|
"""resnet in pytorch |
|
|
|
|
|
|
|
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. |
|
|
|
Deep Residual Learning for Image Recognition |
|
https://arxiv.org/abs/1512.03385v1 |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
class BasicBlock(nn.Module): |
|
"""Basic Block for resnet 18 and resnet 34 |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
expansion = 1 |
|
|
|
def __init__(self, in_channels, out_channels, stride=1): |
|
super().__init__() |
|
|
|
|
|
self.residual_function = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False), |
|
nn.BatchNorm2d(out_channels * BasicBlock.expansion) |
|
) |
|
|
|
|
|
self.shortcut = nn.Sequential() |
|
|
|
|
|
|
|
if stride != 1 or in_channels != BasicBlock.expansion * out_channels: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(out_channels * BasicBlock.expansion) |
|
) |
|
|
|
def forward(self, x): |
|
return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x)) |
|
|
|
class BottleNeck(nn.Module): |
|
"""Residual block for resnet over 50 layers |
|
|
|
""" |
|
expansion = 4 |
|
def __init__(self, in_channels, out_channels, stride=1): |
|
super().__init__() |
|
self.residual_function = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(out_channels, out_channels, stride=stride, kernel_size=3, padding=1, bias=False), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(out_channels, out_channels * BottleNeck.expansion, kernel_size=1, bias=False), |
|
nn.BatchNorm2d(out_channels * BottleNeck.expansion), |
|
) |
|
|
|
self.shortcut = nn.Sequential() |
|
|
|
if stride != 1 or in_channels != out_channels * BottleNeck.expansion: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels * BottleNeck.expansion, stride=stride, kernel_size=1, bias=False), |
|
nn.BatchNorm2d(out_channels * BottleNeck.expansion) |
|
) |
|
|
|
def forward(self, x): |
|
return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x)) |
|
|
|
class ResNet(nn.Module): |
|
|
|
def __init__(self, block, num_block, num_classes=1): |
|
super().__init__() |
|
|
|
self.in_channels = 64 |
|
|
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(inplace=True)) |
|
|
|
|
|
self.conv2_x = self._make_layer(block, 64, num_block[0], 2) |
|
self.conv3_x = self._make_layer(block, 128, num_block[1], 2) |
|
self.conv4_x = self._make_layer(block, 256, num_block[2], 2) |
|
self.conv5_x = self._make_layer(block, 512, num_block[3], 2) |
|
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
def _make_layer(self, block, out_channels, num_blocks, stride): |
|
"""make resnet layers(by layer i didnt mean this 'layer' was the |
|
same as a neuron netowork layer, ex. conv layer), one layer may |
|
contain more than one residual block |
|
|
|
Args: |
|
block: block type, basic block or bottle neck block |
|
out_channels: output depth channel number of this layer |
|
num_blocks: how many blocks per layer |
|
stride: the stride of the first block of this layer |
|
|
|
Return: |
|
return a resnet layer |
|
""" |
|
|
|
|
|
|
|
strides = [stride] + [1] * (num_blocks - 1) |
|
layers = [] |
|
for stride in strides: |
|
layers.append(block(self.in_channels, out_channels, stride)) |
|
self.in_channels = out_channels * block.expansion |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
output = self.conv1(x) |
|
output = self.conv2_x(output) |
|
output = self.conv3_x(output) |
|
output = self.conv4_x(output) |
|
output = self.conv5_x(output) |
|
output = self.avg_pool(output) |
|
output = output.view(output.size(0), -1) |
|
output = self.fc(output) |
|
|
|
return output |
|
|
|
def resnet18(): |
|
""" return a ResNet 18 object |
|
""" |
|
return ResNet(BasicBlock, [2, 2, 2, 2]) |
|
|
|
def resnet34(): |
|
""" return a ResNet 34 object |
|
""" |
|
return ResNet(BasicBlock, [3, 4, 6, 3]) |
|
|
|
def resnet50(): |
|
""" return a ResNet 50 object |
|
""" |
|
return ResNet(BottleNeck, [3, 4, 6, 3]) |
|
|
|
def resnet101(): |
|
""" return a ResNet 101 object |
|
""" |
|
return ResNet(BottleNeck, [3, 4, 23, 3]) |
|
|
|
def resnet152(): |
|
""" return a ResNet 152 object |
|
""" |
|
return ResNet(BottleNeck, [3, 8, 36, 3]) |
|
|
|
|
|
|
|
|