|
) |
|
|
|
|
|
def build_sam_vit_b(args, checkpoint=None): |
|
return _build_sam( |
|
args, |
|
encoder_embed_dim=768, |
|
encoder_depth=12, |
|
encoder_num_heads=12, |
|
encoder_global_attn_indexes=[2, 5, 8, 11], |
|
checkpoint=checkpoint, |
|
) |
|
|
|
|
|
sam_model_registry = { |
|
"default": build_sam_vit_b, |
|
"vit_h": build_sam_vit_h, |
|
"vit_l": build_sam_vit_l, |
|
"vit_b": build_sam_vit_b, |
|
} |
|
|
|
|
|
def _build_sam( |
|
args, |
|
encoder_embed_dim, |
|
encoder_depth, |
|
encoder_num_heads, |
|
encoder_global_attn_indexes, |
|
checkpoint=None, |
|
): |
|
prompt_embed_dim = 256 |
|
image_size = args.image_size |
|
vit_patch_size = 16 |
|
image_embedding_size = image_size // vit_patch_size |
|
sam = Sam( |
|
args, |
|
image_encoder=ImageEncoderViT( |
|
args = args, |
|
depth=encoder_depth, |
|
embed_dim=encoder_embed_dim, |
|
img_size=image_size, |
|
mlp_ratio=4, |
|
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), |
|
num_heads=encoder_num_heads, |
|
patch_size=vit_patch_size, |
|
qkv_bias=True, |
|
use_rel_pos=True, |
|
|
|
global_attn_indexes=encoder_global_attn_indexes, |
|
window_size=14, |
|
out_chans=prompt_embed_dim, |
|
), |
|
prompt_encoder=PromptEncoder( |
|
embed_dim=prompt_embed_dim, |
|
image_embedding_size=(image_embedding_size, image_embedding_size), |
|
input_image_size=(image_size, image_size), |
|
mask_in_chans=16, |
|
), |
|
mask_decoder=MaskDecoder( |
|
num_multimask_outputs=args.multimask_output, |
|
transformer=TwoWayTransformer( |
|
depth=2, |
|
embedding_dim=prompt_embed_dim, |
|
mlp_dim=2048, |
|
num_heads=8, |
|
), |
|
transformer_dim=prompt_embed_dim, |
|
iou_head_depth=3, |
|
iou_head_hidden_dim=256, |
|
), |
|
pixel_mean=[123.675, 116.28, 103.53], |
|
pixel_std=[58.395, 57.12, 57.375], |
|
) |
|
sam.eval() |
|
checkpoint = Path(checkpoint) |
|
if checkpoint.name == "sam_vit_b_01ec64.pth" and not checkpoint.exists(): |
|
cmd = input("Download sam_vit_b_01ec64.pth from facebook AI? [y]/n: ") |
|
if len(cmd) == 0 or cmd.lower() == 'y': |
|
checkpoint.parent.mkdir(parents=True, exist_ok=True) |
|
print("Downloading SAM ViT-B checkpoint...") |
|
urllib.request.urlretrieve( |
|
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth", |
|
checkpoint, |
|
) |
|
print(checkpoint.name, " is downloaded!") |
|
elif checkpoint.name == "sam_vit_h_4b8939.pth" and not checkpoint.exists(): |
|
cmd = input("Download sam_vit_h_4b8939.pth from facebook AI? [y]/n: ") |
|
if len(cmd) == 0 or cmd.lower() == 'y': |
|
checkpoint.parent.mkdir(parents=True, exist_ok=True) |
|
print("Downloading SAM ViT-H checkpoint...") |
|
urllib.request.urlretrieve( |
|
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", |
|
checkpoint, |
|
) |
|
print(checkpoint.name, " is downloaded!") |
|
elif checkpoint.name == "sam_vit_l_0b3195.pth" and not checkpoint.exists(): |
|
cmd = input("Download sam_vit_l_0b3195.pth from facebook AI? [y]/n: ") |
|
if len(cmd) == 0 or cmd.lower() == 'y': |
|
checkpoint.parent.mkdir(parents=True, exist_ok=True) |
|
print("Downloading SAM ViT-L checkpoint...") |
|
urllib.request.urlretrieve( |
|
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", |
|
checkpoint, |
|
) |
|
print(checkpoint.name, " is downloaded!") |
|
|
|
|
|
if checkpoint is not None: |
|
with open(checkpoint, "rb") as f: |
|
state_dict = torch.load(f) |
|
|
|
|
|
new_state_dict = {k: v for k, v in state_dict.items() if k in sam.state_dict() and sam.state_dict()[k].shape == v.shape} |
|
sam.load_state_dict(new_state_dict, strict = False) |
|
return sam |
|
|